1
|
Kim SR, Choi YG, Jo SJ. Smoking Cessation and Risk of Hidradenitis Suppurativa Development. JAMA Dermatol 2024; 160:1056-1065. [PMID: 39167402 PMCID: PMC11339703 DOI: 10.1001/jamadermatol.2024.2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/18/2024] [Indexed: 08/23/2024]
Abstract
Importance Although tobacco smoking is established as a risk factor for hidradenitis suppurativa (HS), studies on the effects of smoking cessation on HS are limited, and evidence is lacking. Objective To examine the association between changes in smoking status and the development of HS. Design, Setting, and Participants This population-based cohort study enrolled participants from the Korean National Health Insurance Service database who had undergone 2 consecutive biennial health examinations (2004-2005 and 2006-2007) as the primary cohort. Within the primary cohort, the secondary cohort comprised individuals who underwent all biennial health examinations throughout the follow-up period and maintained the same smoking status from 2006 to 2007 to the end of the follow-up period. Data were analyzed from July to December 2023. Exposures Changes in smoking habit status. Main Outcomes and Measures Risk of HS development. The HS risk according to change in smoking status between the 2 consecutive health examinations was estimated using a Cox proportional hazards model. Results Of the 6 230 189 participants enrolled, the mean (SD) age was 47.2 (13.5) years, and 55.6% were male. During 84 457 025 person-years of follow-up, 3761 HS events occurred. In the primary cohort, compared to those who consistently reported active smoking at both checkups (ie, sustained smokers), lower HS risk was seen among those who were confirmed to smoke initially but quit by the second checkup (ie, smoking quitters) (adjusted hazard ratio [AHR], 0.68; 95% CI, 0.56-0.83), those who maintained cessation status throughout (AHR, 0.67; 95% CI, 0.57-0.77), and those who reported never smoking at either checkup (ie, never smokers) (AHR, 0.57; 95% CI, 0.52-0.63). Those who initially quit smoking but resumed by the second checkup and those who had no previous smoking history but started at the second checkup (ie, new smokers) exhibited similar HS risk as sustained smokers. The secondary cohort results aligned with those of the primary cohort, showing a more pronounced risk reduction with smoking cessation (AHR, 0.57; 95% CI, 0.39-0.83). Considering time-smoking interaction, the cumulative incidence and the risk of HS in smoking quitters were similar to those in sustained smokers in the early stages of observation. However, 3 to 4 years after smoking cessation, the rate decelerated, resembling that of never smokers, and there was a statistically significant decrease in the risk that persisted (between 3 and 6 years from the index date: AHR, 0.58; 95% CI, 0.36-0.92; and ≥12 years from the index date: AHR, 0.70; 95% CI, 0.50-0.97). New smokers initially paralleled never smokers but accelerated after 2 to 3 years, reaching sustained smokers' levels. Conclusions and Relevance In this cohort study, quitting smoking and sustaining a smoke-free status were associated with a reduced risk of HS development compared to continuous smoking. In contrast, resuming or initiating smoking may have as detrimental an effect on HS development as continual smoking.
Collapse
Affiliation(s)
- Seong Rae Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young-Geun Choi
- Department of Mathematics Education, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
2
|
Nascimento M, Huot-Marchand S, Fanny M, Straube M, Le Bert M, Savigny F, Apetoh L, Van Snick J, Trovero F, Chamaillard M, Quesniaux VFJ, Ryffel B, Gosset P, Gombault A, Riteau N, Sokol H, Couillin I. NLRP6 controls pulmonary inflammation from cigarette smoke in a gut microbiota-dependent manner. Front Immunol 2023; 14:1224383. [PMID: 38146368 PMCID: PMC10749332 DOI: 10.3389/fimmu.2023.1224383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major health issue primarily caused by cigarette smoke (CS) and characterized by breathlessness and repeated airway inflammation. NLRP6 is a cytosolic innate receptor controlling intestinal inflammation and orchestrating the colonic host-microbial interface. However, its roles in the lungs remain largely unexplored. Using CS exposure models, our data show that airway inflammation is strongly impaired in Nlrp6-deficient mice with drastically fewer recruited neutrophils, a key cell subset in inflammation and COPD. We found that NLRP6 expression in lung epithelial cells is important to control airway and lung tissue inflammation in an inflammasome-dependent manner. Since gut-derived metabolites regulate NLRP6 inflammasome activation in intestinal epithelial cells, we investigated the link between NLRP6, CS-driven lung inflammation, and gut microbiota composition. We report that acute CS exposure alters gut microbiota in both wild-type (WT) and Nlrp6-deficient mice and that antibiotic treatment decreases CS-induced lung inflammation. In addition, gut microbiota transfer from dysbiotic Nlrp6-deficient mice to WT mice decreased airway lung inflammation in WT mice, highlighting an NLRP6-dependent gut-to-lung axis controlling pulmonary inflammation.
Collapse
Affiliation(s)
- Mégane Nascimento
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Sarah Huot-Marchand
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Manoussa Fanny
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Marjolène Straube
- Sorbonne Université, Institut National de la Recherche Médicale (INSERM), Centre de Recherche Saint-Antoine (CRSA), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint Antoine, Service de Gastroenterologie, Paris, France
| | - Marc Le Bert
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Florence Savigny
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | | | | | | | - Mathias Chamaillard
- Univ. Lille, Institut National de la Recherche Médicale (INSERM), U1003 - Laboratoire de physiologie cellulaire (PHYCEL) - Physiologie Cellulaire, Lille, France
| | - Valérie F. J. Quesniaux
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Bernhard Ryffel
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Philippe Gosset
- Institut PASTEUR INSERM U1019, Centre National de Recherche (CNRS) Unité Mixte de Recherche (UMR) 8204, Lille, France
| | - Aurélie Gombault
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Nicolas Riteau
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| | - Harry Sokol
- Sorbonne Université, Institut National de la Recherche Médicale (INSERM), Centre de Recherche Saint-Antoine (CRSA), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint Antoine, Service de Gastroenterologie, Paris, France
- Institut national de la recherche agronomique (INRA), UMR1319 Micalis, AgroParisTech, Jouy-en-Josas, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Isabelle Couillin
- University of Orleans and Centre National de Recherche scientifique (CNRS), Experimental and Molecular Immunology and Neurogenetics (INEM)-UMR7355, Orleans, France
| |
Collapse
|
3
|
Gibb M, Sayes CM. An In Vitro Alveolar Model Allows for the Rapid Assessment of Particles for Respiratory Sensitization Potential. Int J Mol Sci 2023; 24:10104. [PMID: 37373252 DOI: 10.3390/ijms241210104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
Dust, both industrial and household, contains particulates that can reach the most distal aspects of the lung. Silica and nickel compounds are two such particulates and have known profiles of poor health outcomes. While silica is well-characterized, nickel compounds still need to be fully understood for their potential to cause long-term immune responses in the lungs. To assess these hazards and decrease animal numbers used in testing, investigations that lead to verifiable in vitro methods are needed. To understand the implications of these two compounds reaching the distal aspect of the lungs, the alveoli, an architecturally relevant alveolar model consisting of epithelial cells, macrophages, and dendritic cells in a maintained submerged system, was utilized for high throughput testing. Exposures include crystalline silica (SiO2) and nickel oxide (NiO). The endpoints measured included mitochondrial reactive oxygen species and cytostructural changes assessed via confocal laser scanning microscopy; cell morphology evaluated via scanning electron microscopy; biochemical reactions assessed via protein arrays; transcriptome assessed via gene arrays, and cell surface activation markers evaluated via flow cytometry. The results showed that, compared to untreated cultures, NiO increased markers for dendritic cell activation, trafficking, and antigen presentation; oxidative stress and cytoskeletal changes, and gene and cytokine expression of neutrophil and other leukocyte chemoattractants. The chemokines and cytokines CCL3, CCL7, CXCL5, IL-6, and IL-8 were identified as potential biomarkers of respiratory sensitization.
Collapse
Affiliation(s)
- Matthew Gibb
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Christie M Sayes
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
4
|
An in vitro alveolar model allows for the rapid assessment of chemical respiratory sensitization with modifiable biomarker endpoints. Chem Biol Interact 2022; 368:110232. [DOI: 10.1016/j.cbi.2022.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
|
5
|
Harju N. Regulation of oxidative stress and inflammatory responses in human retinal pigment epithelial cells. Acta Ophthalmol 2022; 100 Suppl 273:3-59. [DOI: 10.1111/aos.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niina Harju
- School of Pharmacy University of Eastern Finland Kuopio Finland
| |
Collapse
|
6
|
Artemisia gmelinii Attenuates Lung Inflammation by Suppressing the NF-κB/MAPK Pathway. Antioxidants (Basel) 2022; 11:antiox11030568. [PMID: 35326218 PMCID: PMC8944700 DOI: 10.3390/antiox11030568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Cigarette smoke (CS) is the main cause of chronic obstructive pulmonary disease (COPD), and continuous CS exposure causes lung inflammation and deterioration. To investigate the protective effects of Artemisia gmelinii against lung inflammation in this study, cigarette smoke extract (CSE)/lipopolysaccharide (LPS)-treated alveolar macrophages (AMs) and mice stimulated with CSE/porcine pancreas elastase (PPE) were used. Artemisia gmelinii ethanol extract (AGE) was effective in decreasing the levels of cytokines, chemokine, inducible nitric oxide synthase, and cyclooxygenase-2 by inhibiting mitogen-activated protein (MAP) kinases/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in AMs. Additionally, oral administration of AGE suppressed inflammatory cells’ infiltration and secretion of inflammatory cytokines, chemokines, matrix metallopeptidase 9, and neutrophil extracellular traps in bronchoalveolar lavage fluid from the COPD model. Moreover, the obstruction of small airways, the destruction of the lung parenchyma, and expression of IL-6, TNF-α, IL-1β, and MIP-2 were suppressed by inhibiting NF-κB activation in the lung tissues of the AGE group. These effects are associated with scopolin, chlorogenic acid, hyperoside, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, and 4,5-di-O-caffeoylquinic acid, which are the main components of AGE. These data demonstrate the mitigation effect of AGE on lung inflammation via inhibition of MAPK and NF-κB pathways, suggesting that AGE may be instrumental in improving respiratory and lung health.
Collapse
|
7
|
Cass SP, Mekhael O, Thayaparan D, McGrath JJC, Revill SD, Fantauzzi MF, Wang P, Reihani A, Hayat AI, Stevenson CS, Dvorkin-Gheva A, Botelho FM, Stämpfli MR, Ask K. Increased Monocyte-Derived CD11b + Macrophage Subpopulations Following Cigarette Smoke Exposure Are Associated With Impaired Bleomycin-Induced Tissue Remodelling. Front Immunol 2021; 12:740330. [PMID: 34603325 PMCID: PMC8481926 DOI: 10.3389/fimmu.2021.740330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/30/2021] [Indexed: 01/16/2023] Open
Abstract
Rationale The accumulation of macrophages in the airways and the pulmonary interstitium is a hallmark of cigarette smoke-associated inflammation. Notably, pulmonary macrophages are not a homogenous population but consist of several subpopulations. To date, the manner in which cigarette smoke exposure affects the relative composition and functional capacity of macrophage subpopulations has not been elucidated. Methods Using a whole-body cigarette smoke exposure system, we investigated the impact of cigarette smoke on macrophage subpopulations in C57BL/6 mice using flow cytometry-based approaches. Moreover, we used bromodeoxyuridine labelling plus Il1a-/- and Il1r1-/- mice to assess the relative contribution of local proliferation and monocyte recruitment to macrophage accumulation. To assess the functional consequences of altered macrophage subpopulations, we used a model of concurrent bleomycin-induced lung injury and cigarette smoke exposure to examine tissue remodelling processes. Main Results Cigarette smoke exposure altered the composition of pulmonary macrophages increasing CD11b+ subpopulations including monocyte-derived alveolar macrophages (Mo-AM) as well as interstitial macrophages (IM)1, -2 and -3. The increase in CD11b+ subpopulations was observed at multiple cigarette smoke exposure timepoints. Bromodeoxyuridine labelling and studies in Il1a-/- mice demonstrated that increased Mo-AM and IM3 turnover in the lungs of cigarette smoke-exposed mice was IL-1α dependent. Compositional changes in macrophage subpopulations were associated with impaired induction of fibrogenesis including decreased α-smooth muscle actin positive cells following intratracheal bleomycin treatment. Mechanistically, in vivo and ex vivo assays demonstrated predominant macrophage M1 polarisation and reduced matrix metallopeptidase 9 activity in cigarette smoke-exposed mice. Conclusion Cigarette smoke exposure modified the composition of pulmonary macrophage by expanding CD11b+ subpopulations. These compositional changes were associated with attenuated fibrogenesis, as well as predominant M1 polarisation and decreased fibrotic activity. Overall, these data suggest that cigarette smoke exposure altered the composition of pulmonary macrophage subpopulations contributing to impaired tissue remodelling.
Collapse
Affiliation(s)
- Steven P Cass
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Olivia Mekhael
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Danya Thayaparan
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Joshua J C McGrath
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Spencer D Revill
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada.,Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Matthew F Fantauzzi
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Peiyao Wang
- Department Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Amir Reihani
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Aaron I Hayat
- Medical Sciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Christopher S Stevenson
- Janssen Disease Interception Accelerator, Janssen Pharmaceutical Companies of Johnson and Johnson, Raritan, NJ, United States
| | - Anna Dvorkin-Gheva
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Fernando M Botelho
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Martin R Stämpfli
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada.,Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada.,Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Morissette M, Godbout K, Côté A, Boulet LP. Asthma COPD overlap: Insights into cellular and molecular mechanisms. Mol Aspects Med 2021; 85:101021. [PMID: 34521557 DOI: 10.1016/j.mam.2021.101021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Although there is still no consensus on the definition of Asthma-COPD Overlap (ACO), it is generally accepted that some patients with airway disease have features of both asthma and COPD. Just as its constituents, ACO consists of different phenotypes, possibly depending on the predominance of the underlying asthma or COPD-associated pathophysiological mechanisms. The clinical picture is influenced by the development of airway inflammatory processes either eosinophilic, neutrophilic or mixed, in addition to glandular changes leading to mucus hypersecretion and a variety of other airway structural changes. Although animal models have exposed how smoking-related changes can interact with those observed in asthma, much remains to be known about their interactions in humans and the additional modulating effects of environmental exposures. There is currently no solid evidence to establish the optimal treatment of ACO but it should understandably include an avoidance of environmental triggers such as smoking and relevant allergens. The recognition and targeting of "treatable traits" following phenotyping is a pragmatic approach to select the optimal pharmacological treatment for ACO, although an association of inhaled corticosteroids and bronchodilators is always required in these patients. This association acts both as an anti-inflammatory treatment for the asthma component and as a functional antagonist for the airway remodeling features. Research should be promoted on well phenotyped subgroups of ACO patients to determine their optimal management.
Collapse
Affiliation(s)
- Mathieu Morissette
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada.
| | - Krystelle Godbout
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada
| | - Andréanne Côté
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada
| | - Louis-Philippe Boulet
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada.
| |
Collapse
|
9
|
Regulatory role of Gpr84 in the switch of alveolar macrophages from CD11b lo to CD11b hi status during lung injury process. Mucosal Immunol 2020; 13:892-907. [PMID: 32719411 DOI: 10.1038/s41385-020-0321-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a kind of comprehensive disease with excessive inflammation and high clinical mortality. Multiple immune cells are involved in the ARDS process. Amongst these populations, lung-resident alveolar macrophages (AMs) are known to participate in the regulation of ARDS. GPR84, a metabolite-sensing GPCR sensing medium-chain fatty acids (MCFAs), is highly expressed in LPS-challenged macrophages and considered as a pro-inflammatory receptor. In this study, it was hypothesized that Gpr84 may be involved in pulmonary homeostasis via its regulatory effect on the switch of AM status. In LPS-induced ALI mouse model, we identified the internal LPS-induced switch of AMs from CD11blo to more inflamed CD11bhi status, which is deeply related to the exacerbated imbalance of homeostasis in the lung injury process. Gpr84 was highly expressed in ALI lung tissues and involved in cytokine release, phagocytosis and status switch of AMs through positive regulatory crosstalk with TLR4-related pathways via CD14 and LBP, which relied on Akt, Erk1/2, and STAT3. If conserved in humans, GPR84 may represent a potential therapeutic target for ARDS.
Collapse
|
10
|
Seyed Jafari SM, Hunger RE, Schlapbach C. Hidradenitis Suppurativa: Current Understanding of Pathogenic Mechanisms and Suggestion for Treatment Algorithm. Front Med (Lausanne) 2020; 7:68. [PMID: 32195261 PMCID: PMC7064439 DOI: 10.3389/fmed.2020.00068] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Hidradenitis suppurativa is one of the most distressing dermatological conditions and has a significant negative impact on patients' quality of life. However, the exact pathogenic mechanisms remain incompletely understood and-therefore-efficient therapies are still lacking. The current manuscript focuses on new findings on its pathogenic mechanisms and aims to provide practical therapy recommendations.
Collapse
|
11
|
Osei ET, Brandsma CA, Timens W, Heijink IH, Hackett TL. Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD. Eur Respir J 2020; 55:13993003.00563-2019. [PMID: 31727692 DOI: 10.1183/13993003.00563-2019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) cause significant morbidity and mortality worldwide. In the context of disease pathogenesis, both asthma and COPD involve chronic inflammation of the lung and are characterised by the abnormal release of inflammatory cytokines, dysregulated immune cell activity and remodelling of the airways. To date, current treatments still only manage symptoms and do not reverse the primary disease processes. In recent work, interleukin (IL)-1α and IL-1β have been suggested to play important roles in both asthma and COPD. In this review, we summarise overwhelming pre-clinical evidence for dysregulated signalling of IL-1α and IL-1β contributing to disease pathogenesis and discuss the paradox of IL-1 therapeutic studies in asthma and COPD. This is particularly important given recent completed and ongoing clinical trials with IL-1 biologics that have had varying degrees of failure and success as therapeutics for disease modification in asthma and COPD.
Collapse
Affiliation(s)
- Emmanuel T Osei
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada .,Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Corry-Anke Brandsma
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wim Timens
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- Dept of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Dept of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Chellappan DK, Yee LW, Xuan KY, Kunalan K, Rou LC, Jean LS, Ying LY, Wie LX, Chellian J, Mehta M, Satija S, Singh SK, Gulati M, Dureja H, Da Silva MW, Tambuwala MM, Gupta G, Paudel KR, Wadhwa R, Hansbro PM, Dua K. Targeting neutrophils using novel drug delivery systems in chronic respiratory diseases. Drug Dev Res 2020; 81:419-436. [PMID: 32048757 DOI: 10.1002/ddr.21648] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/29/2022]
Abstract
Neutrophils are essential effector cells of immune system for clearing the extracellular pathogens during inflammation and immune reactions. Neutrophils play a major role in chronic respiratory diseases. In respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, lung cancer and others, there occurs extreme infiltration and activation of neutrophils followed by a cascade of events like oxidative stress and dysregulated cellular proteins that eventually result in apoptosis and tissue damage. Dysregulation of neutrophil effector functions including delayed neutropil apoptosis, increased neutrophil extracellular traps in the pathogenesis of asthma, and chronic obstructive pulmonary disease enable neutrophils as a potential therapeutic target. Accounting to their role in pathogenesis, neutrophils present as an excellent therapeutic target for the treatment of chronic respiratory diseases. This review highlights the current status and the emerging trends in novel drug delivery systems such as nanoparticles, liposomes, microspheres, and other newer nanosystems that can target neutrophils and their molecular pathways, in the airways against infections, inflammation, and cancer. These drug delivery systems are promising in providing sustained drug delivery, reduced therapeutic dose, improved patient compliance, and reduced drug toxicity. In addition, the review also discusses emerging strategies and the future perspectives in neutrophil-based therapy.
Collapse
Affiliation(s)
- Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim W Yee
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kong Y Xuan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kishen Kunalan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim C Rou
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Leong S Jean
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee Y Ying
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee X Wie
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Mateus Webba Da Silva
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jaipur, India
| | - Keshav R Paudel
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Philip M Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
13
|
Self-DNA release and STING-dependent sensing drives inflammation to cigarette smoke in mice. Sci Rep 2019; 9:14848. [PMID: 31619733 PMCID: PMC6795997 DOI: 10.1038/s41598-019-51427-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoke exposure is a leading cause of chronic obstructive pulmonary disease (COPD), a major health issue characterized by airway inflammation with fibrosis and emphysema. Here we demonstrate that acute exposure to cigarette smoke causes respiratory barrier damage with the release of self-dsDNA in mice. This triggers the DNA sensor cGAS (cyclic GMP-AMP synthase) and stimulator of interferon genes (STING), driving type I interferon (IFN I) dependent lung inflammation, which are attenuated in cGAS, STING or type I interferon receptor (IFNAR) deficient mice. Therefore, we demonstrate a critical role of self-dsDNA release and of the cGAS-STING-type I interferon pathway upon cigarette smoke-induced damage, which may lead to therapeutic targets in COPD.
Collapse
|
14
|
Chen J, Dai L, Wang T, He J, Wang Y, Wen F. The elevated CXCL5 levels in circulation are associated with lung function decline in COPD patients and cigarette smoking-induced mouse model of COPD. Ann Med 2019; 51:314-329. [PMID: 31269827 PMCID: PMC7877878 DOI: 10.1080/07853890.2019.1639809] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Introduction: C-X-C motif chemokine 5 is primarily chemotactic for neutrophils and previously shown to increase in the bronchoalveolar lavage fluid of patients with chronic obstructive pulmonary disease. However, whether C-X-C motif chemokine 5 levels correlate with lung function decline in patients or mouse model of chronic obstructive pulmonary disease was not clear. Methods: The mouse model was induced by cigarette smoke exposure. Plasma/serum and bronchoalveolar lavage fluid were obtained from patients and mouse model of chronic obstructive pulmonary disease; C-X-C motif chemokine 5 levels were assessed and correlated with lung functions and granulocyte-colony stimulating factor levels, respectively. Results: The C-X-C motif chemokine 5 levels increased and correlated to granulocyte-colony stimulating factor levels in both plasma/serum and bronchoalveolar lavage fluid obtained from patients and mouse model of chronic obstructive pulmonary disease. Circulating levels of C-X-C motif chemokine 5 correlated to lung functions decline in patients and mouse model. Conclusions: Granulocyte-colony stimulating factor might coordinate with C-X-C motif chemokine 5 in the pathogenesis of neutrophilic inflammation in chronic obstructive pulmonary disease. Circulating C-X-C motif chemokine 5 might serve as a potential blood-based biomarker to add additional modest predictive value on the preliminary screening and diagnosis of chronic obstructive pulmonary disease. Key messages Circulating C-X-C motif chemokine 5 might serve as a potential blood-based biomarker to add additional modest predictive value on the preliminary screening and diagnosis of COPD. Granulocyte-colony stimulating factor might coordinate with C-X-C motif chemokine 5 in the pathogenesis of neutrophilic inflammation in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jun Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China
| | - Luqi Dai
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China
| | - Junyun He
- Department of Respiratory Medicine, Hospital of Chengdu office of People's Government of Tibetan Autonomous Region of China , Chengdu , China
| | - Yashu Wang
- Department of Clinical Laboratory, Xinjiang Provincial Corps Hospital Chinese People's Armed Police Forces , Urumqi , China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University , Chengdu , China
| |
Collapse
|
15
|
Vanderstocken G, Dvorkin-Gheva A, Shen P, Brandsma CA, Obeidat M, Bossé Y, Hassell JA, Stampfli MR. Identification of Drug Candidates to Suppress Cigarette Smoke-induced Inflammation via Connectivity Map Analyses. Am J Respir Cell Mol Biol 2019; 58:727-735. [PMID: 29256623 DOI: 10.1165/rcmb.2017-0202oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease, and to date, existing pharmacologic interventions have been ineffective at controlling inflammatory processes associated with the disease. To address this issue, we used the Connectivity Map (cMap) database to identify drug candidates with the potential to attenuate cigarette smoke-induced inflammation. We queried cMap using three independent in-house cohorts of healthy nonsmokers and smokers. Potential drug candidates were validated against four publicly available human datasets, as well as six independent datasets from cigarette smoke-exposed mice. Overall, these analyses yielded two potential drug candidates: kaempferol and bethanechol. Subsequently, the efficacy of each drug was validated in vivo in a model of cigarette smoke-induced inflammation. BALB/c mice were exposed to room air or cigarette smoke and treated with each of the two candidate drugs either prophylactically or therapeutically. We found that kaempferol, but not bethanechol, was able to reduce cigarette smoke-induced neutrophilia, both when administered prophylactically and when administered therapeutically. Mechanistically, kaempferol decreased expression of IL-1α and CXCL5 concentrations in the lung. Our data suggest that cMap analyses may serve as a useful tool to identify novel drug candidates against cigarette smoke-induced inflammation.
Collapse
Affiliation(s)
- Gilles Vanderstocken
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre
| | - Anna Dvorkin-Gheva
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre.,2 Department of Pathology and Molecular Medicine, Centre for Functional Genomics, and
| | - Pamela Shen
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre
| | - Corry-Anke Brandsma
- 3 Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ma'en Obeidat
- 4 The University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Yohan Bossé
- 5 Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada; and.,6 Department of Molecular Medicine, Laval University, Québec City, Québec, Canada
| | - John A Hassell
- 2 Department of Pathology and Molecular Medicine, Centre for Functional Genomics, and
| | - Martin R Stampfli
- 1 Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre.,7 Department of Medicine, Firestone Institute for Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Vanker A, Nduru PM, Barnett W, Dube FS, Sly PD, Gie RP, Nicol MP, Zar HJ. Indoor air pollution and tobacco smoke exposure: impact on nasopharyngeal bacterial carriage in mothers and infants in an African birth cohort study. ERJ Open Res 2019; 5:00052-2018. [PMID: 30740462 PMCID: PMC6360211 DOI: 10.1183/23120541.00052-2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/19/2018] [Indexed: 11/05/2022] Open
Abstract
Indoor air pollution (IAP) or environmental tobacco smoke (ETS) exposure may influence nasopharyngeal carriage of bacterial species and development of lower respiratory tract infection (LRTI). The aim of this study was to longitudinally investigate the impact of antenatal or postnatal IAP/ETS exposure on nasopharyngeal bacteria in mothers and infants. A South African cohort study followed mother-infant pairs from birth through the first year. Nasopharyngeal swabs were taken at birth, 6 and 12 months for bacterial culture. Multivariable and multivariate Poisson regression investigated associations between nasopharyngeal bacterial species and IAP/ETS. IAP exposures (particulate matter, carbon monoxide, nitrogen dioxide, volatile organic compounds) were measured at home visits. ETS exposure was measured through maternal and infant urine cotinine. Infants received the 13-valent pneumococcal and Haemophilus influenzae B conjugate vaccines. There were 881 maternal and 2605 infant nasopharyngeal swabs. Antenatal ETS exposure was associated with Streptococcus pneumoniae carriage in mothers (adjusted risk ratio (aRR) 1.73 (95% CI 1.03-2.92)) while postnatal ETS exposure was associated with carriage in infants (aRR 1.14 (95% CI 1.00-1.30)) Postnatal particulate matter exposure was associated with the nasopharyngeal carriage of H. influenzae (aRR 1.68 (95% CI 1.10- 2.57)) or Moraxella catarrhalis (aRR 1.42 (95% CI 1.03-1.97)) in infants. Early-life environmental exposures are associated with an increased prevalence of specific nasopharyngeal bacteria during infancy, which may predispose to LRTI.
Collapse
Affiliation(s)
- Aneesa Vanker
- Dept of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, and SAMRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Polite M. Nduru
- Dept of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, and SAMRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Whitney Barnett
- Dept of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, and SAMRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Felix S. Dube
- Dept of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Dept of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Peter D. Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Robert P. Gie
- Dept of Paediatrics and Child Health, Tygerberg Children's Hospital, Stellenbosch University, Cape Town, South Africa
| | - Mark P. Nicol
- Division of Medical Microbiology, Dept of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| | - Heather J. Zar
- Dept of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, and SAMRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Protective effect of water extract of guibi-tang against pulmonary inflammation induced by cigarette smoke and lipopolysaccharide. Lab Anim Res 2018; 34:92-100. [PMID: 30310405 PMCID: PMC6170225 DOI: 10.5625/lar.2018.34.3.92] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022] Open
Abstract
Water extract of guibi-tang (GB), a traditional Chinese, Japanese, and Korean herbal medicine, is used to treat memory impairment, insomnia, and peptic ulcers. The aim of this study was to investigate the protective effects of GB on pulmonary inflammation induced by cigarette smoke (CS) and lipopolysaccharide (LPS). C57BL/6 mice were used to develop a pulmonary inflammation model by exposing them to CS for 1 h per day for 7 days. LPS was intranasally administered to mice under mild anesthesia on day 5. GB was administered 1 h before CS exposure at doses of 50 or 100 mg/kg for 7 days. Our results showed that GB suppressed the CS and LPS induced elevation in inflammatory cell counts in the bronchoalveolar lavage fluid (BALF), with significant reductions in protein, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 levels. Histological studies revealed that GB decreased the inflammatory cell infiltration into lung tissue caused by CS- and LPS-exposure. GB also significantly decreased the CS and LPS-induced expression of inducible nitric oxide synthase (iNOS) in the lung tissue. Taken together, GB effectively attenuated airway inflammation caused by CS and LPS. These results indicate that GB is a potential therapeutic herbal formula for pulmonary inflammatory disease.
Collapse
|
18
|
Talbot M, Hamel-Auger M, Beaulieu MJ, Gazzola M, Lechasseur A, Aubin S, Paré MÈ, Marsolais D, Bossé Y, Morissette MC. Impact of immunization against OxLDL on the pulmonary response to cigarette smoke exposure in mice. Respir Res 2018; 19:131. [PMID: 29970083 PMCID: PMC6029023 DOI: 10.1186/s12931-018-0833-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
Background Cigarette smoke exposure can affect pulmonary lipid homeostasis and cause a progressive increase in pulmonary antibodies against oxidized low-density lipoproteins (OxLDL). Similarly, increased anti-OxLDL antibodies are observed in atherosclerosis, a pathology also tightly associated with smoking and lipid homeostasis disruption. Several immunization strategies against oxidized lipid species to help with their clearance have been shown to reduce the formation of atherosclerotic lesions. Since oxidized lipids are generated during cigarette smoke exposure, we investigated the impact of a prophylactic immunization protocol against OxLDL on the pulmonary effects of cigarette smoke exposure in mice. Methods Mice were immunized systemically with a mixture of human OxLDL (antigen source) and AddaVax (adjuvant) or PBS alone prior to the initiation of acute (2 week) or sub-chronic (8 weeks) cigarette smoke exposure protocols. Anti-OxLDL antibodies were measured in the bronchoalveolar lavage (BAL) fluid and serum by direct ELISA. Pulmonary impacts of cigarette smoke exposure and OxLDL immunization were assessed by measuring BAL inflammatory cells, lung functions, and changes in lung structure and gene levels of matrix/matrix-related genes. Results Immunization to OxLDL led to a marked increase in circulating and pulmonary antibodies against OxLDL that persisted during cigarette smoke exposure. OxLDL immunization did not exacerbate or reduce the inflammatory response following acute or sub-chronic exposure to cigarette smoke. OxLDL immunization alone had effects similar to cigarette smoke exposure on lung functions but OxLDL immunization and cigarette smoke exposure had no additive effects on these parameters. No obvious changes in lung histology, airspace or levels of matrix and matrix-related genes were caused by OxLDL immunization compared to vehicle treatment. Conclusions Overall, this study shows for the first time that a prophylactic immunization protocol against OxLDL can potentially have detrimental effects lung functions, without having additive effects over cigarette smoke exposure. This work sheds light on a complex dynamic between anti-OxLDL antibodies and the pulmonary response to cigarette smoke exposure.
Collapse
Affiliation(s)
- Maude Talbot
- Faculty of Medicine, Université Laval, Quebec City, Canada.,Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Mélanie Hamel-Auger
- Faculty of Medicine, Université Laval, Quebec City, Canada.,Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Marie-Josée Beaulieu
- Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Morgan Gazzola
- Faculty of Medicine, Université Laval, Quebec City, Canada.,Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Ariane Lechasseur
- Faculty of Medicine, Université Laval, Quebec City, Canada.,Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Sophie Aubin
- Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Marie-Ève Paré
- Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - David Marsolais
- Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada.,Department of Medicine, Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Ynuk Bossé
- Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada.,Department of Medicine, Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada
| | - Mathieu C Morissette
- Quebec Heart and Lung Institute - Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada. .,Department of Medicine, Université Laval, 2725 Chemin Sainte-Foy, Quebec City, G1V 4G5, Canada.
| |
Collapse
|
19
|
McGrath JJC, Stampfli MR. The immune system as a victim and aggressor in chronic obstructive pulmonary disease. J Thorac Dis 2018; 10:S2011-S2017. [PMID: 30023106 DOI: 10.21037/jtd.2018.05.63] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Joshua J C McGrath
- Medical Sciences Graduate Program, Firestone Institute for Respiratory Health at St. Joseph's Health Care, McMaster University, Hamilton, ON, Canada
| | - Martin R Stampfli
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Firestone Institute for Respiratory Health at St. Joseph's Health Care, McMaster University, Hamilton, ON, Canada.,Department of Medicine, Firestone Institute for Respiratory Health at St. Joseph's Health Care, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
20
|
Di Stefano A, Coccini T, Roda E, Signorini C, Balbi B, Brunetti G, Ceriana P. Blood MCP-1 levels are increased in chronic obstructive pulmonary disease patients with prevalent emphysema. Int J Chron Obstruct Pulmon Dis 2018; 13:1691-1700. [PMID: 29872287 PMCID: PMC5973466 DOI: 10.2147/copd.s159915] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background and aims Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by different phenotypes with either bronchial airways alterations or emphysema prevailing. As blood biomarkers could be clinically useful for COPD stratification, we aimed at investigating the levels of blood biomarkers in COPD patients differentiated by phenotype: prevalent chronic airway disease versus emphysema. Methods In 23 COPD patients with prevalent airway disease (COPD-B), 22 COPD patients with prevalent emphysema (COPD-E), 9 control smokers (CSs), and 18 control nonsmokers (CNSs), we analyzed the expression levels of interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, epidermal growth factor (EGF), monocyte chemotactic protein (MCP)-1, and vascular endothelial growth factor by enzyme-linked immunosorbent assay in plasma/serum; glutathione peroxidase and superoxide dismutase (SOD)-1 by immunochemical kits in plasma; and free F2-isoprostanes (F2-IsoPs) by gas chromatography in plasma. Results F2-IsoPs level was increased in COPD-B and COPD-E compared with CSs and CNSs; in addition, CS showed higher levels than CNSs; SOD1 level was lower in COPD-B and COPD-E than that in CNSs. Interestingly, MCP-1 level was higher only in COPD-E versus CSs and CNSs; EGF and IL-8 levels were higher in COPD-B and COPD-E versus CNSs; IL-6 level was increased in all three smoking groups (COPD-B, COPD-E, and CSs) versus CNS; IFN-γ and IL-1α levels were higher in CSs than in CNSs; and IL-1α level was also higher in CSs versus COPD-B and COPD-E. In all subjects, F2-IsoPs level correlated positively and significantly with MCP-1, IL-2, IL-1β, IFN-γ, and TNF-α and negatively with SOD1. When correlations were restricted to COPD-E and COPD-B groups, F2-IsoPs maintained the positive associations with IFN-γ, TNF-α, and IL-2. Conclusion We did not find any specific blood biomarkers that could differentiate COPD patients with prevalent airway disease from those with prevalent emphysema. The MCP-1 increase in COPD-E, associated with the imbalance of oxidant/antioxidant markers, may play a role in inducing emphysema.
Collapse
Affiliation(s)
- Antonino Di Stefano
- Pulmonary Rehabilitation Unit and Laboratory of Cytoimmunopathology of the Heart and Lung, Istituti Clinici Scientifici Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Veruno, Italy
| | - Teresa Coccini
- Laboratory of Experimental and Clinical Toxicology, Toxicology Unit, ICS Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Italy
| | - Elisa Roda
- Laboratory of Experimental and Clinical Toxicology, Toxicology Unit, ICS Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Bruno Balbi
- Pulmonary Rehabilitation Unit and Laboratory of Cytoimmunopathology of the Heart and Lung, Istituti Clinici Scientifici Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Veruno, Italy
| | - Giuseppe Brunetti
- Pulmonary Rehabilitation Unit, Istituti Clinici Scientifici Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Italy
| | - Piero Ceriana
- Pulmonary Rehabilitation Unit, Istituti Clinici Scientifici Maugeri SpA Società Benefit, Istituto di Ricovero e Cura a Carattere Scientifico, Pavia, Italy
| |
Collapse
|
21
|
Froidure A, Ladjemi MZ, Pilette C. Interleukin-1α: a key player for epithelial-to-mesenchymal signalling in COPD? Eur Respir J 2018; 48:301-4. [PMID: 27478185 DOI: 10.1183/13993003.01180-2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Antoine Froidure
- Institut de Recherche Expérimentale et Clinique, Pôle de Pneumologie, ORL et Dermatologie, Université Catholique de Louvain, Brussels, Belgium Cliniques Universitaires Saint-Luc, Service de Pneumologie, Brussels, Belgium UMR Inserm U1152, Labex Inflammex, Université Paris 7, Paris, France These authors contributed equally to this manuscript
| | - Maha Zohra Ladjemi
- UMR Inserm U1152, Labex Inflammex, Université Paris 7, Paris, France These authors contributed equally to this manuscript
| | - Charles Pilette
- Institut de Recherche Expérimentale et Clinique, Pôle de Pneumologie, ORL et Dermatologie, Université Catholique de Louvain, Brussels, Belgium Cliniques Universitaires Saint-Luc, Service de Pneumologie, Brussels, Belgium
| |
Collapse
|
22
|
Bhat TA, Kalathil SG, Bogner PN, Miller A, Lehmann PV, Thatcher TH, Phipps RP, Sime PJ, Thanavala Y. Secondhand Smoke Induces Inflammation and Impairs Immunity to Respiratory Infections. THE JOURNAL OF IMMUNOLOGY 2018; 200:2927-2940. [PMID: 29555783 DOI: 10.4049/jimmunol.1701417] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/16/2018] [Indexed: 12/29/2022]
Abstract
Despite advocacy to reduce smoking-related diseases, >1 billion people worldwide continue to smoke. Smoking is immunosuppressive and an important etiological factor in the development of several human disorders including respiratory diseases like chronic obstructive pulmonary disease. However, there is a critical gap in the knowledge of the role of secondhand smoke (SHS) in inflammation and immunity. We therefore studied the influence of SHS on pulmonary inflammation and immune responses to respiratory infection by nontypeable Haemophilus influenzae (NTHI) recurrently found in chronic obstructive pulmonary disease patients. Chronic SHS-exposed mice were chronically infected with NTHI and pulmonary inflammation was evaluated by histology. Immune cell numbers and cytokines were measured by flow cytometry and ELISA, respectively. Chronic SHS exposure impaired NTHI P6 Ag-specific B and T cell responses following chronic NTHI infection as measured by ELISPOT assays, reduced the production of Abs in serum and bronchoalveolar lavage, and enhanced albumin leak into the bronchoalveolar lavage as determined by ELISA. Histopathological examination of lungs revealed lymphocytic accumulation surrounding airways and bronchovasculature following chronic SHS exposure and chronic infection. Chronic SHS exposure enhanced the levels of inflammatory cytokines IL-17A, IL-6, IL-1β, and TNF-α in the lungs, and impaired the generation of adaptive immunity following either chronic infection or P6 vaccination. Chronic SHS exposure diminished bacterial clearance from the lungs after acute NTHI challenge, whereas P6 vaccination improved clearance equivalent to the level seen in air-exposed, non-vaccinated mice. Our study provides unequivocal evidence that SHS exposure has long-term detrimental effects on the pulmonary inflammatory microenvironment and immunity to infection and vaccination.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Austin Miller
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Thomas H Thatcher
- Department of Medicine, University of Rochester, Rochester, NY 14620; and
| | - Richard P Phipps
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Patricia J Sime
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
23
|
Gotts JE, Chun L, Abbott J, Fang X, Takasaka N, Nishimura SL, Springer ML, Schick SF, Calfee CS, Matthay MA. Cigarette smoke exposure worsens acute lung injury in antibiotic-treated bacterial pneumonia in mice. Am J Physiol Lung Cell Mol Physiol 2018. [PMID: 29543040 DOI: 10.1152/ajplung.00405.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Evidence is accumulating that exposure to cigarette smoke (CS) increases the risk of developing acute respiratory distress syndrome (ARDS). Streptococcus pneumoniae is the most common cause of bacterial pneumonia, which in turn is the leading cause of ARDS. Chronic smokers have increased rates of pneumococcal colonization and develop more severe pneumococcal pneumonia than nonsmokers; yet mechanistic connections between CS exposure, bacterial pneumonia, and ARDS pathogenesis remain relatively unexplored. We exposed mice to 3 wk of moderate whole body CS or air, followed by intranasal inoculation with an invasive serotype of S. pneumoniae. CS exposure alone caused no detectable lung injury or bronchoalveolar lavage (BAL) inflammation. During pneumococcal infection, CS-exposed mice had greater survival than air-exposed mice, in association with reduced systemic spread of bacteria from the lungs. However, when mice were treated with antibiotics after infection to improve clinical relevance, the survival benefit was lost, and CS-exposed mice had more pulmonary edema, increased numbers of BAL monocytes, and elevated monocyte and lymphocyte chemokines. CS-exposed antibiotic-treated mice also had higher serum surfactant protein D and angiopoietin-2, consistent with more severe lung epithelial and endothelial injury. The results indicate that acute CS exposure enhances the recruitment of immune cells to the lung during bacterial pneumonia, an effect that may provide microbiological benefit but simultaneously exposes the mice to more severe inflammatory lung injury. The inclusion of antibiotic treatment in preclinical studies of acute lung injury in bacterial pneumonia may enhance clinical relevance, particularly for future studies of current or emerging tobacco products.
Collapse
Affiliation(s)
- Jeffrey E Gotts
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California , San Francisco, California
| | - Lauren Chun
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California , San Francisco, California
| | - Jason Abbott
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California , San Francisco, California
| | - Xiaohui Fang
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California , San Francisco, California
| | - Naoki Takasaka
- Department of Pathology, University of California , San Francisco, California
| | - Stephen L Nishimura
- Department of Pathology, University of California , San Francisco, California
| | - Matthew L Springer
- Department of Medicine, Cardiovascular Research Institute, University of California , San Francisco, California
| | - Suzaynn F Schick
- Department of Medicine, Cardiovascular Research Institute, University of California , San Francisco, California
| | - Carolyn S Calfee
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California , San Francisco, California
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California , San Francisco, California
| |
Collapse
|
24
|
Abstract
The interleukin (IL)-1 family of cytokines is currently comprised of 11 members that have pleiotropic functions in inflammation and cancer. IL-1α and IL-1β were the first members of the IL-1 family to be described, and both signal via the same receptor, IL-1R. Over the last decade, much progress has been made in our understanding of biogenesis of IL-1β and its functions in human diseases. Studies from our laboratory and others have highlighted the critical role of nod-like receptors (NLRs) and multi-protein complexes known as inflammasomes in the regulation of IL-1β maturation. Recent studies have increased our appreciation of the role played by IL-1α in inflammatory diseases and cancer. However, the mechanisms that regulate the production of IL-1α and its bioavailability are relatively understudied. In this review, we summarize the distinctive roles played by IL-1α in inflammatory diseases and cancer. We also discuss our current knowledge about the mechanisms that control IL-1α biogenesis and activity, and the major unanswered questions in its biology.
Collapse
Affiliation(s)
- Ankit Malik
- Department of Immunology St. Jude Children’s Research Hospital, Memphis, TN 38105
| | | |
Collapse
|
25
|
Siliņa K, Soltermann A, Attar FM, Casanova R, Uckeley ZM, Thut H, Wandres M, Isajevs S, Cheng P, Curioni-Fontecedro A, Foukas P, Levesque MP, Moch H, Linē A, van den Broek M. Germinal Centers Determine the Prognostic Relevance of Tertiary Lymphoid Structures and Are Impaired by Corticosteroids in Lung Squamous Cell Carcinoma. Cancer Res 2017; 78:1308-1320. [PMID: 29279354 DOI: 10.1158/0008-5472.can-17-1987] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/01/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022]
Abstract
In solid tumors, the presence of lymph node-like structures called tertiary lymphoid structures (TLS) is associated with improved patient survival. However, little is known about how TLS develop in cancer, how their function affects survival, and whether they are affected by cancer therapy. In this study, we used multispectral microscopy, quantitative pathology, and gene expression profiling to analyze TLS formation in human lung squamous cell carcinoma (LSCC) and in an experimental model of lung TLS induction. We identified a niche of CXCL13+ perivascular and CXCL12+LTB+ and PD-L1+ epithelial cells supporting TLS formation. We also characterized sequential stages of TLS maturation in LSCC culminating in the formation of germinal centers (GC). In untreated patients, TLS density was the strongest independent prognostic marker. Furthermore, TLS density correlated with GC formation and expression of adaptive immune response-related genes. In patients treated with neoadjuvant chemotherapy, TLS density was similar, but GC formation was impaired and the prognostic value of TLS density was lost. Corticosteroids are coadministered with chemotherapy to manage side effects in LSCC patients, so we evaluated whether they impaired TLS development independently of chemotherapy. TLS density and GC formation were each reduced in chemotherapy-naïve LSCC patients treated with corticosteroids before surgery, compared with untreated patients, a finding that we confirmed in the experimental model of lung TLS induction. Overall, our results highlight the importance of GC formation in TLS during tumor development and treatment.Significance: Corticosteroid treatment during chemotherapy negatively affects the development of tertiary lymphoid structures and abrogates their prognostic value in patients with lung cancer. Cancer Res; 78(5); 1308-20. ©2018 AACR.
Collapse
Affiliation(s)
- Karīna Siliņa
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Alex Soltermann
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | - Ruben Casanova
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Zina M Uckeley
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Helen Thut
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Muriel Wandres
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sergejs Isajevs
- Pathology Center, Riga East Clinical University Hospital, Riga, Latvia.,Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Phil Cheng
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Periklis Foukas
- Department of Oncology, CHUV-UNIL, Lausanne, Switzerland.,Department of Pathology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Holger Moch
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Aija Linē
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Maries van den Broek
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Zhang P, Xin X, Fang L, Jiang H, Xu X, Su X, Shi Y. HMGB1 mediates Aspergillus fumigatus -induced inflammatory response in alveolar macrophages of COPD mice via activating MyD88/NF-κB and syk/PI3K signalings. Int Immunopharmacol 2017; 53:125-132. [DOI: 10.1016/j.intimp.2017.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/23/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
|
27
|
Roos AB, Stampfli MR. Targeting Interleukin-17 signalling in cigarette smoke-induced lung disease: Mechanistic concepts and therapeutic opportunities. Pharmacol Ther 2017; 178:123-131. [PMID: 28438639 DOI: 10.1016/j.pharmthera.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is widely accepted that compromised lung function in chronic obstructive pulmonary disease (COPD) is, at least in part, a consequence of persistent airway inflammation caused by particles and noxious gases present in cigarette smoke and indoor air pollution from burning biomass fuel. Currently, the World Health Organization estimates that 80 million people have moderate or severe COPD worldwide. While there is a global need for effective medical treatment, current therapeutic interventions have shown limited success in preventing disease pathology and progression. This is, in large part, due to the complexity and heterogeneity of COPD, and an incomplete understanding of the molecular mechanisms governing inflammatory processes in individual patients. This review discusses recent discoveries related to the pro-inflammatory cytokine interleukin (IL)-17A, and its potential role in the pathogenesis of COPD. We propose that an intervention strategy targeting IL-17 signalling offers an exciting opportunity to mitigate inflammatory processes, and prevent the progression of tissue pathologies associated with COPD.
Collapse
Affiliation(s)
- Abraham B Roos
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden and
| | - Martin R Stampfli
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada; Department of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Health Care, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
28
|
Jungnickel C, Schnabel PA, Bohle R, Wiewrodt R, Herr C, Bals R, Beisswenger C. Nontypeable Haemophilus influenzae-Promoted Proliferation of Kras-Induced Early Adenomatous Lesions Is Completely Dependent on Toll-Like Receptor Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:973-979. [PMID: 28279655 DOI: 10.1016/j.ajpath.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/24/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a risk factor for lung cancer. COPD is characterized by chronic airway inflammation and lung infections. The airways of patients with COPD are frequently colonized with bacteria [eg, nontypeable Haemophilus influenzae (NTHi)] that cause pulmonary inflammation and exacerbations. Pulmonary adenocarcinomas are frequently associated with an activating mutation in the KRAS gene. We determined the function of Toll-like receptor (TLR) signaling on the progression of Kras-induced early adenomatous lesions in the lung. Wild-type (WT) mice and mice doubly deficient in Tlr-2 and -4 (Tlr2/4-/-), both with an oncogenic Kras allele in lung epithelium, were exposed to NTHi for 4 weeks. Exposure to NTHi resulted in increased tumor proliferation and growth in WT mice, but not in Tlr2/4-/- mice. Alveolar adenomatous hyperplasia and adenocarcinoma were significantly increased in WT mice compared with Tlr2/4-/- mice. The average size of tumors was significantly larger in WT mice, whereas there was no difference in the number of alveolar lesions between WT and Tlr2/4-/- mice. NTHi-induced pulmonary neutrophilic inflammation and tumor-associated neutrophils were reduced in Tlr2/4-/- mice. Thus, subsequent to a driver mutation, NTHi-induced inflammation promotes proliferation of early adenomatous lesions in a TLR-dependent manner.
Collapse
Affiliation(s)
- Christopher Jungnickel
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | | | - Rainer Bohle
- Department of Pathology, Saarland University, Homburg/Saar, Germany
| | - Rainer Wiewrodt
- Department of Medicine A-Hematology, Oncology and Pulmonology, University Hospital Münster, Münster, Germany
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg/Saar, Germany.
| |
Collapse
|
29
|
Dvorkin-Gheva A, Vanderstocken G, Yildirim AÖ, Brandsma CA, Obeidat M, Bossé Y, Hassell JA, Stampfli MR. Total particulate matter concentration skews cigarette smoke's gene expression profile. ERJ Open Res 2016; 2:00029-2016. [PMID: 27995131 PMCID: PMC5165723 DOI: 10.1183/23120541.00029-2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023] Open
Abstract
Exposure of small animals to cigarette smoke is widely used as a model to study the pathogenesis of chronic obstructive pulmonary disease. However, protocols and exposure systems utilised vary substantially and it is unclear how these different systems compare. We analysed the gene expression profile of six publically available murine datasets from different cigarette smoke-exposure systems and related the gene signatures to three clinical cohorts. 234 genes significantly regulated by cigarette smoke in at least one model were used to construct a 55-gene network containing 17 clusters. Increasing numbers of differentially regulated clusters were associated with higher total particulate matter concentrations in the different datasets. Low total particulate matter-induced genes mainly related to xenobiotic/detoxification responses, while higher total particulate matter activated immune/inflammatory processes in addition to xenobiotic/detoxification responses. To translate these observations to the clinic, we analysed the regulation of the revealed network in three human cohorts. Similar to mice, we observed marked differences in the number of regulated clusters between the cohorts. These differences were not determined by pack-year. Although none of the experimental models exhibited a complete alignment with any of the human cohorts, some exposure systems showed higher resemblance. Thus, depending on the cohort, clinically observed changes in gene expression may be mirrored more closely by specific cigarette smoke exposure systems. This study emphasises the need for careful validation of animal models.
Collapse
Affiliation(s)
- Anna Dvorkin-Gheva
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- Centre for Functional Genomics, McMaster University, Hamilton, ON, Canada
- These authors contributed equally
| | - Gilles Vanderstocken
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- These authors contributed equally
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum München, Neuherberg, Germany, Member of the German Center for Lung Research (DZL)
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, GRIAC research institute, Groningen, The Netherlands
| | - Ma'en Obeidat
- The University of British Columbia Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Yohan Bossé
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, QC, Canada
- Dept of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - John A. Hassell
- Centre for Functional Genomics, McMaster University, Hamilton, ON, Canada
| | - Martin R. Stampfli
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- Dept of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
30
|
Abstract
Hidradenitis suppurativa (HS) is a chronic relapsing disease of follicular occlusion that causes immense clinical and psychosocial morbidity when refractory to treatment. HS is no longer considered a disease of primary infectious etiology, although bacteria play a role. There is increasing evidence that HS is associated with immune dysregulation, based on its clinical association with other immune-mediated disorders, by its response to biologic therapy in the clinical arena, and from molecular research. This article summarizes what is known in relation to the inflammatory pathways in HS.
Collapse
Affiliation(s)
- G Kelly
- Department of Dermatology, St. Vincent's University Hospital, Dublin 4, Ireland.
| | - Errol P Prens
- Department of Dermatology, Erasmus University Medical Centre Rotterdam, s-Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| |
Collapse
|
31
|
Basilico P, Cremona TP, Oevermann A, Piersigilli A, Benarafa C. Increased Myeloid Cell Production and Lung Bacterial Clearance in Mice Exposed to Cigarette Smoke. Am J Respir Cell Mol Biol 2016; 54:424-35. [PMID: 26273827 DOI: 10.1165/rcmb.2015-0017oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pneumonia is a leading cause of hospitalization in patients with chronic obstructive pulmonary disease (COPD). Although most patients with COPD are smokers, the effects of cigarette smoke exposure on clearance of lung bacterial pathogens and on immune and inflammatory responses are incompletely defined. Here, clearance of Streptococcus pneumoniae and Pseudomonas aeruginosa and associated immune responses were examined in mice exposed to cigarette smoke or after smoking cessation. Mice exposed to cigarette smoke for 6 weeks or 4 months demonstrated decreased lung bacterial burden compared with air-exposed mice when infected 16 to 24 hours after exposure. When infection was performed after smoke cessation, bacterial clearance kinetics of mice previously exposed to smoke reversed to levels comparable to those of control mice, suggesting that the observed defects were not dependent on adaptive immunological memory to bacterial determinants found in smoke. Comparing cytokine levels and myeloid cell production before infection in mice exposed to cigarette smoke with mice never exposed or after smoke cessation revealed that reduced bacterial burden was most strongly associated with higher levels of IL-1β and granulocyte-macrophage colony-stimulating factor in the lungs and with increased neutrophil reserve and monocyte turnover in the bone marrow. Using Serpinb1a-deficient mice with reduced neutrophil numbers and treatment with granulocyte colony-stimulating factor showed that increased neutrophil numbers contribute only in part to the effect of smoke on infection. Our findings indicate that cigarette smoke induces a temporary and reversible increase in clearance of lung pathogens, which correlates with local inflammation and increased myeloid cell output from the bone marrow.
Collapse
Affiliation(s)
- Paola Basilico
- 1 Theodor Kocher Institute.,2 Graduate School for Cellular and Biomedical Sciences
| | - Tiziana P Cremona
- 1 Theodor Kocher Institute.,2 Graduate School for Cellular and Biomedical Sciences
| | - Anna Oevermann
- 3 Neurocenter, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, and
| | - Alessandra Piersigilli
- 4 Institute of Animal Pathology, University of Bern, Bern, Switzerland; and.,5 School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
32
|
Cigarette Smoke Attenuates the Nasal Host Response to Streptococcus pneumoniae and Predisposes to Invasive Pneumococcal Disease in Mice. Infect Immun 2016; 84:1536-1547. [PMID: 26930709 DOI: 10.1128/iai.01504-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/25/2016] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of invasive bacterial infections, with nasal colonization an important first step in disease. While cigarette smoking is a strong risk factor for invasive pneumococcal disease, the underlying mechanisms remain unknown. This is partly due to a lack of clinically relevant animal models investigating nasal pneumococcal colonization in the context of cigarette smoke exposure. We present a model of nasal pneumococcal colonization in cigarette smoke-exposed mice and document, for the first time, that cigarette smoke predisposes to invasive pneumococcal infection and mortality in an animal model. Cigarette smoke increased the risk of bacteremia and meningitis without prior lung infection. Mechanistically, deficiency in interleukin 1α (IL-1α) or platelet-activating factor receptor (PAFR), an important host receptor thought to bind and facilitate pneumococcal invasiveness, did not rescue cigarette smoke-exposed mice from invasive pneumococcal disease. Importantly, we observed cigarette smoke to attenuate nasal inflammatory mediator expression, particularly that of neutrophil-recruiting chemokines, normally elicited by pneumococcal colonization. Smoking cessation during nasal pneumococcal colonization rescued nasal neutrophil recruitment and prevented invasive disease in mice. We propose that cigarette smoke predisposes to invasive pneumococcal disease by suppressing inflammatory processes of the upper respiratory tract. Given that smoking prevalence remains high worldwide, these findings are relevant to the continued efforts to reduce the invasive pneumococcal disease burden.
Collapse
|
33
|
Gueugnon F, Thibault VC, Kearley J, Petit-Courty A, Vallet A, Guillon A, Si-Tahar M, Humbles AA, Courty Y. Altered expression of the CCN genes in the lungs of mice in response to cigarette smoke exposure and viral and bacterial infections. Gene 2016; 586:176-83. [PMID: 27080955 DOI: 10.1016/j.gene.2016.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/25/2016] [Accepted: 04/07/2016] [Indexed: 01/29/2023]
Abstract
The CCN proteins are key signaling and regulatory molecules involved in many biological functions and contribute to malignant and non-malignant lung diseases. Despite the high morbidity and mortality of the lung respiratory infectious diseases, there is very little data related to the expression of the CCNs during infection. We investigated in mice the pulmonary mRNA expression levels of five CCNs (1 to 5) in response to influenza A virus (IAV) and bacterial agents (Nontypeable Haemophilus influenzae (NTHi), lipopolysaccharide (LPS) and lipoteichoic acid (LTA)). IAV, NTHi, LPS or LTA were instilled intranasally into mice. Mice were also exposed for 4days or 8weeks to cigarette smoke alone or prior infection to IAV in order to determine if CS modifies the CCN response to a viral infection. All challenges induced a robust inflammation. The mRNA expression of CCN1, CCN2 and CCN3 was decreased after short exposure to CS whereas prolonged exposure altered the expression of CCN1, CCN3 and CCN4. Influenza A virus infection increased CCN1, 2, 4 and 5 mRNA levels but expression of CCN3 was significantly decreased. Acute CS exposure prior infection had little effect on the expression of CCN genes but prolonged exposure abolished the IAV-dependent induction. Treatment with LPS or LTA and infection with NTHi revealed that both Gram-positive and Gram-negative bacteria rapidly modulate the expression of the CCN genes. Our findings reveal that several triggers of lung inflammation influence differently the CCN genes. CCN3 deserves special attention since its mRNA expression is decreased by all the triggers studied.
Collapse
Affiliation(s)
- Fabien Gueugnon
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Faculté de Médecine, Tours, France; Université François Rabelais, Tours, France
| | - Virginie C Thibault
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Faculté de Médecine, Tours, France; Université François Rabelais, Tours, France
| | | | - Agnès Petit-Courty
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Faculté de Médecine, Tours, France; Université François Rabelais, Tours, France
| | - Amandine Vallet
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Faculté de Médecine, Tours, France; Université François Rabelais, Tours, France
| | - Antoine Guillon
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Faculté de Médecine, Tours, France; Université François Rabelais, Tours, France
| | - Mustapha Si-Tahar
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Faculté de Médecine, Tours, France; Université François Rabelais, Tours, France
| | | | - Yves Courty
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Faculté de Médecine, Tours, France; Université François Rabelais, Tours, France.
| |
Collapse
|
34
|
Prens E, Deckers I. Pathophysiology of hidradenitis suppurativa: An update. J Am Acad Dermatol 2016; 73:S8-11. [PMID: 26470623 DOI: 10.1016/j.jaad.2015.07.045] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 07/16/2015] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hidradenitis suppurativa (HS) or acne inversa is not completely understood. Recent research has led to greater insight into the mechanisms involved in the disease. The primary defect in HS pathophysiology rests with the hair follicle. Follicular occlusion, followed by follicular rupture, and a foreign body-type immune response are necessary conditions for the development of clinical HS. A specific genetic signature and environmental factors, such as cigarette smoking, microbial colonization, and adiposity, all contribute to the HS phenotype. Translational research focused on the inflammatory mechanisms involved in HS is needed to develop novel therapeutic options for this debilitating disease.
Collapse
Affiliation(s)
- Errol Prens
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Inge Deckers
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Aaron SD. Walking a tightrope: targeting neutrophils to treat chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2015; 191:971-2. [PMID: 25932758 DOI: 10.1164/rccm.201502-0361ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Shawn D Aaron
- 1 The Ottawa Hospital Research Institute University of Ottawa Ottawa, Canada
| |
Collapse
|
36
|
Morissette MC, Shen P, Thayaparan D, Stämpfli MR. Disruption of pulmonary lipid homeostasis drives cigarette smoke-induced lung inflammation in mice. Eur Respir J 2015; 46:1451-60. [DOI: 10.1183/09031936.00216914] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/07/2015] [Indexed: 01/09/2023]
Abstract
Overwhelming evidence links inflammation to the pathogenesis of smoking-related pulmonary diseases, especially chronic obstructive pulmonary disease (COPD). Despite an increased understanding of the disease pathogenesis, mechanisms initiating smoking-induced inflammatory processes remain incompletely understood.To investigate the mechanisms that initiate and propagate smoke-induced inflammation, we used a well-characterised mouse model of cigarette smoke exposure, mice deficient for interleukin (IL)-1α, IL-1β and Toll-like receptor 4, and antibodies blocking granulocyte-macrophage colony-stimulating factor (GM-CSF). Studies were also pursued using intranasal delivery of human oxidised low-density lipoprotein (hOxLDL), a source of oxidised lipids, to investigate the inflammatory processes associated with impaired lipid homeostasis.We found that cigarette smoke exposure rapidly led to lipid accumulation in pulmonary macrophages, a defining feature of foam cells, which in turn released high levels of IL-1α. In smoke-exposed IL-1α-deficient mice, phospholipids accumulated in the bronchoalveolar lavage, a phenomenon also observed when blocking GM-CSF. Intranasal administration of hOxLDL led to lipid accumulation in macrophages and initiated an inflammatory process that mirrored the characteristics of cigarette smoke-induced inflammation.These findings identify a link between lipid accumulation in macrophages, inflammation and damaged surfactant, suggesting that the response to damaged pulmonary surfactant is a central mechanism that drives cigarette smoke-induced inflammation. Further investigations are required to explore the role of distorted lipid homeostasis in the pathogenesis of COPD.
Collapse
|
37
|
Voss M, Wonnenberg B, Honecker A, Kamyschnikow A, Herr C, Bischoff M, Tschernig T, Bals R, Beisswenger C. Cigarette smoke-promoted acquisition of bacterial pathogens in the upper respiratory tract leads to enhanced inflammation in mice. Respir Res 2015; 16:41. [PMID: 25890119 PMCID: PMC4395896 DOI: 10.1186/s12931-015-0204-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/09/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bacterial colonization and recurrent infections of the respiratory tract contribute to the progression of chronic obstructive pulmonary disease (COPD). There is evidence that exacerbations of COPD are provoked by new bacterial strains acquired from the environment. Using a murine model of colonization, we examined whether chronic exposure to cigarette smoke (CS) promotes nasopharyngeal colonization with typical lung pathogens and whether colonization is linked to inflammation in the respiratory tract. METHODS C57BL/6 N mice were chronically exposed to CS. The upper airways of mice were colonized with nontypeable Haemophilus influenzae (NTHi) or Streptococcus pneumoniae. Bacterial colonization was determined in the upper respiratory tract and lung tissue. Inflammatory cells and cytokines were determined in lavage fluids. RT-PCR was performed for inflammatory mediators. RESULTS Chronic CS exposure resulted in significantly increased numbers of viable NTHi in the upper airways, whereas NTHi only marginally colonized air-exposed mice. Colonization with S. pneumoniae was enhanced in the upper respiratory tract of CS-exposed mice and was accompanied by increased translocation of S. pneumoniae into the lung. Bacterial colonization levels were associated with increased concentrations of inflammatory mediators and the number of immune cells in lavage fluids of the upper respiratory tract and the lung. Phagocytosis activity was reduced in whole blood granulocytes and monocytes of CS-exposed mice. CONCLUSIONS These findings demonstrate that exposure to CS impacts the ability of the host to control bacterial colonization of the upper airways, resulting in enhanced inflammation and susceptibility of the host to pathogens migrating into the lung.
Collapse
Affiliation(s)
- Meike Voss
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Bodo Wonnenberg
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Anja Honecker
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Andreas Kamyschnikow
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg/Saar, Germany.
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, 66421, Homburg/Saar, Germany.
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| |
Collapse
|
38
|
Herr C, Han G, Li D, Tschernig T, Dinh QT, Beißwenger C, Bals R. Combined exposure to bacteria and cigarette smoke resembles characteristic phenotypes of human COPD in a murine disease model. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2015; 67:261-9. [PMID: 25601416 DOI: 10.1016/j.etp.2015.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/02/2015] [Indexed: 11/18/2022]
Abstract
Abundant microbial colonization is a hallmark of COPD and smoke exposure likely increases the susceptibility to colonization and infection. The aim of the present study was to characterize the pulmonary changes of a combined exposure to cigarette smoke (CS) and microbial challenge in a preclinical murine COPD model. Animals were exposed to CS for 2 weeks, 3, and 6 months. Low and high doses of heat inactivated nontypeable Haemophilus influenzae (NTHi) were administered by inhalation during the whole exposure time. Pulmonary changes were analyzed by stereology, pulmonary function tests, measurements of inflammatory cells and mediators, and histopathology. Exposure of smoke in a relatively low concentration caused COPD-like changes of pulmonary function and only little inflammation. The coadministration of low dose NTHi (ld-NTHi) augmented a macrophage dominated inflammatory profile, while high dose NTHi (hd-NTHi) induced a neutrophilic inflammatory pattern. IL-17A secretion was solely dependent on the exposure to NTHi. Also goblet cell metaplasia and the formation of lymphoid aggregates depended on exposure to bacteria. In conclusion, the combination of exposure to smoke and bacterial compounds resulted in a mouse model that resembles several aspects of human disease. Exposure to microbial structural components appears necessary to model important pathologic features of the disease and the quantity of the exposure with microorganisms has a strong effect on the phenotype.
Collapse
Affiliation(s)
- Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424 Homburg, Germany.
| | - Gang Han
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424 Homburg, Germany
| | - Dong Li
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424 Homburg, Germany
| | - Thomas Tschernig
- Department of Anatomy, Saarland University Hospital, 66424 Homburg, Germany
| | - Quoc Thai Dinh
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424 Homburg, Germany; Department of Experimental Pulmonology, Saarland University Hospital, 66424 Homburg, Germany
| | - Christoph Beißwenger
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424 Homburg, Germany
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424 Homburg, Germany
| |
Collapse
|