1
|
Hu H, Long Y, Song G, Chen S, Xu Z, Li Q, Wu Z. Dysfunction of Prkcaa Links Social Behavior Defects with Disturbed Circadian Rhythm in Zebrafish. Int J Mol Sci 2023; 24:ijms24043849. [PMID: 36835261 PMCID: PMC9961154 DOI: 10.3390/ijms24043849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Protein kinase Cα (PKCα/PRKCA) is a crucial regulator of circadian rhythm and is associated with human mental illnesses such as autism spectrum disorders and schizophrenia. However, the roles of PRKCA in modulating animal social behavior and the underlying mechanisms remain to be explored. Here we report the generation and characterization of prkcaa-deficient zebrafish (Danio rerio). The results of behavioral tests indicate that a deficiency in Prkcaa led to anxiety-like behavior and impaired social preference in zebrafish. RNA-sequencing analyses revealed the significant effects of the prkcaa mutation on the expression of the morning-preferring circadian genes. The representatives are the immediate early genes, including egr2a, egr4, fosaa, fosab and npas4a. The downregulation of these genes at night was attenuated by Prkcaa dysfunction. Consistently, the mutants demonstrated reversed day-night locomotor rhythm, which are more active at night than in the morning. Our data show the roles of PRKCA in regulating animal social interactions and link the social behavior defects with a disturbed circadian rhythm.
Collapse
Affiliation(s)
- Han Hu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (Y.L.); (Z.W.); Tel.: +86-27-6878-0100 (Y.L.); +86-23-6836-6018 (Z.W.)
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shaoxiong Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhicheng Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhengli Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
- Correspondence: (Y.L.); (Z.W.); Tel.: +86-27-6878-0100 (Y.L.); +86-23-6836-6018 (Z.W.)
| |
Collapse
|
2
|
Wang T, Wang HQ, Yuan B, Zhao GK, Ma YR, Zhao PS, Xie WY, Gao F, Gao W, Ren WZ. Integrative Proteomics and Phosphoproteomics Analysis of the Rat Adenohypophysis after GnRH Treatment. Int J Mol Sci 2023; 24:ijms24043339. [PMID: 36834752 PMCID: PMC9961725 DOI: 10.3390/ijms24043339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The regulation of mammalian reproductive activity is tightly dependent on the HPG axis crosstalk, in which several reproductive hormones play important roles. Among them, the physiological functions of gonadotropins are gradually being uncovered. However, the mechanisms by which GnRH regulates FSH synthesis and secretion still need to be more extensively and deeply explored. With the gradual completion of the human genome project, proteomes have become extremely important in the fields of human disease and biological process research. To explore the changes of protein and protein phosphorylation modifications in the adenohypophysis after GnRH stimulation, proteomics and phosphoproteomics analyses of rat adenohypophysis after GnRH treatment were performed by using TMT markers, HPLC classification, LC/MS, and bioinformatics analysis in this study. A total of 6762 proteins and 15,379 phosphorylation sites contained quantitative information. Twenty-eight upregulated proteins and fifty-three downregulated proteins were obtained in the rat adenohypophysis after GnRH treatment. The 323 upregulated phosphorylation sites and 677 downregulated phosphorylation sites found in the phosphoproteomics implied that a large number of phosphorylation modifications were regulated by GnRH and were involved in FSH synthesis and secretion. These data constitute a protein-protein phosphorylation map in the regulatory mechanism of "GnRH-FSH," which provides a basis for future studies on the complex molecular mechanisms of FSH synthesis and secretion. The results will be helpful for understanding the role of GnRH in the development and reproduction regulated by the pituitary proteome in mammals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Gao
- Correspondence: (W.G.); (W.-Z.R.)
| | | |
Collapse
|
3
|
Liu B, Cheng L, Gao H, Zhang J, Dong Y, Gao W, Yuan S, Gong T, Huang W. The biology of VSIG4: Implications for the treatment of immune-mediated inflammatory diseases and cancer. Cancer Lett 2023; 553:215996. [PMID: 36343787 DOI: 10.1016/j.canlet.2022.215996] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
V-set and immunoglobulin domain containing 4 (VSIG4), a type I transmembrane receptor exclusively expressed in a subset of tissue-resident macrophages, plays a pivotal role in clearing C3-opsonized pathogens and their byproducts from the circulation. VSIG4 maintains immune homeostasis by suppressing the activation of complement pathways or T cells and inducing regulatory T-cell differentiation, thereby inhibiting the development of immune-mediated inflammatory diseases but enhancing cancer progression. Consequently, VSIG4 exhibits a potential therapeutic effect for immune-mediated inflammatory diseases, but also is regarded as a novel target of immune checkpoint inhibition in cancer therapy. Recently, soluble VSIG4, the extracellular domain of VSIG4, shed from the surface of macrophages, has been found to be a biomarker to define macrophage activation-related diseases. This review mainly summarizes recent new findings of VSIG4 in macrophage phagocytosis and immune homeostasis, and discusses its potential diagnostic and therapeutic usage in infection, inflammation, and cancer.
Collapse
Affiliation(s)
- Bei Liu
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; PLA 307 Clinical College of Anhui Medical University, Beijing, 100071, China
| | - Li Cheng
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Honghao Gao
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Jiale Zhang
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China
| | - Yanxin Dong
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Boston, MA, 02021, USA
| | - Shunzong Yuan
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; PLA 307 Clinical College of Anhui Medical University, Beijing, 100071, China.
| | - Taiqian Gong
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China.
| | - Wenrong Huang
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
4
|
Li Y, Wang Q, Li J, Li A, Wang Q, Zhang Q, Chen Y. Therapeutic modulation of V Set and Ig domain-containing 4 (VSIG4) signaling in immune and inflammatory diseases. Cytotherapy 2023; 25:561-572. [PMID: 36642683 DOI: 10.1016/j.jcyt.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Inflammation is the result of acute and chronic stresses, caused by emotional or physical trauma, or nutritional or environmental pollutants, and brings serious harm to human life and health. As an important cellular component of the innate immune barrier, the macrophage plays a key role in maintaining tissue homeostasis and promoting tissue repair by controlling infection and resolving inflammation. Several studies suggest that V Set and Ig domain-containing 4 is specifically expressed in tissue macrophages and is associated with a variety of inflammatory diseases. In this paper, we mainly summarize the recent research on V Set and Ig domain-containing 4 structures, functions, function and roles in acute and chronic inflammatory diseases, and provide a novel therapeutic avenue for the treatment of inflammatory diseases, including nervous system, urinary, respiratory and metabolic diseases.
Collapse
Affiliation(s)
- You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Jiaxin Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Aohan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China.
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China.
| |
Collapse
|
5
|
Small AG, Perveen K, Putty T, Patel N, Quinn P, Wechalekar MD, Hii CS, Quach A, Ferrante A. Neutrophils Require Activation to Express Functional Cell-Surface Complement Receptor Immunoglobulin. Front Immunol 2022; 13:840510. [PMID: 35317169 PMCID: PMC8934411 DOI: 10.3389/fimmu.2022.840510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
The phagocytosis-promoting complement receptor, Complement Receptor Immunoglobulin (CRIg), is exclusively expressed on macrophages. It has been demonstrated that expression in macrophages could be modulated by inflammatory mediators, including cytokines. This raised the possibility that a major phagocyte, the neutrophil, may also express CRIg following activation with inflammatory mediators. Here we show that resting peripheral blood neutrophil lysates subjected to protein analysis by Western blot revealed a 35 kDa CRIg isoform, consistent with the expression of CRIg mRNA by RT-PCR. By flow cytometry, CRIg was detected intracellularly and in very minor amounts on the cell surface. Interestingly, expression on the cell surface was significantly increased to functional levels after activation with inflammatory mediators/neutrophil activators; N-Formylmethionine-leucyl-phenylalanine, tumor necrosis factor (TNF), Granulocyte-Macrophage Colony stimulating Factor (GM-CSF), bacterial lipopolysaccharide, leukotriene B4 and phorbol myristate acetate. The increase in expression required p38 MAP kinase and protein kinase C activation, as well as intracellular calcium. Neutrophils which were defective in actin microfilament reorganization due to a mutation in ARPC1B or inhibition of its upstream regulator, Rac2 lose their ability to upregulate CRIg expression. Inhibition of another small GTPase, Rab27a, with pharmacological inhibitors prevented the increase in CRIg expression, suggesting a requirement for the actin cytoskeleton and exocytosis. Engagement of CRIg on TNF-primed neutrophils with an anti-CRIg monoclonal antibody increased the release of superoxide and promoted the activation of p38 but not ERK1/ERK2 or JNK MAP kinases. The TNF-induced increase in killing of Staphylococcus aureus was blocked by the anti-CRIg antibody. Adding to the anti-microbial role of CRIg, it was found that GM-CSF priming lead to the release of neutrophil extracellular traps. Interestingly in contrast to the above mediators the anti-inflammatory cytokine IL-10 caused a decrease in basal expression and GM-CSF induced increase in CRIg expression. The data demonstrate that neutrophils also express CRIg which is regulated by inflammatory mediators and cytokines. The findings show that the neutrophil antimicrobial function involving CRIg requires priming as a means of arming the cell strategically with microbial invasion of tissues and the bloodstream.
Collapse
Affiliation(s)
- Annabelle G. Small
- Department of Immunopathology, South Australia (SA) Pathology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, North Adelaide, SA, Australia
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Rheumatology Department, College of Medicine and Public Health, Flinders Medical Centre, Flinders University, Bedfort Park, SA, Australia
| | - Khalida Perveen
- Department of Immunopathology, South Australia (SA) Pathology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Trishni Putty
- Department of Immunopathology, South Australia (SA) Pathology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Nikita Patel
- Department of Immunopathology, South Australia (SA) Pathology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Patrick Quinn
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Department of Allergy and Immunology, Women’s and Children’s Health Network, North Adelaide, SA, Australia
| | - Mihir D. Wechalekar
- Rheumatology Department, College of Medicine and Public Health, Flinders Medical Centre, Flinders University, Bedfort Park, SA, Australia
| | - Charles S. Hii
- Department of Immunopathology, South Australia (SA) Pathology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Alex Quach
- Department of Immunopathology, South Australia (SA) Pathology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Antonio Ferrante
- Department of Immunopathology, South Australia (SA) Pathology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, North Adelaide, SA, Australia
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Antonio Ferrante,
| |
Collapse
|
6
|
Vitamin D upregulates the macrophage complement receptor immunoglobulin in innate immunity to microbial pathogens. Commun Biol 2021; 4:401. [PMID: 33767430 PMCID: PMC7994403 DOI: 10.1038/s42003-021-01943-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Vitamin D deficiency remains a global concern. This ‘sunshine’ vitamin is converted through a multistep process to active 1,25-dihydroxyvitamin D3 (1,25D), the final step of which can occur in macrophages. Here we demonstrate a role for vitamin D in innate immunity. The expression of the complement receptor immunoglobulin (CRIg), which plays an important role in innate immunity, is upregulated by 1,25D in human macrophages. Monocytes cultured in 1,25D differentiated into macrophages displaying increased CRIg mRNA, protein and cell surface expression but not in classical complement receptors, CR3 and CR4. This was associated with increases in phagocytosis of complement opsonised Staphylococcus aureus and Candida albicans. Treating macrophages with 1,25D for 24 h also increases CRIg expression. While treating macrophages with 25-hydroxyvitamin D3 does not increase CRIg expression, added together with the toll like receptor 2 agonist, triacylated lipopeptide, Pam3CSK4, which promotes the conversion of 25-hydroxyvitamin D3 to 1,25D, leads to an increase in CRIg expression and increases in CYP27B1 mRNA. These findings suggest that macrophages harbour a vitamin D-primed innate defence mechanism, involving CRIg. Annabelle Small et al. report a new role for vitamin D in innate immunity. They find that the vitamin D metabolite 1,25D increases phagocytosis and expression of complement receptor immunoglobulin (CRIg) by macrophages and that treatment of macrophages with a toll like receptor 2 agonist promotes conversion of 25-hydroxyvitamin D3 to 1,25D.
Collapse
|
7
|
Munawara U, Perveen K, Small AG, Putty T, Quach A, Gorgani NN, Hii CS, Abbott CA, Ferrante A. Human Dendritic Cells Express the Complement Receptor Immunoglobulin Which Regulates T Cell Responses. Front Immunol 2019; 10:2892. [PMID: 31921153 PMCID: PMC6914870 DOI: 10.3389/fimmu.2019.02892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023] Open
Abstract
The B7 family-related protein V-set and Ig containing 4 (VSIG4), also known as Z39Ig and Complement Immunoglobulin Receptor (CRIg), is the most recent of the complement receptors to be identified, with substantially distinct properties from the classical complement receptors. The receptor displays both phagocytosis-promoting and anti-inflammatory properties. The receptor has been reported to be exclusively expressed in macrophages. We now present evidence, that CRIg is also expressed in human monocyte-derived dendritic cells (MDDC), including on the cell surface, implicating its role in adaptive immunity. Three CRIg transcripts were detected and by Western blotting analysis both the known Long (L) and Short (S) forms were prominent but we also identified another form running between these two. Cytokines regulated the expression of CRIg on dendritic cells, leading to its up- or down regulation. Furthermore, the steroid dexamethasone markedly upregulated CRIg expression, and in co-culture experiments, the dexamethasone conditioned dendritic cells caused significant inhibition of the phytohemagglutinin-induced and alloantigen-induced T cell proliferation responses. In the alloantigen-induced response the production of IFNγ, TNF-α, IL-13, IL-4, and TGF-β1, were also significantly reduced in cultures with dexamethasone-treated DCs. Under these conditions dexamethasone conditioned DCs did not increase the percentage of regulatory T cells (Treg). Interestingly, this suppression could be overcome by the addition of an anti-CRIg monoclonal antibody to the cultures. Thus, CRIg expression may be a control point in dendritic cell function through which drugs and inflammatory mediators may exert their tolerogenic- or immunogenic-promoting effects on dendritic cells.
Collapse
Affiliation(s)
- Usma Munawara
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,College of Science and Engineering, Flinders University, Bedford Park, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Khalida Perveen
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Annabelle G Small
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Trishni Putty
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Alex Quach
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Nick N Gorgani
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Charles S Hii
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Catherine A Abbott
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Antonio Ferrante
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
8
|
PKC Mediates LPS-Induced IL-1β Expression and Participates in the Pro-inflammatory Effect of A 2AR Under High Glutamate Concentrations in Mouse Microglia. Neurochem Res 2019; 44:2755-2764. [PMID: 31650360 DOI: 10.1007/s11064-019-02895-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/23/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Pathogens such as bacterial lipopolysaccharide (LPS) play an important role in promoting the production of the inflammatory cytokines interleukin-1 beta (IL-1β) and tumour necrosis factor-α (TNF-α) in response to infection or damage in microglia. However, whether different signalling pathways regulate these two inflammatory factors remains unclear. The protein kinase C (PKC) family is involved in the regulation of inflammation, and our previous research showed that the activation of the PKC pathway played a key role in the LPS-induced transformation of the adenosine A2A receptor (A2AR) from anti-inflammatory activity to pro-inflammatory activity under high glutamate concentrations. Therefore, in the current study, we investigated the role of PKC in the LPS-induced production of these inflammatory cytokines in mouse primary microglia. GF109203X, a specific PKC inhibitor, inhibited the LPS-induced expression of IL-1β messenger ribonucleic acid and intracellular protein in a dose-dependent manner. Moreover, 5 µM GF109203X prevented LPS-induced IL-1β expression but did not significantly affect LPS-induced TNF-α expression. PKC promoted IL-1β expression by regulating the activity of NF-κB but did not significantly impact the activity of ERK1/2. A2AR activation by CGS21680, an A2AR agonist, facilitated LPS-induced IL-1β expression through the PKC pathway at high glutamate concentrations but did not significantly affect LPS-induced TNF-α expression. Taken together, these results suggest a new direction for specific intervention with LPS-induced inflammatory factors in response to specific signalling pathways and provide a mechanism for A2AR targeting, especially after brain injury, to influence inflammation by interfering with A2AR.
Collapse
|
9
|
Li L, Zhang L, Binkley PF, Sadee W, Wang D. Regulatory Variants Modulate Protein Kinase C α (PRKCA) Gene Expression in Human Heart. Pharm Res 2017; 34:1648-1657. [PMID: 28120175 PMCID: PMC7315374 DOI: 10.1007/s11095-017-2102-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/06/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE Protein kinase C α (PRKCA) is involved in multiple functions and has been implicated in heart failure risks and treatment outcomes. This study aims to identify regulatory variants affecting PRKCA expression in human heart, and evaluate attributable risk of heart disease. METHODS mRNA expression quantitative trait loci (eQTLs) were extracted from the Genotype and Tissue Expression Project (GTEx). Allelic mRNA ratios were measured in 51 human heart tissues to identify cis-acting regulatory variants. Potential regulatory regions were tested with luciferase reporter gene assays and further evaluated in GTEx and genome-wide association studies. RESULTS Located in a region with robust enhancer activity in luciferase reporter assays, rs9909004 (T > C, minor allele frequency =0.47) resides in a haplotype displaying strong eQTLs for PRKCA in heart (p = 1.2 × 10-23). The minor C allele is associated with both decreased PRKCA mRNA expression and decreased risk of phenotypes characteristic of heart failure in GWAS analyses (QT interval p = 3.0 × 10-14). While rs9909004 is the likely regulatory variant, other variants in high linkage disequilibrium cannot be excluded. Distinct regulatory variants appear to affect expression in other tissues. CONCLUSIONS The haplotype carrying rs9909004 influences PRKCA expression in the heart and is associated with traits linked to heart failure, potentially affecting therapy of heart failure.
Collapse
Affiliation(s)
- Liang Li
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA
| | - Lizhi Zhang
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA
| | - Philip F Binkley
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Wolfgang Sadee
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA
| | - Danxin Wang
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 West 12th Ave, Columbus, Ohio, 43210, USA.
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 1005 BRT, 460 W 12th Avenue, Columbus, Ohio, 43210, USA.
| |
Collapse
|
10
|
Roh J, Jeon Y, Lee AN, Lee SM, Kim Y, Sung CO, Park CJ, Hong JY, Yoon DH, Suh C, Huh J, Choi I, Park CS. The immune checkpoint molecule V-set Ig domain-containing 4 is an independent prognostic factor for multiple myeloma. Oncotarget 2017; 8:58122-58132. [PMID: 28938542 PMCID: PMC5601638 DOI: 10.18632/oncotarget.19468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) remains as an incurable disease, despite recent substantial improvements in treatment. Therefore, development of novel biomarkers for risk stratification and new therapeutic targets are imperative. One of the emerging treatments for MM is the immune checkpoint blockades. V-set Ig domain-containing 4 (VSIG4) is a lately studied B7-related immune checkpoint modulator. We assessed the VSIG4 expression in patients with MM and its prognostic impact. We analyzed 81 bone marrow and 66 extramedullary biopsy samples of MM patients using immunohistochemistry. VSIG4 mRNA expression data from the Multiple Myeloma Genomics Portal (MMGP) were analyzed to validate our results. The overall survival (OS) of the high VSIG4 expression group was significantly poorer than that of the low VSIG4 expression group (p = 0.046). VSIG4 expression was remained statistically significant after adjustment for revised international staging system (rISS) and Mayo stratification algorithm (mSMART) risk classification, respectively (p = 0.019 and 0.017). Corroborating results were also observed on analyses of VSIG4 expression in patients with extramedullary MM and external data from the MMGP. Our results suggest that VSIG4 expression in MM is an independent indicator of poor prognosis, implying a possible therapeutic target for immunotherapy for MM.
Collapse
Affiliation(s)
- Jin Roh
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Youkyoung Jeon
- Department of Microbiology and Immunology, Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan, Korea
| | - A-Neum Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Cell Dysfunction Research Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sang Min Lee
- Department of Hematology/Oncology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - YeonMee Kim
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Chang Ohk Sung
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chan-Jeoung Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jung Yong Hong
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Dok Hyun Yoon
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Cheolwon Suh
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jooryung Huh
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Inhak Choi
- Department of Microbiology and Immunology, Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan, Korea
| | - Chan-Sik Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Cell Dysfunction Research Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
11
|
Cytokines regulate complement receptor immunoglobulin expression and phagocytosis of Candida albicans in human macrophages: A control point in anti-microbial immunity. Sci Rep 2017. [PMID: 28642550 PMCID: PMC5481325 DOI: 10.1038/s41598-017-04325-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Complement Receptor Immunoglobulin (CRIg), selectively expressed by macrophages, plays an important role in innate immunity by promoting phagocytosis of bacteria. Thus modulation of CRIg on macrophages by cytokines can be an important mechanism by which cytokines regulate anti-microbial immunity. The effects of the cytokines, tumor necrosis factor, transforming growth factor-β1, interferon-γ, interleukin (IL)-4, IL-13, IL-10, IL-1β, IL-6, lymphotoxin-α, macrophage-colony stimulating factor (M-CSF) and GM-CSF on CRIg expression were examined in human macrophages. We demonstrated that cytokines regulated the CRIg expression on macrophages during their development from monocytes in culture at the transcriptional level using qPCR and protein by Western blotting. Both CRIg spliced forms (Long and Short), were similarly regulated by cytokines. Direct addition of cytokines to matured CRIg+ macrophages also changed CRIg mRNA expression, suggesting that cytokines control macrophage function via CRIg, at two checkpoints. Interestingly the classical complement receptors, CR3 and CR4 were differentially regulated by cytokines. The changes in CRIg but not CR3/CR4 mRNA expression correlated with ability to phagocytose Candida albicans by macrophages. These findings suggest that CRIg is likely to be a control point in infection and immunity through which cytokines can mediate their effects, and is differentially regulated from CR3 and CR4 by cytokines.
Collapse
|
12
|
The role of PKCζ in cord blood T-cell maturation towards Th1 cytokine profile and its epigenetic regulation by fish oil. Biosci Rep 2017; 37:BSR20160485. [PMID: 28159873 PMCID: PMC5482199 DOI: 10.1042/bsr20160485] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/25/2017] [Accepted: 02/03/2017] [Indexed: 01/21/2023] Open
Abstract
While immunodeficiency of immaturity of the neonate has been considered important as the basis for unusual susceptibility to infection, it has also been recognized that the ability to progress from an immature Th2 cytokine predominance to a Th1 profile has relevance in determining whether children will develop allergy, providing an opportunity for epigenetic regulation through environmental pressures. However, this notion remains relatively unexplored. Here, we present evidence that there are two major control points to explain the immunodeficiency in cord blood (CB) T-cells, a deficiency in interleukin (IL)-12 (IL-12) producing and IL-10 overproducing accessory cells, leading to a decreased interferon γ (IFNγ) synthesis and the other, an intrinsic defect in T-cell protein kinase C (PKC) ζ (PKCζ) expression. An important finding was that human CB T-cells rendered deficient in PKCζ, by shRNA knockdown, develop into low tumour necrosis factor α (TNFα) and IFNγ but increased IL-13 producing cells. Interestingly, we found that the increase in PKCζ levels in CB T-cells caused by prenatal supplementation with fish oil correlated with modifications of histone acetylation at the PKCζ gene (PRKCZ) promoter. The data demonstrate that PKCζ expression regulates the maturation of neonatal T-cells into specific functional phenotypes and that environmental influences may work via PKCζ to regulate these phenotypes and disease susceptibility.
Collapse
|
13
|
Irvine KM, Banh X, Gadd VL, Wojcik KK, Ariffin JK, Jose S, Lukowski S, Baillie GJ, Sweet MJ, Powell EE. CRIg-expressing peritoneal macrophages are associated with disease severity in patients with cirrhosis and ascites. JCI Insight 2016; 1:e86914. [PMID: 27699269 DOI: 10.1172/jci.insight.86914] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infections are an important cause of morbidity and mortality in patients with decompensated cirrhosis and ascites. Hypothesizing that innate immune dysfunction contributes to susceptibility to infection, we assessed ascitic fluid macrophage phenotype and function. The expression of complement receptor of the immunoglobulin superfamily (CRIg) and CCR2 defined two phenotypically and functionally distinct peritoneal macrophage subpopulations. The proportion of CRIghi macrophages differed between patients and in the same patient over time, and a high proportion of CRIghi macrophages was associated with reduced disease severity (model for end-stage liver disease) score. As compared with CRIglo macrophages, CRIghi macrophages were highly phagocytic and displayed enhanced antimicrobial effector activity. Transcriptional profiling by RNA sequencing and comparison with human macrophage and murine peritoneal macrophage expression signatures highlighted similarities among CRIghi cells, human macrophages, and mouse F4/80hi resident peritoneal macrophages and among CRIglo macrophages, human monocytes, and mouse F4/80lo monocyte-derived peritoneal macrophages. These data suggest that CRIghi and CRIglo macrophages may represent a tissue-resident population and a monocyte-derived population, respectively. In conclusion, ascites fluid macrophage subset distribution and phagocytic capacity is highly variable among patients with chronic liver disease. Regulating the numbers and/or functions of these macrophage populations could provide therapeutic opportunities in cirrhotic patients.
Collapse
Affiliation(s)
| | | | | | | | - Juliana K Ariffin
- Institute for Molecular Bioscience (IMB), and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth E Powell
- School of Medicine.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice. Proc Natl Acad Sci U S A 2015; 112:14319-24. [PMID: 26578778 DOI: 10.1073/pnas.1513698112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of complement is a key determinant of neuropathology and disability after traumatic brain injury (TBI), and inhibition is neuroprotective. However, systemic complement is essential to fight infections, a critical complication of TBI. We describe a targeted complement inhibitor, comprising complement receptor of the Ig superfamily (CRIg) fused with complement regulator CD59a, designed to inhibit membrane attack complex (MAC) assembly at sites of C3b/iC3b deposition. CRIg and CD59a were linked via the IgG2a hinge, yielding CD59-2a-CRIg dimer with increased iC3b/C3b binding avidity and MAC inhibitory activity. CD59-2a-CRIg inhibited MAC formation and prevented complement-mediated lysis in vitro. CD59-2a-CRIg dimer bound C3b-coated surfaces with submicromolar affinity (KD). In experimental TBI, CD59-2a-CRIg administered posttrauma homed to sites of injury and significantly reduced MAC deposition, microglial accumulation, mitochondrial stress, and axonal damage and enhanced neurologic recovery compared with placebo controls. CD59-2a-CRIg inhibited MAC-induced inflammasome activation and IL-1β production in microglia. Given the important anti-infection roles of complement opsonization, site-targeted inhibition of MAC should be considered to promote recovery postneurotrauma.
Collapse
|