1
|
Thomas RM, Pahl MC, Wang L, Grant SFA, Hancock WW, Wells AD. Foxp3 depends on Ikaros for control of regulatory T cell gene expression and function. eLife 2024; 12:RP91392. [PMID: 38655862 PMCID: PMC11042806 DOI: 10.7554/elife.91392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.
Collapse
Affiliation(s)
- Rajan M Thomas
- Center for Spatial and Functional Genomics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Liqing Wang
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania and The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Struan FA Grant
- Center for Spatial and Functional Genomics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Wayne W Hancock
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania and The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania and The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| |
Collapse
|
2
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
3
|
Sin JH, Sucharov J, Kashyap S, Wang Y, Proekt I, Liu X, Parent AV, Gupta A, Kastner P, Chan S, Gardner JM, Ntranos V, Miller CN, Anderson MS, Schjerven H, Waterfield MR. Ikaros is a principal regulator of Aire + mTEC homeostasis, thymic mimetic cell diversity, and central tolerance. Sci Immunol 2023; 8:eabq3109. [PMID: 37889983 PMCID: PMC11433069 DOI: 10.1126/sciimmunol.abq3109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Mutations in the gene encoding the zinc-finger transcription factor Ikaros (IKZF1) are found in patients with immunodeficiency, leukemia, and autoimmunity. Although Ikaros has a well-established function in modulating gene expression programs important for hematopoietic development, its role in other cell types is less well defined. Here, we uncover functions for Ikaros in thymic epithelial lineage development in mice and show that Ikzf1 expression in medullary thymic epithelial cells (mTECs) is required for both autoimmune regulator-positive (Aire+) mTEC development and tissue-specific antigen (TSA) gene expression. Accordingly, TEC-specific deletion of Ikzf1 in mice results in a profound decrease in Aire+ mTECs, a global loss of TSA gene expression, and the development of autoimmunity. Moreover, Ikaros shapes thymic mimetic cell diversity, and its deletion results in a marked expansion of thymic tuft cells and muscle-like mTECs and a loss of other Aire-dependent mimetic populations. Single-cell analysis reveals that Ikaros modulates core transcriptional programs in TECs that correlate with the observed cellular changes. Our findings highlight a previously undescribed role for Ikaros in regulating epithelial lineage development and function and suggest that failed thymic central tolerance could contribute to the autoimmunity seen in humans with IKZF1 mutations.
Collapse
Affiliation(s)
- Jun Hyung Sin
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Juliana Sucharov
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Sujit Kashyap
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Yi Wang
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- 10x Genomics, Pleasanton, CA, USA
| | - Irina Proekt
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Xian Liu
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Audrey V. Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Alexander Gupta
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - James M. Gardner
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Vasilis Ntranos
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Corey N. Miller
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Mark S. Anderson
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Hilde Schjerven
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael R. Waterfield
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Helm EY, Zhou L. Transcriptional regulation of innate lymphoid cells and T cells by aryl hydrocarbon receptor. Front Immunol 2023; 14:1056267. [PMID: 37056785 PMCID: PMC10089284 DOI: 10.3389/fimmu.2023.1056267] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor and facilitates immune cell environmental sensing through its activation by cellular, dietary, and microbial metabolites, as well as environmental toxins. Although expressed in various cell types, Ahr in innate lymphoid cells (ILCs) and their adaptive T cell counterparts regulates essential aspects of their development and function. As opposed to T cells, ILCs exclusively rely on germ-line encoded receptors for activation, but often share expression of core transcription factors and produce shared effector molecules with their T cell counterparts. As such, core modules of transcriptional regulation are both shared and diverge between ILCs and T cells. In this review, we highlight the most recent findings regarding Ahr’s transcriptional regulation of both ILCs and T cells. Furthermore, we focus on insights elucidating the shared and distinct mechanisms by which Ahr regulates both innate and adaptive lymphocytes.
Collapse
|
5
|
Cao L, Morgun E, Genardi S, Visvabharathy L, Cui Y, Huang H, Wang CR. METTL14-dependent m 6A modification controls iNKT cell development and function. Cell Rep 2022; 40:111156. [PMID: 35926466 PMCID: PMC9495716 DOI: 10.1016/j.celrep.2022.111156] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/06/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
N6-methyladenosine (m6A), the most common form of RNA modification, controls CD4+ T cell homeostasis by targeting the IL-7/STAT5/SOCS signaling pathways. The role of m6A modification in unconventional T cell development remains unknown. Using mice with T cell-specific deletion of RNA methyltransferase METTL14 (T-Mettl14−/−), we demonstrate that m6A modification is indispensable for iNKT cell homeostasis. Loss of METTL14-dependent m6A modification leads to the upregulation of apoptosis in double-positive thymocytes, which in turn decreases Vα14-Jα18 gene rearrangements, resulting in drastic reduction of iNKT numbers in the thymus and periphery. Residual T-Mettl14−/− iNKT cells exhibit increased apoptosis, impaired maturation, and decreased responsiveness to IL-2/IL-15 and TCR stimulation. Furthermore, METTL14 knockdown in mature iNKT cells diminishes their cytokine production, correlating with increased Cish expression and decreased TCR signaling. Collectively, our study highlights a critical role for METTL14-dependent-m6A modification in iNKT cell development and function. Cao et al. show that T cell-specific deletion of METTL14, a component of RNA m6A writer complex, leads to severe defects in iNKT cell development, survival, and function. Mechanistically, METTL14-dependent m6A modification controls iNKT cell development in a cell-intrinsic manner by regulating the apoptosis pathway and TCR signaling pathway.
Collapse
Affiliation(s)
- Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 3-401, Chicago, IL 60611, USA
| | - Eva Morgun
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 3-401, Chicago, IL 60611, USA
| | - Samantha Genardi
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 3-401, Chicago, IL 60611, USA
| | - Lavanya Visvabharathy
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 3-401, Chicago, IL 60611, USA
| | - Yongyong Cui
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 3-401, Chicago, IL 60611, USA
| | - Haochu Huang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 3-401, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Dittrich-Salamon M, Meyer A, Yan S, Steinbach-Knödgen E, Kotschenreuther K, Stahl D, tho Pesch C, Schiller J, Byrtus F, Jochimsen D, Golumba-Nagy V, Kofler DM. Regulatory T Cells from Patients with Rheumatoid Arthritis Are Characterized by Reduced Expression of Ikaros Zinc Finger Transcription Factors. Cells 2022; 11:cells11142171. [PMID: 35883614 PMCID: PMC9316388 DOI: 10.3390/cells11142171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Regulatory T (Treg) cells play an important role in immune tolerance and contribute to the prevention of autoimmune diseases, including rheumatoid arthritis (RA). The differentiation, function and stability of Treg cells is controlled by members of the Ikaros zinc finger transcription factor family. In this study, we aimed to reveal how the expression of Ikaros transcription factors is affected by disease activity in RA. Therefore, we analyzed the ex vivo expression of Ikaros, Helios, Aiolos and Eos in Treg cells, Th17 cells and Th1 cells from RA patients by flow cytometry. We found significantly reduced expression of Helios, Aiolos and Eos in Treg cells from RA patients as compared to healthy controls. Moreover, Helios and Aiolos levels correlated with disease activity, as assessed by DAS28-CRP. In addition, Ikaros, Helios and Aiolos were significantly downregulated in Th1 cells from RA patients, while no difference between healthy individuals and RA was observed in Th17 cells. In summary, Helios and Aiolos expression in Treg cells correlates with disease activity and the expression levels of Ikaros transcription factors are diminished in Treg cells from RA patients. This observation could explain the reduced stability of Treg cells in RA.
Collapse
Affiliation(s)
- Mara Dittrich-Salamon
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (M.D.-S.); (A.M.); (S.Y.); (E.S.-K.); (K.K.); (V.G.-N.)
| | - Anja Meyer
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (M.D.-S.); (A.M.); (S.Y.); (E.S.-K.); (K.K.); (V.G.-N.)
| | - Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (M.D.-S.); (A.M.); (S.Y.); (E.S.-K.); (K.K.); (V.G.-N.)
| | - Eva Steinbach-Knödgen
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (M.D.-S.); (A.M.); (S.Y.); (E.S.-K.); (K.K.); (V.G.-N.)
| | - Konstantin Kotschenreuther
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (M.D.-S.); (A.M.); (S.Y.); (E.S.-K.); (K.K.); (V.G.-N.)
| | - David Stahl
- Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (D.S.); (C.t.P.); (J.S.); (F.B.); (D.J.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Kerpenerstr. 62, 50937 Cologne, Germany
| | - Carola tho Pesch
- Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (D.S.); (C.t.P.); (J.S.); (F.B.); (D.J.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Kerpenerstr. 62, 50937 Cologne, Germany
| | - Joanna Schiller
- Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (D.S.); (C.t.P.); (J.S.); (F.B.); (D.J.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Kerpenerstr. 62, 50937 Cologne, Germany
| | - Franziska Byrtus
- Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (D.S.); (C.t.P.); (J.S.); (F.B.); (D.J.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Kerpenerstr. 62, 50937 Cologne, Germany
| | - Dorothee Jochimsen
- Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (D.S.); (C.t.P.); (J.S.); (F.B.); (D.J.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Kerpenerstr. 62, 50937 Cologne, Germany
| | - Viktoria Golumba-Nagy
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (M.D.-S.); (A.M.); (S.Y.); (E.S.-K.); (K.K.); (V.G.-N.)
| | - David M. Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (M.D.-S.); (A.M.); (S.Y.); (E.S.-K.); (K.K.); (V.G.-N.)
- Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (D.S.); (C.t.P.); (J.S.); (F.B.); (D.J.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Kerpenerstr. 62, 50937 Cologne, Germany
- Correspondence: ; Tel.: +49-221-47842882; Fax: +49-221-4781422322
| |
Collapse
|
7
|
Sconocchia T, Hochgerner M, Schwarzenberger E, Tam-Amersdorfer C, Borek I, Benezeder T, Bauer T, Zyulina V, Painsi C, Passegger C, Wolf P, Sibilia M, Strobl H. Bone morphogenetic protein signaling regulates skin inflammation via modulating dendritic cell function. J Allergy Clin Immunol 2021; 147:1810-1822.e9. [PMID: 33250156 DOI: 10.1016/j.jaci.2020.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/22/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) are members of the TGF-β family that signal via the BMP receptor (BMPR) signaling cascade, distinct from canonical TGF-β signaling. BMP downstream signaling is strongly induced within epidermal keratinocytes in cutaneous psoriatic lesions, and BMP7 instructs monocytic cells to acquire characteristics of psoriasis-associated Langerhans dendritic cells (DCs). Regulatory T (Treg)-cell numbers strongly increase during psoriatic skin inflammation and were recently shown to limit psoriatic skin inflammation. However, the factors mediating Treg-cell accumulation in psoriatic skin currently remain unknown. OBJECTIVE We sought to investigate the role of BMP signaling in Treg-cell accumulation in psoriasis. METHODS The following methods were used: immunohistology of patients and healthy controls; ex vivo models of Treg-cell generation in the presence or absence of Langerhans cells; analysis of BMP versus canonical TGF-β signaling in DCs and Treg cells; and modeling of psoriatic skin inflammation in mice lacking the BMPR type 1a in CD11c+ cells. RESULTS We here demonstrated a positive correlation between Treg-cell numbers and epidermal BMP7 expression in cutaneous psoriatic lesions and show that unlike Treg cells from healthy skin, a portion of inflammation-associated Treg cells exhibit constitutive-active BMP signaling. We further found that BMPR signaling licenses inflammation-associated Langerhans cell/DC to gain an enhanced capacity to promote Treg cells via BMPR-mediated CD25 induction and that this effect is associated with reduced skin inflammation. CONCLUSIONS Psoriatic lesions are marked by constitutive high BMP7/BMPR signaling in keratinocytes, which instructs inflammatory DCs to gain enhanced Treg-cell-stimulatory activity. Locally secreted BMP7 can directly promote Treg-cell generation through the BMP signaling cascade.
Collapse
Affiliation(s)
- Tommaso Sconocchia
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Mathias Hochgerner
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Elke Schwarzenberger
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Carmen Tam-Amersdorfer
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Izabela Borek
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Theresa Benezeder
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Thomas Bauer
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Victoria Zyulina
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Clemens Painsi
- Department of Dermatology, State Hospital Klagenfurt, Klagenfurt, Austria
| | - Christina Passegger
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
8
|
Bernardi C, Maurer G, Ye T, Marchal P, Jost B, Wissler M, Maurer U, Kastner P, Chan S, Charvet C. CD4 + T cells require Ikaros to inhibit their differentiation toward a pathogenic cell fate. Proc Natl Acad Sci U S A 2021; 118:e2023172118. [PMID: 33893236 PMCID: PMC8092604 DOI: 10.1073/pnas.2023172118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of proinflammatory cytokines, particularly granulocyte-macrophage colony-stimulating factor (GM-CSF), by pathogenic CD4+ T cells is central for mediating tissue injury in inflammatory and autoimmune diseases. However, the factors regulating the T cell pathogenic gene expression program remain unclear. Here, we investigated how the Ikaros transcription factor regulates the global gene expression and chromatin accessibility changes in murine T cells during Th17 polarization and after activation via the T cell receptor (TCR) and CD28. We found that, in both conditions, Ikaros represses the expression of genes from the pathogenic signature, particularly Csf2, which encodes GM-CSF. We show that, in TCR/CD28-activated T cells, Ikaros binds a critical enhancer downstream of Csf2 and is required to regulate chromatin accessibility at multiple regions across this locus. Genome-wide Ikaros binding is associated with more compact chromatin, notably at multiple sites containing NFκB or STAT5 target motifs, and STAT5 or NFκB inhibition prevents GM-CSF production in Ikaros-deficient cells. Importantly, Ikaros also limits GM-CSF production in TCR/CD28-activated human T cells. Our data therefore highlight a critical conserved transcriptional mechanism that antagonizes GM-CSF expression in T cells.
Collapse
Affiliation(s)
- Chiara Bernardi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Gaëtan Maurer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
- Plateforme GenomEast, Infrastructure France Génomique, 67404 Illkirch, France
| | - Patricia Marchal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Bernard Jost
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
- Plateforme GenomEast, Infrastructure France Génomique, 67404 Illkirch, France
| | - Manuela Wissler
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Ulrich Maurer
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| | - Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Céline Charvet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
9
|
Read KA, Jones DM, Freud AG, Oestreich KJ. Established and emergent roles for Ikaros transcription factors in lymphoid cell development and function. Immunol Rev 2020; 300:82-99. [PMID: 33331000 DOI: 10.1111/imr.12936] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Ikaros zinc finger transcription factors are important regulators of the gene programs underlying the development of hematopoietic cell lineages. The family consists of five members: Ikaros, Helios, Aiolos, Eos, and Pegasus, which engage in both homo- and heterotypic intrafamilial interactions to exert diverse functional effects. Pioneering studies focused on the role of these factors in early lymphoid development, as their absence resulted in severe defects in lymphocyte populations. More recent work has now begun to define nuanced, stage-specific roles for Ikaros family members in the differentiation and function of mature T, B, and innate lymphoid cell populations including natural killer (NK) cells. The precise transcriptional mechanisms by which these factors function, both independently and collaboratively, is an area of active investigation. However, several key themes appear to be emerging regarding the pathways influenced by Ikaros family members, including the end-to-end regulation of cytokine signaling. Here, we review roles for Ikaros factors in lymphoid cell development, differentiation, and function, including a discussion of the current understanding of the transcriptional mechanisms they employ and considerations for the future study of this important transcription factor family.
Collapse
Affiliation(s)
- Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Biomedical Sciences Graduate Program, Columbus, OH, USA
| | - Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Biomedical Sciences Graduate Program, Columbus, OH, USA
| | - Aharon G Freud
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Department of Pathology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
10
|
Powell MD, Read KA, Sreekumar BK, Oestreich KJ. Ikaros Zinc Finger Transcription Factors: Regulators of Cytokine Signaling Pathways and CD4 + T Helper Cell Differentiation. Front Immunol 2019; 10:1299. [PMID: 31244845 PMCID: PMC6563078 DOI: 10.3389/fimmu.2019.01299] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
CD4+ T helper cells are capable of differentiating into a number of effector subsets that perform diverse functions during adaptive immune responses. The differentiation of each of these subsets is governed, in large part, by environmental cytokine signals and the subsequent activation of downstream, cell-intrinsic transcription factor networks. Ikaros zinc finger (IkZF) transcription factors are known regulators of immune cell development, including that of CD4+ T cell subsets. Over the past decade, members of the IkZF family have also been implicated in the differentiation and function of individual T helper cell subsets, including T helper 1 (TH1), TH2, TH17, T follicular (TFH), and T regulatory (TREG) cells. Now, an increasing body of literature suggests that the distinct cell-specific cytokine environments responsible for the development of each subset result in differential expression of IkZF factors across T helper populations. Intriguingly, recent studies suggest that IkZF members influence T helper subset differentiation in a feed-forward fashion through the regulation of these same cytokine-signaling pathways. Here, we review the increasingly prominent role for IkZF transcription factors in the differentiation of effector CD4+ T helper cell subsets.
Collapse
Affiliation(s)
- Michael D Powell
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Kaitlin A Read
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States.,Biomedical and Veterinary Sciences Graduate Program, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Bharath K Sreekumar
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Kenneth J Oestreich
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
11
|
Lyon de Ana C, Arakcheeva K, Agnihotri P, Derosia N, Winandy S. Lack of Ikaros Deregulates Inflammatory Gene Programs in T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:1112-1123. [PMID: 30635395 DOI: 10.4049/jimmunol.1801270] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022]
Abstract
CD4 Th cells are organizers of the immune response, directing other immune cells to initiate and maintain effective humoral and cellular immunity. CD4 T cells differentiate into distinct Th effector or regulatory subsets in response to signals delivered to them during the course of infection. Ikaros is a transcription factor that is expressed in blood cells from the level of the hematopoietic stem cell. It is required for normal thymic T cell development and serves as a tumor suppressor, as lack of Ikaros in developing lymphoid cells results in leukemia. To study the role of Ikaros in CD4 T cell differentiation and function, an Ikaros conditional knockout mouse was developed such that Ikaros expression was deleted specifically in mature T cells, thus avoiding defects observed in germline Ikaros mutant mice. Using this model system, we have shown that in the absence of Ikaros, CD4 T cells are able to attain Th1, Th2, and Th17, but not inducible regulatory T, cell fates. However, they show enhanced expression of a cohort of proinflammatory cytokines, resulting in differentiation of Th17 cells with a phenotype that has been associated with autoimmunity and pathological inflammation. In addition, we define Ikaros as a repressor of the gene program associated with the response to type I IFNs, another key pathway whose deregulation is linked to autoimmunity. Taken together, these data definitively define Ikaros as a critical regulator at the center of the inflammatory response in T cells and highlight a potential role in suppressing autoimmunity.
Collapse
Affiliation(s)
- Carolina Lyon de Ana
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Ksenia Arakcheeva
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Parul Agnihotri
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Nicole Derosia
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Susan Winandy
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
12
|
Ueno A, Jeffery L, Kobayashi T, Hibi T, Ghosh S, Jijon H. Th17 plasticity and its relevance to inflammatory bowel disease. J Autoimmun 2018; 87:38-49. [DOI: 10.1016/j.jaut.2017.12.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/03/2017] [Indexed: 02/08/2023]
|
13
|
Li S, Heller JJ, Bostick JW, Lee A, Schjerven H, Kastner P, Chan S, Chen ZE, Zhou L. Ikaros Inhibits Group 3 Innate Lymphoid Cell Development and Function by Suppressing the Aryl Hydrocarbon Receptor Pathway. Immunity 2017; 45:185-97. [PMID: 27438771 DOI: 10.1016/j.immuni.2016.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/27/2016] [Accepted: 05/10/2016] [Indexed: 02/08/2023]
Abstract
Group 3 innate lymphoid cells (ILC3s) expressing the transcription factor (TF) RORγt are important for the defense and homeostasis of host intestinal tissues. The zinc finger TF Ikaros, encoded by Ikzf1, is essential for the development of RORγt(+) fetal lymphoid tissue inducer (LTi) cells and lymphoid organogenesis, but its role in postnatal ILC3s is unknown. Here, we show that small-intestinal ILC3s had lower Ikaros expression than ILC precursors and other ILC subsets. Ikaros inhibited ILC3s in a cell-intrinsic manner through zinc-finger-dependent inhibition of transcriptional activity of the aryl hydrocarbon receptor, a key regulator of ILC3 maintenance and function. Ablation of Ikzf1 in RORγt(+) ILC3s resulted in increased expansion and cytokine production of intestinal ILC3s and protection against infection and colitis. Therefore, in contrast to being required for LTi development, Ikaros inhibits postnatal ILC3 development and function to regulate gut immune responses at steady state and in disease.
Collapse
Affiliation(s)
- Shiyang Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Jennifer J Heller
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - John W Bostick
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Aileen Lee
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hilde Schjerven
- Department of Laboratory Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Zongming E Chen
- Department of Laboratory Medicine in Geisinger Health System, 100 N. Academy Avenue, MC 19-20, Danville, PA 17822, USA
| | - Liang Zhou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
14
|
Agnihotri P, Robertson NM, Umetsu SE, Arakcheeva K, Winandy S. Lack of Ikaros cripples expression of Foxo1 and its targets in naive T cells. Immunology 2017; 152:494-506. [PMID: 28670688 DOI: 10.1111/imm.12786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/07/2017] [Accepted: 06/21/2017] [Indexed: 11/28/2022] Open
Abstract
Ikaros is a transcription factor that regulates lymphocyte development from the level of the haematopoietic stem cell. Lack of Ikaros reduces the ability of progenitor cells to commit to the T-cell lineage, resulting in reduced numbers of early thymic T-cell progenitors and mature T cells. Mature CD4 T cells that lack Ikaros have defects in proliferation, T helper cell differentiation, cytokine expression and the ability to become anergic. A role for Ikaros in the naive T cell has not yet been identified. The receptors interleukin-7 receptor α (IL-7Rα) and l-selectin are important for ensuring survival and proper homing of naive T cells, respectively. Here we show that lack of Ikaros leads to reduced expression of these receptors in naive T cells, which impacts their ability to home and survive in response to IL-7. We define the mechanism underlying this phenotype as a requirement for Ikaros in maintenance of expression of Foxo1, a transcriptional regulator that is required for their expression. We also demonstrate that CD4 T cells lacking Ikaros are significantly crippled in their ability to become induced regulatory T cells, a phenotype also linked to reduced Foxo1 expression. Finally, we show that restoring Ikaros function to Ikaros-deficient CD4 T cells increases levels of Foxo1 message. Together, these studies define, for the first time, a role for Ikaros in naive T cells and establish it as the first transcriptional regulator required for maintaining levels of Foxo1 gene expression in these cells.
Collapse
Affiliation(s)
- Parul Agnihotri
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nicholas M Robertson
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sarah E Umetsu
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL, USA
| | - Ksenia Arakcheeva
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Susan Winandy
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
15
|
Yi P, Liang Y, Yuan DMK, Jie Z, Kwota Z, Chen Y, Cong Y, Fan X, Sun J. A tightly regulated IL-22 response maintains immune functions and homeostasis in systemic viral infection. Sci Rep 2017; 7:3857. [PMID: 28634408 PMCID: PMC5478593 DOI: 10.1038/s41598-017-04260-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022] Open
Abstract
Interleukin-22 (IL-22) plays an important role in host immunity and tissue homeostasis in infectious and inflammatory diseases. However, the function and regulation of IL-22 in viral infection remain largely unknown. Here, we report that viral infection triggered early IL-22 production from the liver and lymphoid organs. γδ T cells are the main immune cells to produce IL-22 in the liver, a process mediated by the IL-23/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. In the presence of IL-23, IL-22 production is independent of aryl hydrocarbon receptor (AhR) signaling. In acute and persistent viral infections, IL-22 deficiency resulted in thymic and splenic hypertrophy, while excessive IL-22 induced atrophy in these lymphoid organs. Moreover, IL-22 deficiency enhanced T cell responses to promote viral clearance, but increased IL-22 in vivo decreased T cell numbers and functions in the liver and lymphoid tissues. Together, our findings reveal a significant effect of the IL-23/PI3K/mTORC1 axis on regulating IL-22 production and also identify a novel role of IL-22 in controlling antiviral T cell responses in the non-lymphoid and lymphoid organs during acute and persistent viral infections.
Collapse
Affiliation(s)
- Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Hunan, China
- Department of Microbiology and Immunology, University of Texas Medical Branch, Texas, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Texas, USA
| | - Denley Ming Kee Yuan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Texas, USA
| | - Zuliang Jie
- Department of Microbiology and Immunology, University of Texas Medical Branch, Texas, USA
| | - Zakari Kwota
- Department of Microbiology and Immunology, University of Texas Medical Branch, Texas, USA
| | - Yan Chen
- Department of Ophthalmology, University of Texas Medical Branch, Texas, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Texas, USA
| | - Xuegong Fan
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Hunan, China.
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Texas, USA.
- Department of Pathology, University of Texas Medical Branch, Texas, USA.
| |
Collapse
|
16
|
Banuelos J, Cao Y, Shin SC, Lu NZ. Immunopathology alters Th17 cell glucocorticoid sensitivity. Allergy 2017; 72:331-341. [PMID: 27646878 PMCID: PMC5315659 DOI: 10.1111/all.13051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Th17 cells contribute to several inflammatory conditions and increasing evidence supports that Th17 cells are glucocorticoid resistant. However, Th17 cells in psoriasis and related diseases are glucocorticoid sensitive. We compare glucocorticoid sensitive and resistant immunological diseases and suggest that several aspects in Th17-related diseases alter glucocorticoid sensitivity of Th17 cells. We identify molecular pathways that are implicated in glucocorticoid sensitivity of Th17 cells in the literature, as this information is useful for developing approaches to overcome glucocorticoid-resistant immunopathology.
Collapse
Affiliation(s)
- J. Banuelos
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Y. Cao
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - S. C. Shin
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - N. Z. Lu
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
17
|
Zhen J, Yuan J, Fu Y, Zhu R, Wang M, Chang H, Zhao Y, Wang D, Lu Z. IL-22 promotes Fas expression in oligodendrocytes and inhibits FOXP3 expression in T cells by activating the NF-κB pathway in multiple sclerosis. Mol Immunol 2017; 82:84-93. [PMID: 28038358 DOI: 10.1016/j.molimm.2016.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Multiple sclerosis (MS) is characterized by an increase in interleukin-22 and Fas, and a decrease in FOXP3, among other factors. In this study, we examined patients with MS and healthy control subjects and used the experimental autoimmune encephalomyelitis (EAE) animal model to identify the effects of IL-22 on oligodendrocytes and T cells in MS development. In MS, the expression of Fas in oligodendrocytes and IL-22 in CD4+CCR4+CCR6+CCR10+ T cells was enhanced. Ikaros and FOXP3 were both decreased in T cells. Depending on exogenous IL-22, Fas increased the phosphorylation of mitogen- and stress-activated protein kinase 1 and activated the nuclear factor-κB pathway in oligodendrocytes, leading to an increase in Fas and oligodendrocyte apoptosis. IL-22 decreased FOXP3 expression by activating NF-κB, and it further inhibited PTEN and Ikaros expression. Tregs reversed the functions of IL-22. Taken together, these findings help to elucidate the mechanisms of IL-22 in MS development.
Collapse
Affiliation(s)
- Jin Zhen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, PR China
| | - Jun Yuan
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, Inner Mongolia, PR China
| | - Yongwang Fu
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, Inner Mongolia, PR China
| | - Runxiu Zhu
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, Inner Mongolia, PR China
| | - Meiling Wang
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, Inner Mongolia, PR China
| | - Hong Chang
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, Inner Mongolia, PR China
| | - Yan Zhao
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, Inner Mongolia, PR China
| | - Dong Wang
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, Inner Mongolia, PR China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
18
|
Browning RL, Byrd WH, Gupta N, Jones J, Mo X, Hertlein E, Yu L, Muthusamy N, Byrd JC. Lenalidomide Induces Interleukin-21 Production by T Cells and Enhances IL21-Mediated Cytotoxicity in Chronic Lymphocytic Leukemia B Cells. Cancer Immunol Res 2016; 4:698-707. [PMID: 27287425 DOI: 10.1158/2326-6066.cir-15-0291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/14/2016] [Indexed: 11/16/2022]
Abstract
The immunomodulatory drug lenalidomide has demonstrated efficacy in patients with chronic lymphocytic leukemia (CLL), despite a lack of direct cytotoxic effects in vitro The mechanism of lenalidomide efficacy in vivo is thought to occur via a combination of enhanced immune activity and an alteration of tumor cell-microenvironment interactions. We demonstrate in whole blood from patients with CLL that lenalidomide significantly depletes malignant B cells. Lenalidomide also induced production of interleukin-21 (IL21) and its mRNA in T cells from patients with CLL. In addition, lenalidomide enhanced upregulation of functional IL21 receptor (IL21R) on the cell surface and increased receptor mRNA in vitro The in vitro combination of IL21 and lenalidomide enhanced IL21-mediated cytotoxicity toward CLL cells through a variety of mechanisms. We show association of cell death with upregulation of Bid by IL21, enhanced upregulation of Bid by the combination therapy, and diminished Lck and downstream BCR signaling activation of Syk and PLCG2. Collectively, we demonstrated an immune cell-tumor cell interaction through lenalidomide-mediated induction of IL21 and IL21R, with enhanced IL21-mediated cytotoxicity, which provides justification for this combination in clinical trials for patients with CLL. Cancer Immunol Res; 4(8); 698-707. ©2016 AACR.
Collapse
Affiliation(s)
- Rebekah L Browning
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - William H Byrd
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio. Davidson College, Davidson, North Carolina
| | - Nikhil Gupta
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jeffrey Jones
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Erin Hertlein
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio.
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
19
|
Zhou L. AHR Function in Lymphocytes: Emerging Concepts. Trends Immunol 2016; 37:17-31. [PMID: 26700314 PMCID: PMC4707131 DOI: 10.1016/j.it.2015.11.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is an important regulator of the development and function of both innate and adaptive immune cells through roles associated with AHR's ability to respond to cellular and dietary ligands. Recent findings have revealed tissue and context-specific functions for AHR in both homeostasis and in during an immune response. I review these findings here, and integrate them into the current understanding of the mechanisms that regulate AHR transcription and function. I propose a conceptual framework in which AHR function is determined by three factors: the amount of AHR in any given cell, the abundance and potency of AHR ligands within certain tissues, and the tissue microenvironment wherein AHR(+) cells reside. This complexity emphasizes the necessity cell-type specific genetic approaches towards the study of AHR function.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|