1
|
Bednarek JM, Brown JCS. Elements of dissemination in cryptococcosis. mBio 2024:e0215523. [PMID: 39470312 DOI: 10.1128/mbio.02155-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
As healthcare improves and our ability to support patients with compromised immune systems increases, such patients become more vulnerable to microbes in the environment. These include fungal pathogens such as Cryptococcus neoformans, the primary cause of fungal meningitis and a top priority pathogen on the World Health Organization fungal pathogen list. Like many other environmental pathogens, C. neoformans must adapt to and thrive in diverse environments in order to cause disease: (i) the environmental niche, (ii) the lungs following inhalation of infectious particles, (iii) the bloodstream and/or lymphatic system during dissemination, and (iv) the central nervous system (CNS), where it causes a deadly cryptococcal meningoencephalitis. Because CNS infection is the driver of mortality and the presenting illness, understanding the dissemination process from both host and fungal perspectives is important for treating these infections. In this review, we discuss the different stages of dissemination, how fungal cells interact with host cells during disease, and the ability to adapt to different environments within hosts.
Collapse
Affiliation(s)
- Joseph M Bednarek
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Jessica C S Brown
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Yang C, Gong Y, Liu S, Sun C, Wang T, Chen X, Liu W, Zhang X, Yang Y, Zhang M. LincR-PPP2R5C deficiency enhancing the fungicidal activity of neutrophils in pulmonary cryptococcosis is linked to the upregulation of IL-4. mBio 2024; 15:e0213024. [PMID: 39287443 PMCID: PMC11481880 DOI: 10.1128/mbio.02130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Pulmonary cryptococcosis is a common complication in immunocompromised patients. In a mouse model of pulmonary cryptococcosis, Cryptococcus neoformans induces a type 2 immune response that is detrimental to host protection. Long non-coding RNAs (lncRNAs) have emerged as key players in the pathogenesis of infectious diseases. However, the roles and mechanisms of lncRNAs in fungal infection are largely elusive. In the present study, we aimed to explore the roles of LincR-PPP2R5C in pulmonary cryptococcosis. We observed an increase in the level of LincR-PPP2R5C in the lung tissues of C57BL/6J mice after tracheal infection with C. neoformans. Subsequently, we intratracheally infected LincR-PPP2R5C knockout (KO) mice and wild-type mice with C. neoformans. LincR-PPP2R5C deficiency mitigates C. neoformans infection, which can be demonstrated by extending survival time and decreasing fungal burden in the lung. In the lung tissues of infected LincR-PPP2R5C KO mice, there was a notable increase in the levels of type 2 cytokines [interleukin (IL)-4 and IL-5] and an increase in the number of neutrophils in both the lung tissue and bronchoalveolar lavage fluid. Mechanistically, the lack of LincR-PPP2R5C results in increased protein phosphatase 2A phosphorylation, thereby enhancing the fungicidal activity of neutrophils against Cryptococcus neoformans, with IL-4 playing a synergistic role in this process. Overall, LincR-PPP2R5C deficiency mitigated pulmonary cryptococcosis by increasing the fungicidal activity of neutrophils, which was associated with increased IL-4 levels. Our study presented specific evidence of the role of host-derived lncRNAs in the regulation of C. neoformans infection. IMPORTANCE Pulmonary cryptococcosis is a human fungal disease caused by Cryptococcus neoformans, which is common not only in immunocompromised individuals but also in patients with normal immune function. Therefore, studying the control mechanisms of pulmonary cryptococcosis is highly important. Here, we demonstrated that the deletion of LincR-PPP2R5C leads to increased killing of C. neoformans by neutrophils, thereby reducing pulmonary cryptococcal infection. These findings will greatly enhance our understanding of the mechanisms by which lncRNAs regulate the pathogenesis of C. neoformans, facilitating the use of lncRNAs in pulmonary cryptococcosis therapy.
Collapse
Affiliation(s)
- Chen Yang
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Gong
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Shan Liu
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Chunan Sun
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xia Zhang
- Department of Infectious Diseases, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yonglin Yang
- Department of Infectious Diseases, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Cerdeira CD, Brigagão MRPL. Targeting Macrophage Polarization in Infectious Diseases: M1/M2 Functional Profiles, Immune Signaling and Microbial Virulence Factors. Immunol Invest 2024; 53:1030-1091. [PMID: 38913937 DOI: 10.1080/08820139.2024.2367682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION An event of increasing interest during host-pathogen interactions is the polarization of patrolling/naive monocytes (MOs) into macrophage subsets (MФs). Therapeutic strategies aimed at modulating this event are under investigation. METHODS This review focuses on the mechanisms of induction/development and profile of MФs polarized toward classically proinflammatory (M1) or alternatively anti-inflammatory (M2) phenotypes in response to bacteria, fungi, parasites, and viruses. RESULTS AND DISCUSSION It highlights nuclear, cytoplasmic, and cell surface receptors (pattern recognition receptors/PPRs), microenvironmental mediators, and immune signaling. MФs polarize into phenotypes: M1 MФs, activated by IFN-γ, pathogen-associated molecular patterns (PAMPs, e.g. lipopolysaccharide) and membrane-bound PPRs ligands (TLRs/CLRs ligands); or M2 MФs, induced by interleukins (ILs-4, -10 and -13), antigen-antibody complexes, and helminth PAMPs. Polarization toward M1 and M2 profiles evolve in a pathogen-specific manner, with or without canonicity, and can vary widely. Ultimately, this can result in varying degrees of host protection or more severe disease outcome. On the one hand, the host is driving effective MФs polarization (M1 or M2); but on the other hand, microorganisms may skew the polarization through virulence factors to increase pathogenicity. Cellular/genomic reprogramming also ensures plasticity of M1/M2 phenotypes. Because modulation of polarization can occur at multiple points, new insights and emerging perspectives may have clinical implications during the inflammation-to-resolution transition; translated into practical applications as for therapeutic/vaccine design target to boost microbicidal response (M1, e.g. triggering oxidative burst) with specifics PAMPs/IFN-γ or promote tissue repair (M2, increasing arginase activity) via immunotherapy.
Collapse
|
4
|
Ball B, Sukumaran A, Pladwig S, Kazi S, Chan N, Honeywell E, Modrakova M, Geddes-McAlister J. Proteome signatures reveal homeostatic and adaptive oxidative responses by a putative co-chaperone, Wos2, to influence fungal virulence determinants in cryptococcosis. Microbiol Spectr 2024; 12:e0015224. [PMID: 38953322 PMCID: PMC11302251 DOI: 10.1128/spectrum.00152-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The increasing prevalence of invasive fungal pathogens is dramatically changing the clinical landscape of infectious diseases, posing an imminent threat to public health. Specifically, Cryptococcus neoformans, the human opportunistic pathogen, expresses elaborate virulence mechanisms and is equipped with sophisticated adaptation strategies to survive in harsh host environments. This study extensively characterizes Wos2, an Hsp90 co-chaperone homolog, featuring bilateral functioning for both cryptococcal adaptation and the resulting virulence response. In this study, we evaluated the proteome and secretome signatures associated with wos2 deletion in enriched and infection-mimicking conditions to reveal Wos2-dependent regulation of the oxidative stress response through global translational reprogramming. The wos2Δ strain demonstrates defective intracellular and extracellular antioxidant protection systems, measurable through a decreased abundance of critical antioxidant enzymes and reduced growth in the presence of peroxide stress. Additional Wos2-associated stress phenotypes were observed upon fungal challenge with heat shock, osmotic stress, and cell membrane stressors. We demonstrate the importance of Wos2 for intracellular lifestyle of C. neoformans during in vitro macrophage infection and provide evidence for reduced phagosomal replication levels associated with wos2Δ. Accordingly, wos2Δ featured significantly reduced virulence within impacting fungal burden in a murine model of cryptococcosis. Our study highlights a vulnerable point in the fungal chaperone network that offers a therapeutic opportunity to interfere with both fungal virulence and fitness.IMPORTANCEThe global impact of fungal pathogens, both emerging and emerged, is undeniable, and the alarming increase in antifungal resistance rates hampers our ability to protect the global population from deadly infections. For cryptococcal infections, a limited arsenal of antifungals and increasing rates of resistance demand alternative therapeutic strategies, including an anti-virulence approach, which disarms the pathogen of critical virulence factors, empowering the host to remove the pathogens and clear the infection. To this end, we apply state-of-the-art mass spectrometry-based proteomics to evaluate the impact of a recently defined novel co-chaperone, Wos2, toward cryptococcal virulence using in vitro and in vivo models of infection. We explore global proteome and secretome remodeling driven by the protein and uncover the novel role in modulating the fungal oxidative stress response. Complementation of proteome findings with in vitro infectivity assays demonstrated the protective role of Wos2 within the macrophage phagosome, influencing fungal replication and survival. These results underscore differential cryptococcal survivability and weakened patterns of dissemination in the absence of wos2. Overall, our study establishes Wos2 as an important contributor to fungal pathogenesis and warrants further research into critical proteins within global stress response networks as potential druggable targets to reduce fungal virulence and clear infection.
Collapse
Affiliation(s)
- Brianna Ball
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Samanta Pladwig
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Samiha Kazi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Norris Chan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Effie Honeywell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Manuela Modrakova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
5
|
Goughenour K, Creech A, Xu J, He X, Hissong R, Giamberardino C, Tenor J, Toffaletti D, Perfect J, Olszewski M. Cryptococcus neoformans trehalose-6-phosphate synthase (tps1) promotes organ-specific virulence and fungal protection against multiple lines of host defenses. Front Cell Infect Microbiol 2024; 14:1392015. [PMID: 38841113 PMCID: PMC11150607 DOI: 10.3389/fcimb.2024.1392015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 06/07/2024] Open
Abstract
Trehalose-6-phosphate synthase (TPS1) was identified as a virulence factor for Cryptococcus neoformans and a promising therapeutic target. This study reveals previously unknown roles of TPS1 in evasion of host defenses during pulmonary and disseminated phases of infection. In the pulmonary infection model, TPS1-deleted (tps1Δ) Cryptococci are rapidly cleared by mouse lungs whereas TPS1-sufficent WT (H99) and revertant (tps1Δ:TPS1) strains expand in the lungs and disseminate, causing 100% mortality. Rapid pulmonary clearance of tps1Δ mutant is T-cell independent and relies on its susceptibility to lung resident factors and innate immune factors, exemplified by tps1Δ but not H99 inhibition in a coculture with dispersed lung cells and its rapid clearance coinciding with innate leukocyte infiltration. In the disseminated model of infection, which bypasses initial lung-fungus interactions, tps1Δ strain remains highly attenuated. Specifically, tps1Δ mutant is unable to colonize the lungs from the bloodstream or expand in spleens but is capable of crossing into the brain, where it remains controlled even in the absence of T cells. In contrast, strains H99 and tps1Δ:TPS1 rapidly expand in all studied organs, leading to rapid death of the infected mice. Since the rapid pulmonary clearance of tps1Δ mutant resembles a response to acapsular strains, the effect of tps1 deletion on capsule formation in vitro and in vivo was examined. Tps1Δ cryptococci form capsules but with a substantially reduced size. In conclusion, TPS1 is an important virulence factor, allowing C. neoformans evasion of resident pulmonary and innate defense mechanisms, most likely via its role in cryptococcal capsule formation.
Collapse
Affiliation(s)
- Kristie Goughenour
- Research Service, Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Arianna Creech
- Research Service, Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jintao Xu
- Research Service, Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Xiumiao He
- Research Service, Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
| | - Rylan Hissong
- Research Service, Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, United States
| | - Jennifer Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, United States
| | - Dena Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, United States
| | - John Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, United States
| | - Michal Olszewski
- Research Service, Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Boucher MJ, Madhani HD. Convergent evolution of innate immune-modulating effectors in invasive fungal pathogens. Trends Microbiol 2024; 32:435-447. [PMID: 37985333 DOI: 10.1016/j.tim.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
Invasive fungal infections pose a major threat to human health. Bacterial and protozoan pathogens secrete protein effectors that overcome innate immune barriers to promote microbial colonization, yet few such molecules have been identified in human fungal pathogens. Recent studies have begun to reveal these long-sought effectors and have illuminated how they subvert key cellular pathways, including apoptosis, myeloid cell polarization, Toll-like receptor signaling, and phagosome action. Thus, despite lacking the specialized secretion systems of bacteria and parasites, it is increasingly clear that fungi independently evolved effectors targeting pathways often subverted by other classes of pathogens. These findings demonstrate the remarkable power of convergent evolution to enable diverse microbes to infect humans while also setting the stage for detailed dissection of fungal disease mechanisms.
Collapse
Affiliation(s)
- Michael J Boucher
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Yang C, Shen W, Wang L, Zang X, Huang Y, Deng H, Zhou Y, Xie M, Xue X, Shen D. Cryptococcus gattii strains with a high phagocytosis phenotype by macrophages display high pathogenicity at the early stage of infection in vivo. Acta Biochim Biophys Sin (Shanghai) 2024; 56:291-303. [PMID: 37885429 PMCID: PMC10984874 DOI: 10.3724/abbs.2023250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Cryptococcus gattii (Cg) is a facultative intracellular pathogen that can replicate and disseminate in mammalian macrophages, causing life-threatening cryptococcosis in both immunocompetent and immunocompromised individuals. Cryptococcus-macrophage interactions are crucial for cryptococcosis prognosis. However, the relationship between Cg pathogenicity and phagocytosis by macrophages has not yet been investigated in depth. In this study, a series of in vitro and in vivo experiments were conducted to investigate the interaction between macrophages and Cg. Flow cytometry was used to detect the phagocytic phenotypes of the Cg strains within macrophages. Scanning electron microscopy, transmission electron microscopy, and immunofluorescence were used to observe phagocytosis and proliferation, respectively. Survival and lung fungal burden tests were also performed. Our results show that Cg cells display different phagocytosis phenotypes, which are independent of the molecular type. Within macrophages, the high phagocytosis phenotype (HP) strains obtain higher intracellular proliferation than the low phagocytosis phenotype (LP) strains. At the early stage of infection in vivo, HP-inducing permissive granulomas within the lungs seldom limit the dissemination of cryptococci. In addition, HP strains could inhibit the formation of M1-type macrophages, proliferate intracellularly and disseminate extracellularly, and cause hypoxia induced by mucus and acidic polysaccharide accumulation in pulmonary alveoli much earlier than LP strains in vivo. Our work reveals that Cg displays diverse interactions with macrophages, which may enhance our understanding of the pathogenicity of this life-threatening pathogen.
Collapse
Affiliation(s)
- Chen Yang
- Department of Laboratory Medicinethe First Medical CentreChinese People’s Liberation Army (PLA) General HospitalBeijing100853China
| | - Wanjun Shen
- State Key Laboratory of Kidney DiseaseDepartment of NephrologyChinese People’s Liberation Army (PLA) General HospitalBeijing100853China
| | - Lifeng Wang
- Department of Laboratory Medicinethe First Medical CentreChinese People’s Liberation Army (PLA) General HospitalBeijing100853China
| | - Xuelei Zang
- Department of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical UniversityPeking University Ninth School of Clinical MedicineBeijing100089China
| | - Yemei Huang
- Department of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical UniversityPeking University Ninth School of Clinical MedicineBeijing100089China
| | - Hengyu Deng
- School of Clinical MedicineWeifang Medical UniversityWeifang261053China
| | - Yangyu Zhou
- Department of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical UniversityPeking University Ninth School of Clinical MedicineBeijing100089China
| | - Mei Xie
- of Respiratory and Critical CareChinese People’s Liberation Army (PLA) General HospitalBeijing100853China
| | - Xinying Xue
- Department of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical UniversityPeking University Ninth School of Clinical MedicineBeijing100089China
- School of Clinical MedicineWeifang Medical UniversityWeifang261053China
| | - Dingxia Shen
- Department of Laboratory Medicinethe First Medical CentreChinese People’s Liberation Army (PLA) General HospitalBeijing100853China
| |
Collapse
|
8
|
Farley FW, McCully RR, Maslo PB, Yu L, Sheff MA, Sadeghi H, Elion EA. Effects of HSP70 chaperones Ssa1 and Ssa2 on Ste5 scaffold and the mating mitogen-activated protein kinase (MAPK) pathway in Saccharomyces cerevisiae. PLoS One 2023; 18:e0289339. [PMID: 37851593 PMCID: PMC10584130 DOI: 10.1371/journal.pone.0289339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 07/17/2023] [Indexed: 10/20/2023] Open
Abstract
Ste5 is a prototype of scaffold proteins that regulate activation of mitogen-activated protein kinase (MAPK) cascades in all eukaryotes. Ste5 associates with many proteins including Gβγ (Ste4), Ste11 MAPKKK, Ste7 MAPKK, Fus3 and Kss1 MAPKs, Bem1, Cdc24. Here we show that Ste5 also associates with heat shock protein 70 chaperone (Hsp70) Ssa1 and that Ssa1 and its ortholog Ssa2 are together important for Ste5 function and efficient mating responses. The majority of purified overexpressed Ste5 associates with Ssa1. Loss of Ssa1 and Ssa2 has deleterious effects on Ste5 abundance, integrity, and localization particularly when Ste5 is expressed at native levels. The status of Ssa1 and Ssa2 influences Ste5 electrophoresis mobility and formation of high molecular weight species thought to be phosphorylated, ubiquitinylated and aggregated and lower molecular weight fragments. A Ste5 VWA domain mutant with greater propensity to form punctate foci has reduced predicted propensity to bind Ssa1 near the mutation sites and forms more punctate foci when Ssa1 Is overexpressed, supporting a dynamic protein quality control relationship between Ste5 and Ssa1. Loss of Ssa1 and Ssa2 reduces activation of Fus3 and Kss1 MAPKs and FUS1 gene expression and impairs mating shmoo morphogenesis. Surprisingly, ssa1, ssa2, ssa3 and ssa4 single, double and triple mutants can still mate, suggesting compensatory mechanisms exist for folding. Additional analysis suggests Ssa1 is the major Hsp70 chaperone for the mating and invasive growth pathways and reveals several Hsp70-Hsp90 chaperone-network proteins required for mating morphogenesis.
Collapse
Affiliation(s)
- Francis W. Farley
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Ryan R. McCully
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Paul B. Maslo
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Lu Yu
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Mark A. Sheff
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Homayoun Sadeghi
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Elaine A. Elion
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
9
|
Neves-da-Rocha J, Santos-Saboya MJ, Lopes MER, Rossi A, Martinez-Rossi NM. Insights and Perspectives on the Role of Proteostasis and Heat Shock Proteins in Fungal Infections. Microorganisms 2023; 11:1878. [PMID: 37630438 PMCID: PMC10456932 DOI: 10.3390/microorganisms11081878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are a diverse group of eukaryotic organisms that infect humans, animals, and plants. To successfully colonize their hosts, pathogenic fungi must continuously adapt to the host's unique environment, e.g., changes in temperature, pH, and nutrient availability. Appropriate protein folding, assembly, and degradation are essential for maintaining cellular homeostasis and survival under stressful conditions. Therefore, the regulation of proteostasis is crucial for fungal pathogenesis. The heat shock response (HSR) is one of the most important cellular mechanisms for maintaining proteostasis. It is activated by various stresses and regulates the activity of heat shock proteins (HSPs). As molecular chaperones, HSPs participate in the proteostatic network to control cellular protein levels by affecting their conformation, location, and degradation. In recent years, a growing body of evidence has highlighted the crucial yet understudied role of stress response circuits in fungal infections. This review explores the role of protein homeostasis and HSPs in fungal pathogenicity, including their contributions to virulence and host-pathogen interactions, as well as the concerted effects between HSPs and the main proteostasis circuits in the cell. Furthermore, we discuss perspectives in the field and the potential for targeting the components of these circuits to develop novel antifungal therapies.
Collapse
Affiliation(s)
- João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| | | | | | | | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| |
Collapse
|
10
|
Diniz-Lima I, da Fonseca LM, Dos Reis JS, Decote-Ricardo D, Morrot A, Previato JO, Previato LM, Freire-de-Lima CG, Freire-de-Lima L. Non-self glycan structures as possible modulators of cancer progression: would polysaccharides from Cryptococcus spp. impact this phenomenon? Braz J Microbiol 2023; 54:907-919. [PMID: 36840821 PMCID: PMC10235250 DOI: 10.1007/s42770-023-00936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Invasive fungal infections (IFI) are responsible for a large number of annual deaths. Most cases are closely related to patients in a state of immunosuppression, as is the case of patients undergoing chemotherapy. Cancer patients are severely affected by the worrisome proportions that an IFI can take during cancer progression, especially in an already immunologically and metabolically impaired patient. There is scarce knowledge about strategies to mitigate cancer progression in these cases, beyond conventional treatment with antifungal drugs with a narrow therapeutic range. However, in recent years, ample evidence has surfaced describing the possible interferences that IFI may have both on the progression of pre-existing cancers and in the induction of newly transformed cells. The leading gambit for modulation of tumor progression comes from the ability of fungal virulence factors to modulate the host's immune system, since they are found in considerable concentrations in the tumor microenvironment during infection. In this context, cryptococcosis is of particular concern, since the main virulence factor of the pathogenic yeast is its polysaccharide capsule, which carries constituents with high immunomodulatory properties and cytotoxic potential. Therefore, we open a discussion on what has already been described regarding the progression of cryptococcosis in the context of cancer progression, and the possible implications that fungal glycan structures may take in both cancer development and progression.
Collapse
Affiliation(s)
- Israel Diniz-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Leonardo Marques da Fonseca
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jhenifer Santos Dos Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Debora Decote-Ricardo
- Departamento de Microbiologia E Imunologia Veterinária, Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Rio de Janeiro, 23890-000, Brazil
| | - Alexandre Morrot
- Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-360, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Lucia Mendonça Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
11
|
Motta H, Catarina Vieira Reuwsaat J, Daidrê Squizani E, da Silva Camargo M, Wichine Acosta Garcia A, Schrank A, Henning Vainstein M, Christian Staats C, Kmetzsch L. The small heat shock protein Hsp12.1 has a major role in the stress response and virulence of Cryptococcus gattii. Fungal Genet Biol 2023; 165:103780. [PMID: 36780981 DOI: 10.1016/j.fgb.2023.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Cryptococcus gattii is one of the etiological agents of cryptococcosis. To achieve a successful infection, C. gattii cells must overcome the inhospitable host environment and deal with the highly specialized immune system and poor nutrients availability. Inside the host, C. gattii uses a diversified set of tools to maintain homeostasis and establish infection, such as the expression of remarkable and diverse heat shock proteins (Hsps). Grouped by molecular weight, little is known about the Hsp12 subset in pathogenic fungi. In this study, the function of the C. gattii HSP12.1 and HSP12.2 genes was characterized. Both genes were upregulated during murine infection and heat shock. The hsp12.1 Δ null mutant cells were sensitive to plasma membrane and oxidative stressors. Moreover, HSP12 deletion induced C. gattii reactive oxygen species (ROS) accumulation associated with a differential expression pattern of oxidative stress-responsive genes compared to the wild type strain. Apart from these findings, the deletion of the paralog gene HSP12.2 did not lead to any detectable phenotype. Additionally, the double-deletion mutant strain hsp12.1 Δ /hsp12.2 Δ presented a similar phenotype to the single-deletion mutant hsp12.1 Δ, suggesting a minor participation of Hsp12.2 in these processes. Furthermore, HSP12.1 disruption remarkably affected C. gattii virulence and phagocytosis by macrophages in an invertebrate model of infection, demonstrating its importance for C. gattii pathogenicity.
Collapse
Affiliation(s)
- Heryk Motta
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Eamim Daidrê Squizani
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilene Henning Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Charley Christian Staats
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lívia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
12
|
Rush RE, Blackwood CB, Lemons AR, Dannemiller KC, Green BJ, Croston TL. Persisting Cryptococcus yeast species Vishniacozyma victoriae and Cryptococcus neoformans elicit unique airway inflammation in mice following repeated exposure. Front Cell Infect Microbiol 2023; 13:1067475. [PMID: 36864880 PMCID: PMC9971225 DOI: 10.3389/fcimb.2023.1067475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Background Allergic airway disease (AAD) is a growing concern in industrialized nations and can be influenced by fungal exposures. Basidiomycota yeast species such as Cryptococcus neoformans are known to exacerbate allergic airway disease; however, recent indoor assessments have identified other Basidiomycota yeasts, including Vishniacozyma victoriae (syn. Cryptococcus victoriae), to be prevalent and potentially associated with asthma. Until now, the murine pulmonary immune response to repeated V. victoriae exposure was previously unexplored. Objective This study aimed to compare the immunological impact of repeated pulmonary exposure to Cryptococcus yeasts. Methods Mice were repeatedly exposed to an immunogenic dose of C. neoformans or V. victoriae via oropharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and lungs were collected to examine airway remodeling, inflammation, mucous production, cellular influx, and cytokine responses at 1 day and 21 days post final exposure. The responses to C. neoformans and V. victoriae were analyzed and compared. Results Following repeated exposure, both C. neoformans and V. victoriae cells were still detectable in the lungs 21 days post final exposure. Repeated C. neoformans exposure initiated myeloid and lymphoid cellular infiltration into the lung that worsened over time, as well as an IL-4 and IL-5 response compared to PBS-exposed controls. In contrast, repeated V. victoriae exposure induced a strong CD4+ T cell-driven lymphoid response that started to resolve by 21 days post final exposure. Discussion C. neoformans remained in the lungs and exacerbated the pulmonary immune responses as expected following repeated exposure. The persistence of V. victoriae in the lung and strong lymphoid response following repeated exposure were unexpected given its lack of reported involvement in AAD. Given the abundance in indoor environments and industrial utilization of V. victoriae, these results highlight the importance to investigate the impact of frequently detected fungal organisms on the pulmonary response following inhalational exposure. Moreover, it is important to continue to address the knowledge gap involving Basidiomycota yeasts and their impact on AAD.
Collapse
Affiliation(s)
- Rachael E. Rush
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Catherine B. Blackwood
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Angela R. Lemons
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Karen C. Dannemiller
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, United States
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, United States
| | - Brett J. Green
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Tara L. Croston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
13
|
Stempinski PR, Goughenour KD, du Plooy LM, Alspaugh JA, Olszewski MA, Kozubowski L. The Cryptococcus neoformans Flc1 Homologue Controls Calcium Homeostasis and Confers Fungal Pathogenicity in the Infected Hosts. mBio 2022; 13:e0225322. [PMID: 36169198 PMCID: PMC9600462 DOI: 10.1128/mbio.02253-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 01/30/2023] Open
Abstract
Cryptococcus neoformans, an opportunistic yeast pathogen, relies on a complex network of stress response pathways that allow for proliferation in the host. In Saccharomyces cerevisiae, stress responses are regulated by integral membrane proteins containing a transient receptor potential (TRP) domain, including the flavin carrier protein 1 (Flc1), which regulates calcium homeostasis and flavin transport. Here, we report that deletion of C. neoformans FLC1 results in cytosolic calcium elevation and increased nuclear content of calcineurin-dependent transcription factor Crz1, which is associated with an aberrant cell wall chitin overaccumulation observed in the flc1Δ mutant. Absence of Flc1 or inhibition of calcineurin with cyclosporine A prevents vacuolar fusion under conditions of combined osmotic and temperature stress, which is reversed in the flc1Δ mutant by the inhibition of TORC1 kinase with rapamycin. Flc1-deficient yeasts exhibit compromised vacuolar fusion under starvation conditions, including conditions that stimulate formation of carbohydrate capsule. Consequently, the flc1Δ mutant fails to proliferate under low nutrient conditions and displays a defect in capsule formation. Consistent with the previously uncharacterized role of Flc1 in vacuolar biogenesis, we find that Flc1 localizes to the vacuole. The flc1Δ mutant presents a survival defect in J774A.1 macrophage cell-line and profound virulence attenuation in both the Galleria mellonella and mouse pulmonary infection models, demonstrating that Flc1 is essential for pathogenicity. Thus, cryptococcal Flc1 functions in calcium homeostasis and links calcineurin and TOR signaling with vacuolar biogenesis to promote survival under conditions associated with vacuolar fusion required for this pathogen's fitness and virulence. IMPORTANCE Cryptococcosis is a highly lethal infection with limited drug choices, most of which are highly toxic or complicated by emerging antifungal resistance. There is a great need for new drug targets that are unique to the fungus. Here, we identify such a potential target, the Flc1 protein, which we show is crucial for C. neoformans stress response and virulence. Importantly, homologues of Flc1 exist in other fungal pathogens, such as Candida albicans and Aspergillus fumigatus, and are poorly conserved in humans, which could translate into wider spectrum therapy associated with minimal toxicity. Thus, Flc1 could be an "Achille's heel" of C. neoformans to be leveraged therapeutically in cryptococcosis and possibly other fungal infections.
Collapse
Affiliation(s)
- Piotr R. Stempinski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Kristie D. Goughenour
- LTC Charles S. Kettles VA Medical Center, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School
| | - Lukas M. du Plooy
- Departments of Medicine and Molecular Genetics/Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - J. Andrew Alspaugh
- Departments of Medicine and Molecular Genetics/Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michal A. Olszewski
- LTC Charles S. Kettles VA Medical Center, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
14
|
Yang C, Huang Y, Zhou Y, Zang X, Deng H, Liu Y, Shen D, Xue X. Cryptococcus escapes host immunity: What do we know? Front Cell Infect Microbiol 2022; 12:1041036. [PMID: 36310879 PMCID: PMC9606624 DOI: 10.3389/fcimb.2022.1041036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cryptococcus is an invasive fungus that seriously endangers human life and health, with a complex and well-established immune-escaping mechanism that interferes with the function of the host immune system. Cryptococcus can attenuate the host’s correct recognition of the fungal antigen and escape the immune response mediated by host phagocytes, innate lymphoid cells, T lymphocytes, B lymphocytes with antibodies, and peripheral cytokines. In addition, the capsule, melanin, dormancy, Titan cells, biofilm, and other related structures of Cryptococcus are also involved in the process of escaping the host’s immunity, as well as enhancing the ability of Cryptococcus to infect the host.
Collapse
Affiliation(s)
- Chen Yang
- Department of Laboratory Medicine, the First Medical Centre, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yemei Huang
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Yangyu Zhou
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Xuelei Zang
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Hengyu Deng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yitong Liu
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Dingxia Shen
- Department of Laboratory Medicine, the First Medical Centre, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Dingxia Shen, ; Xinying Xue,
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Dingxia Shen, ; Xinying Xue,
| |
Collapse
|
15
|
Dang EV, Lei S, Radkov A, Volk RF, Zaro BW, Madhani HD. Secreted fungal virulence effector triggers allergic inflammation via TLR4. Nature 2022; 608:161-167. [PMID: 35896747 PMCID: PMC9744105 DOI: 10.1038/s41586-022-05005-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/21/2022] [Indexed: 12/14/2022]
Abstract
Invasive fungal pathogens are major causes of human mortality and morbidity1,2. Although numerous secreted effector proteins that reprogram innate immunity to promote virulence have been identified in pathogenic bacteria, so far, there are no examples of analogous secreted effector proteins produced by human fungal pathogens. Cryptococcus neoformans, the most common cause of fungal meningitis and a major pathogen in AIDS, induces a pathogenic type 2 response characterized by pulmonary eosinophilia and alternatively activated macrophages3-8. Here, we identify CPL1 as an effector protein secreted by C. neoformans that drives alternative activation (also known as M2 polarization) of macrophages to enable pulmonary infection in mice. We observed that CPL1-enhanced macrophage polarization requires Toll-like receptor 4, which is best known as a receptor for bacterial endotoxin but is also a poorly understood mediator of allergen-induced type 2 responses9-12. We show that this effect is caused by CPL1 itself and not by contaminating lipopolysaccharide. CPL1 is essential for virulence, drives polarization of interstitial macrophages in vivo, and requires type 2 cytokine signalling for its effect on infectivity. Notably, C. neoformans associates selectively with polarized interstitial macrophages during infection, suggesting a mechanism by which C. neoformans generates its own intracellular replication niche within the host. This work identifies a circuit whereby a secreted effector protein produced by a human fungal pathogen reprograms innate immunity, revealing an unexpected role for Toll-like receptor 4 in promoting the pathogenesis of infectious disease.
Collapse
Affiliation(s)
- Eric V. Dang
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Susan Lei
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Atanas Radkov
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Regan F. Volk
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, United States of America,Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Balyn W. Zaro
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, United States of America,Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Hiten D. Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America,Chan-Zuckerberg Biohub, San Francisco, CA, United States of America,
| |
Collapse
|
16
|
Abstract
Cryptococcosis is a disease caused by the pathogenic fungi Cryptococcus neoformans and Cryptococcus gattii, both environmental fungi that cause severe pneumonia and may even lead to cryptococcal meningoencephalitis. Although C. neoformans affects more fragile individuals, such as immunocompromised hosts through opportunistic infections, C. gattii causes a serious indiscriminate primary infection in immunocompetent individuals. Typically seen in tropical and subtropical environments, C. gattii has increased its endemic area over recent years, largely due to climatic factors that favor contagion in warmer climates. It is important to point out that not only C. gattii, but the Cryptococcus species complex produces a polysaccharidic capsule with immunomodulatory properties, enabling the pathogenic species of Cryptococccus to subvert the host immune response during the establishment of cryptococcosis, facilitating its dissemination in the infected organism. C. gattii causes a more severe and difficult-to-treat infection, with few antifungals eliciting an effective response during chronic treatment. Much of the immunopathology of this cryptococcosis is still poorly understood, with most studies focusing on cryptococcosis caused by the species C. neoformans. C. gattii became more important in the epidemiological scenario with the outbreaks in the Pacific Northwest of the United States, which resulted in phylogenetic studies of the virulent variant responsible for the severe infection in the region. Since then, the study of cryptococcosis caused by C. gattii has helped researchers understand the immunopathological aspects of different variants of this pathogen.
Collapse
|
17
|
Piffer AC, Santos FMD, Thomé MP, Diehl C, Garcia AWA, Kinskovski UP, Schneider RDO, Gerber A, Feltes BC, Schrank A, Vasconcelos ATR, Lenz G, Kmetzsch L, Vainstein MH, Staats CC. Transcriptomic analysis reveals that mTOR pathway can be modulated in macrophage cells by the presence of cryptococcal cells. Genet Mol Biol 2021; 44:e20200390. [PMID: 34352067 PMCID: PMC8341293 DOI: 10.1590/1678-4685-gmb-2020-0390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/05/2021] [Indexed: 11/21/2022] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the etiological agents of cryptococcosis, a high mortality disease. The development of such disease depends on the interaction of fungal cells with macrophages, in which they can reside and replicate. In order to dissect the molecular mechanisms by which cryptococcal cells modulate the activity of macrophages, a genome-scale comparative analysis of transcriptional changes in macrophages exposed to Cryptococcus spp. was conducted. Altered expression of nearly 40 genes was detected in macrophages exposed to cryptococcal cells. The major processes were associated with the mTOR pathway, whose associated genes exhibited decreased expression in macrophages incubated with cryptococcal cells. Phosphorylation of p70S6K and GSK-3β was also decreased in macrophages incubated with fungal cells. In this way, Cryptococci presence could drive the modulation of mTOR pathway in macrophages possibly to increase the survival of the pathogen.
Collapse
Affiliation(s)
- Alícia C Piffer
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Francine M Dos Santos
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Marcos P Thomé
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Camila Diehl
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Ane Wichine Acosta Garcia
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Uriel Perin Kinskovski
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Rafael de Oliveira Schneider
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Alexandra Gerber
- Laboratório Nacional de Computação Científica, Petrópolis, RJ, Brazil
| | - Bruno César Feltes
- Universidade Federal do Rio Grande do Sul, Instituto de Informática, Porto Alegre, RS, Brazil
| | - Augusto Schrank
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | | | - Guido Lenz
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Lívia Kmetzsch
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Marilene H Vainstein
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Charley C Staats
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Gressler AE, Volke D, Firacative C, Schnabel CL, Müller U, Krizsan A, Schulze-Richter B, Brock M, Brombacher F, Escandón P, Hoffmann R, Alber G. Identification of Disease-Associated Cryptococcal Proteins Reactive With Serum IgG From Cryptococcal Meningitis Patients. Front Immunol 2021; 12:709695. [PMID: 34367172 PMCID: PMC8342929 DOI: 10.3389/fimmu.2021.709695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023] Open
Abstract
Cryptococcus neoformans, an opportunistic fungal pathogen ubiquitously present in the environment, causes cryptococcal meningitis (CM) mainly in immunocompromised patients, such as AIDS patients. We aimed to identify disease-associated cryptococcal protein antigens targeted by the human humoral immune response. Therefore, we used sera from Colombian CM patients, with or without HIV infection, and from healthy individuals living in the same region. Serological analysis revealed increased titers of anti-cryptococcal IgG in HIV-negative CM patients, but not HIV-positive CM patients, compared to healthy controls. In contrast, titers of anti-cryptococcal IgM were not affected by CM. Furthermore, we detected pre-existing IgG and IgM antibodies even in sera from healthy individuals. The observed induction of anti-cryptococcal IgG but not IgM during CM was supported by analysis of sera from C. neoformans-infected mice. Stronger increase in IgG was found in wild type mice with high lung fungal burden compared to IL-4Rα-deficient mice showing low lung fungal burden. To identify the proteins targeted by human anti-cryptococcal IgG antibodies, we applied a quantitative 2D immunoproteome approach identifying cryptococcal protein spots preferentially recognized by sera from CM patients or healthy individuals followed by mass spectrometry analysis. Twenty-three cryptococcal proteins were recombinantly expressed and confirmed to be immunoreactive with human sera. Fourteen of them were newly described as immunoreactive proteins. Twelve proteins were classified as disease-associated antigens, based on significantly stronger immunoreactivity with sera from CM patients compared to healthy individuals. The proteins identified in our screen significantly expand the pool of cryptococcal proteins with potential for (i) development of novel anti-cryptococcal agents based on implications in cryptococcal virulence or survival, or (ii) development of an anti-cryptococcal vaccine, as several candidates lack homology to human proteins and are localized extracellularly. Furthermore, this study defines pre-existing anti-cryptococcal immunoreactivity in healthy individuals at a molecular level, identifying target antigens recognized by sera from healthy control persons.
Collapse
Affiliation(s)
- A Elisabeth Gressler
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Daniela Volke
- Institute of Bioanalytical Chemistry, Leipzig University, Leipzig, Germany
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Christiane L Schnabel
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Uwe Müller
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Andor Krizsan
- Institute of Bioanalytical Chemistry, Leipzig University, Leipzig, Germany
| | - Bianca Schulze-Richter
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Matthias Brock
- Fungal Genetics and Biology Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | | | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Leipzig University, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
19
|
Alternative Splicing of Heat Shock Transcription Factor 2 Regulates the Expression of Laccase Gene Family in Response to Copper in Trametes trogii. Appl Environ Microbiol 2021; 87:AEM.00055-21. [PMID: 33579682 PMCID: PMC8091107 DOI: 10.1128/aem.00055-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
White-rot fungi, especially Trametes strains, are the primary source of industrial laccases in bioenergy and bioremediation. Trametes strains express members of the laccase gene family with different physicochemical properties and expression patterns. However, the literature on the expression pattern of the laccase gene family in T. trogii S0301 and the response mechanism to Cu2+, a key laccase inducer, in white-rot fungal strains is scarce. In the present study, we found that Cu2+ could induce the mRNAs and proteins of the two alternative splicing variants of heat shock transcription factor 2 (TtHSF2). Furthermore, the overexpression of alternative splicing variants TtHSF2α and TtHSF2β-I in the homokaryotic T. trogii S0301 strain showed opposite effects on the extracellular total laccase activity, with the maximum laccase activity of approximately 0.6 U mL-1 and 3.0 U mL-1, respectively, on the eighth day, which is 0.4 and 2.3 times that of the wild type strain. Similarly, TtHSF2α and TtHSF2β-I play opposite roles in the oxidation tolerance to H2O2 In addition, the direct binding of TtHSF2α to the promoter regions of the representative laccase isoenzymes (TtLac1 and TtLac13) and protein-protein interactions between TtHSF2α and TtHSF2β-I were detected. Our results demonstrate the crucial roles of TtHSF2 and its alternative splicing variants in response to Cu2+ We believe that these findings will deepen our understanding of alternative splicing of HSFs and their regulatory mechanism of the laccase gene family in white-rot fungi.Importance The members of laccase gene family in Trametes strains are the primary source of industrial laccase and have gained widespread attention. Increasing the yield and enzymatic properties of laccase through various methods has always been a topic worthy of attention, and there is no report on the regulation of laccase expression through HSF transcription factor engineering. Here, we found that two alternative splicing variants of TtHSF2 functioned oppositely in regulating the expression of laccase genes, and copper can induce the expression of almost all members of the laccase gene family. Most importantly, our study suggested that TtHSF2 and its alternative splicing variants are vital for copper-induced production of laccases in T. trogii S0301.
Collapse
|
20
|
Horianopoulos LC, Kronstad JW. Chaperone Networks in Fungal Pathogens of Humans. J Fungi (Basel) 2021; 7:209. [PMID: 33809191 PMCID: PMC7998936 DOI: 10.3390/jof7030209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
The heat shock proteins (HSPs) function as chaperones to facilitate proper folding and modification of proteins and are of particular importance when organisms are subjected to unfavourable conditions. The human fungal pathogens are subjected to such conditions within the context of infection as they are exposed to human body temperature as well as the host immune response. Herein, the roles of the major classes of HSPs are briefly reviewed and their known contributions in human fungal pathogens are described with a focus on Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. The Hsp90s and Hsp70s in human fungal pathogens broadly contribute to thermotolerance, morphological changes required for virulence, and tolerance to antifungal drugs. There are also examples of J domain co-chaperones and small HSPs influencing the elaboration of virulence factors in human fungal pathogens. However, there are diverse members in these groups of chaperones and there is still much to be uncovered about their contributions to pathogenesis. These HSPs do not act in isolation, but rather they form a network with one another. Interactions between chaperones define their specific roles and enhance their protein folding capabilities. Recent efforts to characterize these HSP networks in human fungal pathogens have revealed that there are unique interactions relevant to these pathogens, particularly under stress conditions. The chaperone networks in the fungal pathogens are also emerging as key coordinators of pathogenesis and antifungal drug tolerance, suggesting that their disruption is a promising strategy for the development of antifungal therapy.
Collapse
Affiliation(s)
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
21
|
Yang D, Shen LX, Chen RF, Fu Y, Xu HY, Zhang LN, Liu DH. The Effect of Talaromyces marneffei Infection on CD86 Expression in THP-1 Cells. Infect Drug Resist 2021; 14:651-660. [PMID: 33642869 PMCID: PMC7903953 DOI: 10.2147/idr.s297160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/31/2021] [Indexed: 12/11/2022] Open
Abstract
Background Talaromyces marneffei (T. marneffei) is a destructive opportunistic dimorphic fungal which can cause lethiferous Talaromycosis, but the clearance of T. marneffei mainly depends on the innate immune response. Objective To investigate whether T. marneffei can inhibit the expression of CD86 in THP-1 cells after infection and discuss the potential mechanisms. Methods Western blot and immunoelectron microscopy were used to detect the CD86 expression on T. marneffei cultured on BHI medium at 37°C. Western blot, enzyme-linked immunoassay and immunofluorescence were used to detect the change of CD86 expression on macrophages incubating with T. marneffei. Enzyme-linked immunoassay was used to detect the content of CD86 in supernatant in the co-culture system. Immunohistochemistry and immunoelectron microscopy were used to detect the expression of CD86 on T. marneffei incubating with macrophages. Results T. marneffei did not express CD86 when cultured separately at 37°C detected by Western blot and immunoelectron microscopy, but it did express CD86 when incubated with macrophages detected by immunohistochemistry and immunoelectron microscopy. The CD86 expression of macrophages significantly decreased at 72 hours when infected with T. marneffei while the content of CD86 in supernatant significantly increased at 72 hours compared with the control group which were detected by Western blot, enzyme-linked immunoassay and immunofluorescence. Conclusion 1) After T. marneffei infection, CD86 expression on THP-1 decreased, and with the progression of infection, insufficient polarization of M1 macrophages gradually appeared; 2) T. marneffei may adsorb or uptake CD86 in supernatant produced by macrophages during the contact with THP-1 cells, thus leading to the consumption of CD86 in macrophages.
Collapse
Affiliation(s)
- Di Yang
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Lin-Xia Shen
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Dermatology and Venereology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Ri-Feng Chen
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yu Fu
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Hong-Yan Xu
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Li-Na Zhang
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Dong-Hua Liu
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Nanning, 530021, People's Republic of China
| |
Collapse
|
22
|
Normile TG, Bryan AM, Del Poeta M. Animal Models of Cryptococcus neoformans in Identifying Immune Parameters Associated With Primary Infection and Reactivation of Latent Infection. Front Immunol 2020; 11:581750. [PMID: 33042164 PMCID: PMC7522366 DOI: 10.3389/fimmu.2020.581750] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus species are environmental fungal pathogens and the causative agents of cryptococcosis. Infection occurs upon inhalation of infectious particles, which proliferate in the lung causing a primary infection. From this primary lung infection, fungal cells can eventually disseminate to other organs, particularly the brain, causing lethal meningoencephalitis. However, in most cases, the primary infection resolves with the formation of a lung granuloma. Upon severe immunodeficiency, dormant cryptococcal cells will start proliferating in the lung granuloma and eventually will disseminate to the brain. Many investigators have sought to study the protective host immune response to this pathogen in search of host parameters that keep the proliferation of cryptococcal cells under control. The majority of the work assimilates research carried out using the primary infection animal model, mainly because a reactivation model has been available only very recently. This review will focus on anti-cryptococcal immunity in both the primary and reactivation models. An understanding of the differences in host immunity between the primary and reactivation models will help to define the key host parameters that control the infections and are important for the research and development of new therapeutic and vaccine strategies against cryptococcosis.
Collapse
Affiliation(s)
- Tyler G Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Arielle M Bryan
- Ingenious Targeting Laboratory Incorporated, Ronkonkoma, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States.,Veterans Administration Medical Center, Northport, NY, United States
| |
Collapse
|
23
|
The Novel J-Domain Protein Mrj1 Is Required for Mitochondrial Respiration and Virulence in Cryptococcus neoformans. mBio 2020; 11:mBio.01127-20. [PMID: 32518190 PMCID: PMC7373193 DOI: 10.1128/mbio.01127-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cryptococcus neoformans is the causative agent of cryptococcal meningitis, a disease responsible for ∼15% of all HIV-related deaths. Unfortunately, development of antifungal drugs is challenging because potential targets are conserved between humans and C. neoformans. In this context, we characterized a unique J-domain protein, Mrj1, which lacks orthologs in humans. We showed that Mrj1 was required for normal mitochondrial respiration and that mutants lacking Mrj1 were deficient in growth, capsule elaboration, and virulence. Furthermore, we were able to phenocopy the defects in growth and capsule elaboration by inhibiting respiration. This result suggests that the role of Mrj1 in mitochondrial function was responsible for the observed virulence defects and reinforces the importance of mitochondria to fungal pathogenesis. Mitochondria are difficult to target, as their function is also key to human cells; however, Mrj1 presents an opportunity to target a unique fungal protein required for mitochondrial function and virulence in C. neoformans. The opportunistic fungal pathogen Cryptococcus neoformans must adapt to the mammalian environment to establish an infection. Proteins facilitating adaptation to novel environments, such as chaperones, may be required for virulence. In this study, we identified a novel mitochondrial co-chaperone, Mrj1 (mitochondrial respiration J-domain protein 1), necessary for virulence in C. neoformans. The mrj1Δ and J-domain-inactivated mutants had general growth defects at both routine laboratory and human body temperatures and were deficient in the major virulence factor of capsule elaboration. The latter phenotype was associated with cell wall changes and increased capsular polysaccharide shedding. Accordingly, the mrj1Δ mutant was avirulent in a murine model of cryptococcosis. Mrj1 has a mitochondrial localization and co-immunoprecipitated with Qcr2, a core component of complex III of the electron transport chain. The mrj1 mutants were deficient in mitochondrial functions, including growth on alternative carbon sources, growth without iron, and mitochondrial polarization. They were also insensitive to complex III inhibitors and hypersensitive to an alternative oxidase (AOX) inhibitor, suggesting that Mrj1 functions in respiration. In support of this conclusion, mrj1 mutants also had elevated basal oxygen consumption rates which were completely abolished by the addition of the AOX inhibitor, confirming that Mrj1 is required for mitochondrial respiration through complexes III and IV. Furthermore, inhibition of complex III phenocopied the capsule and cell wall defects of the mrj1 mutants. Taken together, these results indicate that Mrj1 is required for normal mitochondrial respiration, a key aspect of adaptation to the host environment and virulence.
Collapse
|
24
|
Safaei S, Rezvan H, Fateh R, Khalifeh Gholi M. Immunogenicity of the Recombinant Cryptococcus neoformans HSP70, a Potential Candidate for Developing an ELISA Kit. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2020. [DOI: 10.29252/jommid.8.2.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
25
|
Zhang Z, Schlamp F, Huang L, Clark H, Brayboy L. Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary. Reproduction 2020; 159:325-337. [PMID: 31940276 PMCID: PMC7066623 DOI: 10.1530/rep-19-0330] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
The fertility of women declines sharply after age 35 and is essentially lost upon menopause at age 51. The ovary plays an important part in aging-associated changes in women's physiology since it is an essential component of both the reproductive and endocrine systems. Several previous studies in mice have shown that the ovarian tissue goes through drastic changes over the course of aging and exhibits signs of aging-associated chronic inflammation (inflammaging), which may contribute to the marked decline of oocyte quality in aged individuals. To further examine aging-associated gene expression changes in the ovary and to characterize the development of inflammaging, we performed detailed transcriptomic analysis of whole ovaries from mice of six different age groups over the mouse reproductive lifespan and identified more than 5000 genes with significant expression change over the course of aging. Intriguingly, we found aging-associated changes in the expression of several markers that indicate alterations in the composition of ovarian macrophages, which are known to be central players of inflammaging. Using flow cytometry, we analyzed and compared macrophage populations and polarization in young and old ovaries and found a significant increase in monocyte recruitment and macrophage alternative activation (M2) in the old ovaries compared to those in young. Our results are consistent with previous findings of aging-associated increase of fibrosis in the ovarian stromal extracellular matrix, and they provide new clues about the development of inflammaging in the mammalian ovary.
Collapse
Affiliation(s)
- Zijing Zhang
- Department of Obstetrics and Gynecology, Division of Research, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| | - Florencia Schlamp
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Lu Huang
- Department of Microbiology and immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Haley Clark
- Department of Obstetrics and Gynecology, Division of Research, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| | - Lynae Brayboy
- Department of Obstetrics and Gynecology, Division of Research, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
- Alpert Medical School of Brown University, 222 Richmond Street Providence, RI 02903, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University 185 Meeting Street, Providence, RI 02912, USA
| |
Collapse
|
26
|
Abstract
Dendritic cells (DCs), a vital component of the innate immune system, are considered to lack antigen specificity and be devoid of immunological memory. Strategies that can induce memory-like responses from innate cells can be utilized to elicit protective immunity in immune deficient persons. Here we utilize an experimental immunization strategy to modulate DC inflammatory and memory-like responses against an opportunistic fungal pathogen that causes significant disease in immunocompromised individuals. Our results show that DCs isolated from protectively immunized mice exhibit enhanced transcriptional activation of interferon and immune signaling pathways. We also show long-term memory-like cytokine responses upon subsequent challenge with the fungal pathogen that are abrogated with inhibitors of specific histone modifications. Altogether, our study demonstrates that immunization strategies can be designed to elicit memory-like DC responses against infectious disease. Wormley and colleagues present data showing that vaccine strategies can be devised to prime dendritic cells to respond in a memory-like fashion upon subsequent exposure to a pathogen.
Collapse
|
27
|
Qian C, Yun Z, Yao Y, Cao M, Liu Q, Hu S, Zhang S, Luo D. Heterogeneous macrophages: Supersensors of exogenous inducing factors. Scand J Immunol 2019; 90:e12768. [PMID: 31002413 PMCID: PMC6852148 DOI: 10.1111/sji.12768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
As heterogeneous immune cells, macrophages mount effective responses to various internal and external changes during disease progression. Macrophage polarization, rather than macrophage heterogenization, is often used to describe the functional differences between macrophages. While macrophage polarization partially contributes to heterogeneity, it does not completely explain the concept of macrophage heterogeneity. At the same time, there are abundant and sophisticated endogenous and exogenous substances that can affect macrophage heterogeneity. While the research on endogenous factors has been systematically reviewed, the findings on exogenous factors have not been well summarized. Hence, we reviewed the characteristics and inducing factors of heterogeneous macrophages to reveal their functional plasticity as well as their targeting manoeuvreability. In the process of constructing and analysing a network organized by disease-related cells and molecules, paying more attention to heterogeneous macrophages as mediators of this network may help to explore a novel entry point for early prevention of and intervention in disease.
Collapse
Affiliation(s)
- Caiyun Qian
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zehui Yun
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yudi Yao
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Minghua Cao
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Liu
- School of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Song Hu
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Daya Luo
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China.,Affiliated Infectious Disease Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
28
|
Shourian M, Qureshi ST. Resistance and Tolerance to Cryptococcal Infection: An Intricate Balance That Controls the Development of Disease. Front Immunol 2019; 10:66. [PMID: 30761136 PMCID: PMC6361814 DOI: 10.3389/fimmu.2019.00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitous environmental yeast and a leading cause of invasive fungal infection in humans. The most recent estimate of global disease burden includes over 200,000 cases of cryptococcal meningitis each year. Cryptococcus neoformans expresses several virulence factors that may have originally evolved to protect against environmental threats, and human infection may be an unintended consequence of these acquired defenses. Traditionally, C. neoformans has been viewed as a purely opportunistic pathogen that targets severely immune compromised hosts; however, during the past decade the spectrum of susceptible individuals has grown considerably. In addition, the closely related strain Cryptococcus gattii has recently emerged in North America and preferentially targets individuals with intact immunity. In parallel to the changing epidemiology of cryptococcosis, an increasing role for host immunity in the pathogenesis of severe disease has been elucidated. Initially, the HIV/AIDS epidemic revealed the capacity of C. neoformans to cause host damage in the absence of adaptive immunity. Subsequently, the development and clinical implementation of highly active antiretroviral treatment (HAART) led to recognition of an immune reconstitution inflammatory syndrome (IRIS) in a subset of HIV+ individuals, demonstrating the pathological role of host immunity in disease. A post-infectious inflammatory syndrome (PIIRS) characterized by abnormal T cell-macrophage activation has also been documented in HIV-negative individuals following antifungal therapy. These novel clinical conditions illustrate the highly complex host-pathogen relationship that underlies severe cryptococcal disease and the intricate balance between tolerance and resistance that is necessary for effective resolution. In this article, we will review current knowledge of the interactions between cryptococci and mammalian hosts that result in a tolerant phenotype. Future investigations in this area have potential for translation into improved therapies for affected individuals.
Collapse
Affiliation(s)
- Mitra Shourian
- Translational Research in Respiratory Diseases Program, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Salman T Qureshi
- Translational Research in Respiratory Diseases Program, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
29
|
An Invertebrate Host to Study Fungal Infections, Mycotoxins and Antifungal Drugs: Tenebrio molitor. J Fungi (Basel) 2018; 4:jof4040125. [PMID: 30424549 PMCID: PMC6308941 DOI: 10.3390/jof4040125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Faced with ethical conflict and social pressure, researchers have increasingly chosen to use alternative models over vertebrates in their research. Since the innate immune system is evolutionarily conserved in insects, the use of these animals in research is gaining ground. This review discusses Tenebrio molitor as a potential model host for the study of pathogenic fungi. Larvae of T. molitor are known as cereal pests and, in addition, are widely used as animal and human feed. A number of studies on mechanisms of the humoral system, especially in the synthesis of antimicrobial peptides, which have similar characteristics to vertebrates, have been performed. These studies demonstrate the potential of T. molitor larvae as a model host that can be used to study fungal virulence, mycotoxin effects, host immune responses to fungal infection, and the action of antifungal compounds.
Collapse
|
30
|
Campuzano A, Wormley FL. Innate Immunity against Cryptococcus, from Recognition to Elimination. J Fungi (Basel) 2018. [PMID: 29518906 PMCID: PMC5872336 DOI: 10.3390/jof4010033] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cryptococcus species, the etiological agents of cryptococcosis, are encapsulated fungal yeasts that predominantly cause disease in immunocompromised individuals, and are responsible for 15% of AIDS-related deaths worldwide. Exposure follows the inhalation of the yeast into the lung alveoli, making it incumbent upon the pattern recognition receptors (PRRs) of pulmonary phagocytes to recognize highly conserved pathogen-associated molecular patterns (PAMPS) of fungi. The main challenges impeding the ability of pulmonary phagocytes to effectively recognize Cryptococcus include the presence of the yeast's large polysaccharide capsule, as well as other cryptococcal virulence factors that mask fungal PAMPs and help Cryptococcus evade detection and subsequent activation of the immune system. This review will highlight key phagocyte cell populations and the arsenal of PRRs present on these cells, such as the Toll-like receptors (TLRs), C-type lectin receptors, NOD-like receptors (NLRs), and soluble receptors. Additionally, we will highlight critical cryptococcal PAMPs involved in the recognition of Cryptococcus. The question remains as to which PRR-ligand interaction is necessary for the recognition, phagocytosis, and subsequent killing of Cryptococcus.
Collapse
Affiliation(s)
- Althea Campuzano
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
31
|
Dutra FF, Albuquerque PC, Rodrigues ML, Fonseca FL. Warfare and defense: The host response to Cryptococcus infection. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Mechanisms of Pulmonary Escape and Dissemination by Cryptococcus neoformans. J Fungi (Basel) 2018; 4:jof4010025. [PMID: 29463005 PMCID: PMC5872328 DOI: 10.3390/jof4010025] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
Cryptococcus neoformans is a common environmental saprophyte and human fungal pathogen that primarily causes disease in immunocompromised individuals. Similar to many environmentally acquired human fungal pathogens, C. neoformans initiates infection in the lungs. However, the main driver of mortality is invasive cryptococcosis leading to fungal meningitis. After C. neoformans gains a foothold in the lungs, a critical early step in invasion is transversal of the respiratory epithelium. In this review, we summarize current knowledge relating to pulmonary escape. We focus on fungal factors that allow C. neoformans to disseminate from the lungs via intracellular and extracellular routes.
Collapse
|
33
|
Identification of T helper (Th)1- and Th2-associated antigens of Cryptococcus neoformans in a murine model of pulmonary infection. Sci Rep 2018; 8:2681. [PMID: 29422616 PMCID: PMC5805727 DOI: 10.1038/s41598-018-21039-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/29/2018] [Indexed: 12/24/2022] Open
Abstract
Cryptococcosis, caused by Cryptococcus neoformans, has been demonstrated to be controlled by T helper (Th)1 cells while Th2 cells are associated with fungal growth and dissemination. Although cryptococcal immunoreactive protein antigens were previously identified, their association with Th1 or Th2 immune responses was not provided. In mice, Th1-dependent IFN-γ induces the production of IgG2a, whereas the Th2 cytokine IL-4 stimulates the expression of IgG1 rendering each isotype an indicator of the underlying Th cell response. Therefore, we performed an immunoproteomic study that distinguishes Th1- and Th2-associated antigens by their reactivity with Th1-dependent IgG2a or Th2-dependent IgG1 antibodies in sera from C. neoformans-infected wild-type mice. We additionally analysed sera from Th2-prone IL-12-deficient and Th1-prone IL-4Rα-deficient mice extending the results found in wild-type mice. In total, ten, four, and three protein antigens associated with IgG1, IgG2a, or both isotypes, respectively, were identified. Th2-associated antigens represent promising candidates for development of immunotherapy regimens, whereas Th1-associated antigens may serve as candidates for vaccine development. In conclusion, this study points to intrinsic immunomodulatory effects of fungal antigens on the process of Th cell differentiation based on the identification of cryptococcal protein antigens specifically associated with Th1 or Th2 responses throughout mice of different genotypes.
Collapse
|
34
|
Bruni GO, Battle B, Kelly B, Zhang Z, Wang P. Comparative proteomic analysis of Gib2 validating its adaptor function in Cryptococcus neoformans. PLoS One 2017; 12:e0180243. [PMID: 28686685 PMCID: PMC5501510 DOI: 10.1371/journal.pone.0180243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/12/2017] [Indexed: 01/09/2023] Open
Abstract
Cryptococcus neoformans causes often-fatal fungal meningoencephalitis in immunocompromised individuals. While the exact disease mechanisms remain elusive, signal transduction pathways mediated by key elements such as G-protein α subunit Gpa1, small GTPase Ras1, and atypical Gβ-like/RACK1 protein Gib2 are known to play important roles in C. neoformans virulence. Gib2 is important for normal growth, differentiation, and pathogenicity, and it also positively regulates cAMP levels in conjunction with Gpa1. Interestingly, Gib2 displays a scaffold protein property by interacting with a wide variety of cellular proteins. To explore Gib2 global regulatory functions, we performed two-dimensional differential gel electrophoresis (DIGE) analysis and found that GIB2 disruption results in an increased expression of 304 protein spots (43.4%) and a decreased expression of 396 protein spots (56.6%). Analysis of 96 proteins whose expression changes were deemed significant (≥ +/- 1.5- fold) revealed that 75 proteins belong to at least 12 functional protein groups. Among them, eight groups have the statistical stringency of p ≤ 0.05, and four groups, including Hsp70/71 heat shock protein homologs and ribosomal proteins, survived the Bonferroni correction. This finding is consistent with earlier established roles for the human Gβ-like/RACK1 and the budding yeast Saccharomyces cerevisiae Asc1. It suggests that Gib2 could also be part of the complex affecting ribosomal biogenesis and protein translation in C. neoformans. Since eukaryotic Hsp70/71 proteins are involved in the facilitation of nascent protein folding, processing, and protection of cells against stress, we also propose that Gib2-regulated stress responses are linked to fungal virulence. Collectively, our study supports a conserved role of Gβ-like/RACK/Gib2 proteins in the essential cellular process of ribosomal biogenesis and protein translation. Our study also highlights a multifaceted regulatory role of Gib2 in the growth and pathogenicity of C. neoformans.
Collapse
Affiliation(s)
- Gillian O Bruni
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Blake Battle
- College of Arts and Sciences, Loyola University New Orleans, New Orleans, LA, United States of America
| | - Ben Kelly
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America.,Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| |
Collapse
|
35
|
Abstract
Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus, primarily the species C. neoformans, is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system.
Collapse
Affiliation(s)
- Lena J Heung
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
36
|
Marcos CM, de Oliveira HC, de Melo WDCMA, da Silva JDF, Assato PA, Scorzoni L, Rossi SA, de Paula E Silva ACA, Mendes-Giannini MJS, Fusco-Almeida AM. Anti-Immune Strategies of Pathogenic Fungi. Front Cell Infect Microbiol 2016; 6:142. [PMID: 27896220 PMCID: PMC5108756 DOI: 10.3389/fcimb.2016.00142] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022] Open
Abstract
Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi.
Collapse
Affiliation(s)
- Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Wanessa de Cássia M Antunes de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Suélen A Rossi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| |
Collapse
|
37
|
Malachowski AN, Yosri M, Park G, Bahn YS, He Y, Olszewski MA. Systemic Approach to Virulence Gene Network Analysis for Gaining New Insight into Cryptococcal Virulence. Front Microbiol 2016; 7:1652. [PMID: 27833589 PMCID: PMC5081415 DOI: 10.3389/fmicb.2016.01652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/04/2016] [Indexed: 11/13/2022] Open
Abstract
Cryptococcus neoformans is pathogenic yeast, responsible for highly lethal infections in compromised patients around the globe. C. neoformans typically initiates infections in mammalian lung tissue and subsequently disseminates to the central nervous system where it causes significant pathologies. Virulence genes of C. neoformans are being characterized at an increasing rate, however, we are far from a comprehensive understanding of their roles and genetic interactions. Some of these reported virulence genes are scattered throughout different databases, while others are not yet included. This study gathered and analyzed 150 reported virulence associated factors (VAFs) of C. neoformans. Using the web resource STRING database, our study identified different interactions between the total VAFs and those involved specifically in lung and brain infections and identified a new strain specific virulence gene, SHO1, involved in the mitogen-activated protein kinase signaling pathway. As predicted by our analysis, SHO1 expression enhanced C. neoformans virulence in a mouse model of pulmonary infection, contributing to enhanced non-protective immune Th2 bias and progressively enhancing fungal growth in the infected lungs. Sequence analysis indicated 77.4% (116) of total studied VAFs are soluble proteins, and 22.7% (34) are transmembrane proteins. Motifs involved in regulation and signaling such as protein kinases and transcription factors are highly enriched in Cryptococcus VAFs. Altogether, this study represents a pioneering effort in analysis of the virulence composite network of C. neoformans using a systems biology approach.
Collapse
Affiliation(s)
- Antoni N Malachowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA
| | - Mohamed Yosri
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA; The Regional Center for Mycology and Biotechnology, Al-Azhar UniversityCairo, Egypt
| | - Goun Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann ArborMI, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann ArborMI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann ArborMI, USA
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA
| |
Collapse
|
38
|
Eastman AJ, Osterholzer JJ, Olszewski MA. Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection. Future Microbiol 2016; 10:1837-57. [PMID: 26597428 DOI: 10.2217/fmb.15.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review discusses the unique contributions of dendritic cells (DCs) to T-cell priming and the generation of effective host defenses against Cryptococcus neoformans (C.neo) infection. We highlight DC subsets involved in the early and later stages of anticryptococcal immune responses, interactions between C.neo pathogen-associated molecular patterns and pattern recognition receptors expressed by DC, and the influence of DC on adaptive immunity. We emphasize recent studies in mouse models of cryptococcosis that illustrate the importance of DC-derived cytokines and costimulatory molecules and the potential role of DC epigenetic modifications that support maintenance of these signals throughout the immune response to C.neo. Lastly, we stipulate where these advances can be developed into new, immune-based therapeutics for treatment of this global pathogen.
Collapse
Affiliation(s)
- Alison J Eastman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - John J Osterholzer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Michal A Olszewski
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Nimrichter L, de Souza MM, Del Poeta M, Nosanchuk JD, Joffe L, Tavares PDM, Rodrigues ML. Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells. Front Microbiol 2016; 7:1034. [PMID: 27458437 PMCID: PMC4937017 DOI: 10.3389/fmicb.2016.01034] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/20/2016] [Indexed: 12/02/2022] Open
Abstract
Classic cell wall components of fungi comprise the polysaccharides glucans and chitin, in association with glycoproteins and pigments. During the last decade, however, system biology approaches clearly demonstrated that the composition of fungal cell walls include atypical molecules historically associated with intracellular or membrane locations. Elucidation of mechanisms by which many fungal molecules are exported to the extracellular space suggested that these atypical components are transitorily located to the cell wall. The presence of extracellular vesicles (EVs) at the fungal cell wall and in culture supernatants of distinct pathogenic species suggested a highly functional mechanism of molecular export in these organisms. Thus, the passage of EVs through fungal cell walls suggests remarkable molecular diversity and, consequently, a potentially variable influence on the host antifungal response. On the basis of information derived from the proteomic characterization of fungal EVs from the yeasts Cryptoccocus neoformans and Candida albicans and the dimorphic fungi Histoplasma capsulatum and Paracoccidioides brasiliensis, our manuscript is focused on the clear view that the fungal cell wall is much more complex than previously thought.
Collapse
Affiliation(s)
- Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Marcio M de Souza
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NYUSA; Veterans Administration Medical Center, Northport, NYUSA
| | - Joshua D Nosanchuk
- Department of Microbiology and Immunology and Medicine, Albert Einstein College of Medicine, Bronx, NY USA
| | - Luna Joffe
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Patricia de M Tavares
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Marcio L Rodrigues
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil; Fundação Oswaldo Cruz, Centro de Desenvolvimento Tecnológico em Saúde, Rio de JaneiroBrazil
| |
Collapse
|
40
|
Lopes RL, Borges TJ, Zanin RF, Bonorino C. IL-10 is required for polarization of macrophages to M2-like phenotype by mycobacterial DnaK (heat shock protein 70). Cytokine 2016; 85:123-9. [PMID: 27337694 DOI: 10.1016/j.cyto.2016.06.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/23/2016] [Accepted: 06/15/2016] [Indexed: 01/11/2023]
Abstract
Macrophages are key cells in the innate immune system. They phagocytose pathogens and cellular debris, promote inflammation, and have important roles in tumor immunity. Depending on the microenvironment, macrophages can polarize to M1 (inflammatory) or M2 (anti-inflammatory) phenotypes. Extracellular DnaK (the bacterial ortholog of the mammalian Hsp70) from Mycobacterium tuberculosis (Mtb) was described to exert immune modulatory roles in an IL-10 dependent manner. We have previously observed that endotoxin-free DnaK can polarize macrophages to an M2-like phenotype. However, the mechanisms that underlie this polarization need to be further investigated. IL-10 has been described to promote macrophage polarization, so we investigated the involvement of this cytokine in macrophages stimulated with extracellular DnaK. IL-10 was required to induce the expression of M2 markers - Ym1 and Fizz, when macrophages were treated with DnaK. Blockade of IL-10R also impaired DnaK induced polarization, demonstrating the requirement of the IL-10/IL-10R signaling pathway in this polarization. DnaK was able to induce TGF-β mRNA in treated macrophages in an IL-10 dependent manner. However, protein TGF-β could not be detected in culture supernatants. Finally, using an in vivo allogeneic melanoma model, we observed that DnaK-treated macrophages can promote tumor growth in an IL-10-dependent manner. Our results indicate that the IL-10/IL-10R axis is required for DnaK-induced M2-like polarization in murine macrophages.
Collapse
Affiliation(s)
- Rafael L Lopes
- Laboratory of Cellular and Molecular Immunology, Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90680-001, Brazil
| | - Thiago J Borges
- Laboratory of Cellular and Molecular Immunology, Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90680-001, Brazil
| | - Rafael F Zanin
- Laboratório de Biologia Celular e Molecular, Unilassale, Canoas, RS 92010-000, Brazil
| | - Cristina Bonorino
- Laboratory of Cellular and Molecular Immunology, Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90680-001, Brazil.
| |
Collapse
|
41
|
Leopold Wager CM, Hole CR, Wozniak KL, Wormley FL. Cryptococcus and Phagocytes: Complex Interactions that Influence Disease Outcome. Front Microbiol 2016; 7:105. [PMID: 26903984 PMCID: PMC4746234 DOI: 10.3389/fmicb.2016.00105] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022] Open
Abstract
Cryptococcus neoformans and C. gattii are fungal pathogens that cause life-threatening disease. These fungi commonly enter their host via inhalation into the lungs where they encounter resident phagocytes, including macrophages and dendritic cells, whose response has a pronounced impact on the outcome of disease. Cryptococcus has complex interactions with the resident and infiltrating innate immune cells that, ideally, result in destruction of the yeast. These phagocytic cells have pattern recognition receptors that allow recognition of specific cryptococcal cell wall and capsule components. However, Cryptococcus possesses several virulence factors including a polysaccharide capsule, melanin production and secretion of various enzymes that aid in evasion of the immune system or enhance its ability to thrive within the phagocyte. This review focuses on the intricate interactions between the cryptococci and innate phagocytic cells including discussion of manipulation and evasion strategies used by Cryptococcus, anti-cryptococcal responses by the phagocytes and approaches for targeting phagocytes for the development of novel immunotherapeutics.
Collapse
Affiliation(s)
- Chrissy M Leopold Wager
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Camaron R Hole
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Karen L Wozniak
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| |
Collapse
|