1
|
Vaccaro A, de Alves Pereira B, van de Walle T, Dimberg A. Tertiary Lymphoid Structures in Central Nervous System Disorders. Methods Mol Biol 2025; 2864:21-42. [PMID: 39527215 DOI: 10.1007/978-1-0716-4184-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The central nervous system (CNS) constitutes a tightly regulated milieu, where immune responses are strictly controlled to prevent neurological damage. This poses considerable challenges to the therapeutic management of CNS pathologies, such as autoimmune disorders and cancer. Tertiary lymphoid structures (TLS) are ectopic, lymph node-like structures containing B- and T-cells, often associated with chronic inflammation or cancer, which have been shown to be detrimental in autoimmunity but beneficial in cancer. In-depth studies of TLS induction in CNS disorders, as well as their precise role in regulating adaptive immune responses in this context, will be paramount to the development of novel TLS-targeting therapies. In the present chapter, we review the anatomical and physiological peculiarities shaping TLS formation in the CNS, their relevance in autoimmunity and cancer, as well as their implications for the development of novel therapeutic modalities for these patients.
Collapse
Affiliation(s)
- Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Beatriz de Alves Pereira
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Gutierrez-Chavez C, Knockaert S, Dieu-Nosjean MC, Goc J. Methods for Selective Gene Expression Profiling in Single Tertiary Lymphoid Structure Using Laser Capture Microdissection. Methods Mol Biol 2025; 2864:107-126. [PMID: 39527219 DOI: 10.1007/978-1-0716-4184-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tertiary lymphoid structures (TLS) are de novo lymphoid formations that are induced within tissues during inflammatory episodes. TLS have been reported at various anatomic sites and in many different contexts like cancer, infections, autoimmunity, graft rejection, and idiopathic diseases. These inducible, ectopic, and transient lymphoid structures exhibit the prototypical architecture found within secondary lymphoid organs (SLO) and have been increasingly recognized as a major driver of local adaptive immune reaction. As TLS emerge within tissues, the isolation in situ and the molecular characterization of these structures are challenging to perform. Laser capture microdissection (LCM) is a powerful tool to isolate selective structural components and cells from frozen or paraffin-embedded tissues. We and other groups previously applied LCM to decipher the molecular network within TLS and uncover their intrinsic connection with the local microenvironment. In this chapter, we describe a detailed LCM method for selecting and isolating TLS in situ to perform comprehensive downstream molecular analyses.
Collapse
Affiliation(s)
- Claudia Gutierrez-Chavez
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
- Vall d'Hebron Institute of Oncology, Aging and Cancer Group, Barcelona, Spain
| | - Samantha Knockaert
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
- Institut de Recherches Servier, Center for Therapeutic Innovation in Oncology, Croissy-sur-Seine, France
| | - Marie-Caroline Dieu-Nosjean
- UMRS1135 Sorbonne Université, Paris, France
- Inserm U1135, Paris, France
- Team "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections (CIMI), Faculté de Médecine Sorbonne Université, Paris, France
| | - Jeremy Goc
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France.
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France.
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology and Immunology and The Jill Robert's Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
3
|
Budair F, Kambe N, Kogame T, Hirata M, Takimoto-Ito R, Mostafa A, Nomura T, Kabashima K. Presence of immunoglobulin E-expressing antibody-secreting cells in the dermis close to bullous pemphigoid lesions. Exp Dermatol 2024; 33:e15058. [PMID: 38590080 DOI: 10.1111/exd.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Antibody-secreting cells (ASCs) produce immunoglobulin (Ig) G and IgE autoantibodies in secondary lymphoid organs. Evidence also suggests their existence in the skin in various chronic inflammatory conditions, and in association with CXCL12 and CXCL13, they regulate the recruitment/survival of ASCs and germinal center formation to generate ASCs, respectively. However, the presence of IgG and IgE in bullous pemphigoid (BP) lesions needs to be addressed. Here, we aimed to analyse BP skin for the presence of IgG and IgE and the factors contributing to their generation, recruitment, and persistence. Skin samples from 30 patients with BP were stained to identify ASCs and the immunoglobulin type they expressed. The presence of tertiary lymphoid organ (TLO) elements, which generate ASCs in non-lymphoid tissues, and the chemokines CXCL12 and CXCL13, which regulate the migration/persistence of ASCs in lymphoid tissues and formation of TLOs, respectively, were evaluated in BP skin. BP skin harboured ASCs expressing the two types of antibodies IgG and IgE. ASCs were found in high-grade cellular aggregates containing TLO elements: T cells, B cells, CXCL12+ cells, CXCL13+ cells and high endothelial venules. IgG+ ASCs were detected among these aggregates, whereas IgE+ ASCs were dispersed throughout the dermis. CXCL12+ fibroblast-like cells were located close to ASCs. The inflammatory microenvironment of BP lesions may contribute to the antibody load characteristic of the skin of patients with BP by providing a site for the presence of ASCs. CXCL13 and CXCL12 expression may contribute to the generation and recruitment/survival of ASCs, respectively.
Collapse
Affiliation(s)
- Fatimah Budair
- Department of Dermatology, King Fahd University Hospital, Alkhobar, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Naotomo Kambe
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiaki Kogame
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Riko Takimoto-Ito
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Alshimaa Mostafa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Drug Development for Intractable Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Costanzo A, Clarke D, Holt M, Sharma S, Nagy K, Tan X, Kain L, Abe B, Luce S, Boitard C, Wyseure T, Mosnier LO, Su AI, Grimes C, Finn MG, Savage PB, Gottschalk M, Pettus J, Teyton L. Repositioning the Early Pathology of Type 1 Diabetes to the Extraislet Vasculature. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1094-1104. [PMID: 38426888 PMCID: PMC10944819 DOI: 10.4049/jimmunol.2300769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Type 1 diabetes (T1D) is a prototypic T cell-mediated autoimmune disease. Because the islets of Langerhans are insulated from blood vessels by a double basement membrane and lack detectable lymphatic drainage, interactions between endocrine and circulating T cells are not permitted. Thus, we hypothesized that initiation and progression of anti-islet immunity required islet neolymphangiogenesis to allow T cell access to the islet. Combining microscopy and single cell approaches, the timing of this phenomenon in mice was situated between 5 and 8 wk of age when activated anti-insulin CD4 T cells became detectable in peripheral blood while peri-islet pathology developed. This "peri-insulitis," dominated by CD4 T cells, respected the islet basement membrane and was limited on the outside by lymphatic endothelial cells that gave it the attributes of a tertiary lymphoid structure. As in most tissues, lymphangiogenesis seemed to be secondary to local segmental endothelial inflammation at the collecting postcapillary venule. In addition to classic markers of inflammation such as CD29, V-CAM, and NOS, MHC class II molecules were expressed by nonhematopoietic cells in the same location both in mouse and human islets. This CD45- MHC class II+ cell population was capable of spontaneously presenting islet Ags to CD4 T cells. Altogether, these observations favor an alternative model for the initiation of T1D, outside of the islet, in which a vascular-associated cell appears to be an important MHC class II-expressing and -presenting cell.
Collapse
Affiliation(s)
- Anne Costanzo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Don Clarke
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Marie Holt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Siddhartha Sharma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Kenna Nagy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Xuqian Tan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Lisa Kain
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Brian Abe
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | | | | | - Tine Wyseure
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Laurent O. Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Andrew I. Su
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Catherine Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT
| | - Michael Gottschalk
- Rady Children’s Hospital, University of California San Diego, San Diego, CA
| | - Jeremy Pettus
- UC San Diego School of Medicine, University of California San Diego, San Diego, CA
| | - Luc Teyton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
5
|
Conedera FM, Runnels JM, Stein JV, Alt C, Enzmann V, Lin CP. Assessing the role of T cells in response to retinal injury to uncover new therapeutic targets for the treatment of retinal degeneration. J Neuroinflammation 2023; 20:206. [PMID: 37689689 PMCID: PMC10492418 DOI: 10.1186/s12974-023-02867-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/31/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Retinal degeneration is a disease affecting the eye, which is an immune-privileged site because of its anatomical and physiological properties. Alterations in retinal homeostasis-because of injury, disease, or aging-initiate inflammatory cascades, where peripheral leukocytes (PL) infiltrate the parenchyma, leading to retinal degeneration. So far, research on PL's role in retinal degeneration was limited to observing a few cell types at specific times or sectioning the tissue. This restricted our understanding of immune cell interactions and response duration. METHODS In vivo microscopy in preclinical mouse models can overcome these limitations enabling the spatio-temporal characterization of PL dynamics. Through in vivo imaging, we assessed structural and fluorescence changes in response to a focal injury at a defined location over time. We also utilized minimally invasive techniques, pharmacological interventions, and knockout (KO) mice to determine the role of PL in local inflammation. Furthermore, we investigated PL abundance and localization during retinal degeneration in human eyes by histological analysis to assess to which extent our preclinical study translates to human retinal degeneration. RESULTS We demonstrate that PL, especially T cells, play a detrimental role during retinal injury response. In mice, we observed the recruitment of helper and cytotoxic T cells in the parenchyma post-injury, and T cells also resided in the macula and peripheral retina in pathological conditions in humans. Additionally, we found that the pharmacological PL reduction and genetic depletion of T-cells reduced injured areas in murine retinas and rescued the blood-retina barrier (BRB) integrity. Both conditions promoted morphological changes of Cx3cr1+ cells, including microglial cells, toward an amoeboid phenotype during injury response. Interestingly, selective depletion of CD8+ T cells accelerated recovery of the BRB compared to broader depletions. After anti-CD8 treatment, the retinal function improved, concomitant to a beneficial immune response. CONCLUSIONS Our data provide novel insights into the adaptive immune response to retinal injury in mice and human retinal degeneration. Such information is fundamental to understanding retinal disorders and developing therapeutics to modulate immune responses to retinal degeneration safely.
Collapse
Affiliation(s)
- Federica M Conedera
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
- Department of Ophthalmology, Bern University Hospital, Bern, Switzerland
| | - Judith M Runnels
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital, Bern, Switzerland.
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Balne PK, Gupta S, Landon KM, Sinha NR, Hofmann AC, Hauser N, Sinha PR, Huang H, Kempuraj D, Mohan RR. Characterization of C-X-C chemokine receptor type 5 in the cornea and role in the inflammatory response after corneal injury. Exp Eye Res 2023; 226:109312. [PMID: 36400287 DOI: 10.1016/j.exer.2022.109312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
C-X-C chemokine receptor type 5 (CXCR5) regulates inflammatory responses in ocular and non-ocular tissues. However, its expression and role in the cornea are still unknown. Here, we report the expression of CXCR5 in human cornea in vitro and mouse corneas in vivo, and its functional role in corneal inflammation using C57BL/6J wild-type (CXCR5+/+) and CXCR5-deficient (CXCR5-/-) mice, topical alkali injury, clinical eye imaging, histology, immunofluorescence, PCR, qRT-PCR, and western blotting. Human corneal epithelial cells, stromal fibroblasts, and endothelial cells demonstrated CXCR5 mRNA and protein expression in PCR, and Western blot analyses, respectively. To study the functional role of CXCR5 in vivo, mice were divided into four groups: Group-1 (CXCR5+/+ alkali injured cornea; n = 30), Group-2 (CXCR5-/- alkali injured cornea; n = 30), Group-3 (CXCR5+/+ naïve cornea; n = 30), and Group-4 (CXCR5-/- naïve cornea; n = 30). Only one eye was wounded with alkali. Clinical corneal evaluation and imaging were performed before and after injury. Mice were euthanized 4 h, 3 days, or 7 days after injury, eyes were excised and used for histology, immunofluorescence, and qRT-PCR. In clinical eye examinations, CXCR5-/- mouse corneas showed ocular health akin to the naïve corneas. Alkali injured CXCR5+/+ mouse corneas showed significantly increased mRNA (p < 0.001) and protein (p < 0.01 or p < 0.0001) levels of the CXCR5 compared to the naïve corneas. Likewise, alkali injured CXCR5-/- mouse corneas showed remarkably amplified inflammation in clinical eye exams in live animals. The histological and molecular analyses of these corneas post euthanasia exhibited markedly augmented inflammatory cells in H&E staining and significant CD11b + cells in immunofluorescence (p < 0.01 or < 0.05); and tumor necrosis factor-alpha (TNFα; p < 0.05), cyclooxygenase 2 (COX-2; p < 0.0001), interleukin (IL)-1β (p < 0.0001), and IL-6 (p < 0.0001 or < 0.01) mRNA expression compared to the CXCR5+/+ mouse corneas. Interestingly, CXCR5-/- alkali injured corneas also showed altered mRNA expression of fibrotic alpha smooth muscle actin (α-SMA; p > 0.05) and angiogenic vascular endothelial growth factor (VEGF; p < 0.01) compared to the CXCR5+/+ alkali injured corneas. In summary, the CXCR5 gene is expressed in all three major layers of the cornea and appears to influence corneal inflammatory and repair events post-injury in vivo. More studies are warranted to tease the mechanistic role of CXCR5 in corneal inflammation and wound healing.
Collapse
Affiliation(s)
- Praveen K Balne
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Keele M Landon
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | | | - Nicholas Hauser
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Hu Huang
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
7
|
Zhang M, Zhang X. T cells in ocular autoimmune uveitis: Pathways and therapeutic approaches. Int Immunopharmacol 2023; 114:109565. [PMID: 36535124 DOI: 10.1016/j.intimp.2022.109565] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Autoimmune uveitis is a non-infectious intraocular condition that affects the uveal tract of the eye and threatens vision if not treated properly. Increasing evidence suggests that activated CD4+ T cells are associated with progressive and permanent destruction of photoreceptors in ocular autoimmune diseases. As such, the purpose of this review is to offer an overview of the role of CD4+ T cells in autoimmune uveitis as well as a justification for the current development and assessment of innovative autoimmune uveitis medications targeting CD4+ T cells. With an emphasis on T helper (Th)17, Th1, and Th2 cells, follicular helper CD4+ T cells, and regulatory T cells, this review presents a summary of recent research related to the pathways and signaling that encourage CD4+ T cells to develop into specialized effector cells. We also describe immunotherapeutic approaches based on CD4+ T cell subsets and their potential as therapeutic agents for autoimmune disorders.
Collapse
Affiliation(s)
- Mi Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
8
|
Rusu MC, Nicolescu MI, Vrapciu AD. Evidence of lymphatics in the rat eye retina. Ann Anat 2022; 244:151987. [PMID: 35914631 DOI: 10.1016/j.aanat.2022.151987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND The lymphatic structure of the eye is still under debate. It is mainly assumed that the retina is primarily drained by prelymphatics and not by lymphatics per se. We aimed to identify lymphatics in the rat retina. METHODS Eyes from ten Wistar rats were paraffin-embedded and lymphatic marker podoplanin (D2-40) was investigated. RESULTS We identified in the rat retina a blunt-end network of lymphatic endothelial vessels. It consisted of circumferential vessels within the outer and, respectively, inner plexiform layers, connected by radial dichotomous vessels. Moreover, D2-40 expression was found within the choroid, ciliary body, and extraocular muscles. CONCLUSIONS This in situ evidence is strongly supported by the recent in vitro demonstration of the expression of lymphatic markers in retinal endothelial cells. Further studies of comparative histology should use specific lymphatic markers to test whether other species besides rats have proper retinal lymphatics.
Collapse
Affiliation(s)
- Mugurel Constantin Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania; Laboratory of Radiobiology, "Victor Babeș" National Institute of Pathology, 050096 Bucharest, Romania
| | - Alexandra Diana Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
9
|
Rayasam A, Kijak JA, Kissel L, Choi YH, Kim T, Hsu M, Joshi D, Laaker CJ, Cismaru P, Lindstedt A, Kovacs K, Vemuganti R, Chiu SY, Priyathilaka TT, Sandor M, Fabry Z. CXCL13 expressed on inflamed cerebral blood vessels recruit IL-21 producing T FH cells to damage neurons following stroke. J Neuroinflammation 2022; 19:125. [PMID: 35624463 PMCID: PMC9145182 DOI: 10.1186/s12974-022-02490-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ischemic stroke is a leading cause of mortality worldwide, largely due to the inflammatory response to brain ischemia during post-stroke reperfusion. Despite ongoing intensive research, there have not been any clinically approved drugs targeting the inflammatory component to stroke. Preclinical studies have identified T cells as pro-inflammatory mediators of ischemic brain damage, yet mechanisms that regulate the infiltration and phenotype of these cells are lacking. Further understanding of how T cells migrate to the ischemic brain and facilitate neuronal death during brain ischemia can reveal novel targets for post-stroke intervention. METHODS To identify the population of T cells that produce IL-21 and contribute to stroke, we performed transient middle cerebral artery occlusion (tMCAO) in mice and performed flow cytometry on brain tissue. We also utilized immunohistochemistry in both mouse and human brain sections to identify cell types and inflammatory mediators related to stroke-induced IL-21 signaling. To mechanistically demonstrate our findings, we employed pharmacological inhibitor anti-CXCL13 and performed histological analyses to evaluate its effects on brain infarct damage. Finally, to evaluate cellular mechanisms of stroke, we exposed mouse primary neurons to oxygen glucose deprivation (OGD) conditions with or without IL-21 and measured cell viability, caspase activity and JAK/STAT signaling. RESULTS Flow cytometry on brains from mice following tMCAO identified a novel population of cells IL-21 producing CXCR5+ CD4+ ICOS-1+ T follicular helper cells (TFH) in the ischemic brain early after injury. We observed augmented expression of CXCL13 on inflamed brain vascular cells and demonstrated that inhibition of CXCL13 protects mice from tMCAO by restricting the migration and influence of IL-21 producing TFH cells in the ischemic brain. We also illustrate that neurons express IL-21R in the peri-infarct regions of both mice and human stroke tissue in vivo. Lastly, we found that IL-21 acts on mouse primary ischemic neurons to activate the JAK/STAT pathway and induce caspase 3/7-mediated apoptosis in vitro. CONCLUSION These findings identify a novel mechanism for how pro-inflammatory T cells are recruited to the ischemic brain to propagate stroke damage and provide a potential new therapeutic target for stroke.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| | - Julie A Kijak
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Lee Kissel
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Yun Hwa Choi
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Taehee Kim
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Martin Hsu
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Dinesh Joshi
- Department of Physiology, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Collin J Laaker
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter Cismaru
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anders Lindstedt
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Krisztian Kovacs
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Administration Hospital, Madison, WI, USA
| | - Shing Yan Chiu
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Physiology, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
van de Walle T, Vaccaro A, Ramachandran M, Pietilä I, Essand M, Dimberg A. Tertiary Lymphoid Structures in the Central Nervous System: Implications for Glioblastoma. Front Immunol 2021; 12:724739. [PMID: 34539661 PMCID: PMC8442660 DOI: 10.3389/fimmu.2021.724739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most common and aggressive brain tumor, which is uniformly lethal due to its extreme invasiveness and the absence of curative therapies. Immune checkpoint inhibitors have not yet proven efficacious for glioblastoma patients, due in part to the low prevalence of tumor-reactive T cells within the tumor microenvironment. The priming of tumor antigen-directed T cells in the cervical lymph nodes is complicated by the shortage of dendritic cells and lack of appropriate lymphatic vessels within the brain parenchyma. However, recent data suggest that naive T cells may also be primed within brain tumor-associated tertiary lymphoid structures. Here, we review the current understanding of the formation of these structures within the central nervous system, and hypothesize that promotion of tertiary lymphoid structures could enhance priming of tumor antigen-targeted T cells and sensitize glioblastomas to cancer immunotherapy.
Collapse
Affiliation(s)
- Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkka Pietilä
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Guo M, Schwartz TD, Dunaief JL, Cui QN. Myeloid cells in retinal and brain degeneration. FEBS J 2021; 289:2337-2361. [PMID: 34478598 PMCID: PMC8891394 DOI: 10.1111/febs.16177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022]
Abstract
Retinal inflammation underlies multiple prevalent ocular and neurological diseases. Similar inflammatory processes are observed in glaucomatous optic neuropathy, age-related macular degeneration, retinitis pigmentosa, posterior uveitis, Alzheimer's disease, and Parkinson's disease. In particular, human and animal studies have demonstrated the important role microglia/macrophages play in initiating and maintaining a pro-inflammatory environment in degenerative processes impacting vision. On the other hand, microglia have also been shown to have a protective role in multiple central nervous system diseases. Identifying the mechanisms underlying cell dysfunction and death is the first step toward developing novel therapeutics for these diseases impacting the central nervous system. In addition to reviewing recent key studies defining important mediators of retinal inflammation, with an emphasis on translational studies that bridge this research from bench to bedside, we also highlight a promising therapeutic class of medications, the glucagon-like peptide-1 receptor agonists. Finally, we propose areas where additional research is necessary to identify mechanisms that can be modulated to shift the balance from a neurotoxic to a neuroprotective retinal environment.
Collapse
Affiliation(s)
- Michelle Guo
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Turner D Schwartz
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi N Cui
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Zhan J, Kipp M, Han W, Kaddatz H. Ectopic lymphoid follicles in progressive multiple sclerosis: From patients to animal models. Immunology 2021; 164:450-466. [PMID: 34293193 PMCID: PMC8517596 DOI: 10.1111/imm.13395] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
Ectopic lymphoid follicles (ELFs), resembling germinal centre‐like structures, emerge in a variety of infectious and autoimmune and neoplastic diseases. ELFs can be found in the meninges of around 40% of the investigated progressive multiple sclerosis (MS) post‐mortem brain tissues and are associated with the severity of cortical degeneration and clinical disease progression. Of predominant importance for progressive neuronal damage during the progressive MS phase appears to be meningeal inflammation, comprising diffuse meningeal infiltrates, B‐cell aggregates and compartmentalized ELFs. However, the absence of a uniform definition of ELFs impedes reproducible and comparable neuropathological research in this field. In this review article, we will first highlight historical aspects and milestones around the discovery of ELFs in the meninges of progressive MS patients. In the next step, we discuss how animal models may contribute to an understanding of the mechanisms underlying ELF formation. Finally, we summarize challenges in investigating ELFs and propose potential directions for future research.
Collapse
Affiliation(s)
- Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University Health Science Cente, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
13
|
Bradley LJ, Ward A, Hsue MCY, Liu J, Copland DA, Dick AD, Nicholson LB. Quantitative Assessment of Experimental Ocular Inflammatory Disease. Front Immunol 2021; 12:630022. [PMID: 34220797 PMCID: PMC8250853 DOI: 10.3389/fimmu.2021.630022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
Ocular inflammation imposes a high medical burden on patients and substantial costs on the health-care systems that mange these often chronic and debilitating diseases. Many clinical phenotypes are recognized and classifying the severity of inflammation in an eye with uveitis is an ongoing challenge. With the widespread application of optical coherence tomography in the clinic has come the impetus for more robust methods to compare disease between different patients and different treatment centers. Models can recapitulate many of the features seen in the clinic, but until recently the quality of imaging available has lagged that applied in humans. In the model experimental autoimmune uveitis (EAU), we highlight three linked clinical states that produce retinal vulnerability to inflammation, all different from healthy tissue, but distinct from each other. Deploying longitudinal, multimodal imaging approaches can be coupled to analysis in the tissue of changes in architecture, cell content and function. This can enrich our understanding of pathology, increase the sensitivity with which the impacts of therapeutic interventions are assessed and address questions of tissue regeneration and repair. Modern image processing, including the application of artificial intelligence, in the context of such models of disease can lay a foundation for new approaches to monitoring tissue health.
Collapse
Affiliation(s)
- Lydia J Bradley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Amy Ward
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Madeleine C Y Hsue
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Jian Liu
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew D Dick
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.,Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, United Kingdom.,University College London, Institute of Ophthalmology, London, United Kingdom
| | - Lindsay B Nicholson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
14
|
Zhu L, Chen B, Su W. A Review of the Various Roles and Participation Levels of B-Cells in Non-Infectious Uveitis. Front Immunol 2021; 12:676046. [PMID: 34054864 PMCID: PMC8160461 DOI: 10.3389/fimmu.2021.676046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
Non-infectious uveitis is an inflammatory disorder of the eye that accounts for severe visual loss without evident infectious agents. While T cells are supposed to dominate the induction of inflammation in non-infectious uveitis, the role of B cells in the pathogenesis of this disease is obscure. Therefore, this review aimed to discuss diverse B-cell participation in different non-infectious uveitides and their roles in the pathogenesis of this disease as well as the mechanism of action of rituximab. Increasing evidence from experimental models and human non-infectious uveitis has suggested the participation of B cells in non-infectious uveitis. The participation levels vary in different uveitides. Furthermore, B cells play multiple roles in the pathogenic mechanisms. B cells produce autoantibodies, regulate T cell responses via antibody-independent functions, and constitute ectopic lymphoid structures. Regulatory B cells perform pivotal anti-inflammatory functions in non-infectious uveitis. Rituximab may work by depleting pro-inflammatory B cells and restoring the quantity and function of regulatory B cells in this disease. Identifying the levels of B-cell participation and the associated roles is beneficial for optimizing therapy. Diversified experimental model choices and emerging tools and/or methods are conducive for future studies on this topic.
Collapse
Affiliation(s)
- Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Schuh JCL. Mucosa-Associated Lymphoid Tissue and Tertiary Lymphoid Structures of the Eye and Ear in Laboratory Animals. Toxicol Pathol 2020; 49:472-482. [PMID: 33252012 DOI: 10.1177/0192623320970448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mucosa-associated lymphoid tissue (MALT) of special senses is poorly described and can be confused with nonspecific mononuclear cell infiltrates and tertiary lymphoid structures (TLS). In the eye, MALT consists mostly of conjunctiva-associated lymphoid tissue (CALT) and lacrimal drainage-associated lymphoid tissue (LDALT). In humans, CALT and LDALT are important components of the normal eye-associated lymphoid tissue (EALT), but EALT is less frequently described in ocular tissues of animals. The EALT are acquired postnatally in preferential mucosal sites, expand with antigenic exposure, form well-developed lymphoid follicles, and are reported to senesce. Lymphoid follicles that are induced concurrently with chronic inflammation are more appropriately considered TLS but must be differentiated from inflammation in MALT. Less understood is the etiology for formation of lymphoid tissue aggregates in the ciliary body, limbus, or choroid of healthy eyes in animals and humans. In the healthy eustachian tube and middle ear of animals and humans, MALT may be present but is infrequently described. Concurrent with otitis media, lymphoid follicles in the eustachian tube are probably expanded MALT, but lymphoid follicles in the middle ear may be TLS. The purpose of this comparative review is to familiarize toxicologic pathologists with MALT in the special senses and to provide considerations for differentiating and reporting eye and ear MALT from immune or inflammatory cell infiltrates or inflammation in nonclinical studies, and the circumstances for reporting TLS in compartments of the eye and ear.
Collapse
|
16
|
Paramasivan S, Psaltis AJ, Wormald PJ, Vreugde S. Tertiary Lymphoid Organs: A Primer for Otolaryngologists. Laryngoscope 2020; 131:1697-1703. [PMID: 33179781 DOI: 10.1002/lary.29261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/02/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES/HYPOTHESIS Lymphoid neogenesis or the development of organised, de novo lymphoid structures has been described increasingly in chronically inflamed tissues. The presence of tertiary lymphoid organs (TLOs) has already been demonstrated to result in significant consequences for disease pathology, severity, prognosis and patient outcomes. Whilst the wider medical community has embraced TLOs as important markers of disease and potential therapeutic targets, the otolaryngology field has only begun turning to these entities in an academic capacity. This review aims to outline the role of tertiary lymphoid organs in disease and summarise key early findings in the ENT field. We also an overview of TLOs, their developmental process and clinicopathological implications. STUDY DESIGN Literature review. METHODS A literature search for all relevant peer-reviewed publications pertaining to TLOs and ENT diseases. Search was conducted using PubMed, Embase and CINAHL databases. RESULTS A total of 24 studies were identified relevant to the topic. The majority of TLO research in ENT fell into the areas of oral squamous cell carcinoma (SCC) and chronic rhinosinusitis (CRS). CONCLUSIONS Early research into both oral SCC and CRS suggests that TLOs have significant roles within ear, nose and throat (ENT) diseases. At this point in time, however, TLOs remain somewhat a mystery amongst otolaryngologists. As information in this field increases, we may develop a better understanding of how lymphoid neogenesis can influence disease outcomes amongst our patients and, ultimately, how they can be utilised in an immunotherapeutic manner. Laryngoscope, 131:1697-1703, 2021.
Collapse
Affiliation(s)
- Sathish Paramasivan
- Department of Surgery - Otolaryngology, Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia, Australia.,Basil Hetzel Institute for Translational Health Research, Central Adelaide Local health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Alkis J Psaltis
- Department of Surgery - Otolaryngology, Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia, Australia.,Basil Hetzel Institute for Translational Health Research, Central Adelaide Local health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Peter-John Wormald
- Department of Surgery - Otolaryngology, Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia, Australia.,Basil Hetzel Institute for Translational Health Research, Central Adelaide Local health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Sarah Vreugde
- Department of Surgery - Otolaryngology, Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia, Australia.,Basil Hetzel Institute for Translational Health Research, Central Adelaide Local health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| |
Collapse
|
17
|
Bucher K, Rodríguez-Bocanegra E, Dauletbekov D, Fischer MD. Immune responses to retinal gene therapy using adeno-associated viral vectors - Implications for treatment success and safety. Prog Retin Eye Res 2020; 83:100915. [PMID: 33069860 DOI: 10.1016/j.preteyeres.2020.100915] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated virus (AAV) is the leading vector for gene therapy in the retina. As non-pathogenic, non-integrating, replication deficient vector, the recombinant virus efficiently transduces all key retinal cell populations. Successful testing of AAV vectors in clinical trials of inherited retinal diseases led to the recent approval of voretigene neparvovec (Luxturna) for the treatment of RPE65 mutation-associated retinal dystrophies. However, studies applying AAV-mediated retinal gene therapy independently reported intraocular inflammation and/or loss of efficacy after initial functional improvements. Both observations might be explained by targeted removal of transduced cells via anti-viral defence mechanisms. AAV has been shown to activate innate pattern recognition receptors (PRRs) such as toll-like receptor (TLR)-2 and TLR-9 resulting in the release of inflammatory cytokines and type I interferons. The vector can also induce capsid-specific and transgene-specific T cell responses and neutralizing anti-AAV antibodies which both limit the therapeutic effect. However, the target organ of retinal gene therapy, the eye, is known as an immune-privileged site. It is characterized by suppression of inflammation and promotion of immune tolerance which might prevent AAV-induced immune responses. This review evaluates AAV-related immune responses, toxicity and inflammation in studies of retinal gene therapy, identifies influencing variables of these responses and discusses potential strategies to modulate immune reactions to AAV vectors to increase the safety and efficacy of ocular gene therapy.
Collapse
Affiliation(s)
- Kirsten Bucher
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Eduardo Rodríguez-Bocanegra
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Daniyar Dauletbekov
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Liu YH, Mölzer C, Makinen K, Kamoi K, Corbett CLC, Klaska IP, Reid DM, Wilson HM, Kuffová L, Cornall RJ, Forrester JV. Treatment With FoxP3+ Antigen-Experienced T Regulatory Cells Arrests Progressive Retinal Damage in a Spontaneous Model of Uveitis. Front Immunol 2020; 11:2071. [PMID: 33013877 PMCID: PMC7498671 DOI: 10.3389/fimmu.2020.02071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/29/2020] [Indexed: 01/17/2023] Open
Abstract
We specify the clinical features of a spontaneous experimental autoimmune uveitis (EAU) model, in which foreign hen-egg lysozyme (HEL) is expressed in the retina, controlled by the promoter for interphotoreceptor retinol binding protein (IRBP). We previously reported 100% P21 (post-partum day) IRBP:HEL single transgenic (sTg) mice, when crossed to transgenic T cell receptor mice (3A9) generating the double transgenic (dTg) genotype, develop EAU despite profound lymphopenia (thymic HEL-specific T cell deletion). In this work, we characterized the immune component of this model and found conventional dTg CD4+ T cells were less anergic than those from 3A9 controls. Furthermore, prior in vitro HEL-activation of 3A9 anergic T cells (Tan) rendered them uveitogenic upon adoptive transfer (Tx) to sTg mice, while antigen-experienced (AgX, dTg), but not naïve (3A9) T cells halted disease in P21 dTg mice. Flow cytometric analysis of the AgX cells elucidated the underlying pathology: FoxP3+CD25hiCD4+ T regulatory cells (Treg) comprised ∼18%, while FR4+CD73+FoxP3-CD25lo/–CD4+ Tan comprised ∼1.2% of total cells. Further Treg-enrichment (∼80%) of the AgX population indicated FoxP3+CD25hiCD4+ Treg played a key role in EAU-suppression while FoxP3-CD25lo/–CD4+ T cells did not. Here we present the novel concept of dual immunological tolerance where spontaneous EAU is due to escape from anergy with consequent failure of Treg induction and subsequent imbalance in the [Treg:Teffector] cell ratio. The reduced numbers of Tan, normally sustaining Treg to prevent autoimmunity, are the trigger for disease, while immune homeostasis can be restored by supplementation with AgX, but not naïve, antigen-specific Treg.
Collapse
Affiliation(s)
- Yi-Hsia Liu
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christine Mölzer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Kimmo Makinen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Koju Kamoi
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Clare L C Corbett
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Izabela P Klaska
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Delyth M Reid
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffová
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Richard J Cornall
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
19
|
John S, Rolnick K, Wilson L, Wong S, Van Gelder RN, Pepple KL. Bioluminescence for in vivo detection of cell-type-specific inflammation in a mouse model of uveitis. Sci Rep 2020; 10:11377. [PMID: 32647297 PMCID: PMC7347586 DOI: 10.1038/s41598-020-68227-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/01/2020] [Indexed: 11/26/2022] Open
Abstract
This study reports the use of cell-type-specific in vivo bioluminescence to measure intraocular immune cell population dynamics during the course of inflammation in a mouse model of uveitis. Transgenic lines expressing luciferase in inflammatory cell subsets (myeloid cells, T cells, and B cells) were generated and ocular bioluminescence was measured serially for 35 days following uveitis induction. Ocular leukocyte populations were identified using flow cytometry and compared to the ocular bioluminescence profile. Acute inflammation is neutrophilic (75% of ocular CD45 + cells) which is reflected by a significant increase in ocular bioluminescence in one myeloid reporter line on day 2. By day 7, the ocular T cell population increases to 50% of CD45 + cells, leading to a significant increase in ocular bioluminescence in the T cell reporter line. While initially negligible (< 1% of CD45 + cells), the ocular B cell population increases to > 4% by day 35. This change is reflected by a significant increase in the ocular bioluminescence of the B cell reporter line starting on day 28. Our data demonstrates that cell-type-specific in vivo bioluminescence accurately detects changes in multiple intraocular immune cell populations over time in experimental uveitis. This assay could also be useful in other inflammatory disease models.
Collapse
Affiliation(s)
- Sarah John
- Department of Ophthalmology, University of Washington, Seattle, WA, 98104, USA
| | - Kevin Rolnick
- Department of Ophthalmology, University of Washington, Seattle, WA, 98104, USA
| | - Leslie Wilson
- Department of Ophthalmology, University of Washington, Seattle, WA, 98104, USA
| | - Silishia Wong
- Department of Ophthalmology, University of Washington, Seattle, WA, 98104, USA
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, WA, 98104, USA.,Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA.,Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Kathryn L Pepple
- Department of Ophthalmology, University of Washington, Seattle, WA, 98104, USA.
| |
Collapse
|
20
|
Epps SJ, Coplin N, Luthert PJ, Dick AD, Coupland SE, Nicholson LB. Features of ectopic lymphoid-like structures in human uveitis. Exp Eye Res 2019; 191:107901. [PMID: 31877281 PMCID: PMC7029346 DOI: 10.1016/j.exer.2019.107901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/27/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023]
Abstract
Persistent non-infectious uveitis has a significant morbidity, but the extent to which this is accompanied by inflammation driven remodelling of the tissue is unclear. To address this question, we studied a series of samples selected from two ocular tissue repositories and identified 15 samples with focal infiltration. Eleven of fifteen contained lymphocytes, both B cells (CD20 positive) and T cells (CD3 positive). In 20% of the samples there was evidence of ectopic lymphoid like structures with focal aggregations of B cells and T cells, segregated into anatomically different adjacent zones. To investigate inflammation in the tissue, an analysis of 520 immune relevant transcripts was carried out and 24 genes were differentially upregulated, compared with control tissue. Two of these (CD14 and fibronectin) were increased in ocular inflammation compared to control immune tissue (tonsil). We demonstrate that in a significant minority of patients, chronic persistent uveitis leads to dysregulation of ocular immune surveillance, characterized by the development of areas of local ectopic lymphoid like structures, which may be a target for therapeutic intervention directed at antibody producing cells. Active inflammation continues in cases of persistent uveitis. Some patients develop ectopic lymphoid-like structure. In these cases targeting B cells may be beneficial.
Collapse
Affiliation(s)
- Simon J Epps
- School of Clinical Sciences, University of Bristol, UK.
| | - Natalie Coplin
- Institute of Translational Medicine, University of Liverpool, UK.
| | | | - Andrew D Dick
- School of Clinical Sciences, University of Bristol, UK; UCL-Institute of Ophthalmology, UCL, UK; School of Cellular and Molecular Medicine, University of Bristol, UK.
| | - Sarah E Coupland
- Institute of Translational Medicine, University of Liverpool, UK; Liverpool Clinical Laboratories, Royal Liverpool University Hospital, Liverpool, UK.
| | - Lindsay B Nicholson
- School of Clinical Sciences, University of Bristol, UK; School of Cellular and Molecular Medicine, University of Bristol, UK.
| |
Collapse
|
21
|
Comprehensive analysis of a mouse model of spontaneous uveoretinitis using single-cell RNA sequencing. Proc Natl Acad Sci U S A 2019; 116:26734-26744. [PMID: 31843893 DOI: 10.1073/pnas.1915571116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autoimmune uveoretinitis is a significant cause of visual loss, and mouse models offer unique opportunities to study its disease mechanisms. Aire -/- mice fail to express self-antigens in the thymus, exhibit reduced central tolerance, and develop a spontaneous, chronic, and progressive uveoretinitis. Using single-cell RNA sequencing (scRNA-seq), we characterized wild-type and Aire -/- retinas to define, in a comprehensive and unbiased manner, the cell populations and gene expression patterns associated with disease. Based on scRNA-seq, immunostaining, and in situ hybridization, we infer that 1) the dominant effector response in Aire -/- retinas is Th1-driven, 2) a subset of monocytes convert to either a macrophage/microglia state or a dendritic cell state, 3) the development of tertiary lymphoid structures constitutes part of the Aire -/- retinal phenotype, 4) all major resident retinal cell types respond to interferon gamma (IFNG) by changing their patterns of gene expression, and 5) Muller glia up-regulate specific genes in response to IFN gamma and may act as antigen-presenting cells.
Collapse
|
22
|
Lennikov A, Saddala MS, Mukwaya A, Tang S, Huang H. Autoimmune-Mediated Retinopathy in CXCR5-Deficient Mice as the Result of Age-Related Macular Degeneration Associated Proteins Accumulation. Front Immunol 2019; 10:1903. [PMID: 31474986 PMCID: PMC6702970 DOI: 10.3389/fimmu.2019.01903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Previous research has shown that CXCR5−/− mice develop retinal degeneration (RD) with age, a characteristic related to age macular degeneration (AMD). RD in these mice is not well-understood, and in this study, we sought to characterize further the RD phenotype and to gain mechanistic insights into the function of CXCR5 in the retina. CXCR5−/− and WT control mice were used. Fundus images demonstrated a significant (p < 0.001) increase of hypo-pigmented spots in the retina of aged CXCR5−/− mice compared with WT control mice. PAS staining indicated localization of deposits in the sub-retinal pigment epithelia (RPE) layer. AMD-associated proteins Cryab, amyloid beta, and C3d were detected within the RPE/sub-RPE tissues by immunofluorescence (IF). In addition, western blot analysis of COX-2, Arg1, and VEGF-a revealed an increase in the signaling of these molecules within the RPE/choroid complex. Transmission electron microscopy (TEM) indicated a drusen-like structure of sub-RPE deposits with an accumulation of vacuolated cellular debris. Loss of photoreceptors was detected by peanut lectin staining and was corroborated by a reduction in MAP2 signaling. Loss of blood-retinal barrier integrity was demonstrated by a reduction of ZO-1 expression. Inflammatory cells were detected in the sub-RPE space, with an increase in IBA-1 positive microglia cells on the surface of the RPE. Mass spectrometry analysis of CXCR5−/− mouse RPE/choroid proteins extracts, separated by SDS-page and incubated with autologous serum, identified autoantibodies against AMD-associated proteins: Cryaa, Cryab, and Anxa2. In vitro evaluations in BV-2 cell culture indicated a significant increase in production of Arg-1 (p < 0.001) and COX-2 (p < 0.01) in the presence of anti-CXCR5 antibody when compared with Igg-treated control BV-2 cells stimulated with IL-4 and TNFα/IFNγ, respectively. Anti-CXCR5 antibody treatment without stimulating agents did not affect Arg-1 and COX-2 expression; this suggests that CXCR5 may have a regulatory role in microglia cells activation. These results indicate that with age, CXCR5−/− mice develop RD characterized by microglia dysfunction, increased production of CXCL13 in the RPE progressive photoreceptor, neuronal loss, and sub-RPE deposition of cellular debris, resulting in the production of immunogenic proteins and autoimmune-mediated RD.
Collapse
Affiliation(s)
- Anton Lennikov
- Department of Ophthalmology, University of Missouri, Columbia, MO, United States.,Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Madhu Sudhana Saddala
- Department of Ophthalmology, University of Missouri, Columbia, MO, United States.,Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anthony Mukwaya
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Shibo Tang
- Aier School of Ophthalmology, Aier Eye Institute, Central South University, Changsha, China
| | - Hu Huang
- Department of Ophthalmology, University of Missouri, Columbia, MO, United States.,Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
The Anti-Inflammatory Effects of CXCR5 in the Mice Retina following Ischemia-Reperfusion Injury. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3487607. [PMID: 31355256 PMCID: PMC6637708 DOI: 10.1155/2019/3487607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023]
Abstract
Object Retinal ischemia-reperfusion (I/R) injury is a common pathological process in many ophthalmic diseases; there are no effective therapeutic approaches available currently. Increasing evidence indicates that microglia mediated neuroinflammation plays an important role in the retinal I/R injury. In this study, we aimed to investigate the roles of chemokine receptor CXCR5 in the pathological process of retinal I/R injury model. Method Retinal I/R injury model was established in CXCR5 knockout and wild mice by the acute elevation of intraocular pressure (AOH) for 60 minutes, and the eyes were harvested for further analyses. The cellular location of CXCR5 was detected by immunofluorescence staining; the expressions of CXCR5 and CXCL13 after I/R injury were analyzed by quantitative RT-PCR. The retinal microglia were detected as stained for Iba1 (+). Leakage of inflammatory cells was observed on the H&E stained cryosections. The protein expression and quantification of zonula occludens (ZO-1) were determined by Western blotting and densitometry. Capillary degeneration was identified on the intact retinal vasculatures prepared by trypsin digestion. Results The number of activated microglia marked by Iba1 antibody in the retina was increased after retinal I/R injury in both KO and WT mice, more significant in KO mice. The leakage of inflammatory cells was observed largely at 2 days after injury, but there was no or little leakage at 7 days. The number of inflammatory cells (mainly neutrophils) was greater in CXCR5 KO mice than in WT mice, mainly located under internal limiting membrane. CXCR5 deficiency led to more ZO-1 degradation in CXCR5 KO mice compared to C57BL6 WT mice 2 days after reperfusion. The cellular capillaries were also significantly increased in the KO mice compared to the WT mice. Conclusion Our findings suggest that the chemokine receptor CXCR5 may protect retina from ischemia-reperfusion injury by its anti-inflammatory effects. Thus, CXCR5 may be a promising therapeutic target for the treatment of retinal I/R injury.
Collapse
|
24
|
Development of Methods for Selective Gene Expression Profiling in Tertiary Lymphoid Structure Using Laser Capture Microdissection. Methods Mol Biol 2018. [PMID: 30141011 DOI: 10.1007/978-1-4939-8709-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Tertiary lymphoid structures (TLS) are de novo lymphoid formations that are induced within tissues during inflammatory episodes. TLS have been reported at various anatomic sites and in many different contexts like cancer, infections, autoimmunity, graft rejection, and idiopathic diseases. These inducible, ectopic, and transient lymphoid structures exhibit the prototypical architecture found within secondary lymphoid organs (SLO) and have been recently appreciated as a major driver of the local adaptive immune reaction. As TLS emerge within tissues, the isolation in situ and the molecular characterization of these structures are challenging to operate. Laser capture microdissection (LCM) is a powerful tool to isolate selective structural components and cells from frozen or paraffin-embedded tissues. We and other groups previously applied LCM to decipher the molecular network within TLS and uncover their intrinsic connection with the local microenvironment. In this chapter, we describe a detailed LCM method for selecting and isolating TLS in situ to perform comprehensive downstream molecular analyses.
Collapse
|
25
|
Copland DA, Theodoropoulou S, Liu J, Dick AD. A Perspective of AMD Through the Eyes of Immunology. ACTA ACUST UNITED AC 2018; 59:AMD83-AMD92. [DOI: 10.1167/iovs.18-23893] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- David A. Copland
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital and University College London-Institute of Ophthalmology, London, United Kingdom
| | - Sofia Theodoropoulou
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- Bristol Eye Hospital, Bristol, United Kingdom
| | - Jian Liu
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
| | - Andrew D. Dick
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital and University College London-Institute of Ophthalmology, London, United Kingdom
- Bristol Eye Hospital, Bristol, United Kingdom
- University College London–Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
26
|
Chen D, Zhang J, Peng W, Weng C, Chen J. Urinary C‑X‑C motif chemokine 13 is a noninvasive biomarker of antibody‑mediated renal allograft rejection. Mol Med Rep 2018; 18:2399-2406. [PMID: 29956754 DOI: 10.3892/mmr.2018.9211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/23/2018] [Indexed: 11/06/2022] Open
Abstract
Noninvasive monitoring methods of immune status are preferred by transplant recipients. The present study investigated whether urinary C‑X‑C motif chemokine 13 (CXCL13) had the potential to reflect ongoing immune processes within renal allografts. Using an ELISA assay, the level of urinary CXCL13 was quantified in a total of 146 renal allograft recipients and 40 healthy controls at scheduled intervals and at the time of the indicated or protocol biopsy. The results of the present study revealed that urinary CXCL13/creatinine (Cr) was lower in normal transplants compared with in those with acute tubular necrosis (ATN; P=0.001), chronic allograft nephropathy (CAN; P=0.01), and acute rejection (AR; P<0.0001), which was associated with a good diagnostic performance for AR [area under the curve (AUC)=0.818, P<0.0001). In addition, urinary CXCL13/Cr levels in patients with AR were also higher than that of patients with graft dysfunction but no rejection, including ATN and CAN (P=0.034). Notably, urinary CXCL13 distinguished between acute antibody‑mediated rejection (ABMR) and acute cellular rejection, with an AUC of 0.856. Furthermore, patients with steroid‑resistant AR exhibited significantly increased urinary CXCL13/Cr levels than patients with reversible AR (P=0.001). Additionally, elevated levels of urinary CXCL13/Cr within the first month of transplant were predictive of graft function at 3 and 6 months (P=0.044 and P=0.04, respectively). Collectively, the findings of the present study indicated that the noninvasive investigation of urinary CXCL13/Cr may be valuable for the detection of AR, particularly ABMR. In addition, high urinary CXCL13/Cr levels predicted a poor response to steroid treatment and compromised graft function.
Collapse
Affiliation(s)
- Dajin Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wenhan Peng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Chunhua Weng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
27
|
Epps SJ, Boldison J, Stimpson ML, Khera TK, Lait PJP, Copland DA, Dick AD, Nicholson LB. Re-programming immunosurveillance in persistent non-infectious ocular inflammation. Prog Retin Eye Res 2018. [PMID: 29530739 PMCID: PMC6563519 DOI: 10.1016/j.preteyeres.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ocular function depends on a high level of anatomical integrity. This is threatened by inflammation, which alters the local tissue over short and long time-scales. Uveitis due to autoimmune disease, especially when it involves the retina, leads to persistent changes in how the eye interacts with the immune system. The normal pattern of immune surveillance, which for immune privileged tissues is limited, is re-programmed. Many cell types, that are not usually present in the eye, become detectable. There are changes in the tissue homeostasis and integrity. In both human disease and mouse models, in the most extreme cases, immunopathological findings consistent with development of ectopic lymphoid-like structures and disrupted angiogenesis accompany severely impaired eye function. Understanding how the ocular environment is shaped by persistent inflammation is crucial to developing novel approaches to treatment.
Collapse
Affiliation(s)
- Simon J Epps
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Madeleine L Stimpson
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - Tarnjit K Khera
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK; School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, BS8 1TD, UK
| | - Philippa J P Lait
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK; School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, BS8 1TD, UK; UCL-Institute of Ophthalmology and National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, EC1V 2PD, UK
| | - Lindsay B Nicholson
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK; School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
28
|
Alsughayyir J, Pettigrew GJ, Motallebzadeh R. Spoiling for a Fight: B Lymphocytes As Initiator and Effector Populations within Tertiary Lymphoid Organs in Autoimmunity and Transplantation. Front Immunol 2017; 8:1639. [PMID: 29218052 PMCID: PMC5703719 DOI: 10.3389/fimmu.2017.01639] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) develop at ectopic sites within chronically inflamed tissues, such as in autoimmunity and rejecting organ allografts. TLOs differ structurally from canonical secondary lymphoid organs (SLOs), in that they lack a mantle zone and are not encapsulated, suggesting that they may provide unique immune function. A notable feature of TLOs is the frequent presence of structures typical of germinal centers (GCs). However, little is known about the role of such GCs, and in particular, it is not clear if the B cell response within is autonomous, or whether it synergizes with concurrent responses in SLOs. This review will discuss ectopic lymphoneogenesis and the role of the B cell in TLO formation and subsequent effector output in the context of autoimmunity and transplantation, with particular focus on the contribution of ectopic GCs to affinity maturation in humoral immune responses and to the potential breakdown of self-tolerance and development of humoral autoimmunity.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gavin J Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Nephrology, Urology and Transplantation, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
29
|
Gu-Trantien C, Migliori E, Buisseret L, de Wind A, Brohée S, Garaud S, Noël G, Dang Chi VL, Lodewyckx JN, Naveaux C, Duvillier H, Goriely S, Larsimont D, Willard-Gallo K. CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI Insight 2017; 2:91487. [PMID: 28570278 DOI: 10.1172/jci.insight.91487] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
T follicular helper cells (TFH cells) are important regulators of antigen-specific B cell responses. The B cell chemoattractant CXCL13 has recently been linked with TFH cell infiltration and improved survival in human cancer. Although human TFH cells can produce CXCL13, their immune functions are currently unknown. This study presents data from human breast cancer, advocating a role for tumor-infiltrating CXCL13-producing (CXCR5-) TFH cells, here named TFHX13 cells, in promoting local memory B cell differentiation. TFHX13 cells potentially trigger tertiary lymphoid structure formation and thereby generate germinal center B cell responses at the tumor site. Follicular DCs are not potent CXCL13 producers in breast tumor tissues. We used the TFH cell markers PD-1 and ICOS to identify distinct effector and regulatory CD4+ T cell subpopulations in breast tumors. TFHX13 cells are an important component of the PD-1hiICOSint effector subpopulation and coexpanded with PD-1intICOShiFOXP3hi Tregs. IL2 deprivation induces CXCL13 expression in vitro with a synergistic effect from TGFβ1, providing insight into TFHX13 cell differentiation in response to Treg accumulation, similar to conventional TFH cell responses. Our data suggest that human TFHX13 cell differentiation may be a key factor in converting Treg-mediated immune suppression to de novo activation of adaptive antitumor humoral responses in the chronic inflammatory breast cancer microenvironment.
Collapse
Affiliation(s)
| | | | - Laurence Buisseret
- Molecular Immunology Unit.,Breast Cancer Translational Research Laboratory
| | | | | | | | | | | | | | | | - Hugues Duvillier
- Flow Cytometry Core Facility, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Stanislas Goriely
- Welbio and Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | |
Collapse
|
30
|
Bremer D, Pache F, Günther R, Hornow J, Andresen V, Leben R, Mothes R, Zimmermann H, Brandt AU, Paul F, Hauser AE, Radbruch H, Niesner R. Longitudinal Intravital Imaging of the Retina Reveals Long-term Dynamics of Immune Infiltration and Its Effects on the Glial Network in Experimental Autoimmune Uveoretinitis, without Evident Signs of Neuronal Dysfunction in the Ganglion Cell Layer. Front Immunol 2016; 7:642. [PMID: 28066446 PMCID: PMC5179567 DOI: 10.3389/fimmu.2016.00642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
A hallmark of autoimmune retinal inflammation is the infiltration of the retina with cells of the innate and adaptive immune system, leading to detachment of the retinal layers and even to complete loss of the retinal photoreceptor layer. As the only optical system in the organism, the eye enables non-invasive longitudinal imaging studies of these local autoimmune processes and of their effects on the target tissue. Moreover, as a window to the central nervous system (CNS), the eye also reflects general neuroinflammatory processes taking place at various sites within the CNS. Histological studies in murine neuroinflammatory models, such as experimental autoimmune uveoretinitis (EAU) and experimental autoimmune encephalomyelitis, indicate that immune infiltration is initialized by effector CD4+ T cells, with the innate compartment (neutrophils, macrophages, and monocytes) contributing crucially to tissue degeneration that occurs at later phases of the disease. However, how the immune attack is orchestrated by various immune cell subsets in the retina and how the latter interact with the target tissue under in vivo conditions is still poorly understood. Our study addresses this gap with a novel approach for intravital two-photon microscopy, which enabled us to repeatedly track CD4+ T cells and LysM phagocytes during the entire course of EAU and to identify a specific radial infiltration pattern of these cells within the inflamed retina, starting from the optic nerve head. In contrast, highly motile CX3CR1+ cells display an opposite radial motility pattern, toward the optic nerve head. These inflammatory processes induce modifications of the microglial network toward an activated morphology, especially around the optic nerve head and main retinal blood vessels, but do not affect the neurons within the ganglion cell layer. Thanks to the new technology, non-invasive correlation of clinical scores of CNS-related pathologies with immune infiltrate behavior and subsequent tissue dysfunction is now possible. Hence, the new approach paves the way for deeper insights into the pathology of neuroinflammatory processes on a cellular basis, over the entire disease course.
Collapse
Affiliation(s)
- Daniel Bremer
- German Rheumatism Research Center , Berlin , Germany
| | - Florence Pache
- German Rheumatism Research Center, Berlin, Germany; NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | - Ruth Leben
- German Rheumatism Research Center , Berlin , Germany
| | - Ronja Mothes
- German Rheumatism Research Center, Berlin, Germany; Department of Neuropathology, Charité - Universitätsmedizin, Berlin, Germany
| | - Hanna Zimmermann
- NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Anja E Hauser
- German Rheumatism Research Center, Berlin, Germany; Immundynamics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin , Berlin , Germany
| | | |
Collapse
|
31
|
Ruddle NH. High Endothelial Venules and Lymphatic Vessels in Tertiary Lymphoid Organs: Characteristics, Functions, and Regulation. Front Immunol 2016; 7:491. [PMID: 27881983 PMCID: PMC5101196 DOI: 10.3389/fimmu.2016.00491] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022] Open
Abstract
High endothelial venules (HEVs) and lymphatic vessels (LVs) are essential for the function of the immune system, by providing communication between the body and lymph nodes (LNs), specialized sites of antigen presentation and recognition. HEVs bring in naïve and central memory cells and LVs transport antigen, antigen-presenting cells, and lymphocytes in and out of LNs. Tertiary lymphoid organs (TLOs) are accumulations of lymphoid and stromal cells that arise and organize at ectopic sites in response to chronic inflammation in autoimmunity, microbial infection, graft rejection, and cancer. TLOs are distinguished from primary lymphoid organs – the thymus and bone marrow, and secondary lymphoid organs (SLOs) – the LNs, spleen, and Peyer’s patches, in that they arise in response to inflammatory signals, rather than in ontogeny. TLOs usually do not have a capsule but are rather contained within the confines of another organ. Their structure, cellular composition, chemokine expression, and vascular and stromal support resemble SLOs and are the defining aspects of TLOs. T and B cells, antigen-presenting cells, fibroblast reticular cells, and other stromal cells and vascular elements including HEVs and LVs are all typical components of TLOs. A key question is whether the HEVs and LVs play comparable roles and are regulated similarly to those in LNs. Data are presented that support this concept, especially with regard to TLO HEVs. Emerging data suggest that the functions and regulation of TLO LVs are also similar to those in LNs. These observations support the concept that TLOs are not merely cellular accumulations but are functional entities that provide sites to generate effector cells, and that their HEVs and LVs are crucial elements in those activities.
Collapse
Affiliation(s)
- Nancy H Ruddle
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University School of Medicine , New Haven, CT , USA
| |
Collapse
|
32
|
Jing F, Choi EY. Potential of Cells and Cytokines/Chemokines to Regulate Tertiary Lymphoid Structures in Human Diseases. Immune Netw 2016; 16:271-280. [PMID: 27799872 PMCID: PMC5086451 DOI: 10.4110/in.2016.16.5.271] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid tissues involved in chronic inflammation, autoimmune diseases, transplant rejection and cancer. They exhibit almost all the characteristics of secondary lymphoid organs (SLO), which are associated with adaptive immune responses; as such, they contain organized B-cell follicles with germinal centers, distinct areas containing T cells and dendritic cells, high endothelial venules, and lymphatics. In this review, we briefly describe the formation of SLO, and describe the cellular subsets and molecular cues involved in the formation and maintenance of TLS. Finally, we discuss the associations of TLS with human diseases, especially autoimmune diseases, and the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Feifeng Jing
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
33
|
Jones GW, Hill DG, Jones SA. Understanding Immune Cells in Tertiary Lymphoid Organ Development: It Is All Starting to Come Together. Front Immunol 2016; 7:401. [PMID: 27752256 PMCID: PMC5046062 DOI: 10.3389/fimmu.2016.00401] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/21/2016] [Indexed: 01/28/2023] Open
Abstract
Tertiary lymphoid organs (TLOs) are frequently observed in tissues affected by non-resolving inflammation as a result of infection, autoimmunity, cancer, and allograft rejection. These highly ordered structures resemble the cellular composition of lymphoid follicles typically associated with the spleen and lymph node compartments. Although TLOs within tissues show varying degrees of organization, they frequently display evidence of segregated T and B cell zones, follicular dendritic cell networks, a supporting stromal reticulum, and high endothelial venules. In this respect, they mimic the activities of germinal centers and contribute to the local control of adaptive immune responses. Studies in various disease settings have described how these structures contribute to either beneficial or deleterious outcomes. While the development and architectural organization of TLOs within inflamed tissues requires homeostatic chemokines, lymphoid and inflammatory cytokines, and adhesion molecules, our understanding of the cells responsible for triggering these events is still evolving. Over the past 10–15 years, novel immune cell subsets have been discovered that have more recently been implicated in the control of TLO development and function. In this review, we will discuss the contribution of these cell types and consider the potential to develop new therapeutic strategies that target TLOs.
Collapse
Affiliation(s)
- Gareth W Jones
- Division of Infection and Immunity, Systems Immunity URI, The School of Medicine, Cardiff University , Cardiff , UK
| | - David G Hill
- Division of Infection and Immunity, Systems Immunity URI, The School of Medicine, Cardiff University , Cardiff , UK
| | - Simon A Jones
- Division of Infection and Immunity, Systems Immunity URI, The School of Medicine, Cardiff University , Cardiff , UK
| |
Collapse
|
34
|
Kobayashi Y, Watanabe T. Gel-Trapped Lymphorganogenic Chemokines Trigger Artificial Tertiary Lymphoid Organs and Mount Adaptive Immune Responses In Vivo. Front Immunol 2016; 7:316. [PMID: 27597851 PMCID: PMC4992816 DOI: 10.3389/fimmu.2016.00316] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
We previously generated artificial lymph node-like tertiary lymphoid organs (artTLOs) in mice using lymphotoxin α-expressing stromal cells. Here, we show the construction of transplantable and functional artTLOs by applying soluble factors trapped in slow-releasing gels in the absence of lymphoid tissue organizer stromal cells. The resultant artTLOs were easily removable, transplantable, and were capable of attracting memory B and T cells. Importantly, artTLOs induced a powerful antigen-specific secondary immune response, which was particularly pronounced in immune-compromised hosts. Synthesis of functionally stable immune tissues/organs like those described here may be a first step to eventually develop immune system-based therapeutics. Although much needs to be learned from the precise mechanisms of action, they may offer ways in the future to reestablish immune functions to overcome hitherto untreatable diseases, including severe infection, cancer, autoimmune diseases, and various forms of immune deficiencies, including immune-senescence during aging.
Collapse
Affiliation(s)
- Yuka Kobayashi
- The Tazuke-Kofukai Medical Research Institute, Kitano Hospital, Kita-ku , Osaka , Japan
| | - Takeshi Watanabe
- The Tazuke-Kofukai Medical Research Institute, Kitano Hospital, Kita-ku , Osaka , Japan
| |
Collapse
|