1
|
Jiang S, Liang J, Li W, Wang L, Song M, Xu S, Liu G, Du Q, Zhai D, Tang L, Yang Y, Zhang L, Zhang B. The role of CXCL1/CXCR2 axis in neurological diseases. Int Immunopharmacol 2023; 120:110330. [PMID: 37247498 DOI: 10.1016/j.intimp.2023.110330] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
The C-X-C chemokine ligand (CXCL) 1 and its receptor C-X-C chemokine receptor (CXCR) 2 are widely expressed in the peripheral nervous systems (PNS) and central nervous systems (CNS) and are involved in the development of inflammation and pain after various nerve injuries. Once a nerve is damaged, it affects not only the neuron itself but also lesions elsewhere in its dominant site. After the CXCL1/CXCR2 axis is activated, multiple downstream pathways can be activated, such as c-Raf/MAPK/AP-1, p-PKC-μ/p-ILK/NLRP3, JAK2/STAT3, TAK1/NF-κB, etc. These pathways in turn mediate cellular motility state or cell migration. CXCR2 is expressed on the surface of neutrophils and monocytes/macrophages. These cells can be recruited to the lesion through the CXCL1/CXCR2 axis to participate in the inflammatory response. The expression of CXCR2 in neurons can activate some pathways in neurons through the CXCL1/CXCR2 axis, thereby causing damage to neurons. CXCR2 is also expressed in astrocytes, and when CXCR2 activated, it increases the number of astrocytes but impairs their function. Since inflammation can occur at almost any site of injury, elucidating the mechanism of CXCL1/CXCR2 axis' influence on inflammation may provide a favorable target for clinical treatment. Therefore, this article reviews the research progress of the CXCL1/CXCR2 axis in neurological diseases, aiming to provide a more meaningful theoretical basis for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
2
|
GPSM1 impairs metabolic homeostasis by controlling a pro-inflammatory pathway in macrophages. Nat Commun 2022; 13:7260. [PMID: 36434066 PMCID: PMC9700814 DOI: 10.1038/s41467-022-34998-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
G-protein-signaling modulator 1 (GPSM1) exhibits strong genetic association with Type 2 diabetes (T2D) and Body Mass Index in population studies. However, how GPSM1 carries out such control and in which types of cells are poorly understood. Here, we demonstrate that myeloid GPSM1 promotes metabolic inflammation to accelerate T2D and obesity development. Mice with myeloid-specific GPSM1 ablation are protected against high fat diet-induced insulin resistance, glucose dysregulation, and liver steatosis via repression of adipose tissue pro-inflammatory states. Mechanistically, GPSM1 deficiency mainly promotes TNFAIP3 transcription via the Gαi3/cAMP/PKA/CREB axis, thus inhibiting TLR4-induced NF-κB signaling in macrophages. In addition, we identify a small-molecule compound, AN-465/42243987, which suppresses the pro-inflammatory phenotype by inhibiting GPSM1 function, which could make it a candidate for metabolic therapy. Furthermore, GPSM1 expression is upregulated in visceral fat of individuals with obesity and is correlated with clinical metabolic traits. Overall, our findings identify macrophage GPSM1 as a link between metabolic inflammation and systemic homeostasis.
Collapse
|
3
|
Targeting CXCR1 and CXCR2 receptors in cardiovascular diseases. Pharmacol Ther 2022; 237:108257. [PMID: 35908611 DOI: 10.1016/j.pharmthera.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
|
4
|
Fredriksson J, Holdfeldt A, Mårtensson J, Björkman L, Møller TC, Müllers E, Dahlgren C, Sundqvist M, Forsman H. GRK2 selectively attenuates the neutrophil NADPH-oxidase response triggered by β-arrestin recruiting GPR84 agonists. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119262. [PMID: 35341806 DOI: 10.1016/j.bbamcr.2022.119262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In order to avoid a prolonged pro-inflammatory neutrophil response, signaling downstream of an agonist-activated G protein-coupled receptor (GPCR) has to be rapidly terminated. Among the family of GPCR kinases (GRKs) that regulate receptor phosphorylation and signaling termination, GRK2, which is highly expressed by immune cells, plays an important role. The medium chain fatty acid receptor GPR84 as well as formyl peptide receptor 2 (FPR2), receptors expressed in neutrophils, play a key role in regulating inflammation. In this study, we investigated the effects of GRK2 inhibitors on neutrophil functions induced by GPR84 and FPR2 agonists. GRK2 was shown to be expressed in human neutrophils and analysis of subcellular fractions revealed a cytosolic localization. The GRK2 inhibitors enhanced and prolonged neutrophil production of reactive oxygen species (ROS) induced by GPR84- but not FPR2-agonists, suggesting a receptor selective function of GRK2. This suggestion was supported by β-arrestin recruitment data. The ROS production induced by a non β-arrestin recruiting GPR84 agonist was not affected by the GRK2 inhibitor. Termination of this β-arrestin independent response relied, similar to the response induced by FPR2 agonists, primarily on the actin cytoskeleton. In summary, we show that GPR84 utilizes GRK2 in concert with β-arrestin and actin cytoskeleton dependent processes to fine-tune the activity of the ROS generating NADPH-oxidase in neutrophils.
Collapse
Affiliation(s)
- Johanna Fredriksson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Erik Müllers
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden.
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
CXCR2 Receptor: Regulation of Expression, Signal Transduction, and Involvement in Cancer. Int J Mol Sci 2022; 23:ijms23042168. [PMID: 35216283 PMCID: PMC8878198 DOI: 10.3390/ijms23042168] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Chemokines are a group of about 50 chemotactic cytokines crucial for the migration of immune system cells and tumor cells, as well as for metastasis. One of the 20 chemokine receptors identified to date is CXCR2, a G-protein-coupled receptor (GPCR) whose most known ligands are CXCL8 (IL-8) and CXCL1 (GRO-α). In this article we present a comprehensive review of literature concerning the role of CXCR2 in cancer. We start with regulation of its expression at the transcriptional level and how this regulation involves microRNAs. We show the mechanism of CXCR2 signal transduction, in particular the action of heterotrimeric G proteins, phosphorylation, internalization, intracellular trafficking, sequestration, recycling, and degradation of CXCR2. We discuss in detail the mechanism of the effects of activated CXCR2 on the actin cytoskeleton. Finally, we describe the involvement of CXCR2 in cancer. We focused on the importance of CXCR2 in tumor processes such as proliferation, migration, and invasion of tumor cells as well as the effects of CXCR2 activation on angiogenesis, lymphangiogenesis, and cellular senescence. We also discuss the importance of CXCR2 in cell recruitment to the tumor niche including tumor-associated neutrophils (TAN), tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), and regulatory T (Treg) cells.
Collapse
|
6
|
Liu Y, Xia H, Xia G, Lin S, Guo L, Liu Y. The effect of an isoquinoline alkaloid on treatment of periodontitis by regulating the neutrophils chemotaxis. J Leukoc Biol 2021; 110:475-484. [PMID: 34184309 DOI: 10.1002/jlb.3ma0321-736r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophil plays a critical role in the progression of periodontitis. In general, its chemotaxis and activation are benefit for the host defense of bacterial infection and inflammation. However, previous studies have reported that the hyperactive and reactive neutrophils appear to be one of the reasons for tissue destruction in periodontitis tissues. In this study, we investigated an isoquinoline alkaloid Litcubanine A (LA), which from the Traditional Chinese medicinal plant, Litsea cubeba. We found LA showed significant activity in inhibiting neutrophils chemotaxis in the zebrafish yolk sac microinjection model in vivo and in mouse neutrophils in vitro. Further investigation proved that LA could inhibit the expression levels of neutrophil respiratory burst-related and inflammation-related genes CYBB and NCF2, as well as inhibit the activation of MAPK signaling pathway. Moreover, using LA, we successfully achieved the effect of reducing periodontitis bone loss by regulating neutrophil chemotaxis and related functions in a mouse ligature-induced periodontitis model.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
The G Protein-Coupled Receptor Kinases (GRKs) in Chemokine Receptor-Mediated Immune Cell Migration: From Molecular Cues to Physiopathology. Cells 2021; 10:cells10010075. [PMID: 33466410 PMCID: PMC7824814 DOI: 10.3390/cells10010075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Although G protein-coupled receptor kinases (GRKs) have long been known to regulate G protein-coupled receptor (GPCR) desensitization, their more recently characterized functions as scaffolds and signalling adapters underscore that this small family of proteins governs a larger array of physiological functions than originally suspected. This review explores how GRKs contribute to the complex signalling networks involved in the migration of immune cells along chemokine gradients sensed by cell surface GPCRs. We outline emerging evidence indicating that the coordinated docking of several GRKs on an active chemokine receptor determines a specific receptor phosphorylation barcode that will translate into distinct signalling and migration outcomes. The guidance cues for neutrophil migration are emphasized based on several alterations affecting GRKs or GPCRs reported to be involved in pathological conditions.
Collapse
|
8
|
The PDZ motif peptide of ZO-1 attenuates Pseudomonas aeruginosa LPS-induced airway inflammation. Sci Rep 2020; 10:19644. [PMID: 33184397 PMCID: PMC7665049 DOI: 10.1038/s41598-020-76883-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is known to play a role in many human diseases. Therefore, examining the negative control mechanisms of tight junction protein ZO-1 on the exotoxin LPS of P. aeruginosa-induced diseases could be critical in the development of novel therapeutics. We found that ZO-1 expression dramatically decreased in inflammatory human lung tissues. Interestingly, PDZ1 deletion of the PDZ domain in the ZO-1 protein dramatically decreased LPS-induced F-actin formation and increased the expression of genes for pro-inflammatory cytokines, but not PDZ2 and PDZ3 of the ZO-1 protein. We also found that the consensus PDZ peptide (based on PDZ1) of ZO-1 down-regulates the expression of pro-inflammatory cytokine genes and F-actin formation; in contrast, the GG24,25AA mutant PDZ peptide cannot control these genes. LPS activates IL-8 secretion extracellularly in a time-dependent manner, while the secretion is inhibited by PDZ peptide. Whereas increased IL-8 secretion by LPS activates the CXCR2 receptor, overexpressed RGS12 negatively regulates LPS-induced CXCR2/IL-8 signaling. The PDZ peptide also decreases LPS-induced inflammatory cell populations, pro-inflammatory cytokine gene expression, and TEER in bronchoalveolar lavage fluid and cultured alveolar macrophages. Collectively, we suggest that the PDZ peptide may be a potential therapeutic for bacteria-induced respiratory diseases.
Collapse
|
9
|
Vural A, Lanier SM. Intersection of two key signal integrators in the cell: activator of G-protein signaling 3 and dishevelled-2. J Cell Sci 2020; 133:jcs247908. [PMID: 32737219 PMCID: PMC7490517 DOI: 10.1242/jcs.247908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, encoded by GPSM1) was discovered as a one of several receptor-independent activators of G-protein signaling, which are postulated to provide a platform for divergence between canonical and noncanonical G-protein signaling pathways. Similarly, Dishevelled (DVL) proteins serve as a point of divergence for β-catenin-dependent and -independent signaling pathways involving the family of Frizzled (FZD) ligands and cell-surface WNT receptors. We recently discovered the apparent regulated localization of dishevelled-2 (DVL2) and AGS3 to distinct cellular puncta, suggesting that the two proteins interact as part of various cell signaling systems. To address this hypothesis, we asked the following questions: (1) do AGS3 signaling pathways influence the activation of β-catenin (CTNNB1)-regulated transcription through the WNT-Frizzled-Dishevelled axis, and (2) is the AGS3 and DVL2 interaction regulated? The interaction of AGS3 and DVL2 was regulated by protein phosphorylation, subcellular distribution, and a cell-surface G-protein-coupled receptor. These data, and the commonality of functional system impacts observed for AGS3 and DVL2, suggest that the AGS3-DVL2 complex presents an unexpected path for functional integration within the cell.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ali Vural
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Stephen M Lanier
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
10
|
Adekoya TO, Smith N, Aladeniyi T, Blumer JB, Chen XL, Richardson RM. Activator of G protein signaling 3 modulates prostate tumor development and progression. Carcinogenesis 2020; 40:1504-1513. [PMID: 31215992 DOI: 10.1093/carcin/bgz076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/05/2019] [Accepted: 04/22/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer death among men, with greater prevalence of the disease among the African American population in the USA. Activator of G-protein signaling 3 (AGS3/G-protein signaling modulator 1) was shown to be overexpressed in prostate adenocarcinoma relative to the prostate gland. In this study, we investigated the correlation between AGS3 overexpression and PCa malignancy. Immunoblotting analysis and real-time quantitative-PCR showed increase in AGS3 expression in the metastatic cell lines LNCaP (~3-fold), MDA PCa 2b (~2-fold), DU 145 (~2-fold) and TRAMP-C1 (~20-fold) but not in PC3 (~1-fold), relative to control RWPE-1. Overexpression of AGS3 in PC3, LNCaP and MDA PCa 2b enhanced tumor growth. AGS3 contains seven tetratricopeptide repeats (TPR) and four G-protein regulatory (GPR) motifs. Overexpression of the TPR or the GPR motifs in PC3 cells had no effect in tumor growth. Depletion of AGS3 in the TRAMP-C1 cells (TRAMP-C1-AGS3-/-) decreased cell proliferation and delayed wound healing and tumor growth in both C57BL/6 (~3-fold) and nude mice xenografts, relative to control TRAMP-C1 cells. TRAMP-C1-AGS3-/- tumors also exhibited a marked increase (~5-fold) in both extracellular signal-regulated kinase (ERK) 1/2 and P38 mitogen-activated protein kinase (MAPK) activation, which correlated with a significant increase (~3-fold) in androgen receptor (AR) expression, relative to TRAMP-C1 xenografts. Interestingly, overexpression of AGS3 in TRAMP-C1-AGS3-/- cells inhibited ERK activation and AR overexpression as compared with control TRAMP-C1 cells. Taken together, the data indicate that the effect of AGS3 in prostate cancer development and progression is probably mediated via a MAPK/AR-dependent pathway.
Collapse
Affiliation(s)
- Timothy O Adekoya
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | - Nikia Smith
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Temilade Aladeniyi
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaoxin L Chen
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | - Ricardo M Richardson
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| |
Collapse
|
11
|
Klein O, Krier-Burris RA, Lazki-Hagenbach P, Gorzalczany Y, Mei Y, Ji P, Bochner BS, Sagi-Eisenberg R. Mammalian diaphanous-related formin 1 (mDia1) coordinates mast cell migration and secretion through its actin-nucleating activity. J Allergy Clin Immunol 2019; 144:1074-1090. [PMID: 31279009 PMCID: PMC7278082 DOI: 10.1016/j.jaci.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Actin remodeling is a key regulator of mast cell (MC) migration and secretion. However, the precise mechanism underlying the coordination of these processes has remained obscure. OBJECTIVE We sought to characterize the actin rearrangements that occur during MC secretion or chemotactic migration and identify the underlying mechanism of their coordination. METHODS Using high-resolution microscopy, we analyzed the dynamics of actin rearrangements in MCs triggered to migration by IL-8 or prostaglandin E2 or to FcεRI-stimulated secretion. RESULTS We show that a major feature of the actin skeleton in MCs stimulated to migration is the buildup of pericentral actin clusters that prevent cell flattening and converge the secretory granules (SGs) in the cell center. This migratory phenotype is replaced on encounter of an IgE cross-linking antigen that stimulates secretion through a secretory phenotype characterized by cell flattening, reduction of actin mesh density, ruffling of cortical actin, and mobilization of SGs. Furthermore, we show that knockdown of mammalian diaphanous-related formin 1 (mDia1) inhibits chemotactic migration and its typical actin rearrangements, whereas expression of an active mDia1 mutant recapitulates the migratory actin phenotype and enhances cell migration while inhibiting FcεRI-triggered secretion. However, mice deficient in mDia1 appear to have normal numbers of MCs in various organs at baseline. CONCLUSION Our results demonstrate a unique role of actin rearrangements in clustering the SGs and inhibiting their secretion during MC migration. We identify mDia1 as a novel regulator of MC response that coordinates MC chemotaxis and secretion through its actin-nucleating activity.
Collapse
Affiliation(s)
- Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rebecca A Krier-Burris
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Pia Lazki-Hagenbach
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaara Gorzalczany
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yang Mei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Peng Ji
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Rajarathnam K, Schnoor M, Richardson RM, Rajagopal S. How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell Signal 2019; 54:69-80. [PMID: 30465827 PMCID: PMC6664297 DOI: 10.1016/j.cellsig.2018.11.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Chemokines play crucial roles in combating microbial infection and initiating tissue repair by recruiting neutrophils in a timely and coordinated manner. In humans, no less than seven chemokines (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8) and two receptors (CXCR1 and CXCR2) mediate neutrophil functions but in a context dependent manner. Neutrophil-activating chemokines reversibly exist as monomers and dimers, and their receptor binding triggers conformational changes that are coupled to G-protein and β-arrestin signaling pathways. G-protein signaling activates a variety of effectors including Ca2+ channels and phospholipase C. β-arrestin serves as a multifunctional adaptor and is coupled to several signaling hubs including MAP kinase and tyrosine kinase pathways. Both G-protein and β-arrestin signaling pathways play important non-overlapping roles in neutrophil trafficking and activation. Functional studies have established many similarities but distinct differences for a given chemokine and between chemokines at the level of monomer vs. dimer, CXCR1 vs. CXCR2 activation, and G-protein vs. β-arrestin pathways. We propose that two forms of the ligand binding two receptors and activating two signaling pathways enables fine-tuned neutrophil function compared to a single form, a single receptor, or a single pathway. We summarize the current knowledge on the molecular mechanisms by which chemokine monomers/dimers activate CXCR1/CXCR2 and how these interactions trigger G-protein/β-arrestin-coupled signaling pathways. We also discuss current challenges and knowledge gaps, and likely advances in the near future that will lead to a better understanding of the relationship between the chemokine-CXCR1/CXCR2-G-protein/β-arrestin axis and neutrophil function.
Collapse
Affiliation(s)
- Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Michael Schnoor
- Department for Molecular Biomedicine, Cinvestav-IPN, 07360 Mexico City, Mexico
| | - Ricardo M Richardson
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | | |
Collapse
|
13
|
Vural A, Fadillioglu E, Kelesoglu F, Ma D, Lanier SM. Role of G-proteins and phosphorylation in the distribution of AGS3 to cell puncta. J Cell Sci 2018; 131:jcs.216507. [PMID: 30404823 DOI: 10.1242/jcs.216507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, also known as GPSM1) exhibits broad functional diversity and oscillates among different subcellular compartments in a regulated manner. AGS3 consists of a tetratricopeptide repeat (TPR) domain and a G-protein regulatory (GPR) domain. Here, we tested the hypothesis that phosphorylation of the AGS3 GPR domain regulates its subcellular distribution and functionality. In contrast to the cortical and/or diffuse non-homogeneous distribution of wild-type (WT) AGS3, an AGS3 construct lacking all 24 potential phosphorylation sites in the GPR domain localized to cytosolic puncta. This change in localization was revealed to be dependent upon phosphorylation of a single threonine amino acid (T602). The punctate distribution of AGS3-T602A was rescued by co-expression of Gαi and Gαo but not Gαs or Gαq Following treatment with alkaline phosphatase, both AGS3-T602A and WT AGS3 exhibited a gel shift in SDS-PAGE as compared to untreated WT AGS3, consistent with a loss of protein phosphorylation. The punctate distribution of AGS3-T602A was lost in an AGS3-A602T conversion mutant, but was still present upon T602 mutation to glutamate or aspartate. These results implicate dynamic phosphorylation as a discrete mechanism to regulate the subcellular distribution of AGS3 and associated functionality.
Collapse
Affiliation(s)
- Ali Vural
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ersin Fadillioglu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Fatih Kelesoglu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Stephen M Lanier
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA .,Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
14
|
Protein engineering of the chemokine CCL20 prevents psoriasiform dermatitis in an IL-23-dependent murine model. Proc Natl Acad Sci U S A 2017; 114:12460-12465. [PMID: 29109267 DOI: 10.1073/pnas.1704958114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the infiltration of T cell and other immune cells to the skin in response to injury or autoantigens. Conventional, as well as unconventional, γδ T cells are recruited to the dermis and epidermis by CCL20 and other chemokines. Together with its receptor CCR6, CCL20 plays a critical role in the development of psoriasiform dermatitis in mouse models. We screened a panel of CCL20 variants designed to form dimers stabilized by intermolecular disulfide bonds. A single-atom substitution yielded a CCL20 variant (CCL20 S64C) that acted as a partial agonist for the chemokine receptor CCR6. CCL20 S64C bound CCR6 and induced intracellular calcium release, consistent with G-protein activation, but exhibited minimal chemotactic activity. Instead, CCL20 S64C inhibited CCR6-mediated T cell migration with nominal impact on other chemokine receptor signaling. When given in an IL-23-dependent mouse model for psoriasis, CCL20 S64C prevented psoriatic inflammation and the up-regulation of IL-17A and IL-22. Our results validate CCR6 as a tractable therapeutic target for psoriasis and demonstrate the value of CCL20 S64C as a lead compound.
Collapse
|
15
|
Lee T, Packiriswamy N, Lee E, Lucas PC, McCabe LR, Parameswaran N. Role of G protein-coupled receptor kinase-6 in Escherichia coli lung infection model in mice. Physiol Genomics 2017; 49:682-689. [PMID: 28939643 PMCID: PMC5792138 DOI: 10.1152/physiolgenomics.00066.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/24/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptor kinase-6 (GRK6) is a serine/threonine kinase that is important in inflammatory processes. In this study, we examined the role of GRK6 in Escherichia coli-induced lung infection and inflammation using GRK6 knockout (KO) and wild-type (WT) mice. Intratracheal instillation of E. coli significantly enhanced bacterial load in the bronchoalveolar lavage (BAL) of KO compared with WT mice. Reduced bacterial clearance in the KO mice was not due to an intrinsic defect in neutrophil phagocytosis or killing but as a result of reduced neutrophil numbers in the KO BAL. Interestingly, neutrophil numbers in the lung were increased in the KO compared with WT mice, suggesting a potential dysfunction in transepithelial migration of neutrophils from the lungs to the bronchoalveolar space. This effect was selective for lung tissue because peritoneal neutrophil numbers were similar between the two genotypes following peritoneal infection. Although neutrophil expression of CXCR2/CXCR3 was similar between WT and KO, IL-17A expression was higher in the KO compared with WT mice. These results suggest that enhanced neutrophil count in the KO lungs but reduced numbers in BAL are likely due to transepithelial migration defect and/or altered chemokines/cytokines. Together, our studies suggest a previously unrecognized and novel role for GRK6 in neutrophil migration specific to pulmonary tissue during bacterial infection.
Collapse
Affiliation(s)
- Taehyung Lee
- Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | | | - Eunhee Lee
- Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | | |
Collapse
|
16
|
Robichaux WG, Branham-O'Connor M, Hwang IY, Vural A, Kehrl JH, Blumer JB. Regulation of Chemokine Signal Integration by Activator of G-Protein Signaling 4 (AGS4). J Pharmacol Exp Ther 2017; 360:424-433. [PMID: 28062526 DOI: 10.1124/jpet.116.238436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/28/2016] [Indexed: 12/15/2022] Open
Abstract
Activator of G-protein signaling 4 (AGS4)/G-protein signaling modulator 3 (Gpsm3) contains three G-protein regulatory (GPR) motifs, each of which can bind Gαi-GDP free of Gβγ We previously demonstrated that the AGS4-Gαi interaction is regulated by seven transmembrane-spanning receptors (7-TMR), which may reflect direct coupling of the GPR-Gαi module to the receptor analogous to canonical Gαβγ heterotrimer. We have demonstrated that the AGS4-Gαi complex is regulated by chemokine receptors in an agonist-dependent manner that is receptor-proximal. As an initial approach to investigate the functional role(s) of this regulated interaction in vivo, we analyzed leukocytes, in which AGS4/Gpsm3 is predominantly expressed, from AGS4/Gpsm3-null mice. Loss of AGS4/Gpsm3 resulted in mild but significant neutropenia and leukocytosis. Dendritic cells, T lymphocytes, and neutrophils from AGS4/Gpsm3-null mice also exhibited significant defects in chemoattractant-directed chemotaxis and extracellular signal-regulated kinase activation. An in vivo peritonitis model revealed a dramatic reduction in the ability of AGS4/Gpsm3-null neutrophils to migrate to primary sites of inflammation. Taken together, these data suggest that AGS4/Gpsm3 is required for proper chemokine signal processing in leukocytes and provide further evidence for the importance of the GPR-Gαi module in the regulation of leukocyte function.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Melissa Branham-O'Connor
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Il-Young Hwang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Ali Vural
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Johne H Kehrl
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| | - Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina (W.G.R., M.B.-O., J.B.B.); and B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (I.-Y.H., A.V., J.H.K.)
| |
Collapse
|
17
|
Singh R, Hui T, Matsui A, Allahem Z, Johnston CD, Ruiz-Torruella M, Rittling SR. Modulation of infection-mediated migration of neutrophils and CXCR2 trafficking by osteopontin. Immunology 2016; 150:74-86. [PMID: 27599164 DOI: 10.1111/imm.12668] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 12/16/2022] Open
Abstract
Osteopontin (OPN) is a pro-inflammatory protein that paradoxically protects against inflammation and bone destruction in a mouse model of endodontic infection. Here we have tested the hypothesis that this effect of OPN is mediated by effects on migration of innate immune cells to the site of infection. Using the air pouch as a model of endodontic infection in mice, we showed that neutrophil accumulation at the site of infection with a mixture of endodontic pathogens is significantly reduced in OPN-deficient mice. Reduced neutrophil accumulation in the absence of OPN was accompanied by an increase in bacterial load. OPN-deficiency did not affect neutrophil survival, CXCR2 ligand expression, or the production of inflammatory cytokines in the air pouch. In vitro, OPN enhanced neutrophil migration to CXCL1, whereas in vivo, inhibition of CXCR2 suppressed cellular infiltration in air pouches of infected wild-type mice by > 50%, but had no effect in OPN-deficient mice. OPN increased cell surface expression of CXCR2 on bone marrow neutrophils in an integrin-αv -dependent manner, and suppressed the internalization of CXCR2 in the absence of ligand. Together, these results support a model where the protective effect of OPN results from enhanced initial neutrophil accumulation at sites of infection resulting in optimal bacterial killing. We describe a novel mechanism for this effect of OPN: integrin-αv -dependent suppression of CXCR2 internalization in neutrophils, which increases the ability of these cells to migrate to sites of infection in response to CXCR2 ligands.
Collapse
Affiliation(s)
- Rani Singh
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Tommy Hui
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Aritsune Matsui
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Ziyad Allahem
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Christopher D Johnston
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | | | - Susan R Rittling
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
18
|
Bissinger R, Lang E, Ghashghaeinia M, Singh Y, Zelenak C, Fehrenbacher B, Honisch S, Chen H, Fakhri H, Umbach AT, Liu G, Rexhepaj R, Liu G, Schaller M, Mack AF, Lupescu A, Birnbaumer L, Lang F, Qadri SM. Blunted apoptosis of erythrocytes in mice deficient in the heterotrimeric G-protein subunit Gαi2. Sci Rep 2016; 6:30925. [PMID: 27499046 PMCID: PMC4976336 DOI: 10.1038/srep30925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023] Open
Abstract
Putative functions of the heterotrimeric G-protein subunit Gαi2-dependent signaling include ion channel regulation, cell differentiation, proliferation and apoptosis. Erythrocytes may, similar to apoptosis of nucleated cells, undergo eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine (PS) exposure. Eryptosis may be triggered by increased cytosolic Ca2+ activity and ceramide. In the present study, we show that Gαi2 is expressed in both murine and human erythrocytes and further examined the survival of erythrocytes drawn from Gαi2-deficient mice (Gαi2−/−) and corresponding wild-type mice (Gαi2+/+). Our data show that plasma erythropoietin levels, erythrocyte maturation markers, erythrocyte counts, hematocrit and hemoglobin concentration were similar in Gαi2−/− and Gαi2+/+ mice but the mean corpuscular volume was significantly larger in Gαi2−/− mice. Spontaneous PS exposure of circulating Gαi2−/− erythrocytes was significantly lower than that of circulating Gαi2+/+ erythrocytes. PS exposure was significantly lower in Gαi2−/− than in Gαi2+/+ erythrocytes following ex vivo exposure to hyperosmotic shock, bacterial sphingomyelinase or C6 ceramide. Erythrocyte Gαi2 deficiency further attenuated hyperosmotic shock-induced increase of cytosolic Ca2+ activity and cell shrinkage. Moreover, Gαi2−/− erythrocytes were more resistant to osmosensitive hemolysis as compared to Gαi2+/+ erythrocytes. In conclusion, Gαi2 deficiency in erythrocytes confers partial protection against suicidal cell death.
Collapse
Affiliation(s)
- Rosi Bissinger
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Elisabeth Lang
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Duesseldorf, Germany
| | - Mehrdad Ghashghaeinia
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Yogesh Singh
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Christine Zelenak
- Department of Internal Medicine, Charité Medical University, Berlin, Germany
| | | | - Sabina Honisch
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Hong Chen
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Hajar Fakhri
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Anja T Umbach
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Guilai Liu
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Rexhep Rexhepaj
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany.,Institute of Biochemistry and Molecular Biology, University of Bonn, Germany
| | - Guoxing Liu
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | | | | | - Adrian Lupescu
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Florian Lang
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Syed M Qadri
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany.,Institute of Biomedical Research (BIOMED), School of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
19
|
Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein. Sci Rep 2016; 6:27054. [PMID: 27270970 PMCID: PMC4895231 DOI: 10.1038/srep27054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment.
Collapse
|
20
|
Kehrl JH. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity. Biochem Pharmacol 2016; 114:40-52. [PMID: 27071343 DOI: 10.1016/j.bcp.2016.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/08/2016] [Indexed: 01/30/2023]
Abstract
Leukocyte chemoattractant receptors are members of the G-protein coupled receptor (GPCR) family. Signaling downstream of these receptors directs the localization, positioning and homeostatic trafficking of leukocytes; as well as their recruitment to, and their retention at, inflammatory sites. Ligand induced changes in the molecular conformation of chemoattractant receptors results in the engagement of heterotrimeric G-proteins, which promotes α subunits to undergo GTP/GDP exchange. This results in the functional release of βγ subunits from the heterotrimers, thereby activating downstream effector molecules, which initiate leukocyte polarization, gradient sensing, and directional migration. Pertussis toxin ADP ribosylates Gαi subunits and prevents chemoattractant receptors from triggering Gαi nucleotide exchange. The use of pertussis toxin revealed the essential importance of Gαi subunit nucleotide exchange for chemoattractant receptor signaling. More recent studies have identified a range of regulatory mechanisms that target these receptors and their associated heterotrimeric G-proteins, thereby helping to control the magnitude, kinetics, and duration of signaling. A failure in these regulatory pathways can lead to impaired receptor signaling and immunopathology. The analysis of mice with targeted deletions of Gαi isoforms as well as some of these G-protein regulatory proteins is providing insights into their roles in chemoattractant receptor signaling.
Collapse
Affiliation(s)
- John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 2089, United States.
| |
Collapse
|
21
|
Vural A, Al-Khodor S, Cheung GYC, Shi CS, Srinivasan L, McQuiston TJ, Hwang IY, Yeh AJ, Blumer JB, Briken V, Williamson PR, Otto M, Fraser IDC, Kehrl JH. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection. THE JOURNAL OF IMMUNOLOGY 2015; 196:846-56. [PMID: 26667172 DOI: 10.4049/jimmunol.1501595] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/14/2015] [Indexed: 01/08/2023]
Abstract
Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the Gα subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens.
Collapse
Affiliation(s)
- Ali Vural
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Souhaila Al-Khodor
- Signaling Systems Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Chong-Shan Shi
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Lalitha Srinivasan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Travis J McQuiston
- Translational Mycology Unit, Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Il-Young Hwang
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Anthony J Yeh
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Peter R Williamson
- Translational Mycology Unit, Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Iain D C Fraser
- Signaling Systems Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
22
|
Opfermann P, Derhaschnig U, Felli A, Wenisch J, Santer D, Zuckermann A, Dworschak M, Jilma B, Steinlechner B. A pilot study on reparixin, a CXCR1/2 antagonist, to assess safety and efficacy in attenuating ischaemia-reperfusion injury and inflammation after on-pump coronary artery bypass graft surgery. Clin Exp Immunol 2015; 180:131-42. [PMID: 25402332 PMCID: PMC4367101 DOI: 10.1111/cei.12488] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2014] [Indexed: 12/15/2022] Open
Abstract
Reparixin, a CXCR 1/2 antagonist, has been shown to mitigate ischaemia-reperfusion injury (IRI) in various organ systems in animals, but data in humans are scarce. The aim of this double-blinded, placebo-controlled pilot study was to evaluate the safety and efficacy of reparixin to suppress IRI and inflammation in patients undergoing on-pump coronary artery bypass grafting (CABG). Patients received either reparixin or placebo (n = 16 in each group) after induction of anaesthesia until 8 h after cardiopulmonary bypass (CPB). We compared markers of systemic and pulmonary inflammation, surrogates of myocardial IRI and clinical outcomes using Mann-Whitney U- and Fisher's exact tests. Thirty- and 90-day mortality was 0% in both groups. No side effects were observed in the treatment group. Surgical revision, pleural and pericardial effusion, infection and atrial fibrillation rates were not different between groups. Reparixin significantly reduced the proportion of neutrophil granulocytes in blood at the beginning [49%, interquartile range (IQR) = 45-57 versus 58%, IQR = 53-66, P = 0·035], end (71%, IQR = 67-76 versus 79%, IQR = 71-83, P = 0·023) and 1 h after CPB (73%, IQR = 71-75 versus 77%, IQR = 72-80, P = 0·035). Reparixin patients required a lesser positive fluid balance during surgery (2575 ml, IQR = 2027-3080 versus 3200 ml, IQR = 2928-3778, P = 0·029) and during ICU stay (2603 ml, IQR = 1023-4288 versus 4200 ml, IQR = 2313-8160, P = 0·021). Numerically, more control patients required noradrenaline ≥ 0·11 μg/kg/min (50 versus 19%, P = 0·063) and dobutamine (50 versus 25%, P = 0·14). Therefore, administration of reparixin in CABG patients appears to be feasible and safe. It concurrently attenuated postoperative granulocytosis in peripheral blood.
Collapse
Affiliation(s)
- P Opfermann
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care, Medical University of ViennaVienna, Austria
| | - U Derhaschnig
- Department of Clinical Pharmacology, Medical University of ViennaVienna, Austria
| | - A Felli
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care, Medical University of ViennaVienna, Austria
| | - J Wenisch
- Department of Internal Medicine I, Department of Clinical Pharmacology, Medical University of ViennaVienna, Austria
| | - D Santer
- Division of Cardiovascular Surgery, Hietzing HospitalVienna, Austria
| | - A Zuckermann
- Division of Cardiac Surgery, Medical University of ViennaVienna, Austria
| | - M Dworschak
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care, Medical University of ViennaVienna, Austria
| | - B Jilma
- Department of Clinical Pharmacology, Medical University of ViennaVienna, Austria
| | - B Steinlechner
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care, Medical University of ViennaVienna, Austria
| |
Collapse
|
23
|
Bray L, Froment C, Pardo P, Candotto C, Burlet-Schiltz O, Zajac JM, Mollereau C, Moulédous L. Identification and functional characterization of the phosphorylation sites of the neuropeptide FF2 receptor. J Biol Chem 2014; 289:33754-66. [PMID: 25326382 DOI: 10.1074/jbc.m114.612614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuropeptide FF2 (NPFF2) receptor belongs to the rhodopsin family of G protein-coupled receptors and mediates the effects of several related RFamide neuropeptides. One of the main pharmacological interests of this system resides in its ability to regulate endogenous opioid systems, making it a potential target to reduce the negative effects of chronic opioid use. Phosphorylation of intracellular residues is the most extensively studied post-translational modification regulating G protein-coupled receptor activity. However, until now, no information concerning NPFF2 receptor phosphorylation is available. In this study, we combined mass spectrometric analysis and site-directed mutagenesis to analyze for the first time the phosphorylation pattern of the NPFF2 receptor and the role of the various phosphorylation sites in receptor signaling, desensitization, and trafficking in a SH-SY5Y model cell line. We identified the major, likely GRK-dependent, phosphorylation cluster responsible for acute desensitization, (412)TNST(415) at the end of the C terminus of the receptor, and additional sites involved in desensitization ((372)TS(373)) and internalization (Ser(395)). We thus demonstrate the key role played by phosphorylation in the regulation of NPFF2 receptor activity and trafficking. Our data also provide additional evidence supporting the concept that desensitization and internalization are partially independent processes relying on distinct phosphorylation patterns.
Collapse
Affiliation(s)
- Lauriane Bray
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Carine Froment
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Pierre Pardo
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Cédric Candotto
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Odile Burlet-Schiltz
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Jean-Marie Zajac
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Catherine Mollereau
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Lionel Moulédous
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|