1
|
Wang C, Jiang Y, Yang Z, Xu H, Khalid AK, Iftakhar T, Peng Y, Lu L, Zhang L, Bermudez L, Guo A, Chen Y. Host factor RBMX2 promotes epithelial cell apoptosis by downregulating APAF-1's Retention Intron after Mycobacterium bovis infection. Front Immunol 2024; 15:1431207. [PMID: 39308873 PMCID: PMC11412827 DOI: 10.3389/fimmu.2024.1431207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
The Mycobacterium tuberculosis variant bovis (M. bovis) is a highly pathogenic environmental microorganism that causes bovine tuberculosis (bTB), a significant zoonotic disease. Currently, "test and culling" is the primary measure for controlling bTB, but it has been proven to be inadequate in animals due to their high susceptibility to the pathogen. Selective breeding for increased host resistance to bTB to reduce its prevalence is feasible. In this study, we found a vital host-dependent factor, RBMX2, that can potentially promote M. bovis infection. By knocking RBMX2 out, we investigated its function during M. bovis infection. Through transcriptome sequencing and alternative splicing transcriptome sequencing, we concluded that after M. bovis infection, embryo bovine lung (EBL) cells were significantly enriched in RNA splicing associated with apoptosis compared with wild-type EBL cells. Through protein/molecular docking, molecular dynamics simulations, and real-time quantitative PCR, we demonstrated that RBMX2 promotes the apoptosis of epithelial cells by upregulating and binding to apoptotic peptidase activating factor 1 (APAF-1), resulting in the alternative splicing of APAF-1 as a retention intron. To our knowledge, this is the first report of M. bovis affecting host epithelial cell apoptosis by hijacking RBMX2 to promote the intron splicing of downstream APAF-1. These findings may represent a significant contribution to the development of novel TB prevention and control strategies.
Collapse
Affiliation(s)
- Chao Wang
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Yanzhu Jiang
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Zhiming Yang
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haojun Xu
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Abdul Karim Khalid
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tahira Iftakhar
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongchong Peng
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Lu Lu
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Lei Zhang
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Luiz Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Aizhen Guo
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Zheng W, Chang IC, Limberis J, Budzik JM, Zha BS, Howard Z, Chen L, Ernst JD. Mycobacterium tuberculosis resides in lysosome-poor monocyte-derived lung cells during chronic infection. PLoS Pathog 2024; 20:e1012205. [PMID: 38701094 PMCID: PMC11095722 DOI: 10.1371/journal.ppat.1012205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/15/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects lung myeloid cells, but the specific Mtb-permissive cells and host mechanisms supporting Mtb persistence during chronic infection are incompletely characterized. We report that after the development of T cell responses, CD11clo monocyte-derived cells harbor more live Mtb than alveolar macrophages (AM), neutrophils, and CD11chi monocyte-derived cells. Transcriptomic and functional studies revealed that the lysosome pathway is underexpressed in this highly permissive subset, characterized by less lysosome content, acidification, and proteolytic activity than AM, along with less nuclear TFEB, a regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in CD11clo monocyte-derived cells but promotes recruitment of monocytes that develop into permissive lung cells, mediated by the Mtb ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome functions of macrophages in vitro and in vivo, improving control of Mtb infection. Our results suggest that Mtb exploits lysosome-poor lung cells for persistence and targeting lysosome biogenesis is a potential host-directed therapy for tuberculosis.
Collapse
Affiliation(s)
- Weihao Zheng
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - I-Chang Chang
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Jason Limberis
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Jonathan M. Budzik
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Beth Shoshana Zha
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Zachary Howard
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Lucas Chen
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| | - Joel D. Ernst
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America
| |
Collapse
|
3
|
Grigsby SJ, Prasad GVRK, Wallach JB, Mittal E, Hsu FF, Schnappinger D, Philips JA. CpsA mediates infection of recruited lung myeloid cells by Mycobacterium tuberculosis. Cell Rep 2024; 43:113607. [PMID: 38127624 PMCID: PMC10900767 DOI: 10.1016/j.celrep.2023.113607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) possesses an arsenal of virulence factors to evade host immunity. Previously, we showed that the Mtb protein CpsA, which protects Mtb against the host NADPH oxidase, is required in mice during the first 3 weeks of infection but is thereafter dispensable for full virulence. Using flow cytometry, we find that ΔcpsA Mtb is retained in alveolar macrophages, impaired in recruiting and disseminating into monocyte-derived cells, and more likely to be localized in airway cells than wild-type Mtb. The lungs of ΔcpsA-infected mice also have markedly fewer antigen-specific T cells, indicating a delay in adaptive immunity. Thus, we conclude that CpsA promotes dissemination of Mtb from alveolar macrophages and the airways and generation of an adaptive immune response. Our studies of ΔcpsA Mtb show that a more effective innate immune response against Mtb can be undermined by a corresponding delay in the adaptive immune response.
Collapse
Affiliation(s)
- Steven J Grigsby
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - G V R Krishna Prasad
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua B Wallach
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York City, NY, USA
| | - Ekansh Mittal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism, & Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York City, NY, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Gail DP, Suzart VG, Du W, Kaur Sandhu A, Jarvela J, Nantongo M, Mwebaza I, Panigrahi S, Freeman ML, Canaday DH, Boom WH, Silver RF, Carpenter SM. Mycobacterium tuberculosis impairs human memory CD4 + T cell recognition of M2 but not M1-like macrophages. iScience 2023; 26:107706. [PMID: 37694142 PMCID: PMC10485162 DOI: 10.1016/j.isci.2023.107706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Direct recognition of Mycobacterium tuberculosis (Mtb)-infected cells is required for protection by CD4+ T cells. While impaired T cell recognition of Mtb-infected macrophages was demonstrated in mice, data are lacking for humans. Using T cells and monocyte-derived macrophages (MDMs) from individuals with latent Mtb infection (LTBI), we quantified the frequency of memory CD4+ T cell activation in response to autologous MDMs infected with virulent Mtb. We observed robust T cell activation in response to Mtb infection of M1-like macrophages differentiated using GM-CSF, while M2-like macrophages differentiated using M-CSF were poorly recognized. However, non-infected GM-CSF and M-CSF MDMs loaded with exogenous antigens elicited similar CD4+ T cell activation. IL-10 was preferentially secreted by infected M-CSF MDMs, and neutralization improved T cell activation. These results suggest that preferential infection of macrophages with an M2-like phenotype limits T cell-mediated protection against Mtb. Vaccine development should focus on T cell recognition of Mtb-infected macrophages.
Collapse
Affiliation(s)
- Daniel P. Gail
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Vinicius G. Suzart
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Weinan Du
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Avinaash Kaur Sandhu
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jessica Jarvela
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine, The Louis Stokes Cleveland V.A. Medical Center, Cleveland, OH 44106, USA
| | - Mary Nantongo
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ivan Mwebaza
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Soumya Panigrahi
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Michael L. Freeman
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - David H. Canaday
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine, The Louis Stokes Cleveland V.A. Medical Center, Cleveland, OH 44106, USA
| | - W. Henry Boom
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44139, USA
| | - Richard F. Silver
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine, The Louis Stokes Cleveland V.A. Medical Center, Cleveland, OH 44106, USA
| | - Stephen M. Carpenter
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44139, USA
| |
Collapse
|
5
|
Arredondo-Hernández R, Schcolnik-Cabrera A, Orduña P, Juárez-López D, Varela-Salinas T, López-Vidal Y. Identification of peptides presented through the MHC-II of dendritic cells stimulated with Mycobacterium avium. Immunobiology 2023; 228:152416. [PMID: 37429053 DOI: 10.1016/j.imbio.2023.152416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Mycobacterium avium (M. avium) represents a species of concern, because of its ability to modulate the host's innate immune response, and therefore influence trajectory of adaptative immunity. Since eradicative response against mycobacteria, and M. tuberculosis/M. avium, relies on peptides actively presented on a Major Histocompatibility complex-II (MHC-II) context, we assessed paradoxical stimulation of Dendritic Cell resulting on immature immunophenotype characterized by membrane minor increase of MHC-II and CD40 despite of high expression of the pro-inflammatory tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in supernatants. Identification of M. avium leucine rich peptides forming short α-helices shutting down Type 1T helper (Th1), contribute to the understanding of immune evasion of an increasingly prevalent pathogen, and may provide a basis for future immunotherapy to infectious and non-infectious disease.
Collapse
Affiliation(s)
- René Arredondo-Hernández
- Laboratorio de Microbioma, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alejandro Schcolnik-Cabrera
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Orduña
- Laboratorio de Microbioma, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Daniel Juárez-López
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacán, Ciudad de México, Mexico
| | - Tania Varela-Salinas
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Zheng W, Chang IC, Limberis J, Budzik J, Zha BS, Howard Z, Chen L, Ernst J. Mycobacterium tuberculosis resides in lysosome-poor monocyte-derived lung cells during chronic infection. RESEARCH SQUARE 2023:rs.3.rs-3049913. [PMID: 37398178 PMCID: PMC10312915 DOI: 10.21203/rs.3.rs-3049913/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Mycobacterium tuberculosis (Mtb) persists in lung myeloid cells during chronic infection. However, the mechanisms allowing Mtb to evade elimination are not fully understood. Here, we determined that in chronic phase, CD11clo monocyte-derived lung cells termed MNC1 (mononuclear cell subset 1), harbor more live Mtb than alveolar macrophages (AM), neutrophils, and less permissive CD11chi MNC2. Transcriptomic and functional studies of sorted cells revealed that the lysosome biogenesis pathway is underexpressed in MNC1, which have less lysosome content, acidification, and proteolytic activity than AM, and less nuclear TFEB, a master regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in MNC1. Instead, Mtb recruits MNC1 and MNC2 to the lungs for its spread from AM to these cells via its ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome function of primary macrophages and MNC1 and MNC2 in vivo, improving control of Mtb infection. Our results indicate that Mtb exploits lysosome-poor monocyte-derived cells for in vivo persistence, suggesting a potential target for host-directed tuberculosis therapy.
Collapse
|
7
|
Zheng W, Chang IC, Limberis J, Budzik JM, Zha BS, Howard Z, Chen L, Ernst JD. Mycobacterium tuberculosis resides in lysosome-poor monocyte-derived lung cells during chronic infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524758. [PMID: 36711606 PMCID: PMC9882350 DOI: 10.1101/2023.01.19.524758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mycobacterium tuberculosis (Mtb) infects cells in multiple lung myeloid cell subsets and causes chronic infection despite innate and adaptive immune responses. However, the mechanisms allowing Mtb to evade elimination are not fully understood. Here, using new methods, we determined that after T cell responses have developed, CD11clo monocyte-derived lung cells termed MNC1 (mononuclear cell subset 1), harbor more live Mtb compared to alveolar macrophages (AM), neutrophils, and less permissive CD11chi MNC2. Bulk RNA sequencing of sorted cells revealed that the lysosome biogenesis pathway is underexpressed in MNC1. Functional assays confirmed that Mtb-permissive MNC1 have less lysosome content, acidification, and proteolytic activity than AM, and less nuclear TFEB, a master regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in MNC1 in vivo. Instead, Mtb recruits MNC1 and MNC2 to the lungs for its spread from AM to these cell subsets as a virulence mechanism that requires the Mtb ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome function of primary macrophages in vitro and MNC1 and MNC2 in vivo, improving control of Mtb infection. Our results indicate that Mtb exploits lysosome-poor monocyte-derived cells for in vivo persistence, suggesting a potential target for host-directed tuberculosis therapy.
Collapse
Affiliation(s)
- Weihao Zheng
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - I-Chang Chang
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Jason Limberis
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Jonathan M. Budzik
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - B. Shoshana Zha
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Zach Howard
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Lucas Chen
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Joel D. Ernst
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
8
|
Zha BS, Desvignes L, Fergus TJ, Cornelius A, Cheng TY, Moody DB, Ernst JD. Bacterial Strain-Dependent Dissociation of Cell Recruitment and Cell-to-Cell Spread in Early M. tuberculosis Infection. mBio 2022; 13:e0133222. [PMID: 35695454 PMCID: PMC9239178 DOI: 10.1128/mbio.01332-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
In the initial stage of respiratory infection, Mycobacterium tuberculosis traverses from alveolar macrophages to phenotypically diverse monocyte-derived phagocytes and neutrophils in the lung parenchyma. Here, we compare the in vivo kinetics of early bacterial growth and cell-to-cell spread of two strains of M. tuberculosis: a lineage 2 strain, 4334, and the widely studied lineage 4 strain H37Rv. Using flow cytometry, live cell sorting of phenotypic subsets, and quantitation of bacteria in cells of the distinct subsets, we found that 4334 induces less leukocyte influx into the lungs but demonstrates earlier population expansion and cell-to-cell spread. The earlier spread of 4334 to recruited cells, including monocyte-derived dendritic cells, is accompanied by earlier and greater magnitude of CD4+ T cell activation. The results provide evidence that strain-specific differences in interactions with lung leukocytes can shape adaptive immune responses in vivo. IMPORTANCE Tuberculosis is a leading infectious disease killer worldwide and is caused by Mycobacterium tuberculosis. After exposure to M. tuberculosis, outcomes range from apparent elimination to active disease. Early innate immune responses may contribute to differences in outcomes, yet it is not known how bacterial strains alter the early dynamics of innate immune and T cell responses. We infected mice with distinct strains of M. tuberculosis and discovered striking differences in innate cellular recruitment, cell-to-cell spread of bacteria in the lungs, and kinetics of initiation of antigen-specific CD4 T cell responses. We also found that M. tuberculosis can spread beyond alveolar macrophages even before a large influx of inflammatory cells. These results provide evidence that distinct strains of M. tuberculosis can exhibit differential kinetics in cell-to-cell spread which is not directly linked to early recruitment of phagocytes but is subsequently linked to adaptive immune responses.
Collapse
Affiliation(s)
- B. Shoshana Zha
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, California, USA
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Ludovic Desvignes
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Tawania J. Fergus
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Amber Cornelius
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunity and Inflammation, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joel D. Ernst
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
9
|
Foreman TW, Nelson CE, Kauffman KD, Lora NE, Vinhaes CL, Dorosky DE, Sakai S, Gomez F, Fleegle JD, Parham M, Perera SR, Lindestam Arlehamn CS, Sette A, Brenchley JM, Queiroz ATL, Andrade BB, Kabat J, Via LE, Barber DL. CD4 T cells are rapidly depleted from tuberculosis granulomas following acute SIV co-infection. Cell Rep 2022; 39:110896. [PMID: 35649361 DOI: 10.1016/j.celrep.2022.110896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
HIV/Mycobacterium tuberculosis (Mtb) co-infected individuals have an increased risk of tuberculosis prior to loss of peripheral CD4 T cells, raising the possibility that HIV co-infection leads to CD4 T cell depletion in lung tissue before it is evident in blood. Here, we use rhesus macaques to study the early effects of simian immunodeficiency virus (SIV) co-infection on pulmonary granulomas. Two weeks after SIV inoculation of Mtb-infected macaques, Mtb-specific CD4 T cells are dramatically depleted from granulomas, before CD4 T cell loss in blood, airways, and lymph nodes, or increases in bacterial loads or radiographic evidence of disease. Spatially, CD4 T cells are preferentially depleted from the granuloma core and cuff relative to B cell-rich regions. Moreover, live imaging of granuloma explants show that intralesional CD4 T cell motility is reduced after SIV co-infection. Thus, granuloma CD4 T cells may be decimated before many co-infected individuals experience the first symptoms of acute HIV infection.
Collapse
Affiliation(s)
- Taylor W Foreman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine E Nelson
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keith D Kauffman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nickiana E Lora
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caian L Vinhaes
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA 41810-710, Brazil; Bahiana School of Medicine and Public Health (EBMSP), Salvador, BA 40296, Brazil
| | - Danielle E Dorosky
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shunsuke Sakai
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felipe Gomez
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel D Fleegle
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie Parham
- Axle Informatics, National Center for Advancing Translational Sciences, Bethesda, MD 20892, USA
| | - Shehan R Perera
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43201, USA
| | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | -
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Artur T L Queiroz
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA 41810-710, Brazil; Data and Knowledge Integration Center for Health (CIDACS), Instituto Gonçalo Moniz, Salvador, BA 40296, Brazil
| | - Bruno B Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA 41810-710, Brazil; Bahiana School of Medicine and Public Health (EBMSP), Salvador, BA 40296, Brazil
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura E Via
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Daniel L Barber
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Abstract
Pulmonary granulomas are widely considered the epicenters of the immune response to Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Recent animal studies have revealed factors that either promote or restrict TB immunity within granulomas. These models, however, typically ignore the impact of preexisting immunity on cellular organization and function, an important consideration because most TB probably occurs through reinfection of previously exposed individuals. Human postmortem research from the pre-antibiotic era showed that infections in Mtb-naïve individuals (primary TB) versus those with prior Mtb exposure (postprimary TB) have distinct pathologic features. We review recent animal findings in TB granuloma biology, which largely reflect primary TB. We also discuss our current understanding of postprimary TB lesions, about which much less is known. Many knowledge gaps remain, particularly regarding how preexisting immunity shapes granuloma structure and local immune responses at Mtb infection sites. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sara B. Cohen
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Benjamin H. Gern
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Kevin B. Urdahl
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Enriquez AB, Izzo A, Miller SM, Stewart EL, Mahon RN, Frank DJ, Evans JT, Rengarajan J, Triccas JA. Advancing Adjuvants for Mycobacterium tuberculosis Therapeutics. Front Immunol 2021; 12:740117. [PMID: 34759923 PMCID: PMC8572789 DOI: 10.3389/fimmu.2021.740117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 01/15/2023] Open
Abstract
Tuberculosis (TB) remains one of the leading causes of death worldwide due to a single infectious disease agent. BCG, the only licensed vaccine against TB, offers limited protection against pulmonary disease in children and adults. TB vaccine research has recently been reinvigorated by new data suggesting alternative administration of BCG induces protection and a subunit/adjuvant vaccine that provides close to 50% protection. These results demonstrate the need for generating adjuvants in order to develop the next generation of TB vaccines. However, development of TB-targeted adjuvants is lacking. To help meet this need, NIAID convened a workshop in 2020 titled “Advancing Vaccine Adjuvants for Mycobacterium tuberculosis Therapeutics”. In this review, we present the four areas identified in the workshop as necessary for advancing TB adjuvants: 1) correlates of protective immunity, 2) targeting specific immune cells, 3) immune evasion mechanisms, and 4) animal models. We will discuss each of these four areas in detail and summarize what is known and what we can advance on in order to help develop more efficacious TB vaccines.
Collapse
Affiliation(s)
- Ana B Enriquez
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Angelo Izzo
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Shannon M Miller
- Center for Translational Medicine, University of Montana, Missoula, MT, United States.,Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Erica L Stewart
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Institute for Infectious Diseases and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Robert N Mahon
- Division of AIDS, Columbus Technologies & Services Inc., Contractor to National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel J Frank
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, Missoula, MT, United States.,Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - James A Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Institute for Infectious Diseases and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Kiran D, Basaraba RJ. Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Front Cell Infect Microbiol 2021; 11:624607. [PMID: 33718271 PMCID: PMC7952876 DOI: 10.3389/fcimb.2021.624607] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) leading to tuberculosis (TB) disease continues to be a major global health challenge. Critical barriers, including but not limited to the development of multi-drug resistance, lack of diagnostic assays that detect patients with latent TB, an effective vaccine that prevents Mtb infection, and infectious and non-infectious comorbidities that complicate active TB, continue to hinder progress toward a TB cure. To complement the ongoing development of new antimicrobial drugs, investigators in the field are exploring the value of host-directed therapies (HDTs). This therapeutic strategy targets the host, rather than Mtb, and is intended to augment host responses to infection such that the host is better equipped to prevent or clear infection and resolve chronic inflammation. Metabolic pathways of immune cells have been identified as promising HDT targets as more metabolites and metabolic pathways have shown to play a role in TB pathogenesis and disease progression. Specifically, this review highlights the potential role of lactate as both an immunomodulatory metabolite and a potentially important signaling molecule during the host response to Mtb infection. While long thought to be an inert end product of primarily glucose metabolism, the cancer research field has discovered the importance of lactate in carcinogenesis and resistance to chemotherapeutic drug treatment. Herein, we discuss similarities between the TB granuloma and tumor microenvironments in the context of lactate metabolism and identify key metabolic and signaling pathways that have been shown to play a role in tumor progression but have yet to be explored within the context of TB. Ultimately, lactate metabolism and signaling could be viable HDT targets for TB; however, critical additional research is needed to better understand the role of lactate at the host-pathogen interface during Mtb infection before adopting this HDT strategy.
Collapse
Affiliation(s)
| | - Randall J. Basaraba
- Metabolism of Infectious Diseases Laboratory, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
13
|
Crowther RR, Qualls JE. Metabolic Regulation of Immune Responses to Mycobacterium tuberculosis: A Spotlight on L-Arginine and L-Tryptophan Metabolism. Front Immunol 2021; 11:628432. [PMID: 33633745 PMCID: PMC7900187 DOI: 10.3389/fimmu.2020.628432] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a leading cause of death worldwide. Despite decades of research, there is still much to be uncovered regarding the immune response to Mtb infection. Here, we summarize the current knowledge on anti-Mtb immunity, with a spotlight on immune cell amino acid metabolism. Specifically, we discuss L-arginine and L-tryptophan, focusing on their requirements, regulatory roles, and potential use as adjunctive therapy in TB patients. By continuing to uncover the immune cell contribution during Mtb infection and how amino acid utilization regulates their functions, it is anticipated that novel host-directed therapies may be developed and/or refined, helping to eradicate TB.
Collapse
Affiliation(s)
- Rebecca R Crowther
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Joseph E Qualls
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
14
|
Kanabalan RD, Lee LJ, Lee TY, Chong PP, Hassan L, Ismail R, Chin VK. Human tuberculosis and Mycobacterium tuberculosis complex: A review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery. Microbiol Res 2021; 246:126674. [PMID: 33549960 DOI: 10.1016/j.micres.2020.126674] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis complex (MTBC) refers to a group of mycobacteria encompassing nine members of closely related species that causes tuberculosis in animals and humans. Among the nine members, Mycobacterium tuberculosis (M. tuberculosis) remains the main causative agent for human tuberculosis that results in high mortality and morbidity globally. In general, MTBC species are low in diversity but exhibit distinctive biological differences and phenotypes among different MTBC lineages. MTBC species are likely to have evolved from a common ancestor through insertions/deletions processes resulting in species speciation with different degrees of pathogenicity. The pathogenesis of human tuberculosis is complex and remains poorly understood. It involves multi-interactions or evolutionary co-options between host factors and bacterial determinants for survival of the MTBC. Granuloma formation as a protection or survival mechanism in hosts by MTBC remains controversial. Additionally, MTBC species are capable of modulating host immune response and have adopted several mechanisms to evade from host immune attack in order to survive in humans. On the other hand, current diagnostic tools for human tuberculosis are inadequate and have several shortcomings. Numerous studies have suggested the potential of host biomarkers in early diagnosis of tuberculosis, in disease differentiation and in treatment monitoring. "Multi-omics" approaches provide holistic views to dissect the association of MTBC species with humans and offer great advantages in host biomarkers discovery. Thus, in this review, we seek to understand how the genetic variations in MTBC lead to species speciation with different pathogenicity. Furthermore, we also discuss how the host and bacterial players contribute to the pathogenesis of human tuberculosis. Lastly, we provide an overview of the journey of "omics" approaches in host biomarkers discovery in human tuberculosis and provide some interesting insights on the challenges and directions of "omics" approaches in host biomarkers innovation and clinical implementation.
Collapse
Affiliation(s)
- Renuga Devi Kanabalan
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| | - Le Jie Lee
- Prima Nexus Sdn. Bhd., Menara CIMB, Jalan Stesen Sentral 2, Kuala Lumpur, Malaysia
| | - Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia
| | - Rosnah Ismail
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia.
| | - Voon Kin Chin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia; Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, Selangor, 42300, Malaysia.
| |
Collapse
|
15
|
Wu K, Yan B, Lowrie DB, Li T, Fan XY. Tailored co-localization analysis of intracellular microbes and punctum-distributed phagosome-lysosome pathway proteins using ImageJ plugin EzColocalization. Sci Rep 2021; 11:1096. [PMID: 33441638 PMCID: PMC7807018 DOI: 10.1038/s41598-020-79425-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 11/09/2022] Open
Abstract
Immunofluorescence is indispensable to monitor redistribution of proteins involved in phagosome-lysosome association pathway-relevant (P-LApr) proteins. The software digitizing the signals of these proteins in an unbiased and automated manner is generally costly and not widely available. The open-source ImageJ plugin EzColocalization, which is for co-localization analysis of reporters in cells, was not straightforward and sufficient for such analysis. We describe here the input of custom Java code in a novel tailored protocol using EzColocalization to digitize the signals of punctum-distributed P-LApr proteins co-localized with phagosomes and to calculate percentages of phagosomes engaged. We showed that SYBR Gold nucleic acid dye could visualize intracellular mycobacteria that did not express a fluorescent protein. This protocol was validated by showing that IFN-γ enhanced the co-localization of a punctum-distributed P-LApr protein (LC3) with Mycobacterium bovis BCG in the monocyte/macrophage-like RAW264.7 cells and that there was greater co-localization of LC3 with BCG than with M. tuberculosis H37Rv in bone marrow-derived macrophages (BMDMs). Although BCG and a derived strain (rBCG-PA) showed a similarly high degree co-localization with LC3 in BMDMs, in RAW264.7 cells BCG showed much less co-localization with LC3 than rBCG-PA indicating the need for caution in interpreting biological significance from studies in cell lines.
Collapse
Affiliation(s)
- Kang Wu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China.,TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, 201508, China
| | - Bo Yan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China.,TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, 201508, China
| | - Tao Li
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China. .,TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, 201508, China.
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China. .,TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, 201508, China.
| |
Collapse
|
16
|
Dolasia K, Nazar F, Mukhopadhyay S. Mycobacterium tuberculosis PPE18 protein inhibits MHC class II antigen presentation and B cell response in mice. Eur J Immunol 2020; 51:603-619. [PMID: 33084017 DOI: 10.1002/eji.201848071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 01/18/2023]
Abstract
PPE18 protein belongs to PE/PPE family of Mycobacterium tuberculosis. We reported earlier that PPE18 protein provides survival advantage to M. tuberculosis during infection. In the current study, we found that PPE18 inhibits MHC class II-mediated antigen presentation by macrophages in a dose-dependent manner without affecting the surface level of MHC class II or co-stimulatory molecules. PPE18 does not affect antigen uptake or presentation of preprocessed peptide by macrophages. Antigen degradation was found to be inhibited by PPE18 protein due to perturbation in phagolysosomal acidification. PPE18-mediated inhibition of MHC class II antigen presentation caused poorer activation of CD4 T cells. Mice infected with M. smegmatis expressing PPE18 exhibited reduced maturation and activation of B cells and had decreased Mycobacteria-specific antibody titers. Thus M. tuberculosis probably utilizes PPE18 to inhibit MHC class II antigen presentation causing poorer activation of adaptive immune responses. This study may be useful in understanding host-pathogen interaction and open up directions of designing novel therapeutics targeting PPE18 to tackle this nefarious pathogen.
Collapse
Affiliation(s)
- Komal Dolasia
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Faiza Nazar
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
17
|
Basile JI, Liu R, Mou W, Gao Y, Carow B, Rottenberg ME. Mycobacteria-Specific T Cells Are Generated in the Lung During Mucosal BCG Immunization or Infection With Mycobacterium tuberculosis. Front Immunol 2020; 11:566319. [PMID: 33193338 PMCID: PMC7643023 DOI: 10.3389/fimmu.2020.566319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/11/2020] [Indexed: 01/21/2023] Open
Abstract
Specific T cell responses are central for protection against infection with M. tuberculosis. Here we show that mycobacteria-specific CD4 and CD8 T cells accumulated in the lung but not in the mediastinal lymph node (MLN) at different time points after M. tuberculosis infection or BCG immunization. Proliferating specific T cells were found in the lung after infection and immunization. Pulmonary, but not MLN-derived CD4 and CD8 T cells, from M. tuberculosis-infected mice secreted IFN-γ after stimulation with different mycobacterial peptides. Mycobacteria-specific resident memory CD4 and CD8 T cells (TRM) expressing PD-1 accumulated in the lung after aerosol infection and intratracheal (i.t.) -but not subcutaneous (s.c.)- BCG immunization. Chemical inhibition of recirculation indicated that TRM were generated in the lung after BCG i.t. immunization. In summary, mycobacteria specific-TRM accumulate in the lung during i.t. but not s.c. immunization or M. tuberculosis infection. Collectively our data suggests that priming, accumulation and/or expansion of specific T cells during BCG immunization and M. tuberculosis infection occurs in the lung.
Collapse
Affiliation(s)
- Juan I Basile
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Ruining Liu
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Wenjun Mou
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Berit Carow
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology and Center for Tuberculosis Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Russell SL, Lamprecht DA, Mandizvo T, Jones TT, Naidoo V, Addicott KW, Moodley C, Ngcobo B, Crossman DK, Wells G, Steyn AJC. Compromised Metabolic Reprogramming Is an Early Indicator of CD8 + T Cell Dysfunction during Chronic Mycobacterium tuberculosis Infection. Cell Rep 2020; 29:3564-3579.e5. [PMID: 31825836 PMCID: PMC6915325 DOI: 10.1016/j.celrep.2019.11.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/19/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
The immunometabolic mechanisms underlying suboptimal T cell immunity in tuberculosis remain undefined. Here, we examine how chronic Mycobacterium tuberculosis (Mtb) and M. bovis BCG infections rewire metabolic circuits and alter effector functions in lung CD8+ T cells. As Mtb infection progresses, mitochondrial metabolism deteriorates in CD8+ T cells, resulting in an increased dependency on glycolysis that potentiates inflammatory cytokine production. Over time, these cells develop bioenergetic deficiencies that reflect metabolic “quiescence.” This bioenergetic signature coincides with increased mitochondrial dysfunction and inhibitory receptor expression and was not observed in BCG infection. Remarkably, the Mtb-triggered decline in T cell bioenergetics can be reinvigorated by metformin, giving rise to an Mtb-specific CD8+ T cell population with improved metabolism. These findings provide insights into Mtb pathogenesis whereby glycolytic reprogramming and compromised mitochondrial function contribute to the breakdown of CD8+ T cell immunity during chronic disease, highlighting opportunities to reinvigorate immunity with metabolically targeted pharmacologic agents. T cells from Mtb and BCG infections have unique metabolic and functional signatures Mitochondrial metabolism deteriorates in effector T cells as Mtb infection persists Metformin rejuvenates mitochondrial metabolism in T cells from Mtb-infected mice The breakdown of Mtb immunity during chronic disease is linked to immunometabolism
Collapse
Affiliation(s)
| | | | | | - Terrence T Jones
- Health Science Center (UTHSC), Department of Medicine, University of Tennessee, Memphis, TN 38163, USA
| | - Vanessa Naidoo
- Africa Health Research Institute, Durban 4001, South Africa
| | | | | | - Bongani Ngcobo
- Africa Health Research Institute, Durban 4001, South Africa
| | - David K Crossman
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama, Birmingham, AL 35487, USA
| | - Gordon Wells
- Africa Health Research Institute, Durban 4001, South Africa
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban 4001, South Africa; Department of Microbiology, University of Alabama, Birmingham, AL 35487, USA; Center for AIDS Research (CFAR), University of Alabama, Birmingham, AL 35487, USA; Center for Free Radical Biology (CFRB), University of Alabama, Birmingham, AL 35487, USA.
| |
Collapse
|
19
|
Fighting Persistence: How Chronic Infections with Mycobacterium tuberculosis Evade T Cell-Mediated Clearance and New Strategies To Defeat Them. Infect Immun 2020; 88:IAI.00916-19. [PMID: 32094248 DOI: 10.1128/iai.00916-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic bacterial infections are caused by pathogens that persist within their hosts and avoid clearance by the immune system. Treatment and/or detection of such pathogens is difficult, and the resulting pathologies are often deleterious or fatal. There is an urgent need to develop protective vaccines and host-directed therapies that synergize with antibiotics to prevent pathogen persistence and infection-associated pathologies. However, many persistent pathogens, such as Mycobacterium tuberculosis, actively target the very host pathways activated by vaccination. These immune evasion tactics blunt the effectiveness of immunization strategies and are impeding progress to control these infections throughout the world. Therefore, it is essential that M. tuberculosis immune evasion-related pathogen virulence strategies are considered to maximize the effectiveness of potential new treatments. In this review, we focus on how Mycobacterium tuberculosis infects antigen-presenting cells and evades effective immune clearance by the adaptive response through (i) manipulating antigen presentation, (ii) repressing T cell-activating costimulatory molecules, and (iii) inducing ligands that drive T cell exhaustion. In this context, we will examine the challenges that bacterial virulence strategies pose to developing new vaccines. We will then discuss new approaches that will help dissect M. tuberculosis immune evasion mechanisms and devise strategies to bypass them to promote long-term protection and prevent disease progression.
Collapse
|
20
|
Abstract
Tuberculosis (TB) is a serious global public health challenge that results in significant morbidity and mortality worldwide. TB is caused by infection with the bacilli Mycobacterium tuberculosis (M. tuberculosis), which has evolved a wide variety of strategies in order to thrive within its host. Understanding the complex interactions between M. tuberculosis and host immunity can inform the rational design of better TB vaccines and therapeutics. This chapter covers innate and adaptive immunity against M. tuberculosis infection, including insights on bacterial immune evasion and subversion garnered from animal models of infection and human studies. In addition, this chapter discusses the immunology of the TB granuloma, TB diagnostics, and TB comorbidities. Finally, this chapter provides a broad overview of the current TB vaccine pipeline.
Collapse
|
21
|
Patankar YR, Sutiwisesak R, Boyce S, Lai R, Lindestam Arlehamn CS, Sette A, Behar SM. Limited recognition of Mycobacterium tuberculosis-infected macrophages by polyclonal CD4 and CD8 T cells from the lungs of infected mice. Mucosal Immunol 2020; 13:140-148. [PMID: 31636345 PMCID: PMC7161428 DOI: 10.1038/s41385-019-0217-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 02/04/2023]
Abstract
Immune responses following Mycobacterium tuberculosis (Mtb) infection or vaccination are frequently assessed by measuring T-cell recognition of crude Mtb antigens, recombinant proteins, or peptide epitopes. We previously showed that not all Mtb-specific T cells recognize Mtb-infected macrophages. Thus, an important question is what proportion of T cells elicited by Mtb infection recognize Mtb-infected macrophages. We address this question by developing a modified elispot assay using viable Mtb-infected macrophages, a low multiplicity of infection and purified T cells. In C57BL/6 mice, CD4 and CD8 T cells were classically MHC restricted. Comparable frequencies of T cells that recognize Mtb-infected macrophages were determined using interferon-γ elispot and intracellular cytokine staining, and lung CD4 T cells more sensitively recognized Mtb-infected macrophages than lung CD8 T cells. Compared to the relatively high frequencies of T cells specific for antigens such as ESAT-6 and TB10.4, low frequencies of total pulmonary T cells elicited by aerosolized Mtb infection recognize Mtb-infected macrophages. Finally, we demonstrate that BCG vaccination elicits T cells that recognize Mtb-infected macrophages. We propose that the frequency of T cells that recognize infected macrophages could correlate with protective immunity and may be an alternative approach to measuring T-cell responses to Mtb antigens.
Collapse
Affiliation(s)
- Yash R. Patankar
- 0000 0001 0742 0364grid.168645.8Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Rujapak Sutiwisesak
- 0000 0001 0742 0364grid.168645.8Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Shayla Boyce
- 0000 0001 0742 0364grid.168645.8Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Rocky Lai
- 0000 0001 0742 0364grid.168645.8Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Cecilia S. Lindestam Arlehamn
- 0000 0004 0461 3162grid.185006.aDepartment of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Alessandro Sette
- 0000 0004 0461 3162grid.185006.aDepartment of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037 USA ,0000 0001 2107 4242grid.266100.3Department of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Samuel M. Behar
- 0000 0001 0742 0364grid.168645.8Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| |
Collapse
|
22
|
Ernst JD, Cornelius A, Desvignes L, Tavs J, Norris BA. Limited Antimycobacterial Efficacy of Epitope Peptide Administration Despite Enhanced Antigen-Specific CD4 T-Cell Activation. J Infect Dis 2019; 218:1653-1662. [PMID: 29548008 DOI: 10.1093/infdis/jiy142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Background Infection with Mycobacterium tuberculosis is associated with inconsistent and incomplete elimination of the bacteria, despite development of antigen-specific T-cell responses. One mechanism used by M tuberculosis is to limit availability of antigen for activation of CD4 T cells. Methods We examined the utility of systemic administration of epitope peptides to activate pre-existing T cells in mice infected with M tuberculosis. Results We found that systemic peptide administration (1) selectively activates T cells specific for the epitope peptide, (2) loads major histocompatibility complex class II on lung macrophages and dendritic cells, (3) activates CD4 T cells in the lung parenchyma, (4) and has little antimycobacterial activity. Conclusions Further studies revealed that CD4 T cells in lung lesions are distant from the infected cells, suggesting that, even if they can be activated, the positioning of CD4 T cells and their direct interactions with infected cells may be limiting determinants of immunity in tuberculosis.
Collapse
Affiliation(s)
- Joel D Ernst
- Division of Infectious Diseases, Department of Medicine University School of Medicine, New York.,Departments of Pathology University School of Medicine, New York.,Department of Microbiology, New York University School of Medicine, New York
| | - Amber Cornelius
- Division of Infectious Diseases, Department of Medicine University School of Medicine, New York
| | - Ludovic Desvignes
- Division of Infectious Diseases, Department of Medicine University School of Medicine, New York
| | - Jacqueline Tavs
- Division of Infectious Diseases, Department of Medicine University School of Medicine, New York
| | - Brian A Norris
- Division of Infectious Diseases, Department of Medicine University School of Medicine, New York
| |
Collapse
|
23
|
Ramos-Martinez AG, Valtierra-Alvarado MA, Garcia-Hernandez MH, Hernandez-Pando R, Castañeda-Delgado JE, Cougoule C, Rivas-Santiago B, Neyrolles O, Enciso-Moreno JA, Lugo-Villarino G, Serrano CJ. Variability in the virulence of specific Mycobacterium tuberculosis clinical isolates alters the capacity of human dendritic cells to signal for T cells. Mem Inst Oswaldo Cruz 2019; 114:e190102. [PMID: 31411311 PMCID: PMC6690647 DOI: 10.1590/0074-02760190102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/08/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Once in the pulmonary alveoli, Mycobacterium tuberculosis
(Mtb) enters into contact with alveolar macrophages and dendritic cells
(DCs). DCs represent the link between the innate and adaptive immune system
owing to their capacity to be both a sentinel and an orchestrator of the
antigen-specific immune responses against Mtb. The effect that the virulence
of Mtb has on the interaction between the bacilli and human DCs has not been
fully explored. OBJECTIVE To evaluate the effect of Mtb virulence on human monocyte-derived DCs. METHODS We exposed human monocyte-derived DCs to Mtb clinical strains (isolated from
an epidemiological Mtb diversity study in Mexico) bearing different degrees
of virulence and evaluated the capacity of DCs to internalise the bacilli,
control intracellular growth, engage cell death pathways, express markers
for activation and antigen presentation, and expand to stimulate autologous
CD4+ T cells proliferation. FINDINGS In the case of the hypervirulent Mtb strain (Phenotype 1, strain 9005186,
lineage 3), we report that DCs internalise and neutralise intracellular
growth of the bacilli, undergo low rates of apoptosis, and contribute poorly
to T-cell expansion, as compared to the H37Rv reference strain. In the case
of the hypovirulent Mtb strain (Phenotype 4, strain 9985449, lineage 4),
although DCs internalise and preclude proliferation of the bacilli, the DCs
also display a high level of apoptosis, massive levels of apoptosis that
prevent them from maintaining autologous CD4+ T cells in a
co-culture system, as compared to H37Rv. MAIN CONCLUSIONS Our findings suggest that variability in virulence among Mtb clinical
strains affects the capacity of DCs to respond to pathogenic challenge and
mount an immune response against it, highlighting important parallels to
studies previously done in mouse models.
Collapse
Affiliation(s)
- Ana Gabriela Ramos-Martinez
- Instituto Mexicano del Seguro Social, Unidad de Investigación Biomédica Zacatecas, Zacatecas, México.,Universidad Autónoma de San Luis Potosí, Escuela de Medicina, Departamento de Inmunología, San Luis Potosí, México
| | - Monica Alejandra Valtierra-Alvarado
- Instituto Mexicano del Seguro Social, Unidad de Investigación Biomédica Zacatecas, Zacatecas, México.,Universidad Autónoma de San Luis Potosí, Escuela de Medicina, Departamento de Inmunología, San Luis Potosí, México
| | | | - Rogelio Hernandez-Pando
- Instituto Nacional de Ciencias Médicas y de la Nutrición Salvador Zubirán, Departamento de Patología, Sección de Patología Experimental, Ciudad de México, México
| | - Julio Enrique Castañeda-Delgado
- Catédras Consejo Nacional de Ciencia y Tecnología, en Instituto Mexicano del Seguro Social, Unidad de Investigación Biomédica Zacatecas, Zacatecas, México
| | - Céline Cougoule
- Université de Toulouse, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Bruno Rivas-Santiago
- Instituto Mexicano del Seguro Social, Unidad de Investigación Biomédica Zacatecas, Zacatecas, México
| | - Olivier Neyrolles
- Université de Toulouse, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | | | - Geanncarlo Lugo-Villarino
- Université de Toulouse, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Carmen Judith Serrano
- Instituto Mexicano del Seguro Social, Unidad de Investigación Biomédica Zacatecas, Zacatecas, México
| |
Collapse
|
24
|
Dynamics of Mycobacterium tuberculosis Ag85B Revealed by a Sensitive Enzyme-Linked Immunosorbent Assay. mBio 2019; 10:mBio.00611-19. [PMID: 31015327 PMCID: PMC6479003 DOI: 10.1128/mbio.00611-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacterial protein secretion contributes to host-pathogen interactions, yet the process and consequences of bacterial protein secretion during infection are poorly understood. We developed a sensitive ELISA to quantitate a protein (termed Ag85B) secreted by M. tuberculosis and used it to find that Ag85B secretion occurs with slower kinetics than for proteins secreted by Gram-positive and Gram-negative bacteria and that accumulation of Ag85B in the lungs is markedly regulated as a function of the bacterial population density. Our results demonstrate that quantitation of bacterial proteins during infection can reveal novel insights into host-pathogen interactions. Secretion of specific proteins contributes to pathogenesis and immune responses in tuberculosis and other bacterial infections, yet the kinetics of protein secretion and fate of secreted proteins in vivo are poorly understood. We generated new monoclonal antibodies that recognize the Mycobacterium tuberculosis secreted protein Ag85B and used them to establish and characterize a sensitive enzyme-linked immunosorbent assay (ELISA) to quantitate Ag85B in samples generated in vitro and in vivo. We found that nutritional or culture conditions had little impact on the secretion of Ag85B and that there is considerable variation in Ag85B secretion by distinct strains in the M. tuberculosis complex: compared with the commonly used H37Rv strain (lineage 4), Mycobacterium africanum (lineage 6) secretes less Ag85B, and two strains from lineage 2 secrete more Ag85B. We also used the ELISA to determine that the rate of secretion of Ag85B is 10- to 100-fold lower than that of proteins secreted by Gram-negative and Gram-positive bacteria, respectively. ELISA quantitation of Ag85B in lung homogenates of M. tuberculosis H37Rv-infected mice revealed that although Ag85B accumulates in the lungs as the bacterial population expands, the amount of Ag85B per bacterium decreases nearly 10,000-fold at later stages of infection, coincident with the development of T cell responses and arrest of bacterial population growth. These results indicate that bacterial protein secretion in vivo is dynamic and regulated, and quantitation of secreted bacterial proteins can contribute to the understanding of pathogenesis and immunity in tuberculosis and other infections.
Collapse
|
25
|
Su H, Peng B, Zhang Z, Liu Z, Zhang Z. The Mycobacterium tuberculosis glycoprotein Rv1016c protein inhibits dendritic cell maturation, and impairs Th1 /Th17 responses during mycobacteria infection. Mol Immunol 2019; 109:58-70. [PMID: 30856410 DOI: 10.1016/j.molimm.2019.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022]
Abstract
The myobacterial factors and the associated mechanism by which Mycobacterium tuberculosis (Mtb) evades the host immune surveillance system remain widely unexplored. Here, we found that overexpressing Rv1016c, a mannosylated protein of M. tuberculosis in BCG (rBCG-Rv1016c) led to increased virulence of the recombined BCG in the severe-combined immunodeficient (SCID) mice model and to a loss of protective efficacy in a zebrafish-M. marinum model, compared to wild type BCG. Further investigations on the effects of rBCG-Rv1016c on the host innate immunity revealed that rBCG-Rv1016c decreased the production of cytokines IL-2, IL-12p70, TGF-β, IL-6 as well as of the co-stimulatory molecules CD80, CD86, MHC-I and MHC-II by the infected DCs. These effects were mimicked by rBCG-Rv1016cHis, which carried an extra 6-His tag at the C-terminus of Rv1016c. Relatively to BCG infected DCs, the rBCG-Rv1016c-infected DCs failed to polarize naïve T cells to Th1- and Th17-type cells to secret IFN-γ and IL-17. Additionally, T lymphocytes from BCG- infected mice showed significantly less proliferation and production of IFN-γ and IL-17. Similarly, rBCG-Rv1016c mice released a higher level of IL-10 in response to rBCG-Rv1016c stimulation than wild type BCG infected mice. Furthermore, DCs from TLR-2 knockout mice showed no reduction in IL-6, IL-12 p70 and TGF-β secretion in response to rBCG-Rv1016c infection, compared to DCs infected with BCG. We propose that Rv1016c interferes in differentiation of the DCs by targeting suppressor of cytokine signaling (SOCS) 1 and SOCS3 expression, which subsequently leads to the reduction in STAT-1 and STAT-6 phosphorylation. These findings open new perspectives regarding the immunosuppressive strategies adopted by Mtb to survive in the host.
Collapse
Affiliation(s)
- Haibo Su
- GMU-GIBH Joint School of Life Science, Guangzhou Medical University, No. 195 Dongfengxi Road, Guangzhou, 510000, China; Guangdong Second Provincial General Hospital, No. 466 Xingang Road, Guangzhou, 510220, China
| | - Baozhou Peng
- GMU-GIBH Joint School of Life Science, Guangzhou Medical University, No. 195 Dongfengxi Road, Guangzhou, 510000, China
| | - Zhen Zhang
- Guangdong Second Provincial General Hospital, No. 466 Xingang Road, Guangzhou, 510220, China
| | - Zijian Liu
- GMU-GIBH Joint School of Life Science, Guangzhou Medical University, No. 195 Dongfengxi Road, Guangzhou, 510000, China
| | - Zhi Zhang
- Guangdong Second Provincial General Hospital, No. 466 Xingang Road, Guangzhou, 510220, China.
| |
Collapse
|
26
|
Ernst JD. Mechanisms of M. tuberculosis Immune Evasion as Challenges to TB Vaccine Design. Cell Host Microbe 2019; 24:34-42. [PMID: 30001523 DOI: 10.1016/j.chom.2018.06.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) is a large global health problem, in part because of the long period of coevolution of the pathogen, Mycobacterium tuberculosis, and its human host. A major factor that sustains the global epidemic of TB is the lack of a sufficiently effective vaccine. While basic mechanisms of immunity that protect against TB have been identified, attempts to improve immunity to TB by vaccination have been disappointing. This Review discusses the mechanisms used by M. tuberculosis to evade innate and adaptive immunity and that likely limit the efficacy of vaccines developed to date. Despite multiple mechanisms of immune evasion, recent trials have indicated that effective TB vaccines remain an attainable goal. This Review discusses how knowledge from other systems can inform improvements on current vaccine approaches.
Collapse
Affiliation(s)
- Joel D Ernst
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
27
|
Guerra-De-Blas PDC, Torres-González P, Bobadilla-Del-Valle M, Sada-Ovalle I, Ponce-De-León-Garduño A, Sifuentes-Osornio J. Potential Effect of Statins on Mycobacterium tuberculosis Infection. J Immunol Res 2018; 2018:7617023. [PMID: 30581876 PMCID: PMC6276473 DOI: 10.1155/2018/7617023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/11/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis is one of the 10 leading causes of death in the world. The current treatment is based on a combination of antimicrobials administered for six months. It is essential to find therapeutic agents with which the treatment time can be shortened and strengthen the host immune response against Mycobacterium tuberculosis. M. tuberculosis needs cholesterol to infect and survive inside the host, but the progression of the infection depends to a large extent on the capacity of the immune response to contain the infection. Statins inhibit the synthesis of cholesterol and have pleiotropic effects on the immune system, which have been associated with better results in the treatment of several infectious diseases. Recently, it has been reported that cells treated with statins are more resistant to M. tuberculosis infection, and they have even been proposed as adjuvants in the treatment of M. tuberculosis infection. The aim of this review is to summarize the immunopathogenesis of tuberculosis and its mechanisms of evasion and to compile the available scientific information on the effect of statins in the treatment of tuberculosis.
Collapse
Affiliation(s)
- Paola Del Carmen Guerra-De-Blas
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Pedro Torres-González
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miriam Bobadilla-Del-Valle
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Isabel Sada-Ovalle
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Alfredo Ponce-De-León-Garduño
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Sifuentes-Osornio
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
28
|
Chaurasiya SK. Tuberculosis: Smart manipulation of a lethal host. Microbiol Immunol 2018; 62:361-379. [PMID: 29687912 DOI: 10.1111/1348-0421.12593] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a global threat to human health. Development of drug resistance and co-infection with HIV has increased the morbidity and mortality caused by TB. Macrophages serve as primary defense against microbial infections, including TB. Upon recognition and uptake of mycobacteria, macrophages initiate a series of events designed to lead to generation of effective immune responses and clearance of infection. However, pathogenic mycobacteria utilize multiple mechanisms for manipulating macrophage responses to protect itself from being killed and to survive within these cells that are designed to kill them. The outcomes of mycobacterial infection are determined by several host- and pathogen-related factors. Significant advancements in understanding mycobacterial pathogenesis have been made in recent years. In this review, some of the important factors/mechanisms regulating mycobacterial survival inside macrophages are discussed.
Collapse
Affiliation(s)
- Shivendra K Chaurasiya
- Host-pathogen Interaction and Signal Transduction Laboratory, Department of Microbiology, School of Biological Sciences, Dr. Hari Singh Gour University, Sagar, MP-470003, India
| |
Collapse
|
29
|
Coppola M, Ottenhoff TH. Genome wide approaches discover novel Mycobacterium tuberculosis antigens as correlates of infection, disease, immunity and targets for vaccination. Semin Immunol 2018; 39:88-101. [PMID: 30327124 DOI: 10.1016/j.smim.2018.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/15/2023]
Abstract
Every day approximately six thousand people die of Tuberculosis (TB). Its causative agent, Mycobacterium tuberculosis (Mtb), is an ancient pathogen that through its evolution developed complex mechanisms to evade immune surveillance and acquire the ability to establish persistent infection in its hosts. Currently, it is estimated that one-fourth of the human population is latently infected with Mtb and among those infected 3-10% are at risk of developing active TB disease during their lifetime. The currently available diagnostics are not able to detect this risk group for prophylactic treatment to prevent transmission. Anti-TB drugs are available but only as long regimens with considerable side effects, which could both be reduced if adequate tests were available to monitor the response of TB to treatment. New vaccines are also urgently needed to substitute or boost Bacille Calmette-Guérin (BCG), the only approved TB vaccine: although BCG prevents disseminated TB in infants, it fails to impact the incidence of pulmonary TB in adults, and therefore has little effect on TB transmission. To achieve TB eradication, the discovery of Mtb antigens that effectively correlate with the human response to infection, with the curative host response following TB treatment, and with natural as well as vaccine induced protection will be critical. Over the last decade, many new Mtb antigens have been found and proposed as TB biomarkers and vaccine candidates, but only a very small number of these is being used in commercial diagnostic tests or is being assessed as candidate TB vaccine antigens in human clinical trials, aiming to prevent infection, disease or disease recurrence following treatment. Most of these antigens were discovered decades ago, before the complete Mtb genome sequence became available, and thus did not harness the latest insights from post-genomic antigen discovery strategies and genome wide approaches. These have, for example, revealed critical phase variation in Mtb replication and accompanying gene -and therefore antigen- expression patterns. In this review, we present a brief overview of past methodologies, and subsequently focus on the most important recent Mtb antigen discovery studies which have mined the Mtb antigenome through "unbiased" genome wide approaches. We compare the results for these approaches -as far as we know for the first time-, highlight Mtb antigens that have been identified independently by different strategies and present a comprehensive overview of the Mtb antigens thus discovered.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Dept. Infectious Diseases, LUMC, PO Box 9600, 2300RC Leiden, The Netherlands.
| | - Tom Hm Ottenhoff
- Dept. Infectious Diseases, LUMC, PO Box 9600, 2300RC Leiden, The Netherlands
| |
Collapse
|
30
|
Stüve P, Minarrieta L, Erdmann H, Arnold-Schrauf C, Swallow M, Guderian M, Krull F, Hölscher A, Ghorbani P, Behrends J, Abraham WR, Hölscher C, Sparwasser TD, Berod L. De Novo Fatty Acid Synthesis During Mycobacterial Infection Is a Prerequisite for the Function of Highly Proliferative T Cells, But Not for Dendritic Cells or Macrophages. Front Immunol 2018; 9:495. [PMID: 29675017 PMCID: PMC5895737 DOI: 10.3389/fimmu.2018.00495] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, is able to efficiently manipulate the host immune system establishing chronic infection, yet the underlying mechanisms of immune evasion are not fully understood. Evidence suggests that this pathogen interferes with host cell lipid metabolism to ensure its persistence. Fatty acid metabolism is regulated by acetyl-CoA carboxylase (ACC) 1 and 2; both isoforms catalyze the conversion of acetyl-CoA into malonyl-CoA, but have distinct roles. ACC1 is located in the cytosol, where it regulates de novo fatty acid synthesis (FAS), while ACC2 is associated with the outer mitochondrial membrane, regulating fatty acid oxidation (FAO). In macrophages, mycobacteria induce metabolic changes that lead to the cytosolic accumulation of lipids. This reprogramming impairs macrophage activation and contributes to chronic infection. In dendritic cells (DCs), FAS has been suggested to underlie optimal cytokine production and antigen presentation, but little is known about the metabolic changes occurring in DCs upon mycobacterial infection and how they affect the outcome of the immune response. We therefore determined the role of fatty acid metabolism in myeloid cells and T cells during Mycobacterium bovis BCG or Mtb infection, using novel genetic mouse models that allow cell-specific deletion of ACC1 and ACC2 in DCs, macrophages, or T cells. Our results demonstrate that de novo FAS is induced in DCs and macrophages upon M. bovis BCG infection. However, ACC1 expression in DCs and macrophages is not required to control mycobacteria. Similarly, absence of ACC2 did not influence the ability of DCs and macrophages to cope with infection. Furthermore, deletion of ACC1 in DCs or macrophages had no effect on systemic pro-inflammatory cytokine production or T cell priming, suggesting that FAS is dispensable for an intact innate response against mycobacteria. In contrast, mice with a deletion of ACC1 specifically in T cells fail to generate efficient T helper 1 responses and succumb early to Mtb infection. In summary, our results reveal ACC1-dependent FAS as a crucial mechanism in T cells, but not DCs or macrophages, to fight against mycobacterial infection.
Collapse
Affiliation(s)
- Philipp Stüve
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Lucía Minarrieta
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Hanna Erdmann
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Catharina Arnold-Schrauf
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Melanie Guderian
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Freyja Krull
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | | | - Peyman Ghorbani
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, Borstel, Germany
| | - Wolf-Rainer Abraham
- Department of Chemical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Tim D Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
31
|
Copland A, Diogo GR, Hart P, Harris S, Tran AC, Paul MJ, Singh M, Cutting SM, Reljic R. Mucosal Delivery of Fusion Proteins with Bacillus subtilis Spores Enhances Protection against Tuberculosis by Bacillus Calmette-Guérin. Front Immunol 2018; 9:346. [PMID: 29593708 PMCID: PMC5857916 DOI: 10.3389/fimmu.2018.00346] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/07/2018] [Indexed: 01/16/2023] Open
Abstract
Tuberculosis (TB) is the most deadly infectious disease in existence, and the only available vaccine, Bacillus Calmette-Guérin (BCG), is almost a century old and poorly protective. The immunological complexity of TB, coupled with rising resistance to antimicrobial therapies, necessitates a pipeline of diverse novel vaccines. Here, we show that Bacillus subtilis spores can be coated with a fusion protein 1 (“FP1”) consisting of Mycobacterium tuberculosis (Mtb) antigens Ag85B, ACR, and HBHA. The resultant vaccine, Spore-FP1, was tested in a murine low-dose Mtb aerosol challenge model. Mice were primed with subcutaneous BCG, followed by mucosal booster immunizations with Spore-FP1. We show that Spore-FP1 enhanced pulmonary control of Mtb, as evidenced by reduced bacterial burdens in the lungs. This was associated with elevated antigen-specific IgG and IgA titers in the serum and lung mucosal surface, respectively. Spore-FP1 immunization generated superior antigen-specific memory T-cell proliferation in both CD4+ and CD8+ compartments, alongside bolstered Th1-, Th17-, and Treg-type cytokine production, compared to BCG immunization alone. CD69+CD103+ tissue resident memory T-cells (Trm) were found within the lung parenchyma after mucosal immunization with Spore-FP1, confirming the advantages of mucosal delivery. Our data show that Spore-FP1 is a promising new TB vaccine that can successfully augment protection and immunogenicity in BCG-primed animals.
Collapse
Affiliation(s)
| | - Gil R Diogo
- St George's Medical School, London, United Kingdom
| | - Peter Hart
- St George's Medical School, London, United Kingdom
| | - Shane Harris
- St George's Medical School, London, United Kingdom
| | - Andy C Tran
- St George's Medical School, London, United Kingdom
| | | | | | - Simon M Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Rajko Reljic
- St George's Medical School, London, United Kingdom
| |
Collapse
|
32
|
Cerqueira-Rodrigues B, Mendes A, Correia-Neves M, Nobrega C. Ag85-focused T-cell immune response controls Mycobacterium avium chronic infection. PLoS One 2018; 13:e0193596. [PMID: 29499041 PMCID: PMC5834192 DOI: 10.1371/journal.pone.0193596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/14/2018] [Indexed: 01/09/2023] Open
Abstract
CD4+ T cells are essential players for the control of mycobacterial infections. Several mycobacterial antigens have been identified for eliciting a relevant CD4+ T cell mediated-immune response, and numerous studies explored this issue in the context of Mycobacterium tuberculosis infection. Antigen 85 (Ag85), a highly conserved protein across Mycobacterium species, is secreted at the early phase of M. tuberculosis infection leading to the proliferation of Ag85-specific CD4+ T cells. However, in the context of Mycobacterium avium infection, little is known about the expression of this antigen and the elicited immune response. In the current work, we investigated if a T cell receptor (TCR) repertoire mostly, but not exclusively, directed at Ag85 is sufficient to mount a protective immune response against M. avium. We show that P25 mice, whose majority of T cells express a transgenic TCR specific for Ag85, control M. avium infection at the same level as wild type (WT) mice up to 20 weeks post-infection (wpi). During M. avium infection, Ag85 antigen is easily detected in the liver of 20 wpi mice by immunohistochemistry. In spite of the propensity of P25 CD4+ T cells to produce higher amounts of interferon-gamma (IFNγ) upon ex vivo stimulation, no differences in serum IFNγ levels are detected in P25 compared to WT mice, nor enhanced immunopathology is detected in P25 mice. These results indicate that a T cell response dominated by Ag85-specific T cells is appropriate to control M. avium infection with no signs of immunopathology.
Collapse
Affiliation(s)
- Bruno Cerqueira-Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Mendes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Claudia Nobrega
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- * E-mail:
| |
Collapse
|
33
|
Carpenter SM, Yang JD, Lee J, Barreira-Silva P, Behar SM. Vaccine-elicited memory CD4+ T cell expansion is impaired in the lungs during tuberculosis. PLoS Pathog 2017; 13:e1006704. [PMID: 29176787 PMCID: PMC5720822 DOI: 10.1371/journal.ppat.1006704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/07/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022] Open
Abstract
Immunological memory is the key biological process that makes vaccines possible. Although tuberculosis vaccines elicit protective immunity in animals, few provide durable protection. To understand why protection is transient, we evaluated the ability of memory CD4+ T cells to expand, differentiate, and control Mycobacterium tuberculosis. Both naïve and memory CD4+ T cells initially proliferated exponentially, and the accumulation of memory T cells in the lung correlated with early bacterial control. However, later during infection, memory CD4+ T cell proliferation was curtailed and no protection was observed. We show that memory CD4+ T cells are first activated in the LN and their recruitment to the lung attenuates bacterial growth. However, their interaction with Mtb-infected macrophages does not promote continued proliferation. We conclude that a lack of sustained expansion by memory-derived T cells in the lung limits the durability of their protection, linking their slower expansion with transient protection in vaccinated mice. Vaccines elicit pathogen-specific memory T cells whose early and potent activation upon infection should provide long-lasting control of bacterial growth. Although many experimental vaccines generate memory CD4+ T cells and can control the growth of Mycobacterium tuberculosis (Mtb) early during infection, none reliably provide protection from pulmonary tuberculosis (TB) that is durable. Although the etiology of the clinical failure of memory T cells is not well understood, few studies monitor memory T cell fate and function throughout chronic infection. Using both clonal and polyclonal models of Mtb-specific memory CD4+ T cell function during TB, we show that the expansion of memory-derived T cell responses is impaired in the lungs, compared with the primary (naïve) CD4 response. Despite expressing a protective effector phenotype, and reducing bacterial growth early after Mtb challenge, we further show that memory CD4+ T cells do not proliferate in response to Mtb-infected macrophages. Their impaired expansion corresponded with waning protection in vaccinated mice later during infection. We propose that both the induction of memory T cell proliferation by infected macrophages, and the durability of vaccine-elicited T cell responses during TB should serve as preclinical vaccine benchmarks.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
- * E-mail: (SMB); (SMC)
| | - Jason D. Yang
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jinhee Lee
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Palmira Barreira-Silva
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SMB); (SMC)
| |
Collapse
|
34
|
Choi HG, Choi S, Back YW, Paik S, Park HS, Kim WS, Kim H, Cha SB, Choi CH, Shin SJ, Kim HJ. Rv2299c, a novel dendritic cell-activating antigen of Mycobacterium tuberculosis, fused-ESAT-6 subunit vaccine confers improved and durable protection against the hypervirulent strain HN878 in mice. Oncotarget 2017; 8:19947-19967. [PMID: 28193909 PMCID: PMC5386736 DOI: 10.18632/oncotarget.15256] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/16/2016] [Indexed: 12/29/2022] Open
Abstract
Understanding functional interactions between DCs and antigens is necessary for achieving an optimal and desired immune response during vaccine development. Here, we identified and characterized protein Rv2299c (heat-shock protein 90 family), which effectively induced DC maturation. The Rv2299c-maturated DCs showed increased expression of surface molecules and production of proinflammatory cytokines. Rv2299c induced these effects by binding to TLR4 and stimulating the downstream MyD88-, MAPK- and NF-κB-dependent signaling pathways. The Rv2299c-maturated DCs also showed an induced Th1 cell response with bactericidal activity and expansion of effector/memory T cells. The Rv2299c-ESAT-6 fused protein had greater immunoreactivity than ESAT-6. Furthermore, boosting BCG with the fused protein significantly reduced hypervirulent Mycobacterium tuberculosis HN878 burdens post-challenge. The pathological study of the lung from the challenged mice assured the efficacy of the fused protein. The fused protein boosting also induced Rv2299c-ESAT-6-specific multifunctional CD4+ T-cell response in the lungs of the challenged mice. Our findings suggest that Rv2299c is an excellent candidate for the rational design of an effective multiantigenic TB vaccine.
Collapse
Affiliation(s)
- Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seunga Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yong Woo Back
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seungwha Paik
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hye-Soo Park
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Bin Cha
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chul Hee Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
35
|
Marino R, Capoferri R, Panelli S, Minozzi G, Strozzi F, Trevisi E, Snel GGM, Ajmone-Marsan P, Williams JL. Johne's disease in cattle: an in vitro model to study early response to infection of Mycobacterium avium subsp. paratuberculosis using RNA-seq. Mol Immunol 2017; 91:259-271. [PMID: 28988040 DOI: 10.1016/j.molimm.2017.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/07/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
Abstract
Johne's disease is a chronic granulomatous enteritis caused by Mycobacterium avium subsp. paratubercolosis (MAP) which affects ruminants worldwide and has a significant economic impact. MAP has also been associated with human Crohn's disease, although this connection is not well established. MAP is highly adapted for survival within host macrophages and prevents macrophage activation, blocks phagosome acidification and maturation, and attenuates presentation of antigens to the immune system. The consequence is a very long silent infection before clinical signs are observed. The present work examined the transcriptome of bovine monocyte-derived macrophages (MDM) infected with the L1 strain of MAP at 2h, 6h and 24h post infection using RNA-seq. Pathway over-representation analysis of genes differentially expressed between infected vs. control MDM identified that immune related pathways were affected. Genes belonging to the cytokine-cytokine receptor interaction pathway and members of the JAK-STAT pathway, which is involved in the regulation of immune response, were up-regulated. However, in parallel inhibitors of immune functions were activated, including suppressor of cytokine signaling (SOCS) and cytokine-inducible SH2-containing protein (CISH), which most likely suppresses IFNγ and the JAK/STAT signaling cascade in infected MDM, which may favour MAP survival. After exposure, macrophages phagocytise pathogens, activate the complement cascade and the adaptive immune system through the antigen presentation process. However, data presented here suggest that genes related to phagocytosis and lysosome function are down regulated in MAP infected MDM. Genes of MHC class II and complement pathway were also down-regulated. This study therefore shows that MAP infection is associated with changes in expression of genes related to the host immune response that may affect its ability to survive and multiply inside the host cell.
Collapse
Affiliation(s)
- Rosanna Marino
- CREA Research Centre for Animal Production and Aquaculture, Via Antonio Lombardo 11, 26900 Lodi, Italy; Istituto Sperimentale Italiano "Lazzaro Spallanzani", 26027, Rivolta d'Adda, Cremona, Italy; Institute of Zootechnics, Università Cattolica del S. Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Rossana Capoferri
- Istituto Sperimentale Italiano "Lazzaro Spallanzani", 26027, Rivolta d'Adda, Cremona, Italy.
| | - Simona Panelli
- Parco Tecnologico Padano, via Einstein, 26900 Lodi, Italy.
| | | | | | - Erminio Trevisi
- Institute of Zootechnics, Università Cattolica del S. Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; Nutrigenomics and Proteomic Research Center - PRONUTRIGEN, Università Cattolica del S. Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy.
| | | | - Paolo Ajmone-Marsan
- Institute of Zootechnics, Università Cattolica del S. Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; Nutrigenomics and Proteomic Research Center - PRONUTRIGEN, Università Cattolica del S. Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - John L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia.
| |
Collapse
|
36
|
Sia JK, Bizzell E, Madan-Lala R, Rengarajan J. Engaging the CD40-CD40L pathway augments T-helper cell responses and improves control of Mycobacterium tuberculosis infection. PLoS Pathog 2017; 13:e1006530. [PMID: 28767735 PMCID: PMC5540402 DOI: 10.1371/journal.ppat.1006530] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/13/2017] [Indexed: 02/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) impairs dendritic cell (DC) functions and induces suboptimal antigen-specific CD4 T cell immune responses that are poorly protective. Mucosal T-helper cells producing IFN-γ (Th1) and IL-17 (Th17) are important for protecting against tuberculosis (TB), but the mechanisms by which DCs generate antigen-specific T-helper responses during Mtb infection are not well defined. We previously reported that Mtb impairs CD40 expression on DCs and restricts Th1 and Th17 responses. We now demonstrate that CD40-dependent costimulation is required to generate IL-17 responses to Mtb. CD40-deficient DCs were unable to induce antigen-specific IL-17 responses after Mtb infection despite the production of Th17-polarizing innate cytokines. Disrupting the interaction between CD40 on DCs and its ligand CD40L on antigen-specific CD4 T cells, genetically or via antibody blockade, significantly reduced antigen-specific IL-17 responses. Importantly, engaging CD40 on DCs with a multimeric CD40 agonist (CD40LT) enhanced antigen-specific IL-17 generation in ex vivo DC-T cell co-culture assays. Further, intratracheal instillation of Mtb-infected DCs treated with CD40LT significantly augmented antigen-specific Th17 responses in vivo in the lungs and lung-draining lymph nodes of mice. Finally, we show that boosting CD40-CD40L interactions promoted balanced Th1/Th17 responses in a setting of mucosal DC transfer, and conferred enhanced control of lung bacterial burdens following aerosol challenge with Mtb. Our results demonstrate that CD40 costimulation by DCs plays an important role in generating antigen-specific Th17 cells and targeting the CD40-CD40L pathway represents a novel strategy to improve adaptive immunity to TB. Tuberculosis (TB) remains a serious global health problem and understanding how to induce protective immunity to M. tuberculosis (Mtb) remains a major challenge. While antigen-specific CD4 T cells and IFN-γ are important for controlling Mtb infection, they are not sufficient for protecting against TB. We need insights into host pathways that can be targeted to overcome suboptimal antigen-specific immunity induced by Mtb. Dendritic cells (DCs) are antigen presenting cells that orchestrate the adaptive immune response to infection, but Mtb subverts DC-T cell interactions. Therefore, improving the crosstalk between DCs and T cells during Mtb infection has the potential to enhance anti-mycobacterial immunity. Here we identify interaction between CD40 on DCs and CD40L on T cells as a critical mechanism for generating lung Th17 cells. By engaging CD40 on DCs using a multimeric reagent, we significantly augmented early Mtb-specific Th17 responses in lungs. Intratracheal DC instillation in conjunction with CD40 engagement provided a balanced Th1/Th17 response and improved control of bacterial burden after aerosol challenge with Mtb. Our studies show that the CD40-CD40L pathway is important for the generation of Mtb-specific Th17 responses and targeting CD40-CD40L interactions is a promising avenue for improving adaptive immunity to TB.
Collapse
Affiliation(s)
- Jonathan Kevin Sia
- Emory Vaccine Center, Emory University, Atlanta, GA, United States of America
| | - Erica Bizzell
- Emory Vaccine Center, Emory University, Atlanta, GA, United States of America
| | - Ranjna Madan-Lala
- Emory Vaccine Center, Emory University, Atlanta, GA, United States of America
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University, Atlanta, GA, United States of America
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
37
|
Moliva JI, Turner J, Torrelles JB. Immune Responses to Bacillus Calmette-Guérin Vaccination: Why Do They Fail to Protect against Mycobacterium tuberculosis? Front Immunol 2017; 8:407. [PMID: 28424703 PMCID: PMC5380737 DOI: 10.3389/fimmu.2017.00407] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is the current leading cause of death due to a single infectious organism. Although curable, the broad emergence of multi-, extensive-, extreme-, and total-drug resistant strains of M.tb has hindered eradication efforts of this pathogen. Furthermore, computational models predict a quarter of the world’s population is infected with M.tb in a latent state, effectively serving as the largest reservoir for any human pathogen with the ability to cause significant morbidity and mortality. The World Health Organization has prioritized new strategies for improved vaccination programs; however, the lack of understanding of mycobacterial immunity has made it difficult to develop new successful vaccines. Currently, Mycobacterium bovis bacillus Calmette–Guérin (BCG) is the only vaccine approved for use to prevent TB. BCG is highly efficacious at preventing meningeal and miliary TB, but is at best 60% effective against the development of pulmonary TB in adults and wanes as we age. In this review, we provide a detailed summary on the innate immune response of macrophages, dendritic cells, and neutrophils in response to BCG vaccination. Additionally, we discuss adaptive immune responses generated by BCG vaccination, emphasizing their specific contributions to mycobacterial immunity. The success of future vaccines against TB will directly depend on our understanding of mycobacterial immunity.
Collapse
Affiliation(s)
- Juan I Moliva
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Joanne Turner
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
38
|
Jia X, Yang L, Dong M, Chen S, Lv L, Cao D, Fu J, Yang T, Zhang J, Zhang X, Shang Y, Wang G, Sheng Y, Huang H, Chen F. The Bioinformatics Analysis of Comparative Genomics of Mycobacterium tuberculosis Complex (MTBC) Provides Insight into Dissimilarities between Intraspecific Groups Differing in Host Association, Virulence, and Epitope Diversity. Front Cell Infect Microbiol 2017; 7:88. [PMID: 28377903 PMCID: PMC5360109 DOI: 10.3389/fcimb.2017.00088] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/06/2017] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis now exceeds HIV as the top infectious disease cause of mortality, and is caused by the Mycobacterium tuberculosis complex (MTBC). MTBC strains have highly conserved genome sequences (similarity >99%) but dramatically different phenotypes. To analyze the relationship between genotype and phenotype, we conducted the comparative genomic analysis on 12 MTBC strains representing different lineages (i.e., Mycobacterium bovis; M. bovis BCG; M. microti; M. africanum; M. tuberculosis H37Rv; M. tuberculosis H37Ra, and six M. tuberculosis clinical isolates). The analysis focused on the three aspects of pathogenicity: host association, virulence, and epitope variations. Host association analysis indicated that eight mce3 genes, two enoyl-CoA hydratases, and five PE/PPE family genes were present only in human isolates; these may have roles in host-pathogen interactions. There were 15 SNPs found on virulence factors (including five SNPs in three ESX secretion proteins) only in the Beijing strains, which might be related to their more virulent phenotype. A comparison between the virulent H37Rv and non-virulent H37Ra strains revealed three SNPs that were likely associated with the virulence attenuation of H37Ra: S219L (PhoP), A219E (MazG) and a newly identified I228M (EspK). Additionally, a comparison of animal-associated MTBC strains showed that the deletion of the first four genes (i.e., pe35, ppe68, esxB, esxA), rather than all eight genes of RD1, might play a central role in the virulence attenuation of animal isolates. Finally, by comparing epitopes among MTBC strains, we found that four epitopes were lost only in the Beijing strains; this may render them better capable of evading the human immune system, leading to enhanced virulence. Overall, our comparative genomic analysis of MTBC strains reveals the relationship between the highly conserved genotypes and the diverse phenotypes of MTBC, provides insight into pathogenic mechanisms, and facilitates the development of potential molecular targets for the prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Xinmiao Jia
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Li Yang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Mengxing Dong
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Suting Chen
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute Beijing, China
| | - Lingna Lv
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute Beijing, China
| | - Dandan Cao
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Jing Fu
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Tingting Yang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Ju Zhang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Xiangli Zhang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Yuanyuan Shang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute Beijing, China
| | - Guirong Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute Beijing, China
| | - Yongjie Sheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University Changchun, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute Beijing, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China; Sino-Danish College, University of Chinese Academy of SciencesBeijing, China; Collaborative Innovation Center for Genetics and DevelopmentShanghai, China
| |
Collapse
|
39
|
Athman JJ, Sande OJ, Groft SG, Reba SM, Nagy N, Wearsch PA, Richardson ET, Rojas R, Boom WH, Shukla S, Harding CV. Mycobacterium tuberculosis Membrane Vesicles Inhibit T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2017; 198:2028-2037. [PMID: 28122965 DOI: 10.4049/jimmunol.1601199] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis utilizes multiple mechanisms to evade host immune responses, and inhibition of effector CD4+ T cell responses by M. tuberculosis may contribute to immune evasion. TCR signaling is inhibited by M. tuberculosis cell envelope lipoglycans, such as lipoarabinomannan and lipomannan, but a mechanism for lipoglycans to traffic from M. tuberculosis within infected macrophages to reach T cells is unknown. In these studies, we found that membrane vesicles produced by M. tuberculosis and released from infected macrophages inhibited the activation of CD4+ T cells, as indicated by reduced production of IL-2 and reduced T cell proliferation. Flow cytometry and Western blot demonstrated that lipoglycans from M. tuberculosis-derived bacterial vesicles (BVs) are transferred to T cells, where they inhibit T cell responses. Stimulation of CD4+ T cells in the presence of BVs induced expression of GRAIL, a marker of T cell anergy; upon restimulation, these T cells showed reduced ability to proliferate, confirming a state of T cell anergy. Furthermore, lipoarabinomannan was associated with T cells after their incubation with infected macrophages in vitro and when T cells were isolated from lungs of M. tuberculosis-infected mice, confirming the occurrence of lipoarabinomannan trafficking to T cells in vivo. These studies demonstrate a novel mechanism for the direct regulation of CD4+ T cells by M. tuberculosis lipoglycans conveyed by BVs that are produced by M. tuberculosis and released from infected macrophages. These lipoglycans are transferred to T cells to inhibit T cell responses, providing a mechanism that may promote immune evasion.
Collapse
Affiliation(s)
- Jaffre J Athman
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Obondo J Sande
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106.,Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Sarah G Groft
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Scott M Reba
- Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Nancy Nagy
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Pamela A Wearsch
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Edward T Richardson
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106.,Medical Scientist Training Program, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Roxana Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106.,Center for AIDS Research, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106; and
| | - W Henry Boom
- Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106.,Center for AIDS Research, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106; and.,Division of Infectious Diseases and HIV Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Supriya Shukla
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Clifford V Harding
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106; .,Center for AIDS Research, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106; and.,Division of Infectious Diseases and HIV Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| |
Collapse
|
40
|
Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4 + T-cell activation. Nat Microbiol 2016; 2:16232. [PMID: 27918526 DOI: 10.1038/nmicrobiol.2016.232] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/17/2016] [Indexed: 01/10/2023]
Abstract
Mycobacterium tuberculosis (Mtb) establishes a persistent infection, despite inducing antigen-specific T-cell responses. Although T cells arrive at the site of infection, they do not provide sterilizing immunity. The molecular basis of how Mtb impairs T-cell function is not clear. Mtb has been reported to block major histocompatibility complex class II (MHC-II) antigen presentation; however, no bacterial effector or host-cell target mediating this effect has been identified. We recently found that Mtb EsxH, which is secreted by the Esx-3 type VII secretion system, directly inhibits the endosomal sorting complex required for transport (ESCRT) machinery. Here, we showed that ESCRT is required for optimal antigen processing; correspondingly, overexpression and loss-of-function studies demonstrated that EsxH inhibited the ability of macrophages and dendritic cells to activate Mtb antigen-specific CD4+ T cells. Compared with the wild-type strain, the esxH-deficient strain induced fivefold more antigen-specific CD4+ T-cell proliferation in the mediastinal lymph nodes of mice. We also found that EsxH undermined the ability of effector CD4+ T cells to recognize infected macrophages and clear Mtb. These results provide a molecular explanation for how Mtb impairs the adaptive immune response.
Collapse
|
41
|
Carpenter SM, Nunes-Alves C, Booty MG, Way SS, Behar SM. A Higher Activation Threshold of Memory CD8+ T Cells Has a Fitness Cost That Is Modified by TCR Affinity during Tuberculosis. PLoS Pathog 2016; 12:e1005380. [PMID: 26745507 PMCID: PMC4706326 DOI: 10.1371/journal.ppat.1005380] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022] Open
Abstract
T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection. CD8+ T cells are important for enforcing latency of tuberculosis, and for Mtb control in patients with HIV and low CD4 counts. While vaccines that primarily elicit CD4+ T cell responses have had difficulty preventing active pulmonary TB, a TB vaccine that elicits a potent memory CD8+ T cells is a logical alternative strategy. Memory T cells are thought to respond more rapidly than the primary (naïve) response. However, by directly comparing naïve and memory TCR retrogenic CD8+ T cells specific for the TB10.4 antigen during infection, we observe memory-derived T cells to be less fit than naïve-derived T cells. We relate the reduced fitness of memory CD8+ T cells to their lower sensitivity to antigen and show that fitness can be improved by increasing TCR affinity. Using a novel method for tracking CD8+ T cells elicited by vaccination during the response to Mtb aerosol challenge in intact mice, we observe the robust expansion of a new primary response as well as clonal selection of the secondary response, likely driven by TCR affinity. We propose that generating memory T cells with high affinities should be a goal of vaccination against TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SMC); (SMB)
| | - Cláudio Nunes-Alves
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Matthew G. Booty
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sing Sing Way
- Division of Infectious Diseases, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SMC); (SMB)
| |
Collapse
|