1
|
Coban B, Wang Z, Liao CY, Beslmüller K, Timmermans MA, Martens JW, Hundscheid JH, Slutter B, Zweemer AJ, Neubert E, Danen EH. GRHL2 suppression of NT5E/CD73 in breast cancer cells modulates CD73-mediated adenosine production and T cell recruitment. iScience 2024; 27:109738. [PMID: 38706844 PMCID: PMC11068632 DOI: 10.1016/j.isci.2024.109738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/03/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Tumor tissues often contain high extracellular adenosine, promoting an immunosuppressed environment linked to mesenchymal transition and immune evasion. Here, we show that loss of the epithelial transcription factor, GRHL2, triggers NT5E/CD73 ecto-enzyme expression, augmenting the conversion of AMP to adenosine. GRHL2 binds an intronic NT5E sequence and is negatively correlated with NT5E/CD73 in breast cancer cell lines and patients. Remarkably, the increased adenosine levels triggered by GRHL2 depletion in MCF-7 breast cancer cells do not suppress but mildly increase CD8 T cell recruitment, a response mimicked by a stable adenosine analog but prevented by CD73 inhibition. Indeed, NT5E expression shows a positive rather than negative association with CD8 T cell infiltration in breast cancer patients. These findings reveal a GRHL2-regulated immune modulation mechanism in breast cancers and show that extracellular adenosine, besides its established role as a suppressor of T cell-mediated cytotoxicity, is associated with enhanced T cell recruitment.
Collapse
Affiliation(s)
- Bircan Coban
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Zi Wang
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- Department of clinical laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Chen-yi Liao
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Klara Beslmüller
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Mieke A.M. Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - John W.M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Bram Slutter
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Annelien J.M. Zweemer
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Elsa Neubert
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Erik H.J. Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| |
Collapse
|
2
|
Huang R, Ning Q, Zhao J, Zhao X, Zeng L, Yi Y, Tang S. Targeting ENPP1 for cancer immunotherapy: Killing two birds with one stone. Biochem Pharmacol 2024; 220:116006. [PMID: 38142838 DOI: 10.1016/j.bcp.2023.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Cancer immunotherapy, particularly with immune checkpoint inhibitors, has revolutionized the paradigm of cancer treatment. Nevertheless, the efficacy of cancer immunotherapy remains limited in most clinical settings due to the lack of a preexisting antitumor T-cell response in tumors. Therefore, the clinical outcomes of cancer immunotherapy must be improved crucially. With increased awareness of the importance of the innate immune response in the recruitment of T cells, as well as the onset and maintenance of the T cell response, great interest has been shown in activating the cGAS-STING signaling pathway to awaken the innate immune response, thereby orchestrating both innate and adaptive immune responses to induce tumor clearance. However, tumor cells have evolved to overexpress ectonucleotide pyrophosphate phosphodiesterase 1 (ENPP1), which degrades the immunotransmitter 2',3'-cGAMP and promotes the production of immune-suppressing adenosine, resulting in inhibition of the anticancer immune response in the tumor microenvironment. Clinically, ENPP1 overexpression is closely associated with poor prognosis in patients with cancer. Conversely, depleting or inhibiting ENPP1 has been verified to elevate extracellular 2',3'-cGAMP levels and inhibit the generation of adenosine, thereby reinvigorating the anticancer immune response for tumor elimination. A variety of ENPP1 inhibitors have recently been developed and have demonstrated significant promise for cancer immunotherapy. In this review, we provide an overview of ENPP1, dissect its immunosuppressive mechanisms, and discuss the development of ENPP1 inhibitors with the potential to further improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Ruilei Huang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jihui Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Xuhong Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Luting Zeng
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yi Yi
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
3
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Qi C, Feng Y, Jiang Y, Chen W, Vakal S, Chen JF, Zheng W. A 2AR antagonist treatment for multiple sclerosis: Current progress and future prospects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:185-223. [PMID: 37741692 DOI: 10.1016/bs.irn.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Emerging evidence suggests that both selective and non-selective Adenosine A2A receptor (A2AR) antagonists could effectively protect mice from experimental autoimmune encephalomyelitis (EAE), which is the most commonly used animal model for multiple sclerosis (MS) research. Meanwhile, the recent FDA approval of Nourianz® (istradefylline) in 2019 as an add-on treatment to levodopa in Parkinson's disease (PD) with "OFF" episodes, along with its proven clinical safety, has prompted us to explore the potential of A2AR antagonists in treating multiple sclerosis (MS) through clinical trials. However, despite promising findings in experimental autoimmune encephalomyelitis (EAE), the complex and contradictory role of A2AR signaling in EAE pathology has raised concerns about the feasibility of using A2AR antagonists as a therapeutic approach for MS. This review addresses the potential effect of A2AR antagonists on EAE/MS in both the peripheral immune system (PIS) and the central nervous system (CNS). In brief, A2AR antagonists had a moderate effect on the proliferation and inflammatory response, while exhibiting a potent anti-inflammatory effect in the CNS through their impact on microglia, astrocytes, and the endothelial cells/epithelium of the blood-brain barrier. Consequently, A2AR signaling remains an essential immunomodulator in EAE/MS, suggesting that A2AR antagonists hold promise as a drug class for treating MS.
Collapse
Affiliation(s)
- Chenxing Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yijia Feng
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yiwei Jiang
- Alberta Institute, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wangchao Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jiang-Fan Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wu Zheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.
| |
Collapse
|
5
|
Silva-Vilches C, Bolduan V, Alabdullah M, Steinbrink K, Probst HC, Enk A, Mahnke K. Topical Application of Adenosine A 2-Type Receptor Agonists Prevents Contact Hypersensitivity Reactions in Mice by Affecting Skin Dendritic Cells. J Invest Dermatol 2023; 143:408-418.e6. [PMID: 36174716 DOI: 10.1016/j.jid.2022.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/18/2022] [Accepted: 07/19/2022] [Indexed: 10/14/2022]
Abstract
Adenosine (Ado) produced by skin and skin migratory CD73+ dendritic cells is critically involved in tolerance to haptens. We therefore investigated the use of Ado receptor agonists for the treatment of contact hypersensitivity reactions. A2A- 4-[2-[[6-Amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino] ethyl]benzenepropanoic acid hydrochloride (CGS) and A2B- 2-[[6-Amino-3,5-dicyano-4-[4-[cyclopropylmethoxy]phenyl]-2-pyridinyl]thio]-acetamide (BAY) specific Ado receptor agonists were epicutaneously applied to the skin before sensitization and challenge with DNFB. Both agonists reduced ear swelling compared with solvent controls. This was accompanied by fewer activated T cells in the skin after the challenge and by higher numbers of T cells expressing anergic markers such as LAG-3, CD137, PD-1, CD272, and TIM-3 in the lymph nodes of CGS-treated groups. In ear tissue, Ado receptor agonist treatment reduced the production of proinflammatory cytokines and chemokines as well as the infiltration by neutrophils after sensitization. Moreover, reduced numbers of skin migratory dendritic cells producing less IL-12 and exhibiting lower expression of CD86 were recorded in lymph nodes after sensitization. In cocultures of skin migratory dendritic cells from CGS-treated mice with T cells, reduced proliferation of T cells and decreased secretion of proinflammatory cytokines compared with that of solvent controls were apparent. In conclusion, topical application of Ado receptor agonists to the skin prevents sensitization of T cells against haptens by reducing the migration and activation of skin migratory dendritic cells.
Collapse
Affiliation(s)
- Cinthia Silva-Vilches
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Vanessa Bolduan
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Mohamad Alabdullah
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Hospital Münster, Westfälische Wilhelms-University Münster, Münster, Germany
| | | | - Alexander Enk
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
6
|
Nording H, Sauter M, Lin C, Steubing R, Geisler S, Sun Y, Niethammer J, Emschermann F, Wang Y, Zieger B, Nieswandt B, Kleinschnitz C, Simon DI, Langer HF. Activated Platelets Upregulate β 2 Integrin Mac-1 (CD11b/CD18) on Dendritic Cells, Which Mediates Heterotypic Cell-Cell Interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1729-1741. [PMID: 35277420 DOI: 10.4049/jimmunol.2100557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
Recent evidence suggests interaction of platelets with dendritic cells (DCs), while the molecular mechanisms mediating this heterotypic cell cross-talk are largely unknown. We evaluated the role of integrin Mac-1 (αMβ2, CD11b/CD18) on DCs as a counterreceptor for platelet glycoprotein (GP) Ibα. In a dynamic coincubation model, we observed interaction of human platelets with monocyte-derived DCs, but also that platelet activation induced a sharp increase in heterotypic cell binding. Inhibition of CD11b or GPIbα led to significant reduction of DC adhesion to platelets in vitro independent of GPIIbIIIa, which we confirmed using platelets from Glanzmann thrombasthenia patients and transgenic mouse lines on C57BL/6 background (GPIbα-/-, IL4R-GPIbα-tg, and muMac1 mice). In vivo, inhibition or genetic deletion of CD11b and GPIbα induced a significant reduction of platelet-mediated DC adhesion to the injured arterial wall. Interestingly, only intravascular antiCD11b inhibited DC recruitment, suggesting a dynamic DC-platelet interaction. Indeed, we could show that activated platelets induced CD11b upregulation on Mg2+-preactivated DCs, which was related to protein kinase B (Akt) and dependent on P-selectin and P-selectin glycoprotein ligand 1. Importantly, specific pharmacological targeting of the GPIbα-Mac-1 interaction site blocked DC-platelet interaction in vitro and in vivo. These results demonstrate that cross-talk of platelets with DCs is mediated by GPIbα and Mac-1, which is upregulated on DCs by activated platelets in a P-selectin glycoprotein ligand 1-dependent manner.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,German Research Centre for Cardiovascular Research, Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Chaolan Lin
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Rebecca Steubing
- Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Sven Geisler
- Cell Analysis Core Facility, University of Lübeck, Lübeck, Germany
| | - Ying Sun
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Joel Niethammer
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Fréderic Emschermann
- Department of Cardiovascular Medicine, University Hospital, Eberhard Karls University, Tübingen, Germany
| | - Yunmei Wang
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine and Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Barbara Zieger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany; and
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Daniel I Simon
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine and Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH.,University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Harald F Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany; .,German Research Centre for Cardiovascular Research, Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent in the human population. These viruses cause lifelong infections by establishing latency in neurons and undergo sporadic reactivations that promote recurrent disease and new infections. The success of HSVs in persisting in infected individuals is likely due to their multiple molecular determinants involved in escaping the host antiviral and immune responses. Importantly, HSVs infect and negatively modulate the function of dendritic cells (DCs), key immune cells that are involved in establishing effective and balanced immunity against viruses. Here, we review and discuss several molecular and cellular processes modulated by HSVs in DCs, such as autophagy, apoptosis, and the unfolded protein response. Given the central role of DCs in establishing optimal antiviral immunity, particular emphasis should be given to the outcome of the interactions occurring between HSVs and DCs.
Collapse
Affiliation(s)
- Farías Ma
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Duarte Lf
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tognarelli Ei
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - González Pa
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Zhao SJ, Jia H, Xu XL, Bu WB, Zhang Q, Chen X, Ji J, Sun JF. Identification of the Role of Wnt/β-Catenin Pathway Through Integrated Analyses and in vivo Experiments in Vitiligo. Clin Cosmet Investig Dermatol 2021; 14:1089-1103. [PMID: 34511958 PMCID: PMC8423189 DOI: 10.2147/ccid.s319061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 01/18/2023]
Abstract
Purpose Vitiligo is an acquired depigmentation skin disease, which affects an average of 1% of the world’s population. The purpose of this study is to identify the key genes and pathways responsible for vitiligo and find new therapeutic targets. Methods The datasets GSE65127, GSE53146, and GSE75819 were downloaded from the Gene Expression Omnibus (GEO) database. R language was used to identify the differentially expressed genes (DEGs) between lesional skin of vitiligo and non-lesional skin. Next, the key pathways were obtained by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The protein–protein interaction (PPI) networks were conducted by STRING database and Cytoscape software. Subsequently, module analysis was performed by Cytoscape. Among these results, the Wnt/β-catenin pathway and melanogenesis pathway caught our attention. The expression level of β-catenin, microphthalmia-associated transcription factor (MITF) and tyrosinase (TYR) was detected by immunofluorescence in vitiligo lesions and healthy skin. Moreover, zebrafish was treated with XAV-939, an inhibitor of the Wnt/β-catenin pathway. After that, the area of melanin granules as a percentage of the head area was measured. The mRNA expression of β-catenin, lymphoid-enhancing factor 1(lef1), tyr and mitf were detected by q-PCR (quantitative polymerase chain reaction) in zebrafish (Danio rerio). Results A total of 2442 DEGs were identified, including 1068 upregulated and 1374 downregulated DEGs. The key pathways were identified by GO and KEGG analyses, such as “NOD-like receptor signaling pathway”, “Wnt signaling pathway”, “Melanogenesis”, “mTOR signaling pathway”, “PI3K-Akt signaling pathway”, “Calcium signaling pathway” and “Rap1 signaling pathway”. The immunofluorescence results showed that the level of β-catenin, MITF and TYR was significantly downregulated in vitiligo lesional skin. In zebrafish, the mean percentage area of melanin granules and the expression of β-catenin, lef1, tyr and mitf were decreased after treated with XAV-939. Conclusion The present study identified key genes and signaling pathways associated with the pathophysiology of vitiligo. Among them, the Wnt/β-catenin pathway played an essential role in pigmentation and could be a breakthrough point in vitiligo treatment.
Collapse
Affiliation(s)
- Si-Jia Zhao
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Hong Jia
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Xiu-Lian Xu
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Wen-Bo Bu
- Department of Dermatologic Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Qian Zhang
- Department of Dermatologic Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Xi Chen
- Department of Medicine 3, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen Nuremberg, Erlangen, Bavaria, Germany
| | - Juan Ji
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Jian-Fang Sun
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Baghbani E, Noorolyai S, Shanehbandi D, Mokhtarzadeh A, Aghebati-Maleki L, Shahgoli VK, Brunetti O, Rahmani S, Shadbad MA, Baghbanzadeh A, Silvestris N, Baradaran B. Regulation of immune responses through CD39 and CD73 in cancer: Novel checkpoints. Life Sci 2021; 282:119826. [PMID: 34265363 DOI: 10.1016/j.lfs.2021.119826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
The immunosuppressive tumor microenvironment has been implicated in attenuating anti-tumoral immune responses and tumor growth in various cancers. Inhibitory immune checkpoints have been introduced as the primary culprits for developing the immunosuppressive tumor microenvironment. Therefore, a better understanding of the cross-talk between inhibitory immune checkpoints in the tumor microenvironment can pave the way for introducing novel approaches for treating affected patients. Growing evidence indicates that CD39 and CD73, as novel checkpoints, can transform adenosine triphosphate (ATP)-mediated pro-inflammatory tumor microenvironment into an adenosine-mediated immunosuppressive one via the purinergic signaling pathway. Indeed, enzymatic processes of CD39 and CD73 have crucial roles in adjusting the extent, intensity, and chemical properties of purinergic signals. This study aims to review the biological function of CD39 and CD73 and shed light on their significance in regulating anti-tumoral immune responses in various cancers.
Collapse
Affiliation(s)
- Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Khaze Shahgoli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Shima Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nicola Silvestris
- IRCCS Bari, Italy, Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology DIMO, University of Bari, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Diverse functions and mechanisms of regulatory T cell in ischemic stroke. Exp Neurol 2021; 343:113782. [PMID: 34116055 DOI: 10.1016/j.expneurol.2021.113782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 12/28/2022]
Abstract
The inflammatory and immune processes are key pathophysiological processes in the ischemic stroke, including leukocyte infiltration and destruction of the blood-brain-barrier (BBB), which further lead to increased post-ischemic inflammation. Regulatory T cells (Tregs) are a specific subset of T lymphocytes that play a pivotal role in suppressing the activation of immune system, maintaining immune homeostasis, and regulating inflammation induced by pathogens and environmental toxins. We would like to discuss the paradox function of Tregs in ischemic stroke. The accumulating data indicate that Tregs are involved in the immune regulation and self-tolerance after ischemic stroke, contributing the outcome of ischemic stroke. Tregs could resist immune response overactivation, and were supposed to be the endogenous regulatory factors to control the immune response of ischemic brain. Although, there are still some controversies and unresolved issues about the functions and mechanisms of Tregs in ischemic stroke. More and more attention has been paid to Tregs in the pathogenesis of ischemic stroke and it might be a potential therapeutic target in the future. In this review, we will summarize the recent findings on the specific functions and mechanisms of Tregs and discuss its potential therapeutic role in ischemic stroke.
Collapse
|
11
|
Hyper-Progressive Disease: The Potential Role and Consequences of T-Regulatory Cells Foiling Anti-PD-1 Cancer Immunotherapy. Cancers (Basel) 2020. [PMID: 33375291 DOI: 10.3390/cancers13010048.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Antibody-mediated disruption of the programmed cell death protein 1 (PD-1) pathway has brought much success to the fight against cancer. Nevertheless, a significant proportion of patients respond poorly to anti-PD-1 treatment. Cases of accelerated and more aggressive forms of cancer following therapy have also been reported. Termed hyper-progressive disease (HPD), this phenomenon often results in fatality, thus requires urgent attention. Among possible causes of HPD, regulatory T-cells (Tregs) are of suspect due to their high expression of PD-1, which modulates Treg activity. Tregs are a subset of CD4+ T-cells that play a non-redundant role in the prevention of autoimmunity and is functionally dependent on the X chromosome-linked transcription factor FoxP3. In cancer, CD4+FoxP3+ Tregs migrate to tumors to suppress anti-tumor immune responses, allowing cancer cells to persist. Hence, Treg accumulation in tumors is associated with poor prognosis. In mice, the anti-tumor efficacy of anti-PD-1 can be enhanced by depleting Tregs. This suggests Tregs pose resistance to anti-PD-1 therapy. In this article, we review the relevant Treg functions that suppress tumor immunity and the potential effects anti-PD-1 could have on Tregs which are counter-productive to the treatment of cancer, occasionally causing HPD.
Collapse
|
12
|
Tay C, Qian Y, Sakaguchi S. Hyper-Progressive Disease: The Potential Role and Consequences of T-Regulatory Cells Foiling Anti-PD-1 Cancer Immunotherapy. Cancers (Basel) 2020; 13:E48. [PMID: 33375291 PMCID: PMC7796137 DOI: 10.3390/cancers13010048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Antibody-mediated disruption of the programmed cell death protein 1 (PD-1) pathway has brought much success to the fight against cancer. Nevertheless, a significant proportion of patients respond poorly to anti-PD-1 treatment. Cases of accelerated and more aggressive forms of cancer following therapy have also been reported. Termed hyper-progressive disease (HPD), this phenomenon often results in fatality, thus requires urgent attention. Among possible causes of HPD, regulatory T-cells (Tregs) are of suspect due to their high expression of PD-1, which modulates Treg activity. Tregs are a subset of CD4+ T-cells that play a non-redundant role in the prevention of autoimmunity and is functionally dependent on the X chromosome-linked transcription factor FoxP3. In cancer, CD4+FoxP3+ Tregs migrate to tumors to suppress anti-tumor immune responses, allowing cancer cells to persist. Hence, Treg accumulation in tumors is associated with poor prognosis. In mice, the anti-tumor efficacy of anti-PD-1 can be enhanced by depleting Tregs. This suggests Tregs pose resistance to anti-PD-1 therapy. In this article, we review the relevant Treg functions that suppress tumor immunity and the potential effects anti-PD-1 could have on Tregs which are counter-productive to the treatment of cancer, occasionally causing HPD.
Collapse
Affiliation(s)
- Christopher Tay
- Immunology Frontier Research Center, Department of Experimental Immunology, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; (C.T.); (Y.Q.)
| | - Yamin Qian
- Immunology Frontier Research Center, Department of Experimental Immunology, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; (C.T.); (Y.Q.)
| | - Shimon Sakaguchi
- Immunology Frontier Research Center, Department of Experimental Immunology, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; (C.T.); (Y.Q.)
- Laboratory of Experimental Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
13
|
Drescher HK, Bartsch LM, Weiskirchen S, Weiskirchen R. Intrahepatic T H17/T Reg Cells in Homeostasis and Disease-It's All About the Balance. Front Pharmacol 2020; 11:588436. [PMID: 33123017 PMCID: PMC7566778 DOI: 10.3389/fphar.2020.588436] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Both acute and chronic hepatic inflammation likely result from an imbalance in the TH1/TH2 cell response and can lead to liver fibrosis and end-stage liver disease. More recently, a novel CD4+ T helper cell subset was described, characterized by the production of IL-17 and IL-22. These TH17 cells 50were predominantly implicated in host defense against infections and in autoimmune diseases. Interestingly, studies over the last 10 years revealed that the development of TH17 cells favors pro-inflammatory responses in almost all tissues and there is a reciprocal relationship between TH17 and TReg cells. The balance between TH17and TReg cells is critical for immune reactions, especially in injured liver tissue and the return to immune homeostasis. The pathogenic contribution of TH17 and TReg cells in autoimmunity, acute infection, and chronic liver injury is diverse and varies among disease etiologies. Understanding the mechanisms underlying TH17 cell development, recruitment, and maintenance, along with the suppression of TReg cells, will inform the development of new therapeutic strategies in liver diseases. Active manipulation of the balance between pathogenic and regulatory processes in the liver may assist in the restoration of homeostasis, especially in hepatic inflammation.
Collapse
Affiliation(s)
- Hannah K Drescher
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lea M Bartsch
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen, Aachen, Germany
| |
Collapse
|
14
|
Cekic C. Modulation of myeloid cells by adenosine signaling. Curr Opin Pharmacol 2020; 53:134-145. [PMID: 33022543 DOI: 10.1016/j.coph.2020.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Hypoxia, metabolic activity, cell death and immune responses influence the adenosine concentrations in the extracellular space. Cellular responses to hypoxia and inflammation in myeloid cells promote activation of adenosine sensing circuit, which involves increased expression of ectoenzymes that converts phospho-nucleotides such as ATP to adenosine and increased expression of G protein-coupled adenosine receptors. Adenosine sensing circuitry also involves feedforward signaling, which leads to increased expression of hypoxia-inducible factor 1-alpha (HIF1 and feedback signaling, which leads to the suppression of inflammatory transcription factor, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. In this review we will discuss how different subsets of myeloid cells sense adenosine accumulation and how adenosine sensing by myeloid cells influence progression of different immune-related conditions including cancer.
Collapse
Affiliation(s)
- Caglar Cekic
- Bilkent University, Department of Molecular Biology and Genetics, Ankara, Turkey; UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
15
|
Peng F, Qin Y, Mu S, Li J, Ai L, Hu Y. Prognostic role of regulatory T cells in lymphoma: a systematic review and meta-analysis. J Cancer Res Clin Oncol 2020; 146:3123-3135. [PMID: 32995955 DOI: 10.1007/s00432-020-03398-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE The regulatory T cells (Tregs) are a subpopulation of lymphocytes that suppress the immune responses. The prognostic value of Tregs in lymphoma patients remains controversial. Thus, we conducted this meta-analysis to clarify the role of Tregs in the prognosis of lymphoma patients. METHODS We searched PubMed, Embase, and Web of Science to obtain eligible studies that evaluated the prognostic factor of Tregs for lymphoma patients. Hazards ratios (HRs) with the matching 95% confidence intervals (95%CIs) were merged to estimate the prognostic value of Tregs. RESULTS We finally retrieved 23 eligible studies, including a total of 2269 patients. The overall pooled analysis on all types of lymphomas showed that Tregs had a significantly positive association with prolonged overall survival (OS) (HR = 0.633, 95% CI 0.528-0.758) and progression-free survival (PFS) (HR = 0.451, 95% CI 0.261-0.779). Subgroup analysis indicated that high Tregs were significantly correlated with longer OS in Hodgkin lymphoma, diffuse large B cell lymphoma, and natural killer/T cell lymphoma. However, there was no significant association of Tregs with T cell lymphoma and follicular lymphoma. CONCLUSIONS Increased Tregs indicates a better prognosis for patients with lymphoma. Tregs could be used as a valuable prognostic biomarker of lymphoma patients.
Collapse
Affiliation(s)
- Fei Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shidai Mu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Jingwen Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Lisha Ai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China. .,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
16
|
Nam TS, Park DR, Rah SY, Woo TG, Chung HT, Brenner C, Kim UH. Interleukin-8 drives CD38 to form NAADP from NADP + and NAAD in the endolysosomes to mobilize Ca 2+ and effect cell migration. FASEB J 2020; 34:12565-12576. [PMID: 32717131 DOI: 10.1096/fj.202001249r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 01/22/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing second messenger whose formation has remained elusive. In vitro, CD38-mediated NAADP synthesis requires an acidic pH and a nonphysiological concentration of nicotinic acid (NA). We discovered that CD38 catalyzes synthesis of NAADP by exchanging the nicotinamide moiety of nicotinamide adenine dinucleotide phosphate (NADP+ ) for the NA group of nicotinic acid adenine dinucleotide (NAAD) inside endolysosomes of interleukin 8 (IL8)-treated lymphokine-activated killer (LAK) cells. Upon IL8 stimulation, cytosolic NADP+ is transported to acidified endolysosomes via connexin 43 (Cx43) and gated by cAMP-EPAC-RAP1-PP2A signaling. CD38 then performs a base-exchange reaction with the donor NA group deriving from NAAD, produced by newly described endolysosomal activities of NA phosphoribosyltransferase (NAPRT) and NMN adenyltransferase (NMNAT) 3. Thus, the membrane organization of endolysosomal CD38, a signal-mediated transport system for NADP+ and luminal NAD+ biosynthetic enzymes integrate signals from a chemokine and cAMP to specify the spatiotemporal mobilization of Ca2+ to drive cell migration.
Collapse
Affiliation(s)
- Tae-Sik Nam
- Department of Biochemistry & National Creative Research Laboratory for Ca2+ Signaling, Chonbuk National University Medical School, Jeonju, Korea
| | - Dae-Ryoung Park
- Department of Biochemistry & National Creative Research Laboratory for Ca2+ Signaling, Chonbuk National University Medical School, Jeonju, Korea
| | - So-Young Rah
- Department of Biochemistry & National Creative Research Laboratory for Ca2+ Signaling, Chonbuk National University Medical School, Jeonju, Korea
| | - Tae-Gyu Woo
- Department of Biochemistry & National Creative Research Laboratory for Ca2+ Signaling, Chonbuk National University Medical School, Jeonju, Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Charles Brenner
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Uh-Hyun Kim
- Department of Biochemistry & National Creative Research Laboratory for Ca2+ Signaling, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
17
|
Álvarez-Sánchez N, Cruz-Chamorro I, Díaz-Sánchez M, Lardone PJ, Guerrero JM, Carrillo-Vico A. Peripheral CD39-expressing T regulatory cells are increased and associated with relapsing-remitting multiple sclerosis in relapsing patients. Sci Rep 2019; 9:2302. [PMID: 30783191 PMCID: PMC6381140 DOI: 10.1038/s41598-019-38897-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/09/2019] [Indexed: 12/02/2022] Open
Abstract
CD39, an ectonucleotidase that hydrolyses pro-inflammatory ATP, is a marker of highly active and suppressive T regulatory cells (Tregs). Although CD39 has a role in Treg suppression and might be important in the control of neuroinflammation in relapsing-remitting multiple sclerosis (RR-MS), to date, there are contradictory reports concerning the Tregs expression of CD39 in RR-MS patients. Thus, our objectives were to assess the activity and expression of CD39, especially in Tregs from peripheral blood mononuclear cells (PBMCs) of relapsing RR-MS patients compared with control subjects and to evaluate the association of CD39+ Tregs with disability and the odds of RR-MS. The activity and expression of CD39 and the CD39+ Treg frequency were measured in PBMCs from 55 relapsing RR-MS patients (19 untreated and 36 receiving immunomodulatory treatment) and 55 age- and sex-paired controls. Moreover, the association between CD39+ Tregs and RR-MS was assessed by multivariate logistic regression. CD39 activity and the frequency of CD39-expressing Tregs were elevated in relapsing RR-MS patients. Moreover, CD39+ Tregs were significantly correlated with the EDSS score and were independently associated with the odds of RR-MS. Our results highlight the relevance of CD39+ Treg subset in the clinical outcomes of RR-MS.
Collapse
Affiliation(s)
- Nuria Álvarez-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain
| | - María Díaz-Sánchez
- Unidad de Gestión Clínica de Neurociencias, Servicio de Neurología del Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain
| | - Juan Miguel Guerrero
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain.,Department of Clinical Biochemistry, Virgen del Rocío University Hospital, Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain. .,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
18
|
Vuerich M, Harshe RP, Robson SC, Longhi MS. Dysregulation of Adenosinergic Signaling in Systemic and Organ-Specific Autoimmunity. Int J Mol Sci 2019; 20:ijms20030528. [PMID: 30691212 PMCID: PMC6386992 DOI: 10.3390/ijms20030528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Exact causes for autoimmune diseases remain unclear and no cures are available. Breakdown of immunotolerance could set the stage for unfettered immune responses that target self-antigens. Impaired regulatory immune mechanisms could have permissive roles in autoreactivity. Abnormal regulatory immune cell function, therefore, might be a major determinant of the pathogenesis of autoimmune disease. All current treatments are associated with some level of clinical toxicity. Treatment to specifically target dysregulated immunity in these diseases would be a great advance. Extracellular adenosine is a signaling mediator that suppresses inflammation through activation of P1 receptors, most active under pathological conditions. Mounting evidence has linked alterations in the generation of adenosine from extracellular nucleotides by ectonucleotidases, and associated perturbations in purinergic signaling, to the immunological disruption and loss of immunotolerance in autoimmunity. Targeted modulation of the purinergic signaling by either targeting ectonucleotidases or modulating P1 purinergic receptors could therefore restore the balance between autoreactive immune responses; and thereby allow reestablishment of immunotolerance. We review the roles of CD39 and CD73 ectoenzymes in inflammatory states and with the dysregulation of P1 receptor signaling in systemic and organ-specific autoimmunity. Correction of such perturbations could be exploited in potential therapeutic applications.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Rasika P Harshe
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
19
|
Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int J Mol Sci 2018; 19:ijms19123837. [PMID: 30513816 PMCID: PMC6321150 DOI: 10.3390/ijms19123837] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a major role in the surveillance and control of malignant cells, with the presence of tumor infiltrating lymphocytes (TILs) correlating with better patient prognosis in multiple tumor types. The development of ‘checkpoint blockade’ and adoptive cellular therapy has revolutionized the landscape of cancer treatment and highlights the potential of utilizing the patient’s own immune system to eradicate cancer. One mechanism of tumor-mediated immunosuppression that has gained attention as a potential therapeutic target is the purinergic signaling axis, whereby the production of the purine nucleoside adenosine in the tumor microenvironment can potently suppress T and NK cell function. The production of extracellular adenosine is mediated by the cell surface ectoenzymes CD73, CD39, and CD38 and therapeutic agents have been developed to target these as well as the downstream adenosine receptors (A1R, A2AR, A2BR, A3R) to enhance anti-tumor immune responses. This review will discuss the role of adenosine and adenosine receptor signaling in tumor and immune cells with a focus on their cell-specific function and their potential as targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Christina Mølck
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia.
| | - Lev Kats
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
- Department of Immunology, Monash University, Clayton 3052, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| |
Collapse
|
20
|
Silva-Vilches C, Ring S, Mahnke K. ATP and Its Metabolite Adenosine as Regulators of Dendritic Cell Activity. Front Immunol 2018; 9:2581. [PMID: 30473700 PMCID: PMC6237882 DOI: 10.3389/fimmu.2018.02581] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Adenosine (Ado) is a well-studied neurotransmitter, but it also exerts profound immune regulatory functions. Ado can (i) actively be released by various cells into the tissue environment and can (ii) be produced through the degradation of extracellular ATP by the concerted action of CD39 and CD73. In this sequence of events, the ectoenzyme CD39 degrades ATP into ADP and AMP, respectively, and CD73 catalyzes the last step leading to the production of Ado. Extracellular ATP acts as a “danger” signal and stimulates immune responses, i.e. by inflammasome activation. Its degradation product Ado on the other hand acts rather anti-inflammatory, as it down regulates functions of dendritic cells (DCs) and dampens T cell activation and cytokine secretion. Thus, the balance of proinflammatory ATP and anti-inflammatory Ado that is regulated by CD39+/CD73+ immune cells, is important for decision making on whether tolerance or immunity ensues. DCs express both ectoenzymes, enabling them to produce Ado from extracellular ATP by activity of CD73 and CD39 and thus allow dampening of the proinflammatory activity of adjacent leukocytes in the tissue. On the other hand, as most DCs express at least one out of four so far known Ado receptors (AdoR), DC derived Ado can also act back onto the DCs in an autocrine manner. This leads to suppression of DC functions that are normally involved in stimulating immune responses. Moreover, ATP and Ado production thereof acts as “find me” signal that guides cellular interactions of leukocytes during immune responses. In this review we will state the means by which Ado producing DCs are able to suppress immune responses and how extracellular Ado conditions DCs for their tolerizing properties.
Collapse
Affiliation(s)
- Cinthia Silva-Vilches
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| | - Sabine Ring
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| |
Collapse
|
21
|
Silva-Vilches C, Ring S, Schrader J, Clausen BE, Probst HC, Melchior F, Schild H, Enk A, Mahnke K. Production of Extracellular Adenosine by CD73 + Dendritic Cells Is Crucial for Induction of Tolerance in Contact Hypersensitivity Reactions. J Invest Dermatol 2018; 139:541-551. [PMID: 30393085 DOI: 10.1016/j.jid.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 02/02/2023]
Abstract
Dendritic cells (DCs) express the ecto-5'-nucleotidase CD73 that generates immunosuppressive adenosine (Ado) by dephosphorylation of extracellular Ado monophosphate and diphosphate. To investigate whether CD73-derived Ado has immune-suppressive activity, 2,4-dinitrothiocyanobenzene (DNTB) was applied to skin of wild-type (WT) or CD73-deficient (CD73-/-) mice, followed by sensitization and challenge with 2,4-dinitrofluorobenzene. In this model, we show the induction of tolerance by DNTB against 2,4-dinitrofluorobenzene only in WT but not in CD73-/- mice. Analysis of skin DCs showed increased expression of CD73 after application of DNTB in WT mice. That was accompanied by elevated concentrations of extracellular Ado in the lymph node. Moreover, T cells expressed markers for anergy, namely EGR2 and NDRG1 in DNTB-treated WT mice and they exhibited impaired proliferation upon ex vivo re-stimulation. Similarly, in vitro we observed that Ado-producing WT DCs, but not CD73-/- DCs, rendered transgenic T cells from OTII mice (OTII T cells) hyporeactive, decreased their T-cell costimulatory signaling, and induced up-regulation of EGR2 and NDRG1. Thus, these data show that expression of CD73 by DCs, which triggers elevated levels of extracellular Ado, is a crucial mechanism for the induction of anergic T cells and tolerance.
Collapse
Affiliation(s)
- Cinthia Silva-Vilches
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Sabine Ring
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Jürgen Schrader
- Institute for Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans-Christian Probst
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Felix Melchior
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hansjörg Schild
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander Enk
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
22
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
23
|
Tiberio L, Del Prete A, Schioppa T, Sozio F, Bosisio D, Sozzani S. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol Immunol 2018; 15:346-352. [PMID: 29563613 DOI: 10.1038/s41423-018-0005-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells responsible for the activation of specific T-cell responses and for the development of immune tolerance. Immature DCs reside in peripheral tissues and specialize in antigen capture, whereas mature DCs reside mostly in the secondary lymphoid organs where they act as antigen-presenting cells. The correct localization of DCs is strictly regulated by a large variety of chemotactic and nonchemotactic signals that include bacterial products, DAMPs (danger-associated molecular patterns), complement proteins, lipids, and chemokines. These signals function both individually and in concert, generating a complex regulatory network. This network is regulated at multiple levels through different strategies, such as synergistic interactions, proteolytic processing, and the actions of atypical chemokine receptors. Understanding this complex scenario will help to clarify the role of DCs in different pathological conditions, such as autoimmune diseases and cancers and will uncover new molecular targets for therapeutic interventions.
Collapse
Affiliation(s)
- Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. .,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy.
| |
Collapse
|
24
|
Ferstl R, Frei R, Barcik W, Schiavi E, Wanke K, Ziegler M, Rodriguez-Perez N, Groeger D, Konieczna P, Zeiter S, Nehrbass D, Lauener R, Akdis C, O'Mahony L. Histamine receptor 2 modifies iNKT cell activity within the inflamed lung. Allergy 2017; 72:1925-1935. [PMID: 28618071 DOI: 10.1111/all.13227] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Histamine is a key immunoregulatory mediator and can dampen proinflammatory responses via activation of histamine receptor 2 (H2 R). The aim of this study was to determine the role of H2 R in modulating lung inflammatory responses. METHODS H2 R was blocked using famotidine or activated using dimaprit in both the ovalbumin (OVA) and house dust mite extract (HDM) murine models of respiratory inflammation. H2 R-deficient animals and CD1d/H2 R-deficient animals were utilized to examine the CD1d presentation of lipid antigens (αGalCer or OCH) to invariant natural killer T (iNKT) cells. RESULTS Famotidine treatment resulted in more severe airway disease in the OVA model, while dimaprit treatment significantly reduced disease severity. Both OVA and HDM-induced airway diseases were more severe in H2 R-deficient animals. Flow cytometric analysis of lung tissue from H2 R-deficient animals revealed increased numbers of CD1d+ dendritic cells and increased numbers of iNKT cells. In vitro, αGalCer-stimulated iNKT cells from H2 R-deficient mice secreted higher levels of IL-4, IL-5, and GM-CSF. In vivo, αGalCer or OCH administration to the lung resulted in enhanced mucus secretion, inflammatory cell recruitment, and cytokine production in H2 R-deficient or famotidine-treated animals, while dimaprit dampened the lung iNKT cell response to αGalCer. Removal of iNKT cells in H2 R-deficient (CD1d-/- H2 R-/- ) animals normalized the lung response to HDM. CONCLUSION The deliberate activation of H2 R, or its downstream signaling molecules, may represent a novel therapeutic target for chronic lung inflammatory diseases, especially when CD1d-mediated presentation of lipid antigens to iNKT cells is contributing to the pathology.
Collapse
Affiliation(s)
- R. Ferstl
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - R. Frei
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| | - W. Barcik
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - E. Schiavi
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - K. Wanke
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| | - M. Ziegler
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - N. Rodriguez-Perez
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - D. Groeger
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Alimentary Health Pharma Davos; Davos Switzerland
| | - P. Konieczna
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - S. Zeiter
- AO Research Institute Davos (ARI); Davos Switzerland
| | - D. Nehrbass
- AO Research Institute Davos (ARI); Davos Switzerland
| | - R. Lauener
- Christine Kühne - Center for Allergy Research and Education (CK-CARE); Davos Switzerland
- Children's Hospital of Eastern Switzerland; St. Gallen Switzerland
| | - C.A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| | - L. O'Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| |
Collapse
|
25
|
Sáez PJ, Vargas P, Shoji KF, Harcha PA, Lennon-Duménil AM, Sáez JC. ATP promotes the fast migration of dendritic cells through the activity of pannexin 1 channels and P2X 7 receptors. Sci Signal 2017; 10:10/506/eaah7107. [PMID: 29162744 DOI: 10.1126/scisignal.aah7107] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Upon its release from injured cells, such as infected, transformed, inflamed, or necrotic cells, extracellular adenosine-5'-triphosphate (ATP) acts as a danger signal that recruits phagocytes, such as neutrophils, macrophages, and dendritic cells (DCs), to the site of injury. The sensing of extracellular ATP occurs through purinergic (P2) receptors. We investigated the cellular mechanisms linking purinergic signaling to DC motility. We found that ATP stimulated fast DC motility through an autocrine signaling loop, which was initiated by the activation of P2X7 receptors and further amplified by pannexin 1 (Panx1) channels. Upon stimulation of the P2X7 receptor by ATP, Panx1 contributed to fast DC motility by increasing the permeability of the plasma membrane, which resulted in supplementary ATP release. In the absence of Panx1, DCs failed to increase their speed of migration in response to ATP, despite exhibiting a normal P2X7 receptor-mediated Ca2+ response. In addition to DC migration, Panx1 channel- and P2X7 receptor-dependent signaling was further required to stimulate the reorganization of the actin cytoskeleton. In vivo, functional Panx1 channels were required for the homing of DCs to lymph nodes, although they were dispensable for DC maturation. These data suggest that P2X7 receptors and Panx1 channels are crucial players in the regulation of DC migration to endogenous danger signals.
Collapse
Affiliation(s)
- Pablo J Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile. .,INSERM U932 Immunité et Cancer, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 12 Rue Lhomond, Paris 75005, France
| | - Pablo Vargas
- INSERM U932 Immunité et Cancer, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 12 Rue Lhomond, Paris 75005, France.,CNRS UMR144, Institut Curie, PSL Research University, 12 Rue Lhomond, Paris 75005, France
| | - Kenji F Shoji
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Paloma A Harcha
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile.,Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso 2360103, Chile
| | - Ana-María Lennon-Duménil
- INSERM U932 Immunité et Cancer, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 12 Rue Lhomond, Paris 75005, France.
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile. .,Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso 2360103, Chile
| |
Collapse
|
26
|
Neuberger A, Ring S, Silva-Vilches C, Schrader J, Enk A, Mahnke K. Expression of CD73 slows down migration of skin dendritic cells, affecting the sensitization phase of contact hypersensitivity reactions in mice. J Dermatol Sci 2017; 87:292-299. [PMID: 28743609 DOI: 10.1016/j.jdermsci.2017.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Application of haptens to the skin induces release of immune stimulatory ATP into the extracellular space. This "danger" signal can be converted to immunosuppressive adenosine (ADO) by the action of the ectonucleotidases CD39 and CD73, expressed by skin and immune cells. Thus, the expression and regulation of CD73 by skin derived cells may have crucial influence on the outcome of contact hypersensitivity (CHS) reactions. OBJECTIVE To investigate the role of CD73 expression during 2,4,6-trinitrochlorobenzene (TNCB) induced CHS reactions. METHODS Wild type (wt) and CD73 deficient mice were subjected to TNCB induced CHS. In the different mouse strains the resulting ear swelling reaction was recorded along with a detailed phenotypic analysis of the skin migrating subsets of dendritic cells (DC). RESULTS In CD73 deficient animals the motility of DC was higher as compared to wt animals and in particular after sensitization we found increased migration of Langerin+ DC from skin to draining lymph nodes (LN). In the TNCB model this led to a stronger sensitization as indicated by increased frequency of interferon-γ producing T cells in the LN and an increased ear thickness after challenge. CONCLUSION CD73 derived ADO production slows down migration of Langerin+ DC from skin to LN. This may be a crucial mechanism to avoid over boarding immune reactions against haptens.
Collapse
Affiliation(s)
- A Neuberger
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - S Ring
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - C Silva-Vilches
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - J Schrader
- University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - A Enk
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - K Mahnke
- Ruprecht-Karls-University Heidelberg, Department of Dermatology, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev 2017. [PMID: 28258700 DOI: 10.1111/imr.12528]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cancers are able to grow by subverting immune suppressive pathways, to prevent the malignant cells as being recognized as dangerous or foreign. This mechanism prevents the cancer from being eliminated by the immune system and allows disease to progress from a very early stage to a lethal state. Immunotherapies are newly developing interventions that modify the patient's immune system to fight cancer, by either directly stimulating rejection-type processes or blocking suppressive pathways. Extracellular adenosine generated by the ectonucleotidases CD39 and CD73 is a newly recognized "immune checkpoint mediator" that interferes with anti-tumor immune responses. In this review, we focus on CD39 and CD73 ectoenzymes and encompass aspects of the biochemistry of these molecules as well as detailing the distribution and function on immune cells. Effects of CD39 and CD73 inhibition in preclinical and clinical studies are discussed. Finally, we provide insights into potential clinical application of adenosinergic and other purinergic-targeting therapies and forecast how these might develop in combination with other anti-cancer modalities.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Maria Serena Longhi
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
28
|
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev 2017. [PMID: 28258700 DOI: 10.1111/imr.12528] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancers are able to grow by subverting immune suppressive pathways, to prevent the malignant cells as being recognized as dangerous or foreign. This mechanism prevents the cancer from being eliminated by the immune system and allows disease to progress from a very early stage to a lethal state. Immunotherapies are newly developing interventions that modify the patient's immune system to fight cancer, by either directly stimulating rejection-type processes or blocking suppressive pathways. Extracellular adenosine generated by the ectonucleotidases CD39 and CD73 is a newly recognized "immune checkpoint mediator" that interferes with anti-tumor immune responses. In this review, we focus on CD39 and CD73 ectoenzymes and encompass aspects of the biochemistry of these molecules as well as detailing the distribution and function on immune cells. Effects of CD39 and CD73 inhibition in preclinical and clinical studies are discussed. Finally, we provide insights into potential clinical application of adenosinergic and other purinergic-targeting therapies and forecast how these might develop in combination with other anti-cancer modalities.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Maria Serena Longhi
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
29
|
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev 2017; 276:121-144. [PMID: 28258700 PMCID: PMC5338647 DOI: 10.1111/imr.12528] [Citation(s) in RCA: 627] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers are able to grow by subverting immune suppressive pathways, to prevent the malignant cells as being recognized as dangerous or foreign. This mechanism prevents the cancer from being eliminated by the immune system and allows disease to progress from a very early stage to a lethal state. Immunotherapies are newly developing interventions that modify the patient's immune system to fight cancer, by either directly stimulating rejection-type processes or blocking suppressive pathways. Extracellular adenosine generated by the ectonucleotidases CD39 and CD73 is a newly recognized "immune checkpoint mediator" that interferes with anti-tumor immune responses. In this review, we focus on CD39 and CD73 ectoenzymes and encompass aspects of the biochemistry of these molecules as well as detailing the distribution and function on immune cells. Effects of CD39 and CD73 inhibition in preclinical and clinical studies are discussed. Finally, we provide insights into potential clinical application of adenosinergic and other purinergic-targeting therapies and forecast how these might develop in combination with other anti-cancer modalities.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal et Institut du Cancer de Montréal, Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Maria Serena Longhi
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, USA. 02215
| | - Simon C. Robson
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, USA. 02215
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal et Institut du Cancer de Montréal, Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Québec, Canada
| |
Collapse
|
30
|
Joós G, Jákim J, Kiss B, Szamosi R, Papp T, Felszeghy S, Sághy T, Nagy G, Szondy Z. Involvement of adenosine A3 receptors in the chemotactic navigation of macrophages towards apoptotic cells. Immunol Lett 2017; 183:62-72. [PMID: 28188820 DOI: 10.1016/j.imlet.2017.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 11/16/2022]
Abstract
The first step in the clearance of apoptotic cells is chemotactic migration of macrophages towards the apoptotic cells guided by find-me signals provided by the dying cells. Upon sensing the chemotactic signals, macrophages release ATP. ATP is then degraded to ADP, AMP and adenosine to trigger purinergic receptors concentrated at the leading edge of the cell. Previous studies have shown that in addition to the chemotactic signals, this purinergic autocrine signaling is required to amplify and translate chemotactic signals into directional motility. In the present study the involvement of adenosine A3 receptors (A3R) was studied in the chemotactic migration of macrophages directed by apoptotic thymocyte-derived find-me signals. By taking video images in vitro, we demonstrate 1, by administering apyrase, which degrades ATP and ADP, that the purinergic autocrine signaling is required for maintaining both the velocity and the directionality of macrophage migration towards the apoptotic thymocytes; 2, by readding 5'-N-ethylcarboxamidoadenosine, an adenosine analogue, to apyrase treated cells that the adenosine receptor signaling alone is sufficient to act so; and 3, by studying migration of various adenosine receptor null or adenosine receptor antagonist-treated macrophages, that the individual loss of the A3R signaling leads to the loss of chemotactic navigation. Though loss of A3Rs does not affect the phagocytotic capacity of macrophages, intraperitoneally-injected apoptotic thymocytes were cleared with a delayed kinetics by A3R null macrophages in vivo due to the impaired chemotactic navigation. All together these data demonstrate the involvement of macrophage A3Rs in the proper chemotactic navigation and consequent in vivo clearance of apoptotic cells. Interestingly, loss of A3Rs did not affect the in vivo clearance of apoptotic thymocytes in the dexamethasone-treated thymus.
Collapse
Affiliation(s)
- Gergely Joós
- Dental Biochemistry Section, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Research Center of Molecular Medicine, Hungary
| | - Judit Jákim
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, Hungary
| | - Beáta Kiss
- Dental Biochemistry Section, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Research Center of Molecular Medicine, Hungary
| | - Regina Szamosi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, Hungary
| | - Tamás Papp
- Division of Oral Anatomy, Department of Anatomy, Histology and Embryology, Faculty of Dentistry, University of Debrecen, H-4012 Debrecen, Hungary
| | - Szabolcs Felszeghy
- Division of Oral Anatomy, Department of Anatomy, Histology and Embryology, Faculty of Dentistry, University of Debrecen, H-4012 Debrecen, Hungary
| | - Tibor Sághy
- Dental Biochemistry Section, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Research Center of Molecular Medicine, Hungary
| | - Gábor Nagy
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, Hungary
| | - Zsuzsa Szondy
- Dental Biochemistry Section, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Research Center of Molecular Medicine, Hungary.
| |
Collapse
|
31
|
Metabolites: deciphering the molecular language between DCs and their environment. Semin Immunopathol 2016; 39:177-198. [PMID: 27921148 DOI: 10.1007/s00281-016-0609-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) determine the outcome of the immune response based on signals they receive from the environment. Presentation of antigen under various contexts can lead to activation and differentiation of T cells for immunity or dampening of immune responses by establishing tolerance, primarily through the priming of regulatory T cells. Infections, inflammation and normal cellular interactions shape DC responses through direct contact or via cytokine signaling. Although it is widely accepted that DCs sense microbial components through pattern recognition receptors (PRRs), increasing evidence advocates for the existence of a set of signals that can profoundly shape DC function via PRR-independent pathways. This diverse group of host- or commensal-derived metabolites represents a newly appreciated code from which DCs can interpret environmental cues. In this review, we discuss the existing information on the effect of some of the most studied metabolites on DC function, together with the implications this may have in immune-mediated diseases.
Collapse
|
32
|
Worbs T, Hammerschmidt SI, Förster R. Dendritic cell migration in health and disease. Nat Rev Immunol 2016; 17:30-48. [PMID: 27890914 DOI: 10.1038/nri.2016.116] [Citation(s) in RCA: 536] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are potent and versatile antigen-presenting cells, and their ability to migrate is key for the initiation of protective pro-inflammatory as well as tolerogenic immune responses. Recent comprehensive studies have highlighted the importance of DC migration in the maintenance of immune surveillance and tissue homeostasis, and also in the pathogenesis of a range of diseases. In this Review, we summarize the anatomical, cellular and molecular factors that regulate the migration of different DC subsets in health and disease. In particular, we focus on new insights concerning the role of migratory DCs in the pathogenesis of diseases of the skin, intestine, lung, and brain, as well as in autoimmunity and atherosclerosis.
Collapse
Affiliation(s)
- Tim Worbs
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Swantje I Hammerschmidt
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
33
|
MC5r and A2Ar Deficiencies During Experimental Autoimmune Uveitis Identifies Distinct T cell Polarization Programs and a Biphasic Regulatory Response. Sci Rep 2016; 6:37790. [PMID: 27886238 PMCID: PMC5122918 DOI: 10.1038/srep37790] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022] Open
Abstract
Autoantigen-specific regulatory immunity emerges in the spleen of mice recovering from experimental autoimmune uveitis (EAU), a murine model for human autoimmune uveoretinitis. This regulatory immunity provides induced tolerance to ocular autoantigen, and requires melanocortin 5 receptor (MC5r) expression on antigen presenting cells with adenosine 2 A receptor (A2Ar) expression on T cells. During EAU it is not well understood what roles MC5r and A2Ar have on promoting regulatory immunity. Cytokine profile analysis during EAU revealed MC5r and A2Ar each mediate distinct T cell responses, and are responsible for a functional regulatory immune response in the spleen. A2Ar stimulation at EAU onset did not augment this regulatory response, nor bypass the MC5r requirement to induce regulatory immunity. The importance of this pathway in human autoimmune uveitis was assayed. PBMC from uveitis patients were assayed for MC5r expression on monocytes and A2Ar on T cells, and comparison between uveitis patients and healthy controls had no significant difference. The importance for MC5r and A2Ar expression in EAU to promote the induction of protective regulatory immunity, and the expression of MC5r and A2Ar on human immune cells, suggests that it may be possible to utilize the melanocortin-adenosinergic pathways to induce protective immunity in uveitic patients.
Collapse
|
34
|
de Oliveira Bravo M, Carvalho JL, Saldanha-Araujo F. Adenosine production: a common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signal 2016; 12:595-609. [PMID: 27557887 DOI: 10.1007/s11302-016-9529-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
Adenosine is an important molecule that exerts control on the immune system, by signaling through receptors lying on the surface of immune cells. This nucleotide is produced, in part, by the action of the ectoenzymes CD39 and CD73. Interestingly, these proteins are expressed on the cell surface of regulatory T-cells (Tregs) and mesenchymal stromal cells (MSCs)-two cell populations that have emerged as potential therapeutic tools in the field of cell therapy. In fact, the production of adenosine constitutes a mechanism used by both cell types to control the immune response. Recently, great scientific progress was obtained regarding the role of adenosine in the inflammatory environment. In this context, the present review focuses on the advances related to the impact of adenosine production over the immune modulatory activity of Tregs and MSCs, and how this nucleotide controls the biological functions of these cells. Finally, we mention the main challenges and hurdles to bring such molecule to clinical settings.
Collapse
Affiliation(s)
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Center, Catholic University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
35
|
Abstract
Cellular stress or apoptosis triggers the release of ATP, ADP and other nucleotides into the extracellular space. Extracellular nucleotides function as autocrine and paracrine signalling molecules by activating cell-surface P2 purinergic receptors that elicit pro-inflammatory immune responses. Over time, extracellular nucleotides are metabolized to adenosine, leading to reduced P2 signalling and increased signalling through anti-inflammatory adenosine (P1 purinergic) receptors. Here, we review how local purinergic signalling changes over time during tissue responses to injury or disease, and we discuss the potential of targeting purinergic signalling pathways for the immunotherapeutic treatment of ischaemia, organ transplantation, autoimmunity or cancer.
Collapse
Affiliation(s)
- Caglar Cekic
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey
| | - Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| |
Collapse
|
36
|
Zong J, Keskinov AA, Shurin GV, Shurin MR. Tumor-derived factors modulating dendritic cell function. Cancer Immunol Immunother 2016; 65:821-33. [PMID: 26984847 PMCID: PMC11028482 DOI: 10.1007/s00262-016-1820-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/26/2016] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DC) play unique and diverse roles in the tumor occurrence, development, progression and response to therapy. First of all, DC can actively uptake tumor-associated antigens, process them and present antigenic peptides to T cells inducing and maintaining tumor-specific T cell responses. DC interaction with different immune effector cells may also support innate antitumor immunity, as well as humoral responses also known to inhibit tumor development in certain cases. On the other hand, DC are recruited to the tumor site by specific tumor-derived and stroma-derived factors, which may also impair DC maturation, differentiation and function, thus resulting in the deficient formation of antitumor immune response or development of DC-mediated tolerance and immune suppression. Identification of DC-stimulating and DC-suppressing/polarizing factors in the tumor environment and the mechanism of DC modulation are important for designing effective DC-based vaccines and for recovery of immunodeficient resident DC responsible for maintenance of clinically relevant antitumor immunity in patients with cancer. DC-targeting tumor-derived factors and their effects on resident and administered DC in the tumor milieu are described and discussed in this review.
Collapse
Affiliation(s)
- Jinbao Zong
- Department of Pathology, University of Pittsburgh Medical Center, Scaife Hall S735, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao City, China
| | - Anton A Keskinov
- Department of Pathology, University of Pittsburgh Medical Center, Scaife Hall S735, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Scaife Hall S735, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Scaife Hall S735, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
37
|
Histamine Receptor 2 is Required to Suppress Innate Immune Responses to Bacterial Ligands in Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:1575-86. [PMID: 27271490 DOI: 10.1097/mib.0000000000000825] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Histamine is a key immunoregulatory mediator in immediate-type hypersensitivity reactions and chronic inflammatory responses, in particular histamine suppresses proinflammatory responses to bacterial ligands, through histamine receptor 2 (H2R). The aim of this study was to investigate the effects of histamine and H2R on bacteria-induced inflammatory responses in patients with IBD. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from patients with Crohn's disease, patients with ulcerative colitis, and healthy controls. PBMC histamine receptor expression was evaluated by flow cytometry. Cytokine secretion following Toll-like receptor (TLR)-2, TLR-4, TLR-5, or TLR-9 stimulation in the presence or absence of histamine or famotidine (H2R antagonist) was quantified. Biopsy histamine receptor gene expression was evaluated using reverse transcription-polymerase chain reaction. The in vivo role of H2R was evaluated in the T-cell transfer murine colitis model. RESULTS The percentage of circulating H2R monocytes was significantly reduced in patients with IBD. Histamine effectively suppressed TLR-induced cytokine secretion from healthy volunteer PBMCs but not for PBMCs from patients with IBD. Famotidine reversed this suppressive effect. H1R, H2R, and H4R gene expression was increased in inflamed gastrointestinal mucosa compared with noninflamed mucosa from the same patient and expression levels correlated with proinflammatory cytokine gene expression. Mice receiving lymphocytes from H2R donors, or treated with famotidine, displayed more severe weight loss, higher disease scores and increased numbers of mucosal IFN-γ and IL-17 T cells. CONCLUSION Patients with IBD display dysregulated expression of histamine receptors, with diminished anti-inflammatory effects associated with H2R signaling. Deliberate manipulation of H2R signaling may suppress excessive TLR responses to bacteria within the gut.
Collapse
|
38
|
Rueda CM, Jackson CM, Chougnet CA. Regulatory T-Cell-Mediated Suppression of Conventional T-Cells and Dendritic Cells by Different cAMP Intracellular Pathways. Front Immunol 2016; 7:216. [PMID: 27313580 PMCID: PMC4889573 DOI: 10.3389/fimmu.2016.00216] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022] Open
Abstract
Regulatory T-cells (Tregs) mediate their suppressive action by acting directly on conventional T-cells (Tcons) or dendritic cells (DCs). One mechanism of Treg suppression is the increase of cyclic adenosine 3′,5′-monophosphate (cAMP) levels in target cells. Tregs utilize cAMP to control Tcon responses, such as proliferation and cytokine production. Tregs also exert their suppression on DCs, diminishing DC immunogenicity by downmodulating the expression of costimulatory molecules and actin polymerization at the immunological synapse. The Treg-mediated usage of cAMP occurs through two major mechanisms. The first involves the Treg-mediated influx of cAMP in target cells through gap junctions. The second is the conversion of adenosine triphosphate into adenosine by the ectonucleases CD39 and CD73 present on the surface of Tregs. Adenosine then binds to receptors on the surface of target cells, leading to increased intracellular cAMP levels in these targets. Downstream, cAMP can activate the canonical protein kinase A (PKA) pathway and the exchange protein activated by cyclic AMP (EPAC) non-canonical pathway. In this review, we discuss the most recent findings related to cAMP activation of PKA and EPAC, which are implicated in Treg homeostasis as well as the functional alterations induced by cAMP in cellular targets of Treg suppression.
Collapse
Affiliation(s)
- Cesar M Rueda
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine , Cincinnati, OH , USA
| | - Courtney M Jackson
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine , Cincinnati, OH , USA
| | - Claire A Chougnet
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine , Cincinnati, OH , USA
| |
Collapse
|
39
|
Chen C, Wang W, Meng Q, Wu N, Wei J. Further study of circulating IgG antibodies to CD25-derived peptide antigens in nonsmall cell lung cancer. FEBS Open Bio 2016; 6:211-5. [PMID: 27047749 PMCID: PMC4794780 DOI: 10.1002/2211-5463.12034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/22/2015] [Accepted: 01/16/2016] [Indexed: 12/31/2022] Open
Abstract
A recent study reported that circulating antibodies to CD25-derived peptide antigens were significantly higher in patients with nonsmall cell lung cancer (NSCLC) than control subjects. The present study was, thus, undertaken to replicate the initial finding with different sample sets. An in-house ELISA was applied to determine circulating IgG antibodies to linear peptide antigens derived from CD25. A total of 111 patients with NSCLC and 216 control subjects were recruited and divided into the discovery sample (51 vs 108) and the validation sample (60 vs 108) based on the time of sampling. Student's t test showed that circulating anti-CD25 IgG levels were significantly higher in the patient group than the control group (t = 2.23, P = 0.027) and the validation sample replicated this finding (t = 3.31, P = 0.0012), generating a combined P value of 0.0004 (χ(2) = 20.8, df = 4). Fisher's combining probability revealed that patients with stage IV NSCLC had a significant increase in anti-CD25 IgG levels compared with control subjects (χ(2) = 22.1, df = 4, P = 0.0002) but those with the other three stages did not. This study suggests that circulating anti-CD25 IgG antibodies may have prognostic rather than early diagnostic values for lung cancer.
Collapse
Affiliation(s)
- Cairen Chen
- School of Clinical Laboratory Science Guangdong Medical University Dongguan China
| | - Weili Wang
- Department of Radiation Oncology Augusta University GA USA
| | - Qingyong Meng
- School of Clinical Laboratory Science Guangdong Medical University Dongguan China
| | - Ning Wu
- Department of Radiation Oncology China-Japan Union Hospital Jilin University Changchun China
| | - Jun Wei
- Division of Health Research University of the Highlands & Islands Centre for Health Science Inverness UK
| |
Collapse
|
40
|
Almahariq M, Mei FC, Cheng X. The pleiotropic role of exchange protein directly activated by cAMP 1 (EPAC1) in cancer: implications for therapeutic intervention. Acta Biochim Biophys Sin (Shanghai) 2016; 48:75-81. [PMID: 26525949 DOI: 10.1093/abbs/gmv115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/30/2015] [Indexed: 01/03/2023] Open
Abstract
The pleiotropic second messenger adenosine 3',5'-cyclic monophosphate (cAMP) regulates a myriad of biological processes under both physiological and pathophysiological conditions. Exchange protein directly activated by cAMP 1 (EPAC1) mediates the intracellular functions of cAMP by acting as a guanine nucleotide exchange factor for the Ras-like Rap small GTPases. Recent studies suggest that EPAC1 plays important roles in immunomodulation, cancer cell migration/metastasis, and metabolism. These results, coupled with the successful development of EPAC-specific small molecule inhibitors, identify EPAC1 as a promising therapeutic target for cancer treatments.
Collapse
Affiliation(s)
- Muayad Almahariq
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
41
|
Dhainaut M, Moser M. Mechanisms of Surveillance of Dendritic Cells by Regulatory T Lymphocytes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:131-54. [DOI: 10.1016/bs.pmbts.2015.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|