1
|
Bork F, Greve CL, Youn C, Chen S, N C Leal V, Wang Y, Fischer B, Nasri M, Focken J, Scheurer J, Engels P, Dubbelaar M, Hipp K, Zalat B, Szolek A, Wu MJ, Schittek B, Bugl S, Kufer TA, Löffler MW, Chamaillard M, Skokowa J, Kramer D, Archer NK, Weber ANR. naRNA-LL37 composite DAMPs define sterile NETs as self-propagating drivers of inflammation. EMBO Rep 2024; 25:2914-2949. [PMID: 38783164 PMCID: PMC11239898 DOI: 10.1038/s44319-024-00150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are a key antimicrobial feature of cellular innate immunity mediated by polymorphonuclear neutrophils (PMNs). NETs counteract microbes but are also linked to inflammation in atherosclerosis, arthritis, or psoriasis by unknown mechanisms. Here, we report that NET-associated RNA (naRNA) stimulates further NET formation in naive PMNs via a unique TLR8-NLRP3 inflammasome-dependent pathway. Keratinocytes respond to naRNA with expression of psoriasis-related genes (e.g., IL17, IL36) via atypical NOD2-RIPK signaling. In vivo, naRNA drives temporary skin inflammation, which is drastically ameliorated by genetic ablation of RNA sensing. Unexpectedly, the naRNA-LL37 'composite damage-associated molecular pattern (DAMP)' is pre-stored in resting neutrophil granules, defining sterile NETs as inflammatory webs that amplify neutrophil activation. However, the activity of the naRNA-LL37 DAMP is transient and hence supposedly self-limiting under physiological conditions. Collectively, upon dysregulated NET release like in psoriasis, naRNA sensing may represent both a potential cause of disease and a new intervention target.
Collapse
Affiliation(s)
- Francesca Bork
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Carsten L Greve
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sirui Chen
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Vinicius N C Leal
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Berenice Fischer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Masoud Nasri
- Division of Translational Oncology, Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller Str. 10, 72076, Tübingen, Germany
| | - Jule Focken
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
| | - Jasmin Scheurer
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
| | - Pujan Engels
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Marissa Dubbelaar
- Institute of Immunology, Department of Peptide-based Immunotherapy, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Baher Zalat
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Andras Szolek
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Meng-Jen Wu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Birgit Schittek
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr. 25, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- CMFI - Cluster of Excellence (EXC 2124) "Controlling microbes to fight infection", University of Tübingen, Tübingen, Germany
| | - Stefanie Bugl
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany
| | - Markus W Löffler
- Institute of Immunology, Department of Peptide-based Immunotherapy, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty, University of Tübingen, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany
| | - Mathias Chamaillard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Julia Skokowa
- Division of Translational Oncology, Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller Str. 10, 72076, Tübingen, Germany
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Alexander N R Weber
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
- iFIT - Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- CMFI - Cluster of Excellence (EXC 2124) "Controlling microbes to fight infection", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
López-Cerdá S, Molinaro G, Tello RP, Correia A, Künig S, Steinberger P, Jeltsch M, Hirvonen JT, Barreto G, Stöckl J, Santos HA. Study of the Synergistic Immunomodulatory and Antifibrotic Effects of Dual-Loaded Budesonide and Serpine1 siRNA Lipid-Polymer Nanoparticles Targeting Macrophage Dysregulation in Tendinopathy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18643-18657. [PMID: 38564504 DOI: 10.1021/acsami.4c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Musculoskeletal diseases involving tissue injury comprise tendon, ligament, and muscle injury. Recently, macrophages have been identified as key players in the tendon repair process, but no therapeutic strategy involving dual drug delivery and gene delivery to macrophages has been developed for targeting the two main dysregulated aspects of macrophages in tendinopathy, i.e., inflammation and fibrosis. Herein, the anti-inflammatory and antifibrotic effects of dual-loaded budesonide and serpine1 siRNA lipid-polymer hybrid nanoparticles (LPNs) are evaluated in murine and human macrophage cells. The modulation of the gene and protein expression of factors associated with inflammation and fibrosis in tendinopathy is demonstrated by real time polymerase chain reaction and Western blot. Macrophage polarization to the M2 phenotype and a decrease in the production of pro-inflammatory cytokines are confirmed in macrophage cell lines and primary cells. The increase in the activity of a matrix metalloproteinase involved in tissue remodelling is proven, and studies evaluating the interactions of LPNs with T cells proved that dual-loaded LPNs act specifically on macrophages and do not induce any collateral effects on T cells. Overall, these dual-loaded LPNs are a promising combinatorial therapeutic strategy with immunomodulatory and antifibrotic effects in dysregulated macrophages in the context of tendinopathy.
Collapse
Affiliation(s)
- Sandra López-Cerdá
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Giuseppina Molinaro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Sarojinidevi Künig
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Steinberger
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Jeltsch
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
- Wihuri Research Institute, Helsinki FI-00014, Finland
- Helsinki One Health, University of Helsinki, Helsinki FI-00014, Finland
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Goncalo Barreto
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
- Orton Orthopedic Hospital, Tenholantie 10, Helsinki 00280, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
3
|
Chen YS, Dong J, Tan W, Liu H, Zhang SM, Zou J, Chen YQ, Bai SY, Zeng Y. The potential role of ribonucleic acid methylation in the pathological mechanisms of fragile X syndrome. Behav Brain Res 2023; 452:114586. [PMID: 37467965 DOI: 10.1016/j.bbr.2023.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Fragile X syndrome (FXS) is a common inherited cause of intellectual disabilities and single-gene cause of autism spectrum disorder (ASD), resulting from the loss of functional fragile X messenger ribonucleoprotein (FMRP), an RNA-binding protein (RBP) encoded by the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Ribonucleic acid (RNA) methylation can lead to developmental diseases, including FXS, through various mechanisms mediated by 5-hydroxymethylcytosine, 5-methylcytosine, N6-methyladenosine, etc. Emerging evidence suggests that modifications of some RNA species have been linked to FXS. However, the underlying pathological mechanism has yet to be elucidated. In this review, we reviewed the implication of RNA modification in FXS and summarized its specific characteristics for facilitating the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Yu-Shan Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jing Dong
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hui Liu
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Si-Ming Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jia Zou
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yi-Qi Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shu-Yuan Bai
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Zsurka G, Appel MLT, Nastaly M, Hallmann K, Hansen N, Nass D, Baumgartner T, Surges R, Hartmann G, Bartok E, Kunz WS. Loss of the Immunomodulatory Transcription Factor BATF2 in Humans Is Associated with a Neurological Phenotype. Cells 2023; 12:227. [PMID: 36672163 PMCID: PMC9856319 DOI: 10.3390/cells12020227] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Epilepsy and mental retardation are known to be associated with pathogenic mutations in a broad range of genes that are expressed in the brain and have a role in neurodevelopment. Here, we report on a family with three affected individuals whose clinical symptoms closely resemble a neurodevelopmental disorder. Whole-exome sequencing identified a homozygous stop-gain mutation, p.Gln19*, in the BATF2 gene in the patients. The BATF2 transcription factor is predominantly expressed in macrophages and monocytes and has been reported to modulate AP-1 transcription factor-mediated pro-inflammatory responses. Transcriptome analysis showed altered base-level expression of interferon-stimulated genes in the patients' blood, typical for type I interferonopathies. Peripheral blood mononuclear cells from all three patients demonstrated elevated responses to innate immune stimuli, which could be reproduced in CRISPR-Cas9-generated BATF2-/- human monocytic cell lines. BATF2 is, therefore, a novel disease-associated gene candidate for severe epilepsy and mental retardation related to dysregulation of immune responses, which underscores the relevance of neuroinflammation for epilepsy.
Collapse
Affiliation(s)
- Gábor Zsurka
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Maximilian L. T. Appel
- Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Institute of Experimental Haematology and Transfusion Medicine, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Maximilian Nastaly
- Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Kerstin Hallmann
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Niels Hansen
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Daniel Nass
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Tobias Baumgartner
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Eva Bartok
- Institute of Experimental Haematology and Transfusion Medicine, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Unit of Experimental Immunology, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Wolfram S. Kunz
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
5
|
Ciaston I, Dobosz E, Potempa J, Koziel J. The subversion of toll-like receptor signaling by bacterial and viral proteases during the development of infectious diseases. Mol Aspects Med 2022; 88:101143. [PMID: 36152458 PMCID: PMC9924004 DOI: 10.1016/j.mam.2022.101143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that respond to pathogen-associated molecular patterns (PAMPs). The recognition of specific microbial ligands by TLRs triggers an innate immune response and also promotes adaptive immunity, which is necessary for the efficient elimination of invading pathogens. Successful pathogens have therefore evolved strategies to subvert and/or manipulate TLR signaling. Both the impairment and uncontrolled activation of TLR signaling can harm the host, causing tissue destruction and allowing pathogens to proliferate, thus favoring disease progression. In this context, microbial proteases are key virulence factors that modify components of the TLR signaling pathway. In this review, we discuss the role of bacterial and viral proteases in the manipulation of TLR signaling, highlighting the importance of these enzymes during the development of infectious diseases.
Collapse
Affiliation(s)
- Izabela Ciaston
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Joanna Koziel
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
6
|
Park T, Hwang H, Moon S, Kang SG, Song S, Kim YH, Kim H, Ko EJ, Yoon SD, Kang SM, Hwang HS. Vaccines against SARS-CoV-2 variants and future pandemics. Expert Rev Vaccines 2022; 21:1363-1376. [PMID: 35924678 PMCID: PMC9979704 DOI: 10.1080/14760584.2022.2110075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/02/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vaccination continues to be the most effective method for controlling COVID-19 infectious diseases. Nonetheless, SARS-CoV-2 variants continue to evolve and emerge, resulting in significant public concerns worldwide, even after more than 2 years since the COVID-19 pandemic. It is important to better understand how different COVID-19 vaccine platforms work, why SARS-CoV-2 variants continue to emerge, and what options for improving COVID-19 vaccines can be considered to fight against SARS-CoV-2 variants and future pandemics. AREA COVERED Here, we reviewed the innate immune sensors in the recognition of SARS-CoV-2 virus, innate and adaptive immunity including neutralizing antibodies by different COVID-19 vaccines. Efficacy comparison of the several COVID-19 vaccine platforms approved for use in humans, concerns about SARS-CoV-2 variants and breakthrough infections, and the options for developing future COIVD-19 vaccines were also covered. EXPERT OPINION Owing to the continuous emergence of novel pathogens and the reemergence of variants, safer and more effective new vaccines are needed. This review also aims to provide the knowledge basis for the development of next-generation COVID-19 and pan-coronavirus vaccines to provide cross-protection against new SARS-CoV-2 variants and future coronavirus pandemics.
Collapse
Affiliation(s)
- Taeyoung Park
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Hyogyeong Hwang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Suhyeong Moon
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Sang Gu Kang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Seunghyup Song
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Young Hun Kim
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Hanbi Kim
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Eun-Ju Ko
- College of Veterinary Medicine and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Soon-Do Yoon
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, South Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Hye Suk Hwang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| |
Collapse
|
7
|
Ko CN, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnology 2022; 20:380. [PMID: 35986268 PMCID: PMC9388998 DOI: 10.1186/s12951-022-01582-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Innate immune cells can recognize invading pathogens through recognizing pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). The recognition of PAMPs by PRRs triggers immune defense mechanisms and the secretion of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. However, sustained and overwhelming activation of immune system may disrupt immune homeostasis and contribute to inflammatory disorders. Immunomodulators targeting PRRs may be beneficial to treat infectious diseases and their associated complications. However, therapeutic performances of immunomodulators can be negatively affected by (1) high immune-mediated toxicity, (2) poor solubility and (3) bioactivity loss after long circulation. Recently, nanocarriers have emerged as a very promising tool to overcome these obstacles owning to their unique properties such as sustained circulation, desired bio-distribution, and preferred pharmacokinetic and pharmacodynamic profiles. In this review, we aim to provide an up-to-date overview on the strategies and applications of nanocarrier-assisted innate immune modulation for the management of infections and their associated complications. We first summarize examples of important innate immune modulators. The types of nanomaterials available for drug delivery, as well as their applications for the delivery of immunomodulatory drugs and vaccine adjuvants are also discussed.
Collapse
|
8
|
Abstract
The rapid development and deployment of mRNA and adenovirus-vectored vaccines against coronavirus disease 2019 (COVID-19) continue to astound the global scientific community, but these vaccine platforms and production approaches have still not achieved global COVID-19 vaccine equity. Immunizing the billions of people at risk for COVID-19 in the world's low- and middle-income countries (LMICs) still relies on the availability of vaccines produced and scaled through traditional technology approaches. Vaccines based on whole inactivated virus (WIV) and protein-based platforms, as well as protein particle-based vaccines, are the most produced by LMIC vaccine manufacturing strategies. Three major WIV vaccines are beginning to be distributed widely. Several protein-based and protein particle-based vaccines are advancing with promising results. Overall, these vaccines are exhibiting excellent safety profiles and in some instances have shown their potential to induce high levels of virus neutralizing antibodies and T cell responses (and protection) both in nonhuman primates and in early studies in humans. There is an urgent need to continue accelerating these vaccines for LMICs in time to fully vaccinate these populations by the end of 2022 at the latest. Achieving these goals would also serve as an important reminder that we must continue to maintain expertise in producing multiple vaccine technologies, rather than relying on any individual platform. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Peter J Hotez
- Departments of Pediatrics and Molecular Virology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; , .,Texas Children's Hospital Center for Vaccine Development, Houston, Texas 77030, USA.,Department of Biology, Baylor University, Waco, Texas 76798, USA.,Hagler Institute of Advanced Study, Texas A&M University, College Station, Texas 77843, USA
| | - Maria Elena Bottazzi
- Departments of Pediatrics and Molecular Virology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; , .,Texas Children's Hospital Center for Vaccine Development, Houston, Texas 77030, USA.,Department of Biology, Baylor University, Waco, Texas 76798, USA
| |
Collapse
|
9
|
Shah D, Comba A, Faisal SM, Kadiyala P, Baker GJ, Alghamri MS, Doherty R, Zamler D, Nuñez G, Castro MG, Lowenstein PR. A novel miR1983-TLR7-IFNβ circuit licenses NK cells to kill glioma cells, and is under the control of galectin-1. Oncoimmunology 2021; 10:1939601. [PMID: 34249474 PMCID: PMC8244780 DOI: 10.1080/2162402x.2021.1939601] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023] Open
Abstract
Although pharmacological stimulation of TLRs has anti-tumor effects, it has not been determined whether endogenous stimulation of TLRs can lead to tumor rejection. Herein, we demonstrate the existence of an innate anti-glioma NK-mediated circuit initiated by glioma-released miR-1983 within exosomes, and which is under the regulation of galectin-1 (Gal-1). We demonstrate that miR-1983 is an endogenous TLR7 ligand that activates TLR7 in pDCs and cDCs through a 5'-UGUUU-3' motif at its 3' end. TLR7 activation and downstream signaling through MyD88-IRF5/IRF7 stimulates secretion of IFN-β. IFN-β then stimulates NK cells resulting in the eradication of gliomas. We propose that successful immunotherapy for glioma could exploit this endogenous innate immune circuit to activate TLR7 signaling and stimulate powerful anti-glioma NK activity, at least 10-14 days before the activation of anti-tumor adaptive immunity.
Collapse
Affiliation(s)
- Diana Shah
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Syed M. Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gregory J. Baker
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert Doherty
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel Zamler
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Markiewicz L, Drazkowska K, Sikorski PJ. Tricks and threats of RNA viruses - towards understanding the fate of viral RNA. RNA Biol 2021; 18:669-687. [PMID: 33618611 PMCID: PMC8078519 DOI: 10.1080/15476286.2021.1875680] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/22/2020] [Accepted: 01/09/2021] [Indexed: 12/24/2022] Open
Abstract
Human innate cellular defence pathways have evolved to sense and eliminate pathogens, of which, viruses are considered one of the most dangerous. Their relatively simple structure makes the identification of viral invasion a difficult task for cells. In the course of evolution, viral nucleic acids have become one of the strongest and most reliable early identifiers of infection. When considering RNA virus recognition, RNA sensing is the central mechanism in human innate immunity, and effectiveness of this sensing is crucial for triggering an appropriate antiviral response. Although human cells are armed with a variety of highly specialized receptors designed to respond only to pathogenic viral RNA, RNA viruses have developed an array of mechanisms to avoid being recognized by human interferon-mediated cellular defence systems. The repertoire of viral evasion strategies is extremely wide, ranging from masking pathogenic RNA through end modification, to utilizing sophisticated techniques to deceive host cellular RNA degrading enzymes, and hijacking the most basic metabolic pathways in host cells. In this review, we aim to dissect human RNA sensing mechanisms crucial for antiviral immune defences, as well as the strategies adopted by RNA viruses to avoid detection and degradation by host cells. We believe that understanding the fate of viral RNA upon infection, and detailing the molecular mechanisms behind virus-host interactions, may be helpful for developing more effective antiviral strategies; which are urgently needed to prevent the far-reaching consequences of widespread, highly pathogenic viral infections.
Collapse
|
11
|
Leszczyńska E, Makuch E, Mitkiewicz M, Jasyk I, Narita M, Górska S, Lipiński T, Siednienko J. Absence of Mal/TIRAP Results in Abrogated Imidazoquinolinones-Dependent Activation of IRF7 and Suppressed IFNβ and IFN-I Activated Gene Production. Int J Mol Sci 2020; 21:ijms21238925. [PMID: 33255528 PMCID: PMC7727842 DOI: 10.3390/ijms21238925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Activation of TLR7 by small imidazoquinoline molecules such as R848 or R837 initiates signaling cascades leading to the activation of transcription factors, such as AP-1, NF-κB, and interferon regulatory factors (IRFs) and afterward to the induction of cytokines and anti-viral Type I IFNs. In general, TLRs mediate these effects by utilizing different intracellular signaling molecules, one of them is Mal. Mal is a protein closely related to the antibacterial response, and its role in the TLR7 pathways remains poorly understood. In this study, we show that Mal determines the expression and secretion of IFNβ following activation of TLR7, a receptor that recognizes ssRNA and imidazoquinolines. Moreover, we observed that R848 induces Mal-dependent IFNβ production via ERK1/2 activation as well as the transcription factor IRF7 activation. Although activation of TLR7 leads to NF-κB-dependent expression of IRF7, this process is independent of Mal. We also demonstrate that secretion of IFNβ regulated by TLR7 and Mal in macrophages and dendritic cells leads to the IP-10 chemokine expression. In conclusion, our data demonstrate that Mal is a critical regulator of the imidazoquinolinones-dependent IFNβ production via ERK1/2/IRF7 signaling cascade which brings us closer to understanding the molecular mechanism’s regulation of innate immune response.
Collapse
Affiliation(s)
- Ewa Leszczyńska
- Bioengineering Research Group, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland; (E.L.); (I.J.); (T.L.)
| | - Edyta Makuch
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.M.); (M.M.); (S.G.)
| | - Małgorzata Mitkiewicz
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.M.); (M.M.); (S.G.)
| | - Izabella Jasyk
- Bioengineering Research Group, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland; (E.L.); (I.J.); (T.L.)
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.M.); (M.M.); (S.G.)
| | - Miwako Narita
- Laboratory of Hematology and Oncology, Niigata University, Niigata 950-2181, Japan;
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.M.); (M.M.); (S.G.)
| | - Tomasz Lipiński
- Bioengineering Research Group, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland; (E.L.); (I.J.); (T.L.)
| | - Jakub Siednienko
- Bioengineering Research Group, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland; (E.L.); (I.J.); (T.L.)
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.M.); (M.M.); (S.G.)
- Correspondence:
| |
Collapse
|
12
|
Navarro-Costa PA, Molaro A, Misra CS, Meiklejohn CD, Ellis PJ. Sex and suicide: The curious case of Toll-like receptors. PLoS Biol 2020; 18:e3000663. [PMID: 32203540 PMCID: PMC7117759 DOI: 10.1371/journal.pbio.3000663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
During in vitro fertilisation (IVF), pharmacological activation of the murine X chromosome-encoded receptor proteins Toll-like receptor (TLR) 7 and TLR8 reportedly results in male-biased litters by selectively disrupting the motility of X-bearing sperm cells. Thus-in the context of agonist treatment during IVF-these receptors act as 'suicidal' segregation distorters that impair their own transmission to the next generation. Such behaviour would, from an evolutionary perspective, be strongly selected against if present during natural fertilisation. Consequently, TLR7/8 biology in vivo must differ significantly from this in vitro situation to allow these genes to persist in the genome. Here, we use our current understanding of male germ cell biology and TLR function as a starting point to explore the mechanistic and evolutionary aspects of this apparent paradox.
Collapse
Affiliation(s)
- Paulo A. Navarro-Costa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Antoine Molaro
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Chandra S. Misra
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - Colin D. Meiklejohn
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Peter J. Ellis
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
13
|
Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. Nat Commun 2020; 11:105. [PMID: 31913271 PMCID: PMC6949246 DOI: 10.1038/s41467-019-13756-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is an inflammatory skin disease with strong neutrophil (PMN) infiltration and high levels of the antimicrobial peptide, LL37. LL37 in complex with DNA and RNA is thought to initiate disease exacerbation via plasmacytoid dendritic cells. However, the source of nucleic acids supposed to start this initial inflammatory event remains unknown. We show here that primary murine and human PMNs mount a fulminant and self-propagating neutrophil extracellular trap (NET) and cytokine response, but independently of the canonical NET component, DNA. Unexpectedly, RNA, which is abundant in NETs and psoriatic but not healthy skin, in complex with LL37 triggered TLR8/TLR13-mediated cytokine and NET release by PMNs in vitro and in vivo. Transfer of NETs to naive human PMNs prompts additional NET release, promoting further inflammation. Our study thus uncovers a self-propagating vicious cycle contributing to chronic inflammation in psoriasis, and NET-associated RNA (naRNA) as a physiologically relevant NET component.
Collapse
|
14
|
Abstract
Many options now exist for constructing oral vaccines which, in experimental systems, have shown themselves to be able to generate highly effective immunity against infectious diseases. Their suitability for implementation in clinical practice, however, for prevention of outbreaks, particularly in low- and middle-income countries (LMIC), is not always guaranteed, because of factors such as cost, logistics and cultural and environmental conditions. This brief overview provides a summary of the various approaches which can be adopted, and evaluates them from a pharmaceutical point, taking into account potential regulatory issues, expense, manufacturing complexity, etc., all of which can determine whether a vaccine approach will be successful in the late stages of development. Attention is also drawn to problems arising from inadequate diet, which impacts upon success in stimulating effective immunity, and identifies the use of lipid-based carriers as a way to counteract the problem of nutritional deficiencies in vaccination campaigns.
Collapse
Affiliation(s)
- R. R. C. New
- Middlesex UniversityHendon, LondonUK
- Vaxcine (UK) Limited, London Bioscience Innovation CentreLondonUK
| |
Collapse
|
15
|
Ohadian Moghadam S, Nowroozi MR. Toll‐like receptors: The role in bladder cancer development, progression and immunotherapy. Scand J Immunol 2019; 90:e12818. [DOI: 10.1111/sji.12818] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
|
16
|
Albin T, Tom JK, Manna S, Gilkes AP, Stetkevich SA, Katz BB, Supnet M, Felgner J, Jain A, Nakajima R, Jasinskas A, Zlotnik A, Pearlman E, Davies DH, Felgner PL, Burkhardt AM, Esser-Kahn AP. Linked Toll-Like Receptor Triagonists Stimulate Distinct, Combination-Dependent Innate Immune Responses. ACS CENTRAL SCIENCE 2019; 5:1137-1145. [PMID: 31403067 PMCID: PMC6661867 DOI: 10.1021/acscentsci.8b00823] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 05/04/2023]
Abstract
Traditional vaccination strategies have failed to generate effective vaccines for many infections like tuberculosis and HIV. New approaches are needed for each type of disease. The protective immunity and distinct responses of many successful vaccines come from activating multiple Toll-like receptors (TLRs). Vaccines with multiple TLRs as adjuvants have proven effective in preclinical studies, but current research has not explored two important elements. First, few multi-TLR systems explore spatial organization-a critical feature of whole-cell vaccines. Second, no multi-TLR systems to date provide systematic analysis of the combinatorial space of three TLR agonists. Here, we present the first examination of the combinatorial space of several spatially defined triple-TLR adjuvants, by synthesizing a series of five triple-TLR agonists and testing their innate activity both in vitro and in vivo. The combinations were evaluated by measuring activation of immune stimulatory genes (Nf-κB, ISGs), cytokine profiles (IL12-p70, TNF-α, IL-6, IL-10, CCL2, IFN-α, IFN-β, IFN-γ), and in vivo cytokine serum levels (IL-6, TNF-α, IL12-p40, IFN-α, IFN-β). We demonstrate that linking TLR agonists substantially alters the resulting immune response compared to their unlinked counterparts and that each combination results in a distinct immune response, particularly between linked combinations. We show that combinations containing a TLR9 agonist produce more Th1 biasing immune response profiles, and that the effect is amplified upon conjugation. However, combinations containing TLR2/6 agonist are skewed toward TH2 biasing profiles despite the presence of TLR9. These results demonstrate the profound effects that conjugation and combinatorial administration of TLR agonists can have on immune responses, a critical element of vaccine development.
Collapse
Affiliation(s)
- Tyler
J. Albin
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| | - Janine K. Tom
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| | - Saikat Manna
- Department
of Chemistry, University of California, Irvine, California 92617, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Adrienne P. Gilkes
- Vaccine
Research and Development Center, Department of Physiology & Biophysics, University of California, Irvine, California 92617, United States
- School
of Medicine, Institute for Immunology, University
of California, Irvine, California 92617, United States
| | - Samuel A. Stetkevich
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| | - Benjamin B. Katz
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| | - Medalyn Supnet
- Vaccine
Research and Development Center, Department of Physiology & Biophysics, University of California, Irvine, California 92617, United States
- School
of Medicine, Institute for Immunology, University
of California, Irvine, California 92617, United States
| | - Jiin Felgner
- Vaccine
Research and Development Center, Department of Physiology & Biophysics, University of California, Irvine, California 92617, United States
- School
of Medicine, Institute for Immunology, University
of California, Irvine, California 92617, United States
| | - Aarti Jain
- Vaccine
Research and Development Center, Department of Physiology & Biophysics, University of California, Irvine, California 92617, United States
- School
of Medicine, Institute for Immunology, University
of California, Irvine, California 92617, United States
| | - Rie Nakajima
- Vaccine
Research and Development Center, Department of Physiology & Biophysics, University of California, Irvine, California 92617, United States
- School
of Medicine, Institute for Immunology, University
of California, Irvine, California 92617, United States
| | - Algis Jasinskas
- Vaccine
Research and Development Center, Department of Physiology & Biophysics, University of California, Irvine, California 92617, United States
- School
of Medicine, Institute for Immunology, University
of California, Irvine, California 92617, United States
| | - Albert Zlotnik
- Vaccine
Research and Development Center, Department of Physiology & Biophysics, University of California, Irvine, California 92617, United States
- School
of Medicine, Institute for Immunology, University
of California, Irvine, California 92617, United States
| | - Eric Pearlman
- Vaccine
Research and Development Center, Department of Physiology & Biophysics, University of California, Irvine, California 92617, United States
- School
of Medicine, Institute for Immunology, University
of California, Irvine, California 92617, United States
| | - D. Huw Davies
- Vaccine
Research and Development Center, Department of Physiology & Biophysics, University of California, Irvine, California 92617, United States
- School
of Medicine, Institute for Immunology, University
of California, Irvine, California 92617, United States
| | - Phillip L. Felgner
- Vaccine
Research and Development Center, Department of Physiology & Biophysics, University of California, Irvine, California 92617, United States
- School
of Medicine, Institute for Immunology, University
of California, Irvine, California 92617, United States
| | - Amanda M. Burkhardt
- Vaccine
Research and Development Center, Department of Physiology & Biophysics, University of California, Irvine, California 92617, United States
- School
of Medicine, Institute for Immunology, University
of California, Irvine, California 92617, United States
- E-mail:
| | - Aaron P. Esser-Kahn
- Department
of Chemistry, University of California, Irvine, California 92617, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- E-mail:
| |
Collapse
|
17
|
Keller P, Freund I, Marchand V, Bec G, Huang R, Motorin Y, Eigenbrod T, Dalpke A, Helm M. Double methylation of tRNA-U54 to 2'-O-methylthymidine (Tm) synergistically decreases immune response by Toll-like receptor 7. Nucleic Acids Res 2019; 46:9764-9775. [PMID: 30102387 PMCID: PMC6182150 DOI: 10.1093/nar/gky644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
Sensing of nucleic acids for molecular discrimination between self and non-self is a challenging task for the innate immune system. RNA acts as a potent stimulus for pattern recognition receptors including in particular human Toll-like receptor 7 (TLR7). Certain RNA modifications limit potentially harmful self-recognition of endogenous RNA. Previous studies had identified the 2′-O-methylation of guanosine 18 (Gm18) within tRNAs as an antagonist of TLR7 leading to an impaired immune response. However, human tRNALys3 was non-stimulatory despite lacking Gm18. To identify the underlying molecular principle, interferon responses of human peripheral blood mononuclear cells to differentially modified tRNALys3 were determined. The investigation of synthetic modivariants allowed attributing a significant part of the immunosilencing effect to the 2′-O-methylthymidine (m5Um) modification at position 54. The effect was contingent upon the synergistic presence of both methyl groups at positions C5 and 2’O, as shown by the fact that neither Um54 nor m5U54 produced any effect alone. Testing permutations of the nucleobase at ribose-methylated position 54 suggested that the extent of silencing and antagonism of the TLR7 response was governed by hydrogen patterns and lipophilic interactions of the nucleobase. The results identify a new immune-modulatory endogenous RNA modification that limits TLR7 activation by RNA.
Collapse
Affiliation(s)
- Patrick Keller
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany
| | - Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Virginie Marchand
- Next Generation Sequencing Platform, UMS2008 Ingénierie Biologie Santé en Lorraine (IBSLor), BioPôle de l'Université de Lorraine Campus Biologie-Santé, 9, avenue de la Forêt de Haye, CS 50184, 54505 Vandoeuvre-les-Nancy, France
| | - Guillaume Bec
- Biophysics and Structural Biology Team, Unité Architecture et réactivité de l'ARN (UPR9002), Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15, rue René Descartes, F67084, Strasbourg cedex, France
| | - Raven Huang
- Department of Biochemistry, Center for Biophysics & Computational Biology, University of Illinois at Urbana-Champaign, 411 Roger Adams Lab., 600 S. Mathews Ave. Urbana, IL 61801, USA
| | - Yuri Motorin
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA) UMR7365 CNRS-UL, BioPôle de l'Université de Lorraine Campus Biologie-Santé, 9, avenue de la Forêt de Haye, CS 50184, 54505 Vandoeuvre-les-Nancy, France
| | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Alexander Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany
| |
Collapse
|
18
|
Fuchs K, Cardona Gloria Y, Wolz OO, Herster F, Sharma L, Dillen CA, Täumer C, Dickhöfer S, Bittner Z, Dang TM, Singh A, Haischer D, Schlöffel MA, Koymans KJ, Sanmuganantham T, Krach M, Roger T, Le Roy D, Schilling NA, Frauhammer F, Miller LS, Nürnberger T, LeibundGut-Landmann S, Gust AA, Macek B, Frank M, Gouttefangeas C, Dela Cruz CS, Hartl D, Weber AN. The fungal ligand chitin directly binds TLR2 and triggers inflammation dependent on oligomer size. EMBO Rep 2018; 19:e46065. [PMID: 30337494 PMCID: PMC6280652 DOI: 10.15252/embr.201846065] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Chitin is the second most abundant polysaccharide in nature and linked to fungal infection and asthma. However, bona fide immune receptors directly binding chitin and signaling immune activation and inflammation have not been clearly identified because polymeric crude chitin with unknown purity and molecular composition has been used. By using defined chitin (N-acetyl-glucosamine) oligomers, we here identify six-subunit-long chitin chains as the smallest immunologically active motif and the innate immune receptor Toll-like receptor (TLR2) as a primary fungal chitin sensor on human and murine immune cells. Chitin oligomers directly bind TLR2 with nanomolar affinity, and this fungal TLR2 ligand shows overlapping and distinct signaling outcomes compared to known mycobacterial TLR2 ligands. Unexpectedly, chitin oligomers composed of five or less subunits are inactive, hinting to a size-dependent system of immuno-modulation that appears conserved in plants and humans. Since blocking of the chitin-TLR2 interaction effectively prevents chitin-mediated inflammation in vitro and in vivo, our study highlights the chitin-TLR2 interaction as a potential target for developing novel therapies in chitin-related pathologies and fungal disease.
Collapse
Affiliation(s)
- Katharina Fuchs
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | | | - Olaf-Oliver Wolz
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | | | - Lokesh Sharma
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Department of Microbial Pathogenesis, Center for Pulmonary Infection Research and Infection (CPIRT), New Haven, CT, USA
| | - Carly A Dillen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christoph Täumer
- Department of Quantitative Proteomics and Proteome Center, University of Tübingen, Tübingen, Germany
| | - Sabine Dickhöfer
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Zsofia Bittner
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Truong-Minh Dang
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Anurag Singh
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen, Tübingen, Germany
| | - Daniel Haischer
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Maria A Schlöffel
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, CX Utrecht, The Netherlands
| | | | - Milena Krach
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Thierry Roger
- Infectious Diseases Service, Lausanne University Hospital, Epalinges, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Lausanne University Hospital, Epalinges, Switzerland
| | - Nadine A Schilling
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Felix Frauhammer
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Heidelberg University, Heidelberg, Germany
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thorsten Nürnberger
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | | | - Andrea A Gust
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Boris Macek
- Department of Quantitative Proteomics and Proteome Center, University of Tübingen, Tübingen, Germany
| | | | | | - Charles S Dela Cruz
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Department of Microbial Pathogenesis, Center for Pulmonary Infection Research and Infection (CPIRT), New Haven, CT, USA
| | - Dominik Hartl
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen, Tübingen, Germany
- Roche Pharma Research & Early Development (pRED), Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | | |
Collapse
|
19
|
Westcott MM, Clemens EA, Holbrook BC, King SB, Alexander-Miller MA. The choice of linker for conjugating R848 to inactivated influenza virus determines the stimulatory capacity for innate immune cells. Vaccine 2018; 36:1174-1182. [PMID: 29398273 DOI: 10.1016/j.vaccine.2018.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/14/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
Abstract
Inactivated influenza vaccines are not approved for use in infants less than 6 months of age due to poor immunogenicity in that population. While the live attenuated influenza vaccine has the potential to be more immunogenic, it is not an option for infants and other vulnerable populations, including the elderly and immunocompromised individuals due to safety concerns. In an effort to improve the immunogenicity of the inactivated vaccine for use in vulnerable populations, we have used an approach of chemically crosslinking the Toll-like receptor (TLR) 7/8 agonist R848 directly to virus particles. We have reported previously that an R848-conjugated, inactivated vaccine is more effective at inducing adaptive immune responses and protecting against lung pathology in influenza challenged neonatal African green monkeys than is the unmodified counterpart. In the current study, we describe a second generation vaccine that utilizes an amide-sulfhydryl crosslinker with different spacer chemistry and length to couple R848 to virions. The new vaccine has significantly enhanced immunostimulatory activity for murine macrophages and importantly for monocyte derived human dendritic cells. Demonstration of the significant differences in stimulatory activity afforded by modest changes in linker impacts our fundamental view of the design of TLR agonist-antigen vaccines.
Collapse
Affiliation(s)
- Marlena M Westcott
- Department of Microbiology and Immunology, Biotech Place, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC 27101, USA.
| | - Elene A Clemens
- Department of Microbiology and Immunology, Biotech Place, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC 27101, USA.
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Biotech Place, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC 27101, USA.
| | - S Bruce King
- Department of Chemistry, Wake Downtown, Wake Forest University, 455 Vine Street, Winston-Salem, NC 27101, USA.
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Biotech Place, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC 27101, USA.
| |
Collapse
|
20
|
Adjuvant-Dependent Enhancement of HIV Env-Specific Antibody Responses in Infant Rhesus Macaques. J Virol 2018; 92:JVI.01051-18. [PMID: 30089691 DOI: 10.1128/jvi.01051-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Toward the goal of developing an effective HIV vaccine that can be administered in infancy to protect against postnatal and lifelong sexual HIV transmission risks, the current pilot study was designed to compare the effect of novel adjuvants on the induction of HIV Env-specific antibody responses in infant macaques. Aligning our studies with the adjuvanted proteins evaluated in a prime-boost schedule with ALVAC in the ongoing HVTN (HIV Vaccine Trials Network) 702 efficacy trial, we selected the bivalent clade C Env immunogens gp120 C.1086 and gp120 TV1 in combination with the MF59 adjuvant. However, we hypothesized that the adjuvant system AS01, that is included in the pediatric RTS,S malaria vaccine, would promote Env-specific antibody responses superior to those of the oil-in-water MF59 emulsion adjuvant. In a second study arm, we compared two emulsions, glucopyranosyl lipid adjuvant formulated in a stable emulsion (GLA-SE) and 3M-052-SE, containing Toll-like receptor 4 (TLR4) and TLR7/TLR8 (TLR7/8) ligand, respectively. The latter adjuvant had been previously demonstrated to be especially effective in activating neonatal antigen-presenting cells. Our results demonstrate that different adjuvants drive quantitatively or qualitatively distinct responses to the bivalent Env vaccine. AS01 induced higher Env-specific plasma IgG antibody levels than the antigen in MF59 and promoted improved antibody function in infants, and 3M-052-SE outperformed GLA-SE by inducing the highest breadth and functionality of antibody responses. Thus, distinct adjuvants are likely to be required for maximizing vaccine-elicited immune responses in infants, particularly when immunization in infancy aims to elicit both perinatal and lifelong immunity against challenging pathogens such as HIV.IMPORTANCE Alum remains the adjuvant of choice for pediatric vaccines. Yet the distinct nature of the developing immune system in infants likely requires novel adjuvants targeted specifically at the pediatric population to reach maximal vaccine efficacy with an acceptable safety profile. The current study supports the idea that additional adjuvants for pediatric vaccines should be, and need to be, tested in infants for their potential to enhance immune responses. Using an infant macaque model, our results suggest that both AS01 and 3M-052-SE can significantly improve and better sustain HIV Env-specific antibody responses than alum. Despite the limited number of animals, the results revealed interesting differences that warrant further testing of promising novel adjuvant candidates in larger preclinical and clinical studies to define the mechanisms leading to adjuvant-improved antibody responses and to identify targets for adjuvant and vaccine optimization.
Collapse
|
21
|
Rozman V, Kunej T. Harnessing Omics Big Data in Nine Vertebrate Species by Genome-Wide Prioritization of Sequence Variants with the Highest Predicted Deleterious Effect on Protein Function. ACTA ACUST UNITED AC 2018; 22:410-421. [DOI: 10.1089/omi.2018.0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vita Rozman
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| |
Collapse
|
22
|
Heger L, Balk S, Lühr JJ, Heidkamp GF, Lehmann CHK, Hatscher L, Purbojo A, Hartmann A, Garcia-Martin F, Nishimura SI, Cesnjevar R, Nimmerjahn F, Dudziak D. CLEC10A Is a Specific Marker for Human CD1c + Dendritic Cells and Enhances Their Toll-Like Receptor 7/8-Induced Cytokine Secretion. Front Immunol 2018; 9:744. [PMID: 29755453 PMCID: PMC5934495 DOI: 10.3389/fimmu.2018.00744] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are major players for the induction of immune responses. Apart from plasmacytoid DCs (pDCs), human DCs can be categorized into two types of conventional DCs: CD141+ DCs (cDC1) and CD1c+ DCs (cDC2). Defining uniquely expressed surface markers on human immune cells is not only important for the identification of DC subpopulations but also a prerequisite for harnessing the DC subset-specific potential in immunomodulatory approaches, such as antibody-mediated antigen targeting. Although others identified CLEC9A as a specific endocytic receptor for CD141+ DCs, such a receptor for CD1c+ DCs has not been discovered, yet. By performing transcriptomic and flow cytometric analyses on human DC subpopulations from different lymphohematopoietic tissues, we identified CLEC10A (CD301, macrophage galactose-type C-type lectin) as a specific marker for human CD1c+ DCs. We further demonstrate that CLEC10A rapidly internalizes into human CD1c+ DCs upon binding of a monoclonal antibody directed against CLEC10A. The binding of a CLEC10A-specific bivalent ligand (the MUC-1 peptide glycosylated with N-acetylgalactosamine) is limited to CD1c+ DCs and enhances the cytokine secretion (namely TNFα, IL-8, and IL-10) induced by TLR 7/8 stimulation. Thus, CLEC10A represents not only a candidate to better define CD1c+ DCs—due to its high endocytic potential—CLEC10A also exhibits an interesting candidate receptor for future antigen-targeting approaches.
Collapse
Affiliation(s)
- Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Silke Balk
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Jennifer J Lühr
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Gordon F Heidkamp
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Christian H K Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Lukas Hatscher
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Ariawan Purbojo
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Fayna Garcia-Martin
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Chair of Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
23
|
Parthasarathy G, Philipp MT. Intracellular TLR7 is activated in human oligodendrocytes in response to Borrelia burgdorferi exposure. Neurosci Lett 2018; 671:38-42. [PMID: 29408631 PMCID: PMC5889718 DOI: 10.1016/j.neulet.2018.01.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 01/06/2023]
Abstract
Lyme neuroborreliosis, caused by the gram-negative bacterium Borrelia burgdorferi, may affect the central and/or peripheral nervous systems. In previous studies, we showed that human oligodendrocytes exposed to the bacteria undergo apoptosis in an inflammatory environment, and that inflammatory pathways trigger cell-death pathways. We further demonstrated that several receptor tyrosine kinases were involved in triggering downstream effects, leading to inflammation and apoptosis. Toll-like receptors TLR2 and TLR5, which are commonly studied receptors in Lyme disease, only had a minimal role in inflammatory processes. To delineate the role of other TLRs, if any, real-time RT-PCR array experiments were carried out as an initial screen. Along with several inflammatory genes, TLR7 mRNA was upregulated in cells exposed to B. burgdorferi. Further analysis by immunohistochemistry showed that the TLR7 protein is present in readily detectable amounts, although no discernible differences could be seen between medium and B. burgdorferi-exposed cells by this technique. Nevertheless, use of specific inhibitors and siRNA showed that TLR7 is involved in inducing IL-6 and CCL2 in a dose dependent manner, and likely CXCL8. Triggering an intracellular receptor such as TLR7, which senses RNA, in typically non-phagocytic oligodendrocytes indicates either a niche for the bacterium inside the cell or novel uptake of nucleic acids to initiate inflammatory responses.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA.
| | - Mario T Philipp
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA.
| |
Collapse
|
24
|
Maldonado S, Fitzgerald-Bocarsly P. Antifungal Activity of Plasmacytoid Dendritic Cells and the Impact of Chronic HIV Infection. Front Immunol 2017; 8:1705. [PMID: 29255464 PMCID: PMC5723005 DOI: 10.3389/fimmu.2017.01705] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023] Open
Abstract
Due to the effectiveness of combined antiretroviral therapy, people living with HIV can control viral replication and live longer lifespans than ever. However, HIV-positive individuals still face challenges to their health and well-being, including dysregulation of the immune system resulting from years of chronic immune activation, as well as opportunistic infections from pathogenic fungi. This review focuses on one of the key players in HIV immunology, the plasmacytoid dendritic cell (pDC), which links the innate and adaptive immune response and is notable for being the body’s most potent producer of type-I interferons (IFNs). During chronic HIV infection, the pDC compartment is greatly dysregulated, experiencing a substantial depletion in number and compromise in function. This immune dysregulation may leave patients further susceptible to opportunistic infections. This is especially important when considering a new role for pDCs currently emerging in the literature: in addition to their role in antiviral immunity, recent studies suggest that pDCs also play an important role in antifungal immunity. Supporting this new role, pDCs express C-type lectin receptors including dectin-1, dectin-2, dectin-3, and mannose receptor, and toll-like receptors-4 and -9 that are involved in recognition, signaling, and response to a wide variety of fungal pathogens, including Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, and Pneumocystis jirovecii. Accordingly, pDCs have been demonstrated to recognize and respond to certain pathogenic fungi, measured via activation, cytokine production, and fungistatic activity in vitro, while in vivo mouse models indicated a strikingly vital role for pDCs in survival against pulmonary Aspergillus challenge. Here, we discuss the role of the pDC compartment and the dysregulation it undergoes during chronic HIV infection, as well as what is known so far about the role and mechanisms of pDC antifungal activity.
Collapse
Affiliation(s)
- Samuel Maldonado
- Rutgers School of Graduate Studies, Newark, NJ, United States.,Department of Pathology and Laboratory Medicine, New Jersey Medical School, Newark, NJ, United States
| | - Patricia Fitzgerald-Bocarsly
- Rutgers School of Graduate Studies, Newark, NJ, United States.,Department of Pathology and Laboratory Medicine, New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
25
|
Carignan D, Herblot S, Laliberté-Gagné MÈ, Bolduc M, Duval M, Savard P, Leclerc D. Activation of innate immunity in primary human cells using a plant virus derived nanoparticle TLR7/8 agonist. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2317-2327. [PMID: 29128662 DOI: 10.1016/j.nano.2017.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 12/23/2022]
Abstract
Rod-shaped virus-like nanoparticles (VLNP) made of papaya mosaic virus (PapMV) coat proteins (CP) self-assembled around a single stranded RNA (ssRNA) were showed to be a TLR7 agonist. Their utilization as an immune modulator in cancer immunotherapy was shown to be promising. To establish a clinical relevance in human for PapMV VLNP, we showed that stimulation of human peripheral blood mononuclear cells (PBMC) with VLNP induces the secretion of interferon alpha (IFNα) and other pro-inflammatory cytokines and chemokines. Plasmacytoid dendritic cells (pDCs) were activated and secreted IFN-α upon VLNP exposure. Monocyte-derived dendritic cells upregulate maturation markers and produce IL-6 in response to PapMV VLNP stimulation, which suggests the activation of TLR8. Finally, when co-cultured with NK cells, PapMV induced pDCs promoted the NK cytolytic activity against cancer cells. These data obtained with primary human immune cells further strengthen the clinical relevance of PapMV VLNPs as a cancer immunotherapy agent.
Collapse
Affiliation(s)
- Damien Carignan
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada
| | - Sabine Herblot
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Marie-Ève Laliberté-Gagné
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada
| | - Marilène Bolduc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada
| | - Michel Duval
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Pierre Savard
- Neurosciences, Laval University, Québec City, PQ, Canada
| | - Denis Leclerc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada.
| |
Collapse
|
26
|
Khatamzas E, Hipp MM, Gaughan D, Pichulik T, Leslie A, Fernandes RA, Muraro D, Booth S, Zausmer K, Sun MY, Kessler B, Rowland-Jones S, Cerundolo V, Simmons A. Snapin promotes HIV-1 transmission from dendritic cells by dampening TLR8 signaling. EMBO J 2017; 36:2998-3011. [PMID: 28923824 PMCID: PMC5641917 DOI: 10.15252/embj.201695364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/05/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022] Open
Abstract
HIV-1 traffics through dendritic cells (DCs) en route to establishing a productive infection in T lymphocytes but fails to induce an innate immune response. Within DC endosomes, HIV-1 somehow evades detection by the pattern-recognition receptor (PRR) Toll-like receptor 8 (TLR8). Using a phosphoproteomic approach, we identified a robust and diverse signaling cascade triggered by HIV-1 upon entry into human DCs. A secondary siRNA screen of the identified signaling factors revealed several new mediators of HIV-1 trans-infection of CD4+ T cells in DCs, including the dynein motor protein Snapin. Inhibition of Snapin enhanced localization of HIV-1 with TLR8+ early endosomes, triggered a pro-inflammatory response, and inhibited trans-infection of CD4+ T cells. Snapin inhibited TLR8 signaling in the absence of HIV-1 and is a general regulator of endosomal maturation. Thus, we identify a new mechanism of innate immune sensing by TLR8 in DCs, which is exploited by HIV-1 to promote transmission.
Collapse
Affiliation(s)
- Elham Khatamzas
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Madeleine Maria Hipp
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Daniel Gaughan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Tica Pichulik
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Alasdair Leslie
- KwaZulu-Natal Research Institute for TB & HIV, Durban, South Africa
| | - Ricardo A Fernandes
- Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniele Muraro
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Sarah Booth
- Immunology & Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kieran Zausmer
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Mei-Yi Sun
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Benedikt Kessler
- KwaZulu-Natal Research Institute for TB & HIV, Durban, South Africa
| | - Sarah Rowland-Jones
- Nuffield Department of Clinical Medicine, University of Oxford NDMRB, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Oosenbrug T, van de Graaff MJ, Ressing ME, van Kasteren SI. Chemical Tools for Studying TLR Signaling Dynamics. Cell Chem Biol 2017. [PMID: 28648377 DOI: 10.1016/j.chembiol.2017.05.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The detection of infectious pathogens is essential for the induction of antimicrobial immune responses. The innate immune system detects a wide array of microbes using a limited set of pattern-recognition receptors (PRRs). One family of PRRs with a central role in innate immunity are the Toll-like receptors (TLRs). Upon ligation, these receptors initiate signaling pathways culminating in the release of pro-inflammatory cytokines and/or type I interferons (IFN-I). In recent years, it has become evident that the specific subcellular location and timing of TLR activation affect signaling outcome. The subtlety of this signaling has led to a growing demand for chemical tools that provide the ability to conditionally control TLR activation. In this review, we survey current models for TLR signaling in time and space, discuss how chemical tools have contributed to our understanding of TLR ligands, and describe how they can aid further elucidation of the dynamic aspects of TLR signaling.
Collapse
Affiliation(s)
- Timo Oosenbrug
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Zuid-Holland, the Netherlands
| | - Michel J van de Graaff
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Zuid-Holland, the Netherlands
| | - Maaike E Ressing
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Zuid-Holland, the Netherlands.
| | - Sander I van Kasteren
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Zuid-Holland, the Netherlands.
| |
Collapse
|
28
|
Okamoto M, Tsukamoto H, Kouwaki T, Seya T, Oshiumi H. Recognition of Viral RNA by Pattern Recognition Receptors in the Induction of Innate Immunity and Excessive Inflammation During Respiratory Viral Infections. Viral Immunol 2017; 30:408-420. [PMID: 28609250 DOI: 10.1089/vim.2016.0178] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The innate immune system is the first line of defense against virus infection that triggers the expression of type I interferon (IFN) and proinflammatory cytokines. Pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns, resulting in the induction of innate immune responses. Viral RNA in endosomes is recognized by Toll-like receptors, and cytoplasmic viral RNA is recognized by RIG-I-like receptors. The host innate immune response is critical for protection against virus infection. However, it has been postulated that an excessive inflammatory response in the lung caused by the innate immune response is harmful to the host and is a cause of lethality during influenza A virus infection. Although the deletion of genes encoding PRRs or proinflammatory cytokines does not improve the mortality of mice infected with influenza A virus, a partial block of the innate immune response is successful in decreasing the mortality rate of mice without a loss of protection against virus infection. In addition, morbidity and mortality rates are influenced by other factors. For example, secondary bacterial infection increases the mortality rate in patients with influenza A virus and in animal models of the disease, and environmental factors, such as cigarette smoke and fine particles, also affect the innate immune response. In this review, we summarize recent findings related to the role of PRRs in innate immune response during respiratory viral infection.
Collapse
Affiliation(s)
- Masaaki Okamoto
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Hirotake Tsukamoto
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Takahisa Kouwaki
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Tsukasa Seya
- 2 Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Japan
| | - Hiroyuki Oshiumi
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan .,3 PRESTO JST, Kumamoto, Japan
| |
Collapse
|
29
|
Hellmuth I, Freund I, Schlöder J, Seidu-Larry S, Thüring K, Slama K, Langhanki J, Kaloyanova S, Eigenbrod T, Krumb M, Röhm S, Peneva K, Opatz T, Jonuleit H, Dalpke AH, Helm M. Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7. Front Immunol 2017; 8:312. [PMID: 28392787 PMCID: PMC5364167 DOI: 10.3389/fimmu.2017.00312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/06/2017] [Indexed: 12/25/2022] Open
Abstract
A fundamental mechanism of the innate immune system is the recognition, via extra- and intracellular pattern-recognition receptors, of pathogen-associated molecular patterns. A prominent example is represented by foreign nucleic acids, triggering the activation of several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single-stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications. Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants in vaccination processes. In this context, covalent conjugations between adjuvant and vaccines have been reported to exhibit synergistic effects. Here, we describe a concept to chemically combine three therapeutic functions in one RNA bioconjugate. This consists in the simultaneous TLR7 stimulation by ssRNA and smTLRa as well as the therapeutic function of the RNA itself, e.g., as a vaccinating or knockdown agent. We have hence synthesized bioconjugates of mRNA and siRNA containing covalently attached smTLRa and tested their function in TLR7 stimulation. Strikingly, the bioconjugates displayed decreased rather than synergistically increased stimulation. The decrease was distinct from the antagonistic action of an siRNA bearing a Gm motive, as observed by direct comparison of the effects in the presence of otherwise stimulatory RNA. In summary, these investigations showed that TRL7 activation can be impeded by bioconjugation of small molecules to RNA.
Collapse
Affiliation(s)
- Isabell Hellmuth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg , Heidelberg , Germany
| | - Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Salifu Seidu-Larry
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Kathrin Thüring
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Kaouthar Slama
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Jens Langhanki
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | | | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg , Heidelberg , Germany
| | - Matthias Krumb
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Sandra Röhm
- Max Planck Institute for Polymer Research (MPG) , Mainz , Germany
| | - Kalina Peneva
- Max Planck Institute for Polymer Research (MPG) , Mainz , Germany
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg , Heidelberg , Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| |
Collapse
|
30
|
Ferrand J, Gantier MP. Assessing the Inhibitory Activity of Oligonucleotides on TLR7 Sensing. Methods Mol Biol 2016; 1390:79-90. [PMID: 26803623 DOI: 10.1007/978-1-4939-3335-8_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aberrant sensing of self-nucleic acids by Toll-like receptor (TLR) 7, 8, or 9 is associated with several autoimmune disorders, including systemic lupus erythematosus (SLE), rheumatoid arthritis, psoriasis, or systemic sclerosis. In recent years, several classes of synthetic oligonucleotides have been shown to antagonize sensing of immunostimulatory nucleic acids by TLR7/8/9, indicating that these molecules could have therapeutic applications in such autoimmune diseases. Conversely, synthetic oligonucleotides used in therapeutic technologies such as antisense and microRNA inhibitors also have the potential to inhibit TLR7/8/9 sensing, rendering patients more susceptible to viral/bacterial infections. This chapter describes a protocol to define the inhibitory activity of synthetic oligonucleotides on TLR7.
Collapse
Affiliation(s)
- Jonathan Ferrand
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Michael P Gantier
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
31
|
Rebbapragada I, Birkus G, Perry J, Xing W, Kwon H, Pflanz S. Molecular Determinants of GS-9620-Dependent TLR7 Activation. PLoS One 2016; 11:e0146835. [PMID: 26784926 PMCID: PMC4718629 DOI: 10.1371/journal.pone.0146835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/22/2015] [Indexed: 01/04/2023] Open
Abstract
GS-9620 is an orally administered agonist of Toll-like receptor (TLR)7 currently being evaluated in clinical studies for the treatment of chronic HBV and HIV patients. GS-9620 has shown antiviral efficacy in preclinical models of chronic hepadnavirus infection in woodchuck as well as chimpanzee. However, the molecular determinants of GS-9620-dependent activation of TLR7 are not well defined. The studies presented here elucidate GS-9620 subcellular distribution and characterize its molecular interactions with human TLR7 using structure-guided mutational analysis. Based on our results we present a molecular model of TLR7 bound to GS-9620. We also determine that several coding SNPs had no effect on GS-9620-dependent TLR7 activation. In addition, our studies provide evidence that TLR7 exists in a ligand-independent oligomeric state and that, TLR7 activation by GS-9620 is likely associated with compound-induced conformational changes. Finally, we demonstrate that activation of NF-κB and Akt pathways in primary plasmacytoid dendritic cells occur as immediate downstream cellular responses to GS-9620 stimulation. The data presented here further our understanding of the molecular parameters governing TLR7 activation by GS-9620, and more generally by nucleos/tide-related ligands.
Collapse
Affiliation(s)
| | - Gabriel Birkus
- Department of Biology, Gilead Sciences Inc., Foster City, California, USA
| | - Jason Perry
- Department of Structural Chemistry Gilead Sciences Inc., Foster City, California, USA
| | - Weimei Xing
- Department of Biology, Gilead Sciences Inc., Foster City, California, USA
| | - HyockJoo Kwon
- Department of Biology, Gilead Sciences Inc., Foster City, California, USA
| | - Stefan Pflanz
- Department of Biology, Gilead Sciences Inc., Foster City, California, USA
- * E-mail:
| |
Collapse
|
32
|
Pichulik T, Khatamzas E, Liu X, Brain O, Delmiro Garcia M, Leslie A, Danis B, Mayer A, Baban D, Ragoussis J, Weber ANR, Simmons A. Pattern recognition receptor mediated downregulation of microRNA-650 fine-tunes MxA expression in dendritic cells infected with influenza A virus. Eur J Immunol 2016; 46:167-77. [PMID: 26460926 PMCID: PMC4738369 DOI: 10.1002/eji.201444970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/14/2015] [Accepted: 10/02/2015] [Indexed: 12/11/2022]
Abstract
MicroRNAs are important posttranscriptional regulators of gene expression, which have been shown to fine-tune innate immune responses downstream of pattern recognition receptor (PRR) signaling. This study identifies miR-650 as a novel PRR-responsive microRNA that is downregulated upon stimulation of primary human monocyte-derived dendritic cells (MDDCs) with a variety of different microbe-associated molecular patterns. A comprehensive target search combining in silico analysis, transcriptional profiling, and reporter assays reveals that miR-650 regulates several well-known interferon-stimulated genes, including IFIT2 and MXA. In particular, downregulation of miR-650 in influenza A infected MDDCs enhances the expression of MxA and may therefore contribute to the establishment of an antiviral state. Together these findings reveal a novel link between miR-650 and the innate immune response in human MDDCs.
Collapse
Affiliation(s)
- Tica Pichulik
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineJohn Radcliffe HospitalHeadingtonOxfordUK
- Department of ImmunologyInterfaculty Institute for Cell BiologyUniversity of TübingenTübingenGermany
| | - Elham Khatamzas
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineJohn Radcliffe HospitalHeadingtonOxfordUK
| | - Xiao Liu
- Department of ImmunologyInterfaculty Institute for Cell BiologyUniversity of TübingenTübingenGermany
| | - Oliver Brain
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineJohn Radcliffe HospitalHeadingtonOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalHeadingtonOxfordUK
| | - Magno Delmiro Garcia
- Department of ImmunologyInterfaculty Institute for Cell BiologyUniversity of TübingenTübingenGermany
| | - Alasdair Leslie
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineJohn Radcliffe HospitalHeadingtonOxfordUK
| | - Benedicte Danis
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineJohn Radcliffe HospitalHeadingtonOxfordUK
| | - Alice Mayer
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineJohn Radcliffe HospitalHeadingtonOxfordUK
| | - Dilair Baban
- Wellcome Trust Centre for Human GeneticsOxfordUK
| | | | - Alexander N. R. Weber
- Department of ImmunologyInterfaculty Institute for Cell BiologyUniversity of TübingenTübingenGermany
| | - Alison Simmons
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineJohn Radcliffe HospitalHeadingtonOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalHeadingtonOxfordUK
| |
Collapse
|
33
|
Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev 2015; 24:29-39. [PMID: 25641058 DOI: 10.1016/j.arr.2015.01.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/29/2014] [Accepted: 01/19/2015] [Indexed: 12/20/2022]
Abstract
Accumulating evidence indicates that aging is associated with a chronic low-level inflammation, termed sterile-inflammation. Sterile-inflammation is a form of pathogen-free inflammation caused by mechanical trauma, ischemia, stress or environmental conditions such as ultra-violet radiation. These damage-related stimuli induce the secretion of molecular agents collectively termed danger-associated molecular patterns (DAMPs). DAMPs are recognized by virtue of specialized innate immune receptors, such as toll-like receptors (TLRs) and NOD-like receptor family, pyrin domain containing 3 (NLRP3). These receptors initiate signal transduction pathways, which typically drive inflammation in response to microbe-associated molecular patterns (MAMPs) and/or DAMPs. This review summarizes the current knowledge on DAMPs-mediated sterile-inflammation, its associated downstream signaling, and discusses the possibility that DAMPs activating TLRs or NLRP3 complex mediate sterile inflammation during aging and in aging-related pathologies.
Collapse
Affiliation(s)
- Noa Feldman
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Aviva Rotter-Maskowitz
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
34
|
Wang H, El Maadidi S, Fischer J, Grabski E, Dickhöfer S, Klimosch S, Flannery SM, Filomena A, Wolz OO, Schneiderhan-Marra N, Löffler MW, Wiese M, Pichulik T, Müllhaupt B, Semela D, Dufour JF, Bochud PY, Bowie AG, Kalinke U, Berg T, Weber ANR. A frequent hypofunctional IRAK2 variant is associated with reduced spontaneous hepatitis C virus clearance. Hepatology 2015; 62:1375-87. [PMID: 26250868 DOI: 10.1002/hep.28105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/03/2015] [Indexed: 12/29/2022]
Abstract
UNLABELLED Patients carrying very rare loss-of-function mutations in interleukin-1 receptor-associated kinase 4 (IRAK4), a critical signaling mediator in Toll-like receptor signaling, are severely immunodeficient, highlighting the paramount role of IRAK kinases in innate immunity. We discovered a comparatively frequent coding variant of the enigmatic human IRAK2, L392V (rs3844283), which is found homozygously in ∼15% of Caucasians, to be associated with a reduced ability to induce interferon-alpha in primary human plasmacytoid dendritic cells in response to hepatitis C virus (HCV). Cytokine production in response to purified Toll-like receptor agonists was also impaired. Additionally, rs3844283 was epidemiologically associated with a chronic course of HCV infection in two independent HCV cohorts and emerged as an independent predictor of chronic HCV disease. Mechanistically, IRAK2 L392V showed intact binding to, but impaired ubiquitination of, tumor necrosis factor receptor-associated factor 6, a vital step in signal transduction. CONCLUSION Our study highlights IRAK2 and its genetic variants as critical factors and potentially novel biomarkers for human antiviral innate immunity.
Collapse
Affiliation(s)
- Hui Wang
- Junior Research Group Toll-Like Receptors and Cancer, German Cancer Research Center, Heidelberg, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Souhayla El Maadidi
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Janett Fischer
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Elena Grabski
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Sabine Dickhöfer
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Sascha Klimosch
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Sinead M Flannery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Angela Filomena
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Olaf-Oliver Wolz
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | | | - Markus W Löffler
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of General, Visceral, and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Manfred Wiese
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Tica Pichulik
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Beat Müllhaupt
- Gastroenterology and Hepatology Department, University Hospital Zurich, Zurich, Switzerland
| | - David Semela
- Department of Gastroenterology and Hepatology, Canton Hospital St. Gallen, St. Gallen, Switzerland
| | - Jean-François Dufour
- Hepatology Section, Department Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | | | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Alexander N R Weber
- Junior Research Group Toll-Like Receptors and Cancer, German Cancer Research Center, Heidelberg, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
35
|
Unprocessed Interleukin-36α Regulates Psoriasis-Like Skin Inflammation in Cooperation With Interleukin-1. J Invest Dermatol 2015. [PMID: 26203636 PMCID: PMC4648684 DOI: 10.1038/jid.2015.289] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Generalized pustular psoriasis is a severe skin disease characterized by epidermal hyperplasia, neutrophil-rich abscesses within the epidermis, and a mixed inflammatory infiltrate in the dermis. The disease may be caused by missense mutations in the IL-36 receptor antagonist, IL-36Ra. Curiously, the related IL-1Ra has therapeutic effects in some of these latter patients. Here, using an experimental mouse model of psoriasiform skin inflammation, we demonstrate in vivo connections between IL-36 and IL-1 expression. After disease initiation, IL-36α-deficient mice exhibited dramatically diminished skin pathology, including absence of epidermal neutrophils, reduced keratinocyte acanthosis, and less dermal edema. In contrast, IL-36β and IL-36γ knockout mice developed disease indistinguishable from that of wild-type mice. The endogenous IL-36α was not processed through proteolysis. Although IL-36α expression was strongly induced in an IL-1 signaling-dependent manner during disease, expression of IL-1α was also dependent upon IL-36α. Hence, after being upregulated by IL-1α, IL-36α acts through a feedback mechanism to boost IL-1α levels. Analyses of double knockout mice further revealed that IL-36α and IL-1α cooperate to promote psoriasis-like disease. In conclusion, IL-1α and IL-36α form a self-amplifying inflammatory loop in vivo that in patients with insufficient counter regulatory mechanisms may become hyper-engaged and/or chronic.
Collapse
|
36
|
Rimbach K, Kaiser S, Helm M, Dalpke AH, Eigenbrod T. 2'-O-Methylation within Bacterial RNA Acts as Suppressor of TLR7/TLR8 Activation in Human Innate Immune Cells. J Innate Immun 2015; 7:482-93. [PMID: 25823462 DOI: 10.1159/000375460] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/23/2015] [Indexed: 12/25/2022] Open
Abstract
Microbial RNA is an important stimulator of innate immune responses. Differences in posttranscriptional RNA modification profiles enable the immune system to discriminate between self and non-self nucleic acids. This principle may be exploited by certain bacteria to circumvent immune cell activation. In this regard, 2'-O-methylation of Escherichia coli tRNATyr at position 18 (Gm18) has recently been described to inhibit TLR7-mediated IFN-α production in human plasmacytoid dendritic cells (pDCs). Extending these findings, we now demonstrate that Gm18 also potently inhibits TLR7-independent human monocyte activation by RNA derived from a variety of bacterial strains. The half minimal inhibitory concentration values were similar to those found for IFN-α inhibition in pDCs. Mechanistically, 2'-O-methylated RNA impaired upstream signalling events, including MAP kinase and NFx03BA;B activation. Our results suggest that antagonizing effects of Gm18-modified RNA are due to competition with stimulatory RNA for receptor binding. The antagonistic effect was specific for RNA because the small molecule TLR7/8 agonist R848 was not inhibited. Despite the striking phenotype in human cells, 2'-O-methylated RNA did not interfere with TLR13 activation by bacterial 23S rRNA in murine DC and BMDM. Thus, we identify here Gm18 in E. coli tRNA(Tyr) as a universal suppressor of innate immune activation in the human but not the murine system.
Collapse
Affiliation(s)
- Katharina Rimbach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
37
|
Valenzuela RAP, Suter SR, Ball-Jones AA, Ibarra-Soza JM, Zheng Y, Beal PA. Base modification strategies to modulate immune stimulation by an siRNA. Chembiochem 2014; 16:262-7. [PMID: 25487859 DOI: 10.1002/cbic.201402551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 12/24/2022]
Abstract
Immune stimulation triggered by siRNAs is one of the major challenges in the development of safe RNAi-based therapeutics. Within an immunostimulatory siRNA sequence, this hurdle is commonly addressed by using ribose modifications (e.g., 2'-OMe or 2'-F), which results in decreased cytokine production. However, as immune stimulation by siRNAs is a sequence-dependent phenomenon, recognition of the nucleobases by the trigger receptor(s) is also likely. Here, we use the recently published crystal structures of Toll-like receptor 8 (TLR8) bound to small-molecule agonists to generate computational models for ribonucleotide binding by this immune receptor. Our modeling suggested that modification of either the Watson-Crick or Hoogsteen face of adenosine would disrupt nucleotide/TLR8 interactions. We employed chemical synthesis to alter either the Watson-Crick or Hoogsteen face of adenosine and evaluated the effect of these modifications in an siRNA guide strand by measuring the immunostimulatory and RNA interference properties. For the siRNA guide strand tested, we found that modifying the Watson-Crick face is generally more effective at blocking TNFα production in human peripheral blood mononuclear cells (PBMCs) than modification at the Hoogsteen edge. We also observed that modifications near the 5'-end were more effective at blocking cytokine production than those placed at the 3'-end. This work advances our understanding of how chemical modifications can be used to optimize siRNA performance.
Collapse
|