1
|
Wang Y, Shao W, Liu X, Liang Q, Lei J, Shi W, Mei M, Li Y, Tan X, Yu G, Yu L, Zhang L, Qi H. High recallability of memory B cells requires ZFP318-dependent transcriptional regulation of mitochondrial function. Immunity 2024; 57:1848-1863.e7. [PMID: 38889716 DOI: 10.1016/j.immuni.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/24/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Expression of the transcriptional regulator ZFP318 is induced in germinal center (GC)-exiting memory B cell precursors and memory B cells (MBCs). Using a conditional ZFP318 fluorescence reporter that also enables ablation of ZFP318-expressing cells, we found that ZFP318-expressing MBCs were highly enriched with GC-derived cells. Although ZFP318-expressing MBCs constituted only a minority of the antigen-specific MBC compartment, their ablation severely impaired recall responses. Deletion of Zfp318 did not alter the magnitude of primary responses but markedly reduced MBC participation in recall. CD40 ligation promoted Zfp318 expression, whereas B cell receptor (BCR) signaling was inhibitory. Enforced ZFP318 expression enhanced recall performance of MBCs that otherwise responded poorly. ZFP318-deficient MBCs expressed less mitochondrial genes, had structurally compromised mitochondria, and were susceptible to reactivation-induced cell death. The abundance of ZFP318-expressing MBCs, instead of the number of antigen-specific MBCs, correlated with the potency of prime-boost vaccination. Therefore, ZFP318 controls the MBC recallability and represents a quality checkpoint of humoral immune memory.
Collapse
Affiliation(s)
- Yifeng Wang
- Changping Laboratory, Yard 28, Science Park Rd., Changping District, Beijing 102206, China
| | - Wen Shao
- Changping Laboratory, Yard 28, Science Park Rd., Changping District, Beijing 102206, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xin Liu
- Changping Laboratory, Yard 28, Science Park Rd., Changping District, Beijing 102206, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qingtai Liang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenjuan Shi
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Miao Mei
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Tan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Guocan Yu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Li Yu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Linqi Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hai Qi
- Changping Laboratory, Yard 28, Science Park Rd., Changping District, Beijing 102206, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Salerno F, Linterman MA. ZFP318 fuels memory B cells for success. Immunity 2024; 57:1723-1725. [PMID: 39142271 DOI: 10.1016/j.immuni.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
Diversity is a key feature of B cell biology-from BCR rearrangement to the heterogeneity of memory B cells. In this issue of Immunity, Wang et al. show that the zinc-finger protein ZFP318 supports mitochondrial health in certain memory B cells, thereby facilitating potent recall upon rechallenge.
Collapse
Affiliation(s)
- Fiamma Salerno
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| | | |
Collapse
|
3
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi MKK, Tavolara T, Gower A, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins KL, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. PLoS Pathog 2024; 20:e1011915. [PMID: 38861581 PMCID: PMC11195971 DOI: 10.1371/journal.ppat.1011915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/24/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
Mycobacterium tuberculosis infects two billion people across the globe, and results in 8-9 million new tuberculosis (TB) cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. Here, we investigate the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using immune and inflammatory mediators; and clinical, microbiological, and granuloma correlates of disease identified five new loci on mouse chromosomes 1, 2, 4, 16; and three known loci on chromosomes 3 and 17. Further, multiple positively correlated traits shared loci on chromosomes 1, 16, and 17 and had similar patterns of allele effects, suggesting these loci contain critical genetic regulators of inflammatory responses to M. tuberculosis. To narrow the list of candidate genes, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks to generate scores representing functional relationships. The scores were used to rank candidates for each mapped trait, resulting in 11 candidate genes: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Although all candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling, and all contain single nucleotide polymorphisms (SNPs), SNPs in only four genes (S100a8, Itgb5, Fstl1, Zfp318) are predicted to have deleterious effects on protein functions. We performed methodological and candidate validations to (i) assess biological relevance of predicted allele effects by showing that Diversity Outbred mice carrying PWK/PhJ alleles at the H-2 locus on chromosome 17 QTL have shorter survival; (ii) confirm accuracy of predicted allele effects by quantifying S100A8 protein in inbred founder strains; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this body of work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and functionally relevant gene candidates that may be major regulators of complex host-pathogens interactions contributing to granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- Daniel M. Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Anna L. Tyler
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Bulent Yener
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Deniz Koyuncu
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Metin N. Gurcan
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - MK Khalid Niazi
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Thomas Tavolara
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Adam Gower
- Clinical and Translational Science Institute, Boston University, Boston, Massachusetts, United States of America
| | - Denise Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Emily McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Melanie L. Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Aubrey Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Anas Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Philipe A. Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - Sherry L. Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Karen L. Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Gillian Beamer
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
4
|
Zhang R, Wang D, Ruan GX, Wang R, Li Y, Chen W, Huang H, Wang J, Meng L, Zhu Z, Lei D, Xu S, Ou X. Spliceosome component PHD finger 5A is essential for early B lymphopoiesis. Development 2024; 151:dev202247. [PMID: 38095286 DOI: 10.1242/dev.202247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
The spliceosome, a multi-megadalton ribonucleoprotein complex, is essential for pre-mRNA splicing in the nucleus and ensuring genomic stability. Its precise and dynamic assembly is pivotal for its function. Spliceosome malfunctions can lead to developmental abnormalities and potentially contribute to tumorigenesis. The specific role of the spliceosome in B cell development is poorly understood. Here, we reveal that the spliceosomal U2 snRNP component PHD finger protein 5A (Phf5a) is vital for early B cell development. Loss of Phf5a results in pronounced defects in B cell development, causing an arrest at the transition from pre-pro-B to early pro-B cell stage in the bone marrow of mutant mice. Phf5a-deficient B cells exhibit impaired immunoglobulin heavy (IgH) chain expression due to defective V-to-DJ gene rearrangement. Mechanistically, our findings suggest that Phf5a facilitates IgH gene rearrangement by regulating the activity of recombination-activating gene endonuclease and influencing chromatin interactions at the Igh locus.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Daoqin Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gui-Xin Ruan
- Medical School, Taizhou University, Taizhou 318000, China
| | - Ruisi Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxing Li
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenjing Chen
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hengjun Huang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Limin Meng
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhijian Zhu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dengfeng Lei
- Department of Ophthalmology, Southern University of Science and Technology Hospital, Shenzhen 518055, China
| | - Shengli Xu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Republic of Singapore
| | - Xijun Ou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi M, Tavolara T, Gower AC, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins K, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572738. [PMID: 38187647 PMCID: PMC10769337 DOI: 10.1101/2023.12.21.572738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mycobacterium tuberculosis, the bacillus that causes tuberculosis (TB), infects 2 billion people across the globe, and results in 8-9 million new TB cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. We investigated the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using clinical indicators of disease, granuloma histopathological features, and immune response traits identified five new loci on mouse chromosomes 1, 2, 4, 16 and three previously identified loci on chromosomes 3 and 17. Quantitative trait loci (QTLs) on chromosomes 1, 16, and 17, associated with multiple correlated traits and had similar patterns of allele effects, suggesting these QTLs contain important genetic regulators of responses to M. tuberculosis. To narrow the list of candidate genes in QTLs, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks, generating functional scores. The scores were then used to rank candidates for each mapped trait in each locus, resulting in 11 candidates: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Importantly, all 11 candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling. Further, all candidates contain single nucleotide polymorphisms (SNPs), and some but not all SNPs were predicted to have deleterious consequences on protein functions. Multiple methods were used for validation including (i) a statistical method that showed Diversity Outbred mice carrying PWH/PhJ alleles on chromosome 17 QTL have shorter survival; (ii) quantification of S100A8 protein levels, confirming predicted allele effects; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and new functionally relevant gene candidates that may be major regulators of granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- D M Gatti
- The Jackson Laboratory, Bar Harbor, ME
| | - A L Tyler
- The Jackson Laboratory, Bar Harbor, ME
| | | | | | - B Yener
- Rensselaer Polytechnic Institute, Troy, NY
| | - D Koyuncu
- Rensselaer Polytechnic Institute, Troy, NY
| | - M N Gurcan
- Wake Forest University School of Medicine, Winston Salem, NC
| | - Mkk Niazi
- Wake Forest University School of Medicine, Winston Salem, NC
| | - T Tavolara
- Wake Forest University School of Medicine, Winston Salem, NC
| | - A C Gower
- Clinical and Translational Science Institute, Boston University, Boston, MA
| | - D Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - E McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - M L Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, TX
| | - P A Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - S L Kurtz
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - K Elkins
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - I Kramnik
- NIEDL, Boston University, Boston, MA
| | - G Beamer
- Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
6
|
Dirks J, Andres O, Paul L, Manukjan G, Schulze H, Morbach H. IgD shapes the pre-immune naïve B cell compartment in humans. Front Immunol 2023; 14:1096019. [PMID: 36776874 PMCID: PMC9908586 DOI: 10.3389/fimmu.2023.1096019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
B cell maturation and immunoglobulin (Ig) repertoire selection are governed by expression of a functional B cell receptor (BCR). Naïve B cells co-express their BCR as IgM and IgD isotype. However, the role of the additionally expressed IgD on naïve B cells is not known. Here we assessed the impact of IgD on naïve B cell maturation and Ig repertoire selection in 8 individuals from 3 different families with heterozygous loss-of-function or loss-of expression mutations in IGHD. Although naïve B cells from these individuals expressed IgM on their surface, the IGHD variant in heterozygous state entailed a chimeric situation by allelic exclusion with almost half of the naïve B cell population lacking surface IgD expression. Flow cytometric analyses revealed a distinct phenotype of IgD-negative naïve B cells with decreased expression of CD19, CD20 and CD21 as well as lower BAFF-R and integrin-β7 expression. IgD-negative B cells were less responsive in vitro after engaging the IgM-BCR, TLR7/9 or CD40 pathway. Additionally, a selective disadvantage of IgD-negative B cells within the T2 transitional and mature naïve B cell compartment as well as reduced frequencies of IgMlo/- B cells within the mature naïve B cell compartment lacking IgD were evident. RNA-Ig-seq of bulk sorted B cell populations showed an altered selection of distinct VH segments in the IgD-negative mature naïve B cell population. We conclude that IgD expression on human naïve B cells is redundant for generation of naïve B cells in general, but further shapes the naive B cell compartment starting from T2 transitional B cells. Our observations suggest an unexpected role of IgD expression to be critical for selection of distinct Ig VH segments into the pre-immune Ig repertoire and for the survival of IgMlo/- naïve B cells known to be enriched in poly-/autoreactive B cell clones.
Collapse
Affiliation(s)
- Johannes Dirks
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Oliver Andres
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Luisa Paul
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.,Department of Pediatrics I, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
| | - Henner Morbach
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Abstract
AbstractIn B cells, IgD is expressed together with IgM through alternative splicing of primary VHDJH-Cμ-s-m-Cδ-s-m RNAs, and also through IgD class switch DNA recombination (CSR) via double-strand DNA breaks (DSB) and synapse of Sμ with σδ. How such DSBs are resolved is still unknown, despite our previous report showing that Rad52 effects the ‘short-range’ microhomology-mediated synapsis of intra-Sμ region DSBs. Here we find that induction of IgD CSR downregulates Zfp318, and promotes Rad52 phosphorylation and recruitment to Sμ and σδ, thereby leading to alternative end-joining (A-EJ)-mediated Sμ-σδ recombination with extensive microhomologies, VHDJH-Cδs transcription and sustained IgD secretion. Rad52 ablation in mouse Rad52−/− B cells aborts IgD CSR in vitro and in vivo and dampens the specific IgD antibody response to OVA. Rad52 knockdown in human B cells also abrogates IgD CSR. Finally, Rad52 phosphorylation is associated with high levels of IgD CSR and anti-nuclear IgD autoantibodies in patients with systemic lupus erythematosus and in lupus-prone mice. Our findings thus show that Rad52 mediates IgD CSR through microhomology-mediated A-EJ in concert with Zfp318 downregulation.
Collapse
|
8
|
Masle-Farquhar E, Peters TJ, Miosge LA, Parish IA, Weigel C, Oakes CC, Reed JH, Goodnow CC. Uncontrolled CD21low age-associated and B1 B cell accumulation caused by failure of an EGR2/3 tolerance checkpoint. Cell Rep 2022; 38:110259. [DOI: 10.1016/j.celrep.2021.110259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/03/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022] Open
|
9
|
Wan Z, Zhao Y, Sun Y. Immunoglobulin D and its encoding genes: An updated review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104198. [PMID: 34237381 DOI: 10.1016/j.dci.2021.104198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/03/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Since the identification of a functional Cδ gene in ostriches, immunoglobulin (Ig) D has been considered to be an extremely evolutionarily conserved Ig isotype besides the IgM found in all classes of jawed vertebrates. However, in contrast to IgM (which remains stable over evolutionary time), IgD shows considerable structural plasticity among vertebrate species and, moreover, its functions are far from elucidated even in humans and mice. Recently, several studies have shown that high expression of the IgD-B-cell receptor (IgD-BCR) may help physiologically autoreactive B cells survive in peripheral lymphoid tissues thanks to unresponsiveness to self-antigens and help their entry into germinal centers to "redeem" autoreactivity via somatic hypermutation. Other studies have demonstrated that secreted IgD may enhance mucosal homeostasis and immunity by linking B cells with basophils to optimize T-helper-2 cell-mediated responses and to constrain IgE-mediated basophil degranulation. Herein, we review the new discoveries on IgD-encoding genes in jawed vertebrates in the past decade. We also highlight advances in the functions of the IgD-BCR and secreted IgD in humans and mice.
Collapse
Affiliation(s)
- Zihui Wan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China.
| |
Collapse
|
10
|
Ochiai K, Yamaoka M, Swaminathan A, Shima H, Hiura H, Matsumoto M, Kurotaki D, Nakabayashi J, Funayama R, Nakayama K, Arima T, Ikawa T, Tamura T, Sciammas R, Bouvet P, Kundu TK, Igarashi K. Chromatin Protein PC4 Orchestrates B Cell Differentiation by Collaborating with IKAROS and IRF4. Cell Rep 2020; 33:108517. [PMID: 33357426 DOI: 10.1016/j.celrep.2020.108517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022] Open
Abstract
The chromatin protein positive coactivator 4 (PC4) has multiple functions, including chromatin compaction. However, its role in immune cells is largely unknown. We show that PC4 orchestrates chromatin structure and gene expression in mature B cells. B-cell-specific PC4-deficient mice show impaired production of antibody upon antigen stimulation. The PC4 complex purified from B cells contains the transcription factors (TFs) IKAROS and IRF4. IKAROS protein is reduced in PC4-deficient mature B cells, resulting in de-repression of their target genes in part by diminished interactions with gene-silencing components. Upon activation, the amount of IRF4 protein is not increased in PC4-deficient B cells, resulting in reduction of plasma cells. Importantly, IRF4 reciprocally induces PC4 expression via a super-enhancer. PC4 knockdown in human B cell lymphoma and myeloma cells reduces IKAROS protein as an anticancer drug, lenalidomide. Our findings establish PC4 as a chromatin regulator of B cells and a possible therapeutic target adjoining IKAROS in B cell malignancies.
Collapse
Affiliation(s)
- Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan.
| | - Mari Yamaoka
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Amrutha Swaminathan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Hitoshi Hiura
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Yokohama 236-0004, Japan
| | - Jun Nakabayashi
- Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Yokohama 236-0004, Japan
| | - Ryo Funayama
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan; Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Keiko Nakayama
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan; Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Tomokatsu Ikawa
- Division of Immunobiology, Tokyo University of Science, Yamazaki 2669, Noda 278-0022, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Yokohama 236-0004, Japan
| | - Roger Sciammas
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| | - Philippe Bouvet
- Université de Lyon, Ecole Normale Supérieure de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan.
| |
Collapse
|
11
|
Bilska A, Kusio-Kobiałka M, Krawczyk PS, Gewartowska O, Tarkowski B, Kobyłecki K, Nowis D, Golab J, Gruchota J, Borsuk E, Dziembowski A, Mroczek S. Immunoglobulin expression and the humoral immune response is regulated by the non-canonical poly(A) polymerase TENT5C. Nat Commun 2020; 11:2032. [PMID: 32341344 PMCID: PMC7184606 DOI: 10.1038/s41467-020-15835-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/28/2020] [Indexed: 02/06/2023] Open
Abstract
TENT5C is a non-canonical cytoplasmic poly(A) polymerase highly expressed by activated B cells to suppress their proliferation. Here we measure the global distribution of poly(A) tail lengths in responsive B cells using a Nanopore direct RNA-sequencing approach, showing that TENT5C polyadenylates immunoglobulin mRNAs regulating their half-life and consequently steady-state levels. TENT5C is upregulated in differentiating plasma cells by innate signaling. Compared with wild-type, Tent5c−/− mice produce fewer antibodies and have diminished T-cell-independent immune response despite having more CD138high plasma cells as a consequence of accelerated differentiation. B cells from Tent5c−/− mice also have impaired capacity of the secretory pathway, with reduced ER volume and unfolded protein response. Importantly, these functions of TENT5C are dependent on its enzymatic activity as catalytic mutation knock-in mice display the same defect as Tent5c−/−. These findings define the role of the TENT5C enzyme in the humoral immune response. Regulating polyadenylation is important for mRNA stability, which can in turn affect B cell maturation and humoral immune responses. Here the authors use Nanopore poly(A) sequencing to explore the importance of the cytoplasmic poly(A) polymerase TENT5C, particularly in the production of immunoglobulins.
Collapse
Affiliation(s)
- Aleksandra Bilska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Monika Kusio-Kobiałka
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Paweł S Krawczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Olga Gewartowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Bartosz Tarkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Kamil Kobyłecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Dominika Nowis
- Genomic Medicine, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.,Centre of Preclinical Research, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Jakub Gruchota
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Ewa Borsuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland.,Department of Embryology, Institute of Zoology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland.
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland.
| |
Collapse
|
12
|
Schwickert TA, Tagoh H, Schindler K, Fischer M, Jaritz M, Busslinger M. Ikaros prevents autoimmunity by controlling anergy and Toll-like receptor signaling in B cells. Nat Immunol 2019; 20:1517-1529. [PMID: 31591571 DOI: 10.1038/s41590-019-0490-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
The establishment of a diverse B cell antigen receptor (BCR) repertoire by V(D)J recombination also generates autoreactive B cells. Anergy is one tolerance mechanism; it renders autoreactive B cells insensitive to stimulation by self-antigen, whereas Toll-like receptor (TLR) signaling can reactivate anergic B cells. Here, we describe a critical role of the transcription factor Ikaros in controlling BCR anergy and TLR signaling. Mice with specific deletion of Ikaros in mature B cells developed systemic autoimmunity. Ikaros regulated many anergy-associated genes, including Zfp318, which is implicated in the attenuation of BCR responsiveness by promoting immunoglobulin D expression in anergic B cells. TLR signaling was hyperactive in Ikaros-deficient B cells, which failed to upregulate feedback inhibitors of the MyD88-nuclear factor κB signaling pathway. Systemic inflammation was lost on expression of a non-self-reactive BCR or loss of MyD88 in Ikaros-deficient B cells. Thus, Ikaros acts as a guardian preventing autoimmunity by promoting BCR anergy and restraining TLR signaling.
Collapse
Affiliation(s)
- Tanja A Schwickert
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria.
| | - Hiromi Tagoh
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria.,Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Karina Schindler
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Maria Fischer
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
13
|
Waters LR, Ahsan FM, Ten Hoeve J, Hong JS, Kim DNH, Minasyan A, Braas D, Graeber TG, Zangle TA, Teitell MA. Ampk regulates IgD expression but not energy stress with B cell activation. Sci Rep 2019; 9:8176. [PMID: 31160601 PMCID: PMC6546716 DOI: 10.1038/s41598-019-43985-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Ampk is an energy gatekeeper that responds to decreases in ATP by inhibiting energy-consuming anabolic processes and promoting energy-generating catabolic processes. Recently, we showed that Lkb1, an understudied kinase in B lymphocytes and a major upstream kinase for Ampk, had critical and unexpected roles in activating naïve B cells and in germinal center formation. Therefore, we examined whether Lkb1 activities during B cell activation depend on Ampk and report surprising Ampk activation with in vitro B cell stimulation in the absence of energy stress, coupled to rapid biomass accumulation. Despite Ampk activation and a controlling role for Lkb1 in B cell activation, Ampk knockout did not significantly affect B cell activation, differentiation, nutrient dynamics, gene expression, or humoral immune responses. Instead, Ampk loss specifically repressed the transcriptional expression of IgD and its regulator, Zfp318. Results also reveal that early activation of Ampk by phenformin treatment impairs germinal center formation but does not significantly alter antibody responses. Combined, the data show an unexpectedly specific role for Ampk in the regulation of IgD expression during B cell activation.
Collapse
Affiliation(s)
- Lynnea R Waters
- Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Fasih M Ahsan
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Johanna Ten Hoeve
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- UCLA Metabolomics Center, UCLA, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, 90095, USA
| | - Jason S Hong
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Diane N H Kim
- Department of Bioengineering, UCLA, Los Angeles, CA, 90095, USA
| | - Aspram Minasyan
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, 90095, USA
| | - Daniel Braas
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- UCLA Metabolomics Center, UCLA, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- UCLA Metabolomics Center, UCLA, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, 90095, USA
| | - Thomas A Zangle
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Michael A Teitell
- Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA.
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, 90095, USA.
- Department of Pediatrics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
14
|
Setz CS, Khadour A, Renna V, Iype J, Gentner E, He X, Datta M, Young M, Nitschke L, Wienands J, Maity PC, Reth M, Jumaa H. Pten controls B-cell responsiveness and germinal center reaction by regulating the expression of IgD BCR. EMBO J 2019; 38:embj.2018100249. [PMID: 31015337 PMCID: PMC6545559 DOI: 10.15252/embj.2018100249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 01/10/2023] Open
Abstract
In contrast to other B‐cell antigen receptor (BCR) classes, the function of IgD BCR on mature B cells remains largely elusive as mature B cells co‐express IgM, which is sufficient for development, survival, and activation of B cells. Here, we show that IgD expression is regulated by the forkhead box transcription factor FoxO1, thereby shifting the responsiveness of mature B cells towards recognition of multivalent antigen. FoxO1 is repressed by phosphoinositide 3‐kinase (PI3K) signaling and requires the lipid phosphatase Pten for its activation. Consequently, Pten‐deficient B cells expressing knock‐ins for BCR heavy and light chain genes are unable to upregulate IgD. Furthermore, in the presence of autoantigen, Pten‐deficient B cells cannot eliminate the autoreactive BCR specificity by secondary light chain gene recombination. Instead, Pten‐deficient B cells downregulate BCR expression and become unresponsive to further BCR‐mediated stimulation. Notably, we observed a delayed germinal center (GC) reaction by IgD‐deficient B cells after immunization with trinitrophenyl‐ovalbumin (TNP‐Ova), a commonly used antigen for T‐cell‐dependent antibody responses. Together, our data suggest that the activation of IgD expression by Pten/FoxO1 results in mature B cells that are selectively responsive to multivalent antigen and are capable of initiating rapid GC reactions and T‐cell‐dependent antibody responses.
Collapse
Affiliation(s)
- Corinna S Setz
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Ahmad Khadour
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Valerio Renna
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Joseena Iype
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany.,Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Eva Gentner
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Xiaocui He
- Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Moumita Datta
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Marc Young
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Wienands
- Cellular and Molecular Immunology, Georg August University Göttingen, Göttingen, Germany
| | - Palash C Maity
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Michael Reth
- Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Hassan Jumaa
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
15
|
Aresta-Branco F, Erben E, Papavasiliou FN, Stebbins CE. Mechanistic Similarities between Antigenic Variation and Antibody Diversification during Trypanosoma brucei Infection. Trends Parasitol 2019; 35:302-315. [PMID: 30826207 DOI: 10.1016/j.pt.2019.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Trypanosoma brucei, which causes African trypanosomiasis, avoids immunity by periodically switching its surface composition. The parasite is coated by 10 million identical, monoallelically expressed variant surface glycoprotein (VSG) molecules. Multiple distinct parasites (with respect to their VSG coat) coexist simultaneously during each wave of parasitemia. This substantial antigenic load is countered by B cells whose antigen receptors (antibodies or immunoglobulins) are also monoallelically expressed, and that diversify dynamically to counter each variant antigen. Here we examine parallels between the processes that generate VSGs and antibodies. We also discuss current insights into VSG mRNA regulation that may inform the emerging field of Ig mRNA biology. We conclude by extending the parallels between VSG and Ig to the protein level.
Collapse
Affiliation(s)
- Francisco Aresta-Branco
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany; Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany; These authors contributed equally to this work
| | - Esteban Erben
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany; These authors contributed equally to this work
| | - F Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany.
| | - C Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
16
|
Nechvatalova J, Bartol SJW, Chovancova Z, Boon L, Vlkova M, van Zelm MC. Absence of Surface IgD Does Not Impair Naive B Cell Homeostasis or Memory B Cell Formation in IGHD Haploinsufficient Humans. THE JOURNAL OF IMMUNOLOGY 2018; 201:1928-1935. [DOI: 10.4049/jimmunol.1800767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
|
17
|
Gutzeit C, Chen K, Cerutti A. The enigmatic function of IgD: some answers at last. Eur J Immunol 2018; 48:1101-1113. [PMID: 29733429 DOI: 10.1002/eji.201646547] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/27/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
IgD emerged soon after IgM at the time of inception of the adaptive immune system. Despite its evolutionary conservation from fish to humans, the specific functions of IgD have only recently begun to be elucidated. Mature B cells undergo alternative mRNA splicing to express IgD and IgM receptors with identical antigenic specificity. The enigma of dual IgD and IgM expression has been tackled by several recent studies showing that IgD helps peripheral accumulation of physiologically autoreactive B cells through its functional unresponsiveness to self-antigens but prompt readiness against foreign antigens. IgD achieves this balance by attenuating IgM-mediated anergy while promoting specific responses to multimeric non-self-antigens. Additional research has clarified how and why certain mucosal B cells become plasmablasts or plasma cells specializing in IgD secretion. In particular, the microbiota has been shown to play an important role in driving class switch-mediated replacement of IgM with IgD. Secreted IgD appears to enhance mucosal homeostasis and immune surveillance by "arming" myeloid effector cells such as basophils and mast cells with IgD antibodies reactive against mucosal antigens, including commensal and pathogenic microbes. Here we will review these advances and discuss their implications in humoral immunity in human and mice.
Collapse
Affiliation(s)
- Cindy Gutzeit
- Immunology Institute, Department of Medicine, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Mucosal Immunology Studies Team (MIST), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Cerutti
- Immunology Institute, Department of Medicine, Mount Sinai Icahn School of Medicine, New York, NY, USA.,Mucosal Immunology Studies Team (MIST), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
18
|
Díaz-Muñoz MD, Turner M. Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System. Front Immunol 2018; 9:1094. [PMID: 29875770 PMCID: PMC5974052 DOI: 10.3389/fimmu.2018.01094] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043/CNRS U5282, Toulouse, France
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
19
|
Schaub A, Glasmacher E. Splicing in immune cells-mechanistic insights and emerging topics. Int Immunol 2018; 29:173-181. [PMID: 28498981 PMCID: PMC5890895 DOI: 10.1093/intimm/dxx026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/27/2017] [Indexed: 11/26/2022] Open
Abstract
Differential splicing of mRNAs not only enables regulation of gene expression levels, but also ensures a high degree of gene-product diversity. The extent to which splicing of mRNAs is utilized as a mechanism in immune cells has become evident within the last few years. Still, only a few of these mechanisms have been well studied. In this review, we discuss some of the best-understood mechanisms, for instance the differential splicing of CD45 in T cells, as well as immunoglobulin genes in B cells. Beyond that we provide general mechanistic insights on how, when and where this process takes place and discuss the current knowledge regarding these topics in immune cells. We also highlight some of the reported links to immune-related diseases, genome-wide sequencing studies that revealed thousands of differentially spliced transcripts, as well as splicing studies on immune cells that remain mechanistically not fully understood. We thereby display potential emerging topics for future studies centered on splicing mechanisms in immune cells.
Collapse
Affiliation(s)
- Annalisa Schaub
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Elke Glasmacher
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| |
Collapse
|
20
|
Noviski M, Mueller JL, Satterthwaite A, Garrett-Sinha LA, Brombacher F, Zikherman J. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate. eLife 2018. [PMID: 29521626 PMCID: PMC5897097 DOI: 10.7554/elife.35074] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Naive B cells co-express two BCR isotypes, IgM and IgD, with identical antigen-binding domains but distinct constant regions. IgM but not IgD is downregulated on autoreactive B cells. Because these isotypes are presumed to be redundant, it is unknown how this could impose tolerance. We introduced the Nur77-eGFP reporter of BCR signaling into mice that express each BCR isotype alone. Despite signaling strongly in vitro, IgD is less sensitive than IgM to endogenous antigen in vivo and developmental fate decisions are skewed accordingly. IgD-only Lyn-/- B cells cannot generate autoantibodies and short-lived plasma cells (SLPCs) in vivo, a fate thought to be driven by intense BCR signaling induced by endogenous antigens. Similarly, IgD-only B cells generate normal germinal center, but impaired IgG1+ SLPC responses to T-dependent immunization. We propose a role for IgD in maintaining the quiescence of autoreactive B cells and restricting their differentiation into autoantibody secreting cells.
Collapse
Affiliation(s)
- Mark Noviski
- Biomedical Sciences (BMS) Graduate Program, University of California San Francisco, San Francisco, United States
| | - James L Mueller
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, United States
| | - Anne Satterthwaite
- Department of Immunology, UT Southwestern Medical Center, Dallas, United States
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, United States
| | - Frank Brombacher
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, Division of Immunology, Faculty of Health Sciences, University of Cape Town & Medical Research Council (SAMRC), Cape Town, South Africa
| | - Julie Zikherman
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, United States
| |
Collapse
|
21
|
RNA-binding proteins control gene expression and cell fate in the immune system. Nat Immunol 2018; 19:120-129. [PMID: 29348497 DOI: 10.1038/s41590-017-0028-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022]
Abstract
RNA-binding proteins (RBPs) are essential for the development and function of the immune system. They interact dynamically with RNA to control its biogenesis and turnover by transcription-dependent and transcription-independent mechanisms. In this Review, we discuss the molecular mechanisms by which RBPs allow gene expression changes to occur at different speeds and to varying degrees, and which RBPs regulate the diversity of the transcriptome and proteome. These proteins are nodes for integration of transcriptional and signaling networks and are intimately linked to intermediary metabolism. They are essential components of regulatory feedback mechanisms that maintain immune tolerance and limit inflammation. The role of RBPs in malignancy and autoimmunity has led to their emergence as targets for the development of new therapeutic modalities.
Collapse
|
22
|
Monzón-Casanova E, Screen M, Díaz-Muñoz MD, Coulson RMR, Bell SE, Lamers G, Solimena M, Smith CWJ, Turner M. The RNA-binding protein PTBP1 is necessary for B cell selection in germinal centers. Nat Immunol 2018; 19:267-278. [PMID: 29358707 PMCID: PMC5842895 DOI: 10.1038/s41590-017-0035-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
Abstract
Antibody affinity maturation occurs in germinal centres (GC) where B
cells cycle between the light zone (LZ) and the dark zone. In the LZ GC B cells
bearing immunoglobulins with the highest affinity for antigen receive positive
selection signals from T helper cells that promotes their rapid proliferation.
Here we show that the RNA binding protein PTBP1 is necessary for the progression
of GC B cells through late S-phase of the cell cycle and for affinity
maturation. PTBP1 is required for the proper expression of the c-MYC-dependent
gene program induced in GC B cells receiving T cell help and directly regulates
the alternative splicing and abundance of transcripts increased during positive
selection to promote proliferation.
Collapse
Affiliation(s)
- Elisa Monzón-Casanova
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Michael Screen
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Manuel D Díaz-Muñoz
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Richard M R Coulson
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Sarah E Bell
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Greta Lamers
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | | | - Martin Turner
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK.
| |
Collapse
|
23
|
Díaz-Muñoz MD, Monzón-Casanova E, Turner M. Characterization of the B Cell Transcriptome Bound by RNA-Binding Proteins with iCLIP. Methods Mol Biol 2017; 1623:159-179. [PMID: 28589356 DOI: 10.1007/978-1-4939-7095-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Posttranscriptional regulation of gene expression shapes the B cell transcriptome and controls messenger RNA (mRNA) translation into protein. Recent reports have highlighted the importance of RNA binding proteins (RBPs) for mRNA splicing, subcellular location, stability, and translation during B lymphocyte development, activation, and differentiation. Here we describe individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) in primary lymphocytes, a method that maps RNA-protein interactions in a genome-wide scale allowing mechanistic analysis of RBP function. We discuss the latest improvements in iCLIP technology and provide some examples of how integration of the RNA-protein interactome with other high-throughput mRNA sequencing methodologies uncovers the important role of RBP-mediated RNA regulation in key biological cell processes.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Department of Immunobiology, Division of Immunology, Infection and Inflammatory Disease, King's College London, SE1 9RT, London, UK.
| | - Elisa Monzón-Casanova
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK.
| |
Collapse
|
24
|
Ishizuka M, Ohtsuka E, Inoue A, Odaka M, Ohshima H, Tamura N, Yoshida K, Sako N, Baba T, Kashiwabara SI, Okabe M, Noguchi J, Hagiwara H. Abnormal spermatogenesis and male infertility in testicular zinc finger protein Zfp318-knockout mice. Dev Growth Differ 2016; 58:600-8. [PMID: 27385512 PMCID: PMC11520953 DOI: 10.1111/dgd.12301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 05/07/2016] [Accepted: 05/23/2016] [Indexed: 11/30/2022]
Abstract
Zfp318, a mouse gene with a Cys2/His2 zinc finger motif, is mainly expressed in germ cells in the testis. It encodes two alternative transcripts, which regulate androgen receptor-mediated transcriptional activation or repression by overexpression of them. However, the role of Zfp318 is still obscure in vivo, especially in spermatogenesis. To elucidate the role of Zfp318 during gamete production, we established a knockout mouse line. Zfp318-null male mice exhibited infertility, whereas Zfp318-null female mice displayed normal fertility. ZFP318 was expressed during multiple stages of spermatogenesis, from spermatocytes to round spermatids. The nuclei of secondary spermatocytes showed high levels of expression. Histological analysis and quantitative analysis of DNA content showed decreased numbers of both spermatids in the seminiferous tubules and mature spermatozoa in the epididymides of Zfp318-null mice. These results suggest that Zfp318 is expressed as a functional protein in testicular germ cells and plays an important role in meiosis during spermatogenesis.
Collapse
Affiliation(s)
- Masamichi Ishizuka
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Eri Ohtsuka
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Atsuto Inoue
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Mirei Odaka
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hirotaka Ohshima
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Norihisa Tamura
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kaoru Yoshida
- Biomedical Engineering Center, Toin University of Yokohama, Yokohama, 225-8503, Japan
| | - Norihisa Sako
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, 225-8503, Japan
| | - Tadashi Baba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Shin-Ichi Kashiwabara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Masaru Okabe
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Junko Noguchi
- Germ Cell Conservation Laboratory, National Institute of Agrobiological Sciences, Ibaraki, 305-8602, Japan
| | - Hiromi Hagiwara
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, 225-8503, Japan.
| |
Collapse
|
25
|
Abstract
Transcription termination is a fundamental process in which RNA polymerase ceases RNA chain extension and dissociates from the chromatin template, thereby defining the end of the transcription unit. Our understanding of the biological role and functional importance of termination by RNA polymerase II and the range of processes in which it is involved has grown significantly in recent years. A large set of nucleic acid-binding proteins and enzymes have been identified as part of the termination machinery. A greater appreciation for the coupling of termination to RNA processing and metabolism has been recognized. In addition to serving as an essential step at the end of the transcription cycle, termination is involved in the regulation of a broad range of cellular processes. More recently, a role for termination in pervasive transcription, non-coding RNA regulation, genetic stability, chromatin remodeling, the immune response, and disease has come to the fore. Interesting mechanistic questions remain, but the last several years have resulted in significant insights into termination and an increasing recognition of its biological importance.
Collapse
Affiliation(s)
- Travis J Loya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
26
|
The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation. Int J Mol Sci 2015; 17:ijms17010003. [PMID: 26703587 PMCID: PMC4730250 DOI: 10.3390/ijms17010003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system.
Collapse
|
27
|
Tallmadge RL, Shen L, Tseng CT, Miller SC, Barry J, Felippe MJB. Bone marrow transcriptome and epigenome profiles of equine common variable immunodeficiency patients unveil block of B lymphocyte differentiation. Clin Immunol 2015; 160:261-76. [PMID: 25988861 DOI: 10.1016/j.clim.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/30/2022]
Abstract
Common variable immunodeficiency (CVID) is a late-onset humoral deficiency characterized by B lymphocyte dysfunction or loss, decreased immunoglobulin production, and recurrent bacterial infections. CVID is the most frequent human primary immunodeficiency but still presents challenges in the understanding of its etiology and treatment. CVID in equine patients manifests with a natural impairment of B lymphocyte differentiation, and is a unique model to identify genetic and epigenetic mechanisms of disease. Bone marrow transcriptome analyses revealed decreased expression of genes indicative of the pro-B cell differentiation stage, importantly PAX5 (p≤0.023). We hypothesized that aberrant epigenetic regulation caused PAX5 gene silencing, resulting in the late-onset and non-familial manifestation of CVID. A significant increase in PAX5 enhancer region methylation was identified in equine CVID patients by genome-wide reduced-representation bisulfite sequencing and bisulfite PCR sequencing (p=0.000). Thus, we demonstrate that integrating transcriptomics and epigenetics in CVID enlightens potential mechanisms of dysfunctional B lymphopoiesis or function.
Collapse
Affiliation(s)
- Rebecca L Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lishuang Shen
- Cornell Mammalian Cell Reprogramming Core, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Chia T Tseng
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Steven C Miller
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jay Barry
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY 14853, USA
| | - M Julia B Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
28
|
Pioli PD, Chen X, Weis JJ, Weis JH. Fatal autoimmunity results from the conditional deletion of Snai2 and Snai3. Cell Immunol 2015; 295:1-18. [PMID: 25732600 DOI: 10.1016/j.cellimm.2015.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 01/03/2023]
Abstract
Transcriptional regulation of gene expression is a key component of orchestrating proper immune cell development and function. One strategy for maintaining these transcriptional programs has been the evolution of transcription factor families with members possessing overlapping functions. Using the germ line deletion of Snai2 combined with the hematopoietic specific deletion of Snai3, we report that these factors function redundantly to preserve the development of B and T cells. Such animals display severe lymphopenia, alopecia and dermatitis as well as profound autoimmunity manifested by the production of high levels of autoantibodies as early as 3 weeks of age and die by 30 days after birth. Autoantibodies included both IgM and IgG isotypes and were reactive against cytoplasmic and membranous components. A regulatory T cell defect contributed to the autoimmune response in that adoptive transfer of wild type regulatory T cells alleviated symptoms of autoimmunity. Additionally, transplantation of Snai2/Snai3 double deficient bone marrow into Snai2 sufficient Rag2(-/-) recipients resulted in autoantibody generation. The results demonstrated that appropriate expression of Snai2 and Snai3 in cells of hematopoietic derivation plays an important role in development and maintenance of immune tolerance.
Collapse
Affiliation(s)
- Peter D Pioli
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States.
| | - Xinjian Chen
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - Janis J Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - John H Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| |
Collapse
|