1
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
2
|
Qiao S, Peng Y, Zhang C, Thomas R, Wang S, Yang X. IFNγ-Producing B Cells Play a Regulating Role in Infection-Mediated Inhibition of Allergy. BIOLOGY 2023; 12:1259. [PMID: 37759658 PMCID: PMC10525206 DOI: 10.3390/biology12091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
The hygiene hypothesis suggests that some infections may inhibit the development of allergic diseases, but the mechanism remains unclear. Our previous study has shown that Chlamydia muridarum (Cm) lung infection can inhibit local eosinophilic inflammation induced by ovalbumin (OVA) through the modulation of dendritic cell (DC) and T cell responses in mice. In this study, we explored the role of B cells in the chlamydial-infection-mediated modulation of allergic responses. The results showed that adoptive transfer of B cells isolated from Cm-infected mice (Cm-B cells), unlike those from naïve mice (naïve B cells), could effectively inhibit allergic airway eosinophilia and mucus overproduction, as well as Th2 cytokine responses. In addition, total IgE/IgG1 and OVA-specific IgE/IgG1 antibodies in the serum were also decreased by the adoptive transfer of Cm-B cells. Intracellular cytokine analysis showed that B cells from Cm-infected mice produced higher levels of IFNγ than those from naïve mice. More interestingly, the inhibiting effect of adoptively transferred Cm-B cells on allergic reactions was virtually abolished by the simultaneous blockade of IFNγ using a monoclonal antibody. The results suggest that B cells modulated by chlamydial lung infection could play a regulatory role in OVA-induced acute allergic responses in the lung via the production of IFNγ. The results provide new insights into the targets related to the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Sai Qiao
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (S.Q.); (Y.P.); (C.Z.); (R.T.); (S.W.)
- Department of Medical Microbiology and Infectious Diseases, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Ying Peng
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (S.Q.); (Y.P.); (C.Z.); (R.T.); (S.W.)
- Department of Medical Microbiology and Infectious Diseases, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Chunyan Zhang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (S.Q.); (Y.P.); (C.Z.); (R.T.); (S.W.)
- Department of Medical Microbiology and Infectious Diseases, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Rony Thomas
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (S.Q.); (Y.P.); (C.Z.); (R.T.); (S.W.)
- Department of Medical Microbiology and Infectious Diseases, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Shuhe Wang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (S.Q.); (Y.P.); (C.Z.); (R.T.); (S.W.)
- Department of Medical Microbiology and Infectious Diseases, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Xi Yang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (S.Q.); (Y.P.); (C.Z.); (R.T.); (S.W.)
- Department of Medical Microbiology and Infectious Diseases, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
3
|
Geladaris A, Häusser-Kinzel S, Pretzsch R, Nissimov N, Lehmann-Horn K, Häusler D, Weber MS. IL-10-providing B cells govern pro-inflammatory activity of macrophages and microglia in CNS autoimmunity. Acta Neuropathol 2023; 145:461-477. [PMID: 36854993 PMCID: PMC10020302 DOI: 10.1007/s00401-023-02552-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
B cells contribute to chronic inflammatory conditions as source of antibody-secreting plasma cells and as antigen-presenting cells activating T cells, making anti-CD20-mediated B cell depletion a widely used therapeutic option. B cells or B cell subsets may, however, exert regulatory effects, while to date, the immunological and/or clinical impact of these observations remained unclear. We found that in multiple sclerosis (MS) patients, B cells contain regulatory features and that their removal enhanced activity of monocytes. Using a co-culture system, we identified B cell-provided interleukin (IL)-10 as key factor in controlling pro-inflammatory activity of peripheral myeloid cells as well as microglia. Depleting B cells via anti-CD20 in a mouse model of MS unleashed the activity of myeloid cells and microglia and accelerated disease severity; in contrast, adoptive transfer of IL-10-providing B cells restored in vivo control of central nervous system (CNS) macrophages and microglia and reversed clinical exacerbation. These findings suggest that B cells exert meaningful regulatory properties, which should be considered when designing novel B cell-directed agents.
Collapse
Affiliation(s)
- Anastasia Geladaris
- Institute of Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
- Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Silke Häusser-Kinzel
- Institute of Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Roxanne Pretzsch
- Institute of Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
- Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Nitzan Nissimov
- Institute of Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klaus Lehmann-Horn
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Darius Häusler
- Institute of Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
- Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Martin S Weber
- Institute of Neuropathology, University Medical Centre Göttingen, Göttingen, Germany.
- Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany.
- Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
Cassidy BR, Logan S, Farley JA, Owen DB, Sonntag WE, Drevets DA. Progressive cognitive impairment after recovery from neuroinvasive and non-neuroinvasive Listeria monocytogenes infection. Front Immunol 2023; 14:1146690. [PMID: 37143648 PMCID: PMC10151798 DOI: 10.3389/fimmu.2023.1146690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023] Open
Abstract
Background Neuro-cognitive impairment is a deleterious complication of bacterial infections that is difficult to treat or prevent. Listeria monocytogenes (Lm) is a neuroinvasive bacterial pathogen and commonly used model organism for studying immune responses to infection. Antibiotic-treated mice that survive systemic Lm infection have increased numbers of CD8+ and CD4+ T-lymphocytes in the brain that include tissue resident memory (TRM) T cells, but post-infectious cognitive decline has not been demonstrated. We hypothesized that Lm infection would trigger cognitive decline in accord with increased numbers of recruited leukocytes. Methods Male C57BL/6J mice (age 8 wks) were injected with neuroinvasive Lm 10403s, non-neuroinvasive Δhly mutants, or sterile saline. All mice received antibiotics 2-16d post-injection (p.i.) and underwent cognitive testing 1 month (mo) or 4 mo p.i. using the Noldus PhenoTyper with Cognition Wall, a food reward-based discrimination procedure using automated home cage based observation and monitoring. After cognitive testing, brain leukocytes were quantified by flow cytometry. Results Changes suggesting cognitive decline were observed 1 mo p.i. in both groups of infected mice compared with uninfected controls, but were more widespread and significantly worse 4 mo p.i. and most notably after Lm 10403s. Impairments were observed in learning, extinction of prior learning and distance moved. Infection with Lm 10403s, but not Δhly Lm, significantly increased numbers of CD8+ and CD4+ T-lymphocytes, including populations expressing CD69 and TRM cells, 1 mo p.i. Numbers of CD8+, CD69+CD8+ T-lymphocytes and CD8+ TRM remained elevated at 4 mo p.i. but numbers of CD4+ cells returned to homeostatic levels. Higher numbers of brain CD8+ T-lymphocytes showed the strongest correlations with reduced cognitive performance. Conclusions Systemic infection by neuroinvasive as well as non-neuroinvasive Lm triggers a progressive decline in cognitive impairment. Notably, the deficits are more profound after neuroinvasive infection that triggers long-term retention of CD8+ T-lymphocytes in the brain, than after non-neuroinvasive infection, which does not lead to retained cells in the brain. These results support the conclusion that systemic infections, particularly those that lead to brain leukocytosis trigger a progressive decline in cognitive function and implicate CD8+ T-lymphocytes, including CD8+TRM in the etiology of this impairment.
Collapse
Affiliation(s)
- Benjamin R. Cassidy
- Department of Internal Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Sreemathi Logan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Julie A. Farley
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Daniel B. Owen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - William E. Sonntag
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Douglas A. Drevets
- Department of Internal Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
- *Correspondence: Douglas A. Drevets,
| |
Collapse
|
5
|
Tan R, Nie M, Long W. The role of B cells in cancer development. Front Oncol 2022; 12:958756. [PMID: 36033455 PMCID: PMC9403891 DOI: 10.3389/fonc.2022.958756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
B cells play a critical role in adaptive immune responses mainly due to antigen presentation and antibody production. Studies about the tumor-infiltrating immune cells so far demonstrated that the function of B cells in tumor immunity is quite different among various tumor types. The antigen presentation of B cells is mainly anti-tumoral, while the role of antibody production is controversial. Moreover, the immunosuppressive regulatory B cells are detrimental to anti-tumor immunity via the secretion of various anti-inflammatory cytokines. This review briefly summarizes the different roles of B cells classified by the primary function of B cells, antigen presentation, antibody production, and immunity regulation. Further, it discusses the potential therapeutic target of B cells in tumor immunity.
Collapse
Affiliation(s)
- Rongying Tan
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Manhua Nie
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Wang Long, ; Manhua Nie,
| | - Wang Long
- Department of Pathology, Nihon University, Tokyo, Japan
- *Correspondence: Wang Long, ; Manhua Nie,
| |
Collapse
|
6
|
Estrada Brull A, Panetti C, Joller N. Moving to the Outskirts: Interplay Between Regulatory T Cells and Peripheral Tissues. Front Immunol 2022; 13:864628. [PMID: 35572535 PMCID: PMC9099010 DOI: 10.3389/fimmu.2022.864628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) restrain excessive immune responses and dampen inflammation. In addition to this classical immune suppressive role, Tregs in non-lymphoid tissues also promote tissue homeostasis, regeneration and repair. In this review, we outline our current understanding of how Tregs migrate to peripheral tissues and the factors required for their maintenance at these sites. We discuss the tissue-specific adaptations of Tregs at barrier and immuno-privileged sites and the mechanisms that regulate their function within these organs. Furthermore, we outline what is known about the interactions of Tregs with non-immune cells in the different peripheral tissues at steady state and upon challenge or tissue damage. A thorough understanding of the tissue-specific adaptations and functions of Tregs will potentially pave the way for therapeutic approaches targeting their regenerative role.
Collapse
|
7
|
Lynall ME, Kigar SL, Lehmann ML, DePuyt AE, Tuong ZK, Listwak SJ, Elkahloun AG, Bullmore ET, Herkenham M, Clatworthy MR. B-cells are abnormal in psychosocial stress and regulate meningeal myeloid cell activation. Brain Behav Immun 2021; 97:226-238. [PMID: 34371135 PMCID: PMC8453122 DOI: 10.1016/j.bbi.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
There is increasing interest in how immune cells, including those within the meninges at the blood-brain interface, influence brain function and mood disorders, but little data on humoral immunity in this context. Here, we show that in mice exposed to psychosocial stress, there is increased splenic B cell activation and secretion of the immunoregulatory cytokine interleukin (IL)-10. Meningeal B cells were prevalent in homeostasis but substantially decreased following stress, whereas Ly6Chi monocytes increased, and meningeal myeloid cells showed augmented expression of activation markers. Single-cell RNA sequencing of meningeal B cells demonstrated the induction of innate immune transcriptional programmes following stress, including genes encoding antimicrobial peptides that are known to alter myeloid cell activation. Cd19-/- mice, that have reduced B cells, showed baseline meningeal myeloid cell activation and decreased exploratory behaviour. Together, these data suggest that B cells may influence behaviour by regulating meningeal myeloid cell activation.
Collapse
Affiliation(s)
- Mary-Ellen Lynall
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK; National Institute of Mental Health, Bethesda, MA, USA; Department of Psychiatry, University of Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, UK
| | - Stacey L Kigar
- National Institute of Mental Health, Bethesda, MA, USA; Department of Medicine, Cambridge, UK
| | | | | | - Zewen Kelvin Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, UK
| | | | | | | | | | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, UK.
| |
Collapse
|
8
|
Abstract
The humoral immune response and antibody-mediated functions of B cells during viral infections are well described. However, we have limited understanding of antibody-independent B cell functions, such as cytokine production and antigen presentation, in acute and chronic viral infections and their role in protection and/or immunopathogenesis. Here, we summarize the current literature on these antibody-independent B cell functions and identify remaining knowledge gaps. B cell subsets produce anti- and pro-inflammatory cytokines, which can have both beneficial and detrimental effects during viral clearance. As professional antigen presenting cells, B cells also play an important role in immune regulation/shaping of the developing adaptive immune responses. Since B cells primarily express TLR7 and TLR9, we specifically discuss the role of Toll-like receptor (TLR)-mediated B cell responses to viral infections and their role in augmenting adaptive immunity through enhanced cytokine production and antigen presentation. However, viruses have evolved strategies to subvert TLR signaling and additional stimulation via B cell receptor (BCR) may be required to overcome the defective TLR response in B cells. To conclude, antibody-independent B cell functions seem to have an important role in regulating both acute and chronic viral infections and may form the basis for novel therapeutic approaches in treatment of viral infections in the future.
Collapse
Affiliation(s)
- Vinit Upasani
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Izabela Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- * E-mail:
| |
Collapse
|
9
|
Long W, Zhang H, Yuan W, Lan G, Lin Z, Peng L, Dai H. The Role of Regulatory B cells in Kidney Diseases. Front Immunol 2021; 12:683926. [PMID: 34108975 PMCID: PMC8183681 DOI: 10.3389/fimmu.2021.683926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023] Open
Abstract
B cells, commonly regarded as proinflammatory antibody-producing cells, are detrimental to individuals with autoimmune diseases. However, in recent years, several studies have shown that regulatory B (Breg) cells, an immunosuppressive subset of B cells, may exert protective effects against autoimmune diseases by secretion of inhibitory cytokines such as IL-10. In practice, Breg cells are identified by their production of immune-regulatory cytokines, such as IL-10, TGF-β, and IL-35, however, no specific marker or Breg cell-specific transcription factor has been identified. Multiple phenotypes of Breg cells have been found, whose functions vary according to their phenotype. This review summarizes the discovery, phenotypes, development, and function of Breg cells and highlights their potential therapeutic value in kidney diseases.
Collapse
Affiliation(s)
- Wang Long
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Graduate School of Medical and Dental Science, Department of Pathological Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Zhi Lin
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Longkai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
10
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Xiang W, Xie C, Guan Y. The identification, development and therapeutic potential of IL-10-producing regulatory B cells in multiple sclerosis. J Neuroimmunol 2021; 354:577520. [PMID: 33684831 DOI: 10.1016/j.jneuroim.2021.577520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Regulatory B cells are a rare B-cell subset widely known to exert their immunosuppressive function via the production of interleukin-10 (IL-10) and other mechanisms. B10 cells are a special subset of regulatory B cells with immunoregulatory function that is fully attributed to IL-10. Their unique roles in the animal model of multiple sclerosis (MS) have been described, as well as their relevance in MS patients. This review specifically focuses on the identification and development of B10 cells, the signals that promote IL-10 production in B cells, the roles of B10 cells in MS, and the potential and major challenges of the application of B10-based therapies for MS.
Collapse
Affiliation(s)
- Weiwei Xiang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China.
| |
Collapse
|
12
|
Xie J, Shi CW, Huang HB, Yang WT, Jiang YL, Ye LP, Zhao Q, Yang GL, Wang CF. Induction of the IL-10-producing regulatory B cell phenotype following Trichinella spiralis infection. Mol Immunol 2021; 133:86-94. [PMID: 33636433 DOI: 10.1016/j.molimm.2021.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/19/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
Abstract
Regulatory B cells (Bregs), a subset of B lymphocytes discovered in the past few decades, have the capacity to suppress the immune response and dampen inflammation by secreting cytokines (IL-10 and TGF-β). Whether Bregs are involved in Trichinella spiralis infection and the phenotypic characteristics of these cells after infection are still unknown. We investigated the phenotype of and dynamic changes in IL-10-producing Bregs in Trichinella spiralis infection in BALB/c mice. We used multicolour fluorescence immunostaining of microwave-treated paraffin sections to investigate the number of Bregs in T. spiralis infection. Flow cytometry (FCM) was used to determine the frequency of Bregs and related subgroups and cytokines in the spleen and mesenteric lymph nodes (MLNs). High levels of IL-10 were detected in the spleen and MLNs of mice after infection with T. spiralis. Furthermore, the frequencies of IL-10-producing CD19+CD1dhighCD5+ regulatory B cells and CD19+ cells were increased during T. spiralis infection. We also showed that the induced phenotype was similar to that of transitional type 2 marginal zone precursor B cells (T-MZP) cells after T. spiralis infection in mice. This study is the first demonstration of the expansion of Bregs following T. spiralis infection.
Collapse
Affiliation(s)
- Jing Xie
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Li-Ping Ye
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Quan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
13
|
Chunder R, Schropp V, Kuerten S. B Cells in Multiple Sclerosis and Virus-Induced Neuroinflammation. Front Neurol 2020; 11:591894. [PMID: 33224101 PMCID: PMC7670072 DOI: 10.3389/fneur.2020.591894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023] Open
Abstract
Neuroinflammation can be defined as an inflammatory response within the central nervous system (CNS) mediated by a complex crosstalk between CNS-resident and infiltrating immune cells from the periphery. Triggers for neuroinflammation not only include pathogens, trauma and toxic metabolites, but also autoimmune diseases such as neuromyelitis optica spectrum disorders and multiple sclerosis (MS) where the inflammatory response is recognized as a disease-escalating factor. B cells are not considered as the first responders of neuroinflammation, yet they have recently gained focus as a key component involved in the disease pathogenesis of several neuroinflammatory disorders like MS. Traditionally, the prime focus of the role of B cells in any disease, including neuroinflammatory diseases, was their ability to produce antibodies. While that may indeed be an important contribution of B cells in mediating disease pathogenesis, several lines of recent evidence indicate that B cells are multifunctional players during an inflammatory response, including their ability to present antigens and produce an array of cytokines. Moreover, interaction between B cells and other cellular components of the immune system or nervous system can either promote or dampen neuroinflammation depending on the disease. Given that the interest in B cells in neuroinflammation is relatively new, the precise roles that they play in the pathophysiology and progression of different neuroinflammatory disorders have not yet been well-elucidated. Furthermore, the possibility that they might change their function during the course of neuroinflammation adds another level of complexity and the puzzle remains incomplete. Indeed, advancing our knowledge on the role of B cells in neuroinflammation would also allow us to tackle these disorders better. Here, we review the available literature to explore the relationship between autoimmune and infectious neuroinflammation with a focus on the involvement of B cells in MS and viral infections of the CNS.
Collapse
Affiliation(s)
- Rittika Chunder
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Verena Schropp
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
14
|
Ran Z, Yue-Bei L, Qiu-Ming Z, Huan Y. Regulatory B Cells and Its Role in Central Nervous System Inflammatory Demyelinating Diseases. Front Immunol 2020; 11:1884. [PMID: 32973780 PMCID: PMC7468432 DOI: 10.3389/fimmu.2020.01884] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Regulatory B (Breg) cells represent a population of suppressor B cells that participate in immunomodulatory processes and inhibition of excessive inflammation. The regulatory function of Breg cells have been demonstrated in mice and human with inflammatory diseases, cancer, after transplantation, and particularly in autoinflammatory disorders. In order to suppress inflammation, Breg cells produce anti-inflammatory mediators, induce death ligand-mediated apoptosis, and regulate many kinds of immune cells such as suppressing the proliferation and differentiation of effector T cell and increasing the number of regulatory T cells. Central nervous system Inflammatory demyelinating diseases (CNS IDDs) are a heterogeneous group of disorders, which occur against the background of an acute or chronic inflammatory process. With the advent of monoclonal antibodies directed against B cells, breakthroughs have been made in the treatment of CNS IDDs. Therefore, the number and function of B cells in IDDs have attracted attention. Meanwhile, increasing number of studies have confirmed that Breg cells play a role in alleviating autoimmune diseases, and treatment with Breg cells has also been proposed as a new therapeutic direction. In this review, we focus on the understanding of the development and function of Breg cells and on the diversification of Breg cells in CNS IDDs.
Collapse
Affiliation(s)
- Zhou Ran
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Luo Yue-Bei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeng Qiu-Ming
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Huan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Beneficial and Detrimental Effects of Regulatory T Cells in Neurotropic Virus Infections. Int J Mol Sci 2020; 21:ijms21051705. [PMID: 32131483 PMCID: PMC7084400 DOI: 10.3390/ijms21051705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Neurotropic viruses infect the central nervous system (CNS) and cause acute or chronic neurologic disabilities. Regulatory T cells (Treg) play a critical role for immune homeostasis, but may inhibit pathogen-specific immunity in infectious disorders. The present review summarizes the current knowledge about Treg in human CNS infections and their animal models. Besides dampening pathogen-induced immunopathology, Treg have the ability to facilitate protective responses by supporting effector T cell trafficking to the infection site and the development of resident memory T cells. Moreover, Treg can reduce virus replication by inducing apoptosis of infected macrophages and attenuate neurotoxic astrogliosis and pro-inflammatory microglial responses. By contrast, detrimental effects of Treg are caused by suppression of antiviral immunity, allowing for virus persistence and latency. Opposing disease outcomes following Treg manipulation in different models might be attributed to differences in technique and timing of intervention, infection route, genetic background, and the host’s age. In addition, mouse models of virus-induced demyelination revealed that Treg are able to reduce autoimmunity and immune-mediated CNS damage in a disease phase-dependent manner. Understanding the unique properties of Treg and their complex interplay with effector cells represents a prerequisite for the development of new therapeutic approaches in neurotropic virus infections.
Collapse
|
16
|
Klein RS, Garber C, Funk KE, Salimi H, Soung A, Kanmogne M, Manivasagam S, Agner S, Cain M. Neuroinflammation During RNA Viral Infections. Annu Rev Immunol 2019; 37:73-95. [PMID: 31026414 PMCID: PMC6731125 DOI: 10.1146/annurev-immunol-042718-041417] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurotropic RNA viruses continue to emerge and are increasingly linked to diseases of the central nervous system (CNS) despite viral clearance. Indeed, the overall mortality of viral encephalitis in immunocompetent individuals is low, suggesting efficient mechanisms of virologic control within the CNS. Both immune and neural cells participate in this process, which requires extensive innate immune signaling between resident and infiltrating cells, including microglia and monocytes, that regulate the effector functions of antiviral T and B cells as they gain access to CNS compartments. While these interactions promote viral clearance via mainly neuroprotective mechanisms, they may also promote neuropathology and, in some cases, induce persistent alterations in CNS physiology and function that manifest as neurologic and psychiatric diseases. This review discusses mechanisms of RNA virus clearance and neurotoxicity during viral encephalitis with a focus on the cytokines essential for immune and neural cell inflammatory responses and interactions. Understanding neuroimmune communications in the setting of viral infections is essential for the development of treatments that augment neuroprotective processes while limiting ongoing immunopathological processes that cause ongoing CNS disease.
Collapse
Affiliation(s)
- Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Charise Garber
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Kristen E Funk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Hamid Salimi
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Allison Soung
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Marlene Kanmogne
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Sindhu Manivasagam
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Shannon Agner
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Matthew Cain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
17
|
Jacqueline C, Bonnefoy N, Charrière GM, Thomas F, Roche B. Personal history of infections and immunotherapy: Unexpected links and possible therapeutic opportunities. Oncoimmunology 2018; 7:e1466019. [PMID: 30221066 PMCID: PMC6136881 DOI: 10.1080/2162402x.2018.1466019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 01/17/2023] Open
Abstract
The recent breakthroughs in the understanding of tumor immune biology have given rise to a new generation of immunotherapies, harnessing the immune system to eliminate tumors. As the typology and frequency of encountered infections are susceptible to shape the immune system, it could also impact the efficiency of immunotherapy. In this review, we report evidences for an indirect link between personal history of infection and different strategies of immunotherapy. In the current context of interest rise for personalized medicine, we discuss the potential medical applications of considering personal history of infection to design immunotherapeutic strategies.
Collapse
Affiliation(s)
- Camille Jacqueline
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Nathalie Bonnefoy
- IRCM, INSERM, Université de Montpellier, ICM, F-34298, Montpellier, France
| | - Guillaume M. Charrière
- IHPE, UMR 5244, CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Montpellier, 34095, France
| | - Frédéric Thomas
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Benjamin Roche
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- UMMISCO, IRD/ Sorbonne Université, Bondy, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
18
|
Li S, Ma F, Hao H, Wang D, Gao Y, Zhou J, Li F, Lin HC, Xiao X, Zeng Q. Marked elevation of circulating CD19 +CD38 hiCD24 hi transitional B cells give protection against neonatal sepsis. Pediatr Neonatol 2018; 59:296-304. [PMID: 29239829 DOI: 10.1016/j.pedneo.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/05/2017] [Accepted: 10/13/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Adequate functions of immunoregulation, mediated by regulatory cells such as IL-10 producing CD19+CD38hiCD24hi transitional B cells (Trans), play an important role in control of excessive inflammatory response. Yet, the role of Trans in neonatal sepsis is incompletely understood. We investigated the role of Trans in late-onset sepsis (LOS). METHODS We used multicolor flow cytometry to analyse the phenotypes of B cells drawn from a cohort of 16 neonatal late-onset sepsis (LOS) (12 survivors and 4 non-survivors) and 20 healthy neonates over time. RESULTS Patients undergone a serious decline of lymphocytes at the beginning of sepsis and then noticeable elevation during one week of follow-up had a good prognosis. Intriguingly, peripheral blood B cells, especially Trans, were the marked increase lymphocyte subset and maintained a high level of producing IL-10 during the 7 days of follow-up. CONCLUSION The level of IL-10 producing Trans was significantly elevated in peripheral blood of good prognosis newborns with LOS and might contribute to the successful immunoprotective state of the disease.
Collapse
Affiliation(s)
- Sitao Li
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Neonatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fei Ma
- Department of Neonatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hu Hao
- Department of Neonatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Desheng Wang
- Department of Neonatology, The Fifth People's Hospital of Dongguan, Dongguan, China
| | - Yu Gao
- Department of Obstetrics & Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jialiang Zhou
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Fei Li
- Department of Neonatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hung-Chih Lin
- Division of Neonatology, China Medical University Children Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Asia University Hospital, Asia University, Taichung, Taiwan
| | - Xin Xiao
- Department of Neonatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Cao K, Liao X, Lu J, Yao S, Wu F, Zhu X, Shi D, Wen S, Liu L, Zhou H. IL-33/ST2 plays a critical role in endothelial cell activation and microglia-mediated neuroinflammation modulation. J Neuroinflammation 2018; 15:136. [PMID: 29728120 PMCID: PMC5935936 DOI: 10.1186/s12974-018-1169-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
Abstract
Background Interleukin-33 (IL-33) is increasingly being recognized as a key immunomodulatory cytokine in many neurological diseases. Methods In the present study, wild-type (WT) and IL-33−/− mice received intracerebroventricular (i.c.v.) injection of lipopolysaccharide (LPS) to induce neuroinflammation. Intravital microscopy was employed to examine leukocyte–endothelial interactions in the brain vasculature. The degree of neutrophil infiltration was determined by myeloperoxidase (MPO) staining. Real-time PCR and western blotting were used to detect endothelial activation. Enzyme-linked immunosorbent assay and quantitative PCR were conducted to detect pro-inflammatory cytokine levels in the brain. Results In IL-33−/− mice, neutrophil infiltration in the brain cortex and leukocyte–endothelial cell interactions in the cerebral microvessels were significantly decreased as compared to WT mice after LPS injection. In addition, IL-33−/− mice showed reduced activation of microglia and cerebral endothelial cells. In vitro results indicated that IL-33 directly activated cerebral endothelial cells and promoted pro-inflammatory cytokine production in LPS-stimulated microglia. Conclusions Our study indicated that IL-33/ST2 signaling plays an important role in the activation of microglia and cerebral endothelial cells and, therefore, is essential in leukocyte recruitment in brain inflammation. Graphical abstract The role of IL-33/ST2 in LPS induced neuroinflammation![]()
Collapse
Affiliation(s)
- Kelei Cao
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Xiang Liao
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Jiahui Lu
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Shu Yao
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Fengjiao Wu
- Department of Immunology, Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, 233030, China
| | - Xingxing Zhu
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Dongyan Shi
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Shuang Wen
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China.
| |
Collapse
|
20
|
Murine splenic B cells express corticotropin-releasing hormone receptor 2 that affect their viability during a stress response. Sci Rep 2018; 8:143. [PMID: 29317694 PMCID: PMC5760685 DOI: 10.1038/s41598-017-18401-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/08/2017] [Indexed: 01/16/2023] Open
Abstract
Chronic stress is now recognized as a risk factor for disease development and/or exacerbation. It has been shown to affect negatively the immune system and notably the humoral immune response. Corticotropin-releasing hormone (CRH) is known to play a crucial role in stress response. CRH receptors are expressed on different immune cells such as granulocytes, monocytes and T cells. However, up to now, no CRH receptor has been described on B cells which are key players of the humoral immune response. In order to highlight new pathways by which stress may impact immunity, we investigated the role of CRH in B cells. Here we show that splenic B cells express the CRH receptor 2 (CRHR2), but not CRHR1. This receptor is functional since CRH treatment of B cells activates different signaling pathways (e.g. p38) and decreases B cell viability. Finally, we show that immunization of mice with two types of antigens induces a more intense CRHR staining in secondary lymphoid organs where B cells are known to respond to the antigen. Altogether our results demonstrate, for the first time, that CRH is able to modulate directly B cell activity through the presence of CRHR2.
Collapse
|
21
|
Dai YC, Zhong J, Xu JF. Regulatory B cells in infectious disease (Review). Mol Med Rep 2017; 16:3-10. [PMID: 28534949 PMCID: PMC5482109 DOI: 10.3892/mmr.2017.6605] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 03/22/2017] [Indexed: 01/06/2023] Open
Abstract
Regulatory B cells (Bregs) are a subset of B cells, which reportedly exert significant immunomodulatory effects through the production of interleukin (IL)-10, IL-35 and transforming growth factor-β. Over the last decade, studies have indicated that Bregs function in autoimmune and allergic diseases through antigen-specific and non-specific immunoregulatory mechanisms. However, only a limited number of reviews have focused on the role of Bregs during infection, particularly their functions in intracellular infections. The present review discusses the role of Bregs in infectious diseases in animal models and human studies, and provides an overview of the immunoregulatory mechanisms used by Bregs.
Collapse
Affiliation(s)
- You-Chao Dai
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, Guangdong 523808, P.R. China
| | - Jixin Zhong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
22
|
Motobayashi M, Fukuyama T, Okuno-Yuguchi J, Shioiri T, Nagaharu S, Hagimoto R, Kinoshita T, Inaba Y. An Increase of Cerebrospinal Fluid B-cell Activating Factor Level in Pediatric Patients With Acute Viral Encephalitis. Pediatr Neurol 2017; 70:e3-e4. [PMID: 28259511 DOI: 10.1016/j.pediatrneurol.2017.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Affiliation(s)
- Mitsuo Motobayashi
- Division of Neonatology, Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan; Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | - Rokuro Hagimoto
- Department of Pediatrics, Iida Municipal Hospital, Iida, Japan
| | | | - Yuji Inaba
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan.
| |
Collapse
|
23
|
IL-10: A Multifunctional Cytokine in Viral Infections. J Immunol Res 2017; 2017:6104054. [PMID: 28316998 PMCID: PMC5337865 DOI: 10.1155/2017/6104054] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/13/2017] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
The anti-inflammatory master regulator IL-10 is critical to protect the host from tissue damage during acute phases of immune responses. This regulatory mechanism, central to T cell homeostasis, can be hijacked by viruses to evade immunity. IL-10 can be produced by virtually all immune cells, and it can also modulate the function of these cells. Understanding the effects of this multifunctional cytokine is therefore a complex task. In the present review we discuss the factors driving IL-10 production and the cellular sources of the cytokine during antiviral immune responses. We particularly focus on the IL-10 regulatory mechanisms that impact antiviral immune responses and how viruses can use this central regulatory pathway to evade immunity and establish chronic/latent infections.
Collapse
|
24
|
Cloarec R, Bauer S, Luche H, Buhler E, Pallesi-Pocachard E, Salmi M, Courtens S, Massacrier A, Grenot P, Teissier N, Watrin F, Schaller F, Adle-Biassette H, Gressens P, Malissen M, Stamminger T, Streblow DN, Bruneau N, Szepetowski P. Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation. PLoS One 2016; 11:e0160176. [PMID: 27472761 PMCID: PMC4966896 DOI: 10.1371/journal.pone.0160176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 07/14/2016] [Indexed: 11/25/2022] Open
Abstract
Background Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells. Objectives and Methods In order to confirm and expand those findings, particularly concerning the early developmental stages following infection of the fetal brain, we have created a model of in utero cytomegalovirus infection in the developing rat brain. Rat cytomegalovirus was injected intraventricularly at embryonic day 15 (E15) and the brains analyzed at various stages until the first postnatal day, using a combination of gene expression analysis, immunohistochemistry and multicolor flow cytometry experiments. Results Rat cytomegalovirus infection was increasingly seen in various brain areas including the choroid plexi and the ventricular and subventricular areas and was prominently detected in CD45low/int, CD11b+ microglial cells, in CD45high, CD11b+ cells of the myeloid lineage including macrophages, and in CD45+, CD11b– lymphocytes and non-B non-T cells. In parallel, rat cytomegalovirus infection of the developing rat brain rapidly triggered a cascade of pathophysiological events comprising: chemokines upregulation, including CCL2-4, 7 and 12; infiltration by peripheral cells including B-cells and monocytes at E17 and P1, and T-cells at P1; and microglia activation at E17 and P1. Conclusion In line with previous findings in neonatal murine models and in human specimen, our study further suggests that neuroimmune alterations might play critical roles in the early stages following cytomegalovirus infection of the brain in utero. Further studies are now needed to determine which role, whether favorable or detrimental, those putative double-edge swords events actually play.
Collapse
Affiliation(s)
- Robin Cloarec
- INSERM U901, Marseille, France
- Mediterranean Institute of Neurobiology (INMED), Marseille, France
- UMR_S901, Aix-Marseille University, Marseille, France
| | - Sylvian Bauer
- INSERM U901, Marseille, France
- Mediterranean Institute of Neurobiology (INMED), Marseille, France
- UMR_S901, Aix-Marseille University, Marseille, France
| | - Hervé Luche
- CIPHE (Centre d'Immunophénomique), PHENOMIN, UM2 Aix-Marseille University, Marseille, France
- INSERM US012, Marseille, France
- CNRS UMS3367, Marseille, France
| | - Emmanuelle Buhler
- INSERM U901, Marseille, France
- Mediterranean Institute of Neurobiology (INMED), Marseille, France
- UMR_S901, Aix-Marseille University, Marseille, France
- PPGI platform, INMED, Marseille, France
| | - Emilie Pallesi-Pocachard
- INSERM U901, Marseille, France
- Mediterranean Institute of Neurobiology (INMED), Marseille, France
- UMR_S901, Aix-Marseille University, Marseille, France
- PBMC platform, INMED, Marseille, France
| | - Manal Salmi
- INSERM U901, Marseille, France
- Mediterranean Institute of Neurobiology (INMED), Marseille, France
- UMR_S901, Aix-Marseille University, Marseille, France
| | - Sandra Courtens
- INSERM U901, Marseille, France
- Mediterranean Institute of Neurobiology (INMED), Marseille, France
- UMR_S901, Aix-Marseille University, Marseille, France
| | - Annick Massacrier
- INSERM U901, Marseille, France
- Mediterranean Institute of Neurobiology (INMED), Marseille, France
- UMR_S901, Aix-Marseille University, Marseille, France
| | - Pierre Grenot
- CIPHE (Centre d'Immunophénomique), PHENOMIN, UM2 Aix-Marseille University, Marseille, France
- CNRS UMS3367, Marseille, France
| | - Natacha Teissier
- INSERM, U1141, Paris, France
- Paris Diderot University, Sorbonne Paris Cité, Paris, France
- PremUP, Paris, France
| | - Françoise Watrin
- INSERM U901, Marseille, France
- Mediterranean Institute of Neurobiology (INMED), Marseille, France
- UMR_S901, Aix-Marseille University, Marseille, France
| | - Fabienne Schaller
- INSERM U901, Marseille, France
- Mediterranean Institute of Neurobiology (INMED), Marseille, France
- UMR_S901, Aix-Marseille University, Marseille, France
- PPGI platform, INMED, Marseille, France
| | - Homa Adle-Biassette
- INSERM, U1141, Paris, France
- Paris Diderot University, Sorbonne Paris Cité, Paris, France
- PremUP, Paris, France
| | - Pierre Gressens
- INSERM, U1141, Paris, France
- Paris Diderot University, Sorbonne Paris Cité, Paris, France
- PremUP, Paris, France
| | - Marie Malissen
- CIPHE (Centre d'Immunophénomique), PHENOMIN, UM2 Aix-Marseille University, Marseille, France
- INSERM US012, Marseille, France
- CNRS UMS3367, Marseille, France
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel N. Streblow
- Vaccine & Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Nadine Bruneau
- INSERM U901, Marseille, France
- Mediterranean Institute of Neurobiology (INMED), Marseille, France
- UMR_S901, Aix-Marseille University, Marseille, France
- * E-mail: (NB); (PS)
| | - Pierre Szepetowski
- INSERM U901, Marseille, France
- Mediterranean Institute of Neurobiology (INMED), Marseille, France
- UMR_S901, Aix-Marseille University, Marseille, France
- * E-mail: (NB); (PS)
| |
Collapse
|
25
|
Enrichment of risk SNPs in regulatory regions implicate diverse tissues in Parkinson's disease etiology. Sci Rep 2016; 6:30509. [PMID: 27461410 PMCID: PMC4962314 DOI: 10.1038/srep30509] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022] Open
Abstract
Recent genome-wide association studies (GWAS) of Parkinson’s disease (PD) revealed at least 26 risk loci, with associated single nucleotide polymorphisms (SNPs) located in non-coding DNA having unknown functions in risk. In order to explore in which cell types these SNPs (and their correlated surrogates at r2 ≥ 0.8) could alter cellular function, we assessed their location overlap with histone modification regions that indicate transcription regulation in 77 diverse cell types. We found statistically significant enrichment of risk SNPs at 12 loci in active enhancers or promoters. We investigated 4 risk loci in depth that were most significantly enriched (−logeP > 14) and contained 8 putative enhancers in the different cell types. These enriched loci, along with eQTL associations, were unexpectedly present in non-neuronal cell types. These included lymphocytes, mesendoderm, liver- and fat-cells, indicating that cell types outside the brain are involved in the genetic predisposition to PD. Annotating regulatory risk regions within specific cell types may unravel new putative risk mechanisms and molecular pathways that contribute to PD development.
Collapse
|
26
|
Lokensgard JR, Mutnal MB, Prasad S, Sheng W, Hu S. Glial cell activation, recruitment, and survival of B-lineage cells following MCMV brain infection. J Neuroinflammation 2016; 13:114. [PMID: 27207308 PMCID: PMC4874004 DOI: 10.1186/s12974-016-0582-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/13/2016] [Indexed: 12/23/2022] Open
Abstract
Background Chemokines produced by reactive glia drive migration of immune cells and previous studies from our laboratory have demonstrated that CD19+ B cells infiltrate the brain. In this study, in vivo and in vitro experiments investigated the role of reactive glial cells in recruitment and survival of B-lineage cells in response to (murine cytomegalovirus) MCMV infection. Methods Flow cytometric analysis was used to assess chemokine receptor expression on brain-infiltrating B cells. Real-time RT-PCR and ELISA were used to measure chemokine levels. Dual-immunohistochemical staining was used to co-localize chemokine production by reactive glia. Primary glial cell cultures and migration assays were used to examine chemokine-mediated recruitment. Astrocyte: B cell co-cultures were used to investigate survival and proliferation. Results The chemokine receptors CXCR3, CXCR5, CCR5, and CCR7 were detected on CD19+ cells isolated from the brain during MCMV infection. In particular, CXCR3 was found to be elevated on an increasing number of cells over the time course of infection, and it was the primary chemokine receptor expressed at 60 days post infection Quite different expression kinetics were observed for CXCR5, CCR5, and CCR7, which were elevated on the highest number of cells early during infection and decreased by 14, 30, and 60 days post infection Correspondingly, elevated levels of CXCL9, CXCL10, and CXCL13, as well as CCL5, were found within the brains of infected animals, and only low levels of CCL3 and CCL19 were detected. Differential expression of CXCL9/CXCL10 and CXCL13 between microglia and astrocytes was apparent, and B cells moved towards supernatants from MCMV-infected microglia, but not astrocytes. Pretreatment with neutralizing Abs to CXCL9 and CXCL10 inhibited this migration. In contrast, neutralizing Abs to the ligand of CXCR5 (i.e., CXCL13) did not significantly block chemotaxis. Proliferation of brain-infiltrating B cells was detected at 7 days post infection and persisted through the latest time tested (60 days post infection). Finally, astrocytes produce BAFF (B cell activating factor of the TNF family) and promote proliferation of B cells via cell-to-cell contact. Conclusions CXCR3 is the primary chemokine receptor on CD19+ B cells persisting within the brain, and migration to microglial cell supernatants is mediated through this receptor. Correspondingly, microglial cells produce CXCL9 and CXCL10, but not CXCL13. Reactive astrocytes promote B cell proliferation.
Collapse
Affiliation(s)
- James R Lokensgard
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-220 LRB/MTRF, 2001 6th Street S.E., Minneapolis, MN, 55455, USA.
| | - Manohar B Mutnal
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-220 LRB/MTRF, 2001 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Sujata Prasad
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-220 LRB/MTRF, 2001 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Wen Sheng
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-220 LRB/MTRF, 2001 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Shuxian Hu
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-220 LRB/MTRF, 2001 6th Street S.E., Minneapolis, MN, 55455, USA
| |
Collapse
|
27
|
Prasad S, Hu S, Sheng WS, Singh A, Lokensgard JR. Tregs Modulate Lymphocyte Proliferation, Activation, and Resident-Memory T-Cell Accumulation within the Brain during MCMV Infection. PLoS One 2015; 10:e0145457. [PMID: 26720146 PMCID: PMC4697843 DOI: 10.1371/journal.pone.0145457] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/03/2015] [Indexed: 11/25/2022] Open
Abstract
Accumulation and retention of regulatory T-cells (Tregs) has been reported within post viral-encephalitic brains, however, the full extent to which these cells modulate neuroinflammation is yet to be elucidated. Here, we used Foxp3-DTR (diphtheria toxin receptor) knock-in transgenic mice, which upon administration of low dose diphtheria toxin (DTx) results in specific deletion of Tregs. We investigated the proliferation status of various immune cell subtypes within inflamed central nervous system (CNS) tissue. Depletion of Tregs resulted in increased proliferation of both CD8+ and CD4+ T-cell subsets within the brain at 14 d post infection (dpi) when compared to Treg-sufficient animals. At 30 dpi, while proliferation of CD8+ T-cells was controlled within brains of both Treg-depleted and undepleted mice, proliferation of CD4+ T-cells remained significantly enhanced with DTx-treatment. Previous studies have demonstrated that Treg numbers within the brain rebound following DTx treatment to even higher numbers than in untreated animals. Despite this rebound, CD8+ and CD4+ T-cells proliferated at a higher rate when compared to that of Treg-sufficient mice, thus maintaining sustained neuroinflammation. Furthermore, at 30 dpi we found the majority of CD8+ T-cells were CD127hi KLRG1- indicating that the cells were long lived memory precursor cells. These cells showed marked elevation of CD103 expression, a marker of tissue resident-memory T-cells (TRM) in the CNS, in untreated animals when compared to DTx-treated animals suggesting that generation of TRM is impaired upon Treg depletion. Moreover, the effector function of TRM as indicated by granzyme B production in response to peptide re-stimulation was found to be more potent in Treg-sufficient animals. Taken together, our findings demonstrate that Tregs limit neuroinflammatory responses to viral infection by controlling cell proliferation and may direct a larger proportion of lymphocytes within the brain to be maintained as TRM cells.
Collapse
Affiliation(s)
- Sujata Prasad
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
| | - Shuxian Hu
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
| | - Wen S. Sheng
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
| | - Amar Singh
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
| | - James R. Lokensgard
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, 55455, United States of America
- * E-mail:
| |
Collapse
|
28
|
Sinha S, Boyden AW, Itani FR, Crawford MP, Karandikar NJ. CD8(+) T-Cells as Immune Regulators of Multiple Sclerosis. Front Immunol 2015; 6:619. [PMID: 26697014 PMCID: PMC4674574 DOI: 10.3389/fimmu.2015.00619] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/26/2015] [Indexed: 11/13/2022] Open
Abstract
The vast majority of studies regarding the immune basis of MS (and its animal model, EAE) have largely focused on CD4(+) T-cells as mediators and regulators of disease. Interestingly, CD8(+) T-cells represent the predominant T-cell population in human MS lesions and are oligoclonally expanded at the site of pathology. However, their role in the autoimmune pathologic process has been both understudied and controversial. Several animal models and MS patient studies support a pathogenic role for CNS-specific CD8(+) T-cells, whereas we and others have demonstrated a regulatory role for these cells in disease. In this review, we describe studies that have investigated the role of CD8(+) T-cells in MS and EAE, presenting evidence for both pathogenic and regulatory functions. In our studies, we have shown that cytotoxic/suppressor CD8(+) T-cells are CNS antigen-specific, MHC class I-restricted, IFNγ- and perforin-dependent, and are able to inhibit disease. The clinical relevance for CD8(+) T-cell suppressive function is best described by a lack of their function during MS relapse, and importantly, restoration of their suppressive function during quiescence. Furthermore, CD8(+) T-cells with immunosuppressive functions can be therapeutically induced in MS patients by glatiramer acetate (GA) treatment. Unlike CNS-specific CD8(+) T-cells, these immunosuppressive GA-induced CD8(+) T-cells appear to be HLA-E restricted. These studies have provided greater fundamental insight into the role of autoreactive as well as therapeutically induced CD8(+) T-cells in disease amelioration. The clinical implications for these findings are immense and we propose that this natural process can be harnessed toward the development of an effective immunotherapeutic strategy.
Collapse
Affiliation(s)
- Sushmita Sinha
- Department of Pathology, University of Iowa , Iowa City, IA , USA
| | | | - Farah R Itani
- Department of Pathology, University of Iowa , Iowa City, IA , USA
| | | | | |
Collapse
|
29
|
Lokensgard JR, Schachtele SJ, Mutnal MB, Sheng WS, Prasad S, Hu S. Chronic reactive gliosis following regulatory T cell depletion during acute MCMV encephalitis. Glia 2015; 63:1982-1996. [PMID: 26041050 DOI: 10.1002/glia.22868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022]
Abstract
Long-term, persistent central nervous system inflammation is commonly seen following brain infection. Using a murine model of viral encephalitis (murine cytomegalovirus, MCMV) we have previously shown that post-encephalitic brains are maintained in an inflammatory state consisting of glial cell reactivity, retention of brain-infiltrating tissue-resident memory CD8+ T-cells, and long-term persistence of antibody-producing cells of the B-lineage. Here, we report that this neuroinflammation occurs concomitantly with accumulation and retention of immunosuppressive regulatory T-cells (Tregs), and is exacerbated following their ablation. However, the extent to which these Tregs function to control neuroimmune activation following MCMV encephalitis is unknown. In this study, we used Foxp3-diphtheria toxin receptor-GFP (Foxp3-DTR-GFP) transgenic mice, which upon administration of low-dose diphtheria toxin (DTx) results in the specific depletion of Tregs, to investigate their function. We found treatment with DTx during the acute phase of viral brain infection (0-4 dpi) resulted in depletion of Tregs from the brain, exacerbation of encephalitis (i.e., increased presence of CD4+ and CD8+ T-cells), and chronic reactive phenotypes of resident glial cells (i.e., elevated MHC Class II as well as PD-L1 levels, sustained microgliosis, and increased glial fibrillary acidic protein (GFAP) expression on astrocytes) versus untreated, infected animals. This chronic proinflammatory environment was associated with reduced cognitive performance in spatial learning and memory tasks (Barnes Maze) by convalescent animals. These data demonstrate that chronic glial cell activation, unremitting post-encephalitic neuroinflammation, and its associated long-term neurological sequelae in response to viral brain infection are modulated by the immunoregulatory properties of Tregs. GLIA 2015;63:1982-1996.
Collapse
Affiliation(s)
- James R Lokensgard
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Scott J Schachtele
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Manohar B Mutnal
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Wen S Sheng
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Sujata Prasad
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Shuxian Hu
- Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
30
|
Durali D, de Goër de Herve MG, Gasnault J, Taoufik Y. B cells and progressive multifocal leukoencephalopathy: search for the missing link. Front Immunol 2015; 6:241. [PMID: 26042124 PMCID: PMC4437032 DOI: 10.3389/fimmu.2015.00241] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/05/2015] [Indexed: 12/23/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a deadly demyelinating disease due to JC virus (JCV) replication in the brain. PML classically occurs in patients with severe immunodepression, and cases have recently been linked to therapeutic monoclonal antibodies such as natalizumab and also rituximab, which depletes B cells. B cells appear to play a complex role in the pathogenesis of PML. They may act as a viral reservoir and as a vector for viral dissemination in the central nervous system. Anti-JCV antibody responses appear to have a limited effect on JCV replication in the brain. However, accumulating evidence suggests that B cells may considerably influence T cell responses through their cytokine secretion. This immunomodulatory function of B cells may play an important role in the control of JCV infection and in the pathogenesis of PML, including rituximab-induced PML.
Collapse
Affiliation(s)
- Deniz Durali
- Immunology Research Laboratory, Department of Medical Microbiology, School of Medicine, Istanbul Medipol University , Istanbul , Turkey
| | | | - Jacques Gasnault
- IMVA-INSERM U1184, Department of Immunology, Bicetre Hospital, University Paris-sud , Le Kremlin-Bicêtre , France
| | - Yassine Taoufik
- IMVA-INSERM U1184, Department of Immunology, Bicetre Hospital, University Paris-sud , Le Kremlin-Bicêtre , France
| |
Collapse
|
31
|
Rincón-Arévalo H, Sanchez-Parra CC, Castaño D, Yassin L, Vásquez G. Regulatory B Cells and Mechanisms. Int Rev Immunol 2015; 35:156-76. [PMID: 25793964 DOI: 10.3109/08830185.2015.1015719] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Regulatory B cells have gained prominence in their role as modulators of the immune response against tumors, infectious diseases, and autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis, among others. The concept of regulatory B cells has been strongly associated with interleukin (IL)-10 production; however, there is growing evidence that supports the existence of other regulatory mechanisms, such as the production of transforming growth factor β (TGF-β), induced cell death of effector T cells, and the induction of CD4(+)CD25(-)Foxp3(+) regulatory T cells. The regulatory function of B cells has been associated with the presence and activation of molecules such as CD40, CD19, CD1d, and BCR. Alterations in signaling by any of these pathways leads to a marked defect in regulatory B cells and to increased clinical symptoms and proinflammatory signs, both in murine models and in autoimmune diseases in humans. B cells mainly exert their regulatory effect through the inhibition of proliferation and production of proinflammatory mediators, such as TNF-α, IFN-γ, and IL-17 by CD4(+) T cells. A better understanding of how regulatory B cells function will offer new perspectives with regard to the treatment of various human diseases.
Collapse
Affiliation(s)
- Héctor Rincón-Arévalo
- a Grupo de Inmunología Celular e InmunogenéInstituto de Investigaciones Médicas, Facultad de Medicina , Universidad de Antioquia Medellín , Colombia
| | - Claudia C Sanchez-Parra
- a Grupo de Inmunología Celular e InmunogenéInstituto de Investigaciones Médicas, Facultad de Medicina , Universidad de Antioquia Medellín , Colombia
| | - Diana Castaño
- a Grupo de Inmunología Celular e InmunogenéInstituto de Investigaciones Médicas, Facultad de Medicina , Universidad de Antioquia Medellín , Colombia
| | - Lina Yassin
- a Grupo de Inmunología Celular e InmunogenéInstituto de Investigaciones Médicas, Facultad de Medicina , Universidad de Antioquia Medellín , Colombia.,b Grupo de Ciencias Básicas, Facultad de Medicina , Universidad CES , Medellín , Colombia
| | - Gloria Vásquez
- a Grupo de Inmunología Celular e InmunogenéInstituto de Investigaciones Médicas, Facultad de Medicina , Universidad de Antioquia Medellín , Colombia
| |
Collapse
|