1
|
Kang Y, Xiao K, Wang D, Peng Z, Luo R, Liu X, Hu L, Hu G. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of l-Pipecolic Acid from Glucose. ACS Synth Biol 2024; 13:3378-3388. [PMID: 39267441 DOI: 10.1021/acssynbio.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
l-Pipecolic acid (L-PA), an essential chiral cyclic nonprotein amino acid, is gaining prominence in the food and pharmaceutical sectors due to its wide-ranging biological and pharmacological properties. Historically, L-PA has been synthesized chemically for commercial purposes. This study introduces a novel and efficient microbial production method for L-PA using engineered strain Saccharomyces cerevisiae BY4743. Initially, an optimized biosynthetic pathway was constructed within S. cerevisiae, converting glucose to L-PA with a yield of 0.60 g/L in a 250 mL shake flask in vivo. Subsequently, a multifaceted engineering strategy was implemented to enhance L-PA production: substrate-enzyme affinity modification, global transcription machinery engineering modification, and Kozak sequence optimization for enhanced L-PA production. Approaches above led to an impressive 8.6-fold increase in L-PA yield, reaching 5.47 g/L in shake flask cultures. Further scaling up in a 5 L fed-batch fermenter achieved a remarkable L-PA concentration of 74.54 g/L. This research offers innovative insights into the industrial-scale production of L-PA.
Collapse
Affiliation(s)
- Yaqi Kang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Kaixing Xiao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Zhiyao Peng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Ruoshi Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Xuemei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Lin Hu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Ge Hu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| |
Collapse
|
2
|
Li C, Lanasa D, Park JH. Pathways and mechanisms of CD4 +CD8αα + intraepithelial T cell development. Trends Immunol 2024; 45:288-302. [PMID: 38514370 PMCID: PMC11015970 DOI: 10.1016/j.it.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
The mammalian small intestine epithelium harbors a peculiar population of CD4+CD8αα+ T cells that are derived from mature CD4+ T cells through reprogramming of lineage-specific transcription factors. CD4+CD8αα+ T cells occupy a unique niche in T cell biology because they exhibit mixed phenotypes and functional characteristics of both CD4+ helper and CD8+ cytotoxic T cells. The molecular pathways driving their generation are not fully mapped. However, recent studies demonstrate the unique role of the commensal gut microbiota as well as distinct cytokine and chemokine requirements in the differentiation and survival of these cells. We review the established and newly identified factors involved in the generation of CD4+CD8αα+ intraepithelial lymphocytes (IELs) and place them in the context of the molecular machinery that drives their phenotypic and functional differentiation.
Collapse
Affiliation(s)
- Can Li
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Lanasa
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
RUNX3 in Stem Cell and Cancer Biology. Cells 2023; 12:cells12030408. [PMID: 36766749 PMCID: PMC9913995 DOI: 10.3390/cells12030408] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The runt-related transcription factors (RUNX) play prominent roles in cell cycle progression, differentiation, apoptosis, immunity and epithelial-mesenchymal transition. There are three members in the mammalian RUNX family, each with distinct tissue expression profiles. RUNX genes play unique and redundant roles during development and adult tissue homeostasis. The ability of RUNX proteins to influence signaling pathways, such as Wnt, TGFβ and Hippo-YAP, suggests that they integrate signals from the environment to dictate cell fate decisions. All RUNX genes hold master regulator roles, albeit in different tissues, and all have been implicated in cancer. Paradoxically, RUNX genes exert tumor suppressive and oncogenic functions, depending on tumor type and stage. Unlike RUNX1 and 2, the role of RUNX3 in stem cells is poorly understood. A recent study using cancer-derived RUNX3 mutation R122C revealed a gatekeeper role for RUNX3 in gastric epithelial stem cell homeostasis. The corpora of RUNX3R122C/R122C mice showed a dramatic increase in proliferating stem cells as well as inhibition of differentiation. Tellingly, RUNX3R122C/R122C mice also exhibited a precancerous phenotype. This review focuses on the impact of RUNX3 dysregulation on (1) stem cell fate and (2) the molecular mechanisms underpinning early carcinogenesis.
Collapse
|
4
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
5
|
Reprogramming translation for gene therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:439-476. [PMID: 34175050 DOI: 10.1016/bs.pmbts.2021.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Translational control plays a fundamental role in the regulation of gene expression in eukaryotes. Modulating translational efficiency allows the cell to fine-tune the expression of genes, spatially control protein localization, and trigger fast responses to environmental stresses. Translational regulation involves mechanisms acting on multiple steps of the protein synthesis pathway: initiation, elongation, and termination. Many cis-acting elements present in the 5' UTR of transcripts can influence translation at the initiation step. Among them, the Kozak sequence impacts translational efficiency by regulating the recognition of the start codon; upstream open reading frames (uORFs) are associated with inhibition of translation of the downstream protein; internal ribosomal entry sites (IRESs) can promote cap-independent translation. CRISPR-Cas technology is a revolutionary gene-editing tool that has also been applied to the regulation of gene expression. In this chapter, we focus on the genome editing approaches developed to modulate the translational efficiency with the aim to find novel therapeutic approaches, in particular acting on the cis-elements, that regulate the initiation of protein synthesis.
Collapse
|
6
|
Dybska E, Adams AT, Duclaux-Loras R, Walkowiak J, Nowak JK. Waiting in the wings: RUNX3 reveals hidden depths of immune regulation with potential implications for inflammatory bowel disease. Scand J Immunol 2021; 93:e13025. [PMID: 33528856 DOI: 10.1111/sji.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Complex interactions between the environment and the mucosal immune system underlie inflammatory bowel disease (IBD). The involved cytokine signalling pathways are modulated by a number of transcription factors, one of which is runt-related transcription factor 3 (RUNX3). OBJECTIVE To systematically review the immune roles of RUNX3 in immune regulation, with a focus on the context of IBD. METHODS Relevant articles and reviews were identified through a Scopus search in April 2020. Information was categorized by immune cell types, analysed and synthesized. IBD transcriptome data sets and FANTOM5 regulatory networks were processed in order to complement the literature review. RESULTS The available evidence on the immune roles of RUNX3 allowed for its description in twelve cell types: intraepithelial lymphocyte, Th1, Th2, Th17, Treg, double-positive T, cytotoxic T, B, dendritic, innate lymphoid, natural killer and macrophages. In the gut, the activity of RUNX3 is multifaceted and context-dependent: it may promote homeostasis or exacerbated reactions via cytokine signalling and regulation of receptor expression. RUNX3 is mostly engaged in pathways involving ThPOK, T-bet, IFN-γ, TGF-β/IL-2Rβ, GATA/CBF-β, SMAD/p300 and a number of miRNAs. RUNX3 targets relevant to IBD may include RAG1, OSM and IL-17B. Moreover, in IBD RUNX3 expression correlates positively with GZMM, and negatively with IFNAR1, whereas in controls, it strongly associates with TGFBR3. CONCLUSIONS Dysregulation of RUNX3, mostly in the form of deficiency, likely contributes to IBD pathogenesis. More clinical research is needed to examine RUNX3 in IBD.
Collapse
Affiliation(s)
- Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rémi Duclaux-Loras
- INSERM U1111, Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan K Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
7
|
[Expression and clinical significance of runt-related transcription factor 3 in children with bronchiolitis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21. [PMID: 31642435 PMCID: PMC7389732 DOI: 10.7499/j.issn.1008-8830.2019.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To study the mRNA level of runt-related transcription factor 3 (RUNX3) in children with bronchiolitis and its clinical significance in bronchiolitis. METHODS A total of 54 young children with bronchiolitis were enrolled as the bronchiolitis group, among whom 28 with atopic constitution were enrolled in the atopic bronchiolitis group and 26 with non-atopic constitution were enrolled in the non-atopic bronchiolitis group. A total of 48 healthy young children were enrolled as the healthy control group, among whom 24 with atopic constitution were enrolled in the atopic healthy control group and 24 with non-atopic constitution were enrolled in the non-atopic healthy control group. Quantitative real-time PCR was used to measure the mRNA level of RUNX3 in peripheral blood mononuclear cells. ELISA was used to measure the serum levels of interleukin-4 (IL-4) and interferon gamma (IFN-γ). RESULTS The bronchiolitis group had a significantly lower mRNA level of RUNX3 than the healthy control group, and the atopic bronchiolitis group had a significantly lower mRNA level of RUNX3 than the non-atopic bronchiolitis, atopic healthy control, and non-atopic healthy control groups (P<0.05). The bronchiolitis group had a significantly higher serum level of IL-4 than the healthy control group, and the atopic bronchiolitis group had a significantly higher serum level of IL-4 than the non-atopic healthy control group (P<0.05). The bronchiolitis group had a significantly lower serum level of IFN-γ than the healthy control group, and the atopic bronchiolitis group had a significantly lower serum level of IFN-γ than the non-atopic bronchiolitis, atopic healthy control, and non-atopic healthy control groups (P<0.05). The correlation analysis showed that the mRNA level of RUNX3 was negatively correlated with the serum level of IL-4 and was positively correlated with the serum level of IFN-γ (P<0.05). CONCLUSIONS Measurement of RUNX3 gene expression in peripheral blood mononuclear cells has a certain value in identifying children with atopic constitution at high risk of asthma among children with bronchiolitis.
Collapse
|
8
|
Men S, Yu YY, Zhang YH, Wang YF, Qian Q, Li W, Yin C. [Expression and clinical significance of runt-related transcription factor 3 in children with bronchiolitis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:1005-1011. [PMID: 31642435 PMCID: PMC7389732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/28/2019] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To study the mRNA level of runt-related transcription factor 3 (RUNX3) in children with bronchiolitis and its clinical significance in bronchiolitis. METHODS A total of 54 young children with bronchiolitis were enrolled as the bronchiolitis group, among whom 28 with atopic constitution were enrolled in the atopic bronchiolitis group and 26 with non-atopic constitution were enrolled in the non-atopic bronchiolitis group. A total of 48 healthy young children were enrolled as the healthy control group, among whom 24 with atopic constitution were enrolled in the atopic healthy control group and 24 with non-atopic constitution were enrolled in the non-atopic healthy control group. Quantitative real-time PCR was used to measure the mRNA level of RUNX3 in peripheral blood mononuclear cells. ELISA was used to measure the serum levels of interleukin-4 (IL-4) and interferon gamma (IFN-γ). RESULTS The bronchiolitis group had a significantly lower mRNA level of RUNX3 than the healthy control group, and the atopic bronchiolitis group had a significantly lower mRNA level of RUNX3 than the non-atopic bronchiolitis, atopic healthy control, and non-atopic healthy control groups (P<0.05). The bronchiolitis group had a significantly higher serum level of IL-4 than the healthy control group, and the atopic bronchiolitis group had a significantly higher serum level of IL-4 than the non-atopic healthy control group (P<0.05). The bronchiolitis group had a significantly lower serum level of IFN-γ than the healthy control group, and the atopic bronchiolitis group had a significantly lower serum level of IFN-γ than the non-atopic bronchiolitis, atopic healthy control, and non-atopic healthy control groups (P<0.05). The correlation analysis showed that the mRNA level of RUNX3 was negatively correlated with the serum level of IL-4 and was positively correlated with the serum level of IFN-γ (P<0.05). CONCLUSIONS Measurement of RUNX3 gene expression in peripheral blood mononuclear cells has a certain value in identifying children with atopic constitution at high risk of asthma among children with bronchiolitis.
Collapse
Affiliation(s)
- Shuai Men
- Department of Pediatric Asthma, Lianyungang Maternal and Child Health Care Hospital, Lianyungang, Jiangsu 222006, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
A fundamental question in developmental immunology is how bipotential thymocyte precursors generate both CD4+ helper and CD8+ cytotoxic T cell lineages. The MHC specificity of αβ T cell receptors (TCRs) on precursors is closely correlated with cell fate-determining processes, prompting studies to characterize how variations in TCR signaling are linked with genetic programs establishing lineage-specific gene expression signatures, such as exclusive CD4 or CD8 expression. The key transcription factors ThPOK and Runx3 have been identified as mediating development of helper and cytotoxic T cell lineages, respectively. Together with increasing knowledge of epigenetic regulators, these findings have advanced our understanding of the transcription factor network regulating the CD4/CD8 dichotomy. It has also become apparent that CD4+ T cells retain developmental plasticity, allowing them to acquire cytotoxic activity in the periphery. Despite such advances, further studies are necessary to identify the molecular links between TCR signaling and the nuclear machinery regulating expression of ThPOK and Runx3.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan;
| |
Collapse
|
10
|
Ebihara T, Taniuchi I. Transcription Factors in the Development and Function of Group 2 Innate Lymphoid Cells. Int J Mol Sci 2019; 20:ijms20061377. [PMID: 30893794 PMCID: PMC6470746 DOI: 10.3390/ijms20061377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells and are a major source of innate TH2 cytokine secretion upon allergen exposure or parasitic-worm infection. Accumulating studies have revealed that transcription factors, including GATA-3, Bcl11b, Gfi1, RORα, and Ets-1, play a role in ILC2 differentiation. Recent reports have further revealed that the characteristics and functions of ILC2 are influenced by the physiological state of the tissues. Specifically, the type of inflammation strongly affects the ILC2 phenotype in tissues. Inhibitory ILC2s, memory-like ILC2s, and ex-ILC2s with ILC1 features acquire their characteristic properties following exposure to their specific inflammatory environment. We have recently reported a new ILC2 population, designated as exhausted-like ILC2s, which emerges after a severe allergic inflammation. Exhausted-like ILC2s are featured with low reactivity and high expression of inhibitory receptors. Therefore, for a more comprehensive understanding of ILC2 function and differentiation, we review the recent knowledge of transcriptional regulation of ILC2 differentiation and discuss the roles of the Runx transcription factor in controlling the emergence of exhausted-like ILC2s. The concept of exhausted-like ILC2s sheds a light on a new aspect of ILC2 biology in allergic diseases.
Collapse
Affiliation(s)
- Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
11
|
Goyama S, Schibler J, Mulloy JC. Alternative translation initiation generates the N-terminal truncated form of RUNX1 that retains hematopoietic activity. Exp Hematol 2019; 72:27-35. [PMID: 30690039 DOI: 10.1016/j.exphem.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/24/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022]
Abstract
Transcription factor RUNX1 plays a crucial role in hematopoiesis and its activity is tightly regulated at both the transcriptional and posttranslational levels. However, translational control of RUNX1 expression has not been fully understood. In this study, we demonstrated that RUNX1b mRNA is translated from two alternative initiation sites, Met-1 and Met-25, giving full-length RUNX1b and a shorter protein lacking the first 24 amino acids (RUNX1ΔN24). Presence/absence of strong Kozak consensus sequences around Met-1 determines which initiation site is mainly used in RUNX1b cDNA. Selective disruption of either Met-1 or Met-25 abrogates expression of the corresponding protein while facilitating the production of another protein. The RUNX1b cDNA containing 65bp natural promoter sequences mainly produces full-length RUNX1b in human cord blood cells, but disruption of Met-1 in this cDNA also induced translation from Met-25. Consistent with these data, disruption of endogenous RUNX1b around Met-1 using CRISPR/Cas9 induced selective expression of RUNX1ΔΝ24 in several leukemia cell lines. RUNX1ΔN24 protein is more stable than full-length RUNX1b and retains hematopoietic activity. We also found that FLAG-tagged full-length RUNX1 showed altered activity, indicating the influence of N-terminal FLAG-tag on RUNX1 function. The alternative translation initiation of RUNX1b may participate in fine tuning RUNX1 activity.
Collapse
Affiliation(s)
- Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Janet Schibler
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
12
|
Yu Y, Wang L, Gu G. The correlation between Runx3 and bronchial asthma. Clin Chim Acta 2018; 487:75-79. [PMID: 30218658 DOI: 10.1016/j.cca.2018.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022]
Abstract
Runx3, a member of the Runt-related transcription factor family, has attracted extensive attention due to its important role in the development of immune systems, especially in the differentiation of T cells. Accumulated evidence indicated that altered expression of Runx3 regulates a variety of target genes in different tissues/cells. Studies in animal models suggested that Runx3 may regulate the development of T cell lineage including those of innate lymphoid cells, Treg cells and dendritic cells, which may contribute to the development of hypersensitivity and asthma. Specifically, Runx3 modulates Th1/Th2 balance and hence, the production of interleukins, which induce inflammatory responses. Understanding the roles and mechanisms of Runx3 in the regulation of immune function provides a basis for the design of novel preventive and treatment models for bronchial asthma. This article reviews published data from cell lines, animal models, and patients, concerning the relationship between Runx3 expression alteration and asthma. Epigenetic regulation of Runx3 by DNA hypermethylation and microRNA, and the implication of these pathways in asthma are also discussed.
Collapse
Affiliation(s)
- Yanyan Yu
- The children's hospital affiliated of Suzhou University, Suzhou 215000, Jiangsu Province, China.
| | - Leilei Wang
- Children Asthma Department, Lianyungang Maternal and Child Hospital Jiangsu Province, Lianyungang 222006, Jiangsu Province, China
| | - Guixiong Gu
- The children's hospital affiliated of Suzhou University, Suzhou 215000, Jiangsu Province, China.
| |
Collapse
|
13
|
Serroukh Y, Gu-Trantien C, Hooshiar Kashani B, Defrance M, Vu Manh TP, Azouz A, Detavernier A, Hoyois A, Das J, Bizet M, Pollet E, Tabbuso T, Calonne E, van Gisbergen K, Dalod M, Fuks F, Goriely S, Marchant A. The transcription factors Runx3 and ThPOK cross-regulate acquisition of cytotoxic function by human Th1 lymphocytes. eLife 2018; 7:30496. [PMID: 29488879 PMCID: PMC5844691 DOI: 10.7554/elife.30496] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/20/2018] [Indexed: 01/07/2023] Open
Abstract
Cytotoxic CD4 (CD4CTX) T cells are emerging as an important component of antiviral and antitumor immunity, but the molecular basis of their development remains poorly understood. In the context of human cytomegalovirus infection, a significant proportion of CD4 T cells displays cytotoxic functions. We observed that the transcriptional program of these cells was enriched in CD8 T cell lineage genes despite the absence of ThPOK downregulation. We further show that establishment of CD4CTX-specific transcriptional and epigenetic programs occurred in a stepwise fashion along the Th1-differentiation pathway. In vitro, prolonged activation of naive CD4 T cells in presence of Th1 polarizing cytokines led to the acquisition of perforin-dependent cytotoxic activity. This process was dependent on the Th1 transcription factor Runx3 and was limited by the sustained expression of ThPOK. This work elucidates the molecular program of human CD4CTX T cells and identifies potential targets for immunotherapy against viral infections and cancer.
Collapse
Affiliation(s)
- Yasmina Serroukh
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Chunyan Gu-Trantien
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | | | - Matthieu Defrance
- Laboratoire d'Epigénétique du Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Thien-Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy 13288, Aix Marseille Université UM2, Marseille, France
| | - Abdulkader Azouz
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Aurélie Detavernier
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Alice Hoyois
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Jishnu Das
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Martin Bizet
- Laboratoire d'Epigénétique du Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Emeline Pollet
- Centre d'Immunologie de Marseille-Luminy 13288, Aix Marseille Université UM2, Marseille, France
| | - Tressy Tabbuso
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Emilie Calonne
- Laboratoire d'Epigénétique du Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Klaas van Gisbergen
- Department of Haematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy 13288, Aix Marseille Université UM2, Marseille, France
| | - François Fuks
- Laboratoire d'Epigénétique du Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
14
|
Nieke S, Yasmin N, Kakugawa K, Yokomizo T, Muroi S, Taniuchi I. Unique N-terminal sequences in two Runx1 isoforms are dispensable for Runx1 function. BMC DEVELOPMENTAL BIOLOGY 2017; 17:14. [PMID: 29047338 PMCID: PMC5648507 DOI: 10.1186/s12861-017-0156-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/01/2017] [Indexed: 01/19/2023]
Abstract
Background The Runt-related transcription factors (Runx) are a family of evolutionarily conserved transcriptional regulators that play multiple roles in the developmental control of various cell types. Among the three mammalian Runx proteins, Runx1 is essential for definitive hematopoiesis and its dysfunction leads to human leukemogenesis. There are two promoters, distal (P1) and proximal (P2), in the Runx1 gene, which produce two Runx1 isoforms with distinct N-terminal amino acid sequences, P1-Runx1 and P2-Runx1. However, it remains unclear whether P2-Runx specific N-terminal sequence have any specific function for Runx1 protein. Results To address the function of the P2-Runx1 isoform, we established novel mutant mouse models in which the translational initiation AUG (+1) codon for P2-Runx1 isoform was modulated. We found that a truncated P2-Runx1 isoform is translated from a downstream non-canonical AUG codon. Importantly, the truncated P2-Runx1 isoform is sufficient to support primary hematopoiesis, even in the absence of the P1-Runx1 isoform. Furthermore, the truncated P2-Runx1 isoform was able to restore defect in basophil development caused by loss of the P1-Runx1 isoform. The truncated P2-Runx1 isoform was more stable than the canonical P2-Runx1 isoform. Conclusions Our results demonstrate that the N-terminal sequences specific for P2-Runx1 are dispensable for Runx1 function, and likely serve as a de-stabilization module to regulate Runx1 production. Electronic supplementary material The online version of this article (10.1186/s12861-017-0156-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Nieke
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS). 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,Abteilung Immunologie, Interfakultaeres Institute fuer Zellbiologie, Auf der Morgenstelle 15, 72076, Tuebingen, Germany
| | - Nighat Yasmin
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS). 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,Faculty of Life Sciences (Microbiology), University of Central Punjab, 1 - Khayaban-e-Jinnah Road, Johar Town, Pakistan
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Tomomasa Yokomizo
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore, 117599, Singapore.,International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City, 860-0811, Japan
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS). 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS). 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
15
|
Roles of RUNX Complexes in Immune Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:395-413. [DOI: 10.1007/978-981-10-3233-2_24] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|