1
|
Luca D, Kato H. Mouse models of type I interferonopathies. Hum Mol Genet 2024:ddae187. [PMID: 39680957 DOI: 10.1093/hmg/ddae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024] Open
Abstract
Type I interferonopathies are severe monogenic diseases caused by mutations that result in chronically upregulated production of type I interferon. They present with a broad variety of symptoms, the mechanisms of which are being extensively studied. Mouse models of type I interferonopathies are an important resource for this purpose, and in this context, we review several key molecular and phenotypic findings that are advancing our understanding of the respective diseases. We focus on genotypes related to nucleic acid metabolism, sensing by cytosolic receptors and downstream signalling.
Collapse
Affiliation(s)
- Domnica Luca
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| |
Collapse
|
2
|
Hofer MJ, Modesti N, Coufal NG, Wang Q, Sase S, Miner JJ, Vanderver A, Bennett ML. The prototypical interferonopathy: Aicardi-Goutières syndrome from bedside to bench. Immunol Rev 2024; 327:83-99. [PMID: 39473130 DOI: 10.1111/imr.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Abstract
Aicardi-Goutières syndrome (AGS) is a progressive genetic encephalopathy caused by pathogenic mutations in genes controlling cellular anti-viral responses and nucleic acid metabolism. The mutations initiate autoinflammatory processes in the brain and systemically that are triggered by chronic overproduction of type I interferon (IFN), including IFN-alpha. Emerging disease-directed therapies aim to dampen autoinflammation and block cellular responses to IFN production, creating an urgent and unmet need to understand better which cells, compartments, and mechanisms underlying disease pathogenesis. In this review, we highlight existing pre-clinical models of AGS and our current understanding of how causative genetic mutations promote disease in AGS, to promote new model development and a continued focus on improving and directing future therapies.
Collapse
Affiliation(s)
- Markus J Hofer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| | - Nicholson Modesti
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicole G Coufal
- Department of Pediatrics, University of California, San Diego, California, USA
- Rady Children's Hospital, San Diego, California, USA
- Sanford Consortium for Regenerative Medicine, San Diego, California, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sunetra Sase
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jonathan J Miner
- Department of Medicine and Microbiology, RVCL Research Center, and Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
4
|
Li T, Yum S, Wu J, Li M, Deng Y, Sun L, Zuo X, Chen ZJ. cGAS activation in classical dendritic cells causes autoimmunity in TREX1-deficient mice. Proc Natl Acad Sci U S A 2024; 121:e2411747121. [PMID: 39254994 PMCID: PMC11420187 DOI: 10.1073/pnas.2411747121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Detection of cytosolic DNA by the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway provides immune defense against pathogens and cancer but can also cause autoimmunity when overactivated. The exonuclease three prime repair exonuclease 1 (TREX1) degrades DNA in the cytosol and prevents cGAS activation by self-DNA. Loss-of-function mutations of the TREX1 gene are linked to autoimmune diseases such as Aicardi-Goutières syndrome, and mice deficient in TREX1 develop lethal inflammation in a cGAS-dependent manner. In order to determine the type of cells in which cGAS activation drives autoinflammation, we generated conditional cGAS knockout mice on the Trex1-/- background. Here, we show that genetic ablation of the cGAS gene in classical dendritic cells (cDCs), but not in macrophages, was sufficient to rescue Trex1-/- mice from all observed disease phenotypes including lethality, T cell activation, tissue inflammation, and production of antinuclear antibodies and interferon-stimulated genes. These results show that cGAS activation in cDC causes autoinflammation in response to self-DNA accumulated in the absence of TREX1.
Collapse
Affiliation(s)
- Tong Li
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan410078, China
| | - Seoyun Yum
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Junjiao Wu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan410078, China
| | - Minghao Li
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yafang Deng
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Lijun Sun
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Xiaoxia Zuo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan410078, China
| | - Zhijian J. Chen
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
5
|
Gavazzi F, Gonzalez CD, Arnold K, Swantkowski M, Charlton L, Modesti N, Dar AA, Vanderver A, Bennett M, Adang LA. Nucleotide metabolism, leukodystrophies, and CNS pathology. J Inherit Metab Dis 2024; 47:860-875. [PMID: 38421058 PMCID: PMC11358362 DOI: 10.1002/jimd.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The balance between a protective and a destructive immune response can be precarious, as exemplified by inborn errors in nucleotide metabolism. This class of inherited disorders, which mimics infection, can result in systemic injury and severe neurologic outcomes. The most common of these disorders is Aicardi Goutières syndrome (AGS). AGS results in a phenotype similar to "TORCH" infections (Toxoplasma gondii, Other [Zika virus (ZIKV), human immunodeficiency virus (HIV)], Rubella virus, human Cytomegalovirus [HCMV], and Herpesviruses), but with sustained inflammation and ongoing potential for complications. AGS was first described in the early 1980s as familial clusters of "TORCH" infections, with severe neurology impairment, microcephaly, and basal ganglia calcifications (Aicardi & Goutières, Ann Neurol, 1984;15:49-54) and was associated with chronic cerebrospinal fluid (CSF) lymphocytosis and elevated type I interferon levels (Goutières et al., Ann Neurol, 1998;44:900-907). Since its first description, the clinical spectrum of AGS has dramatically expanded from the initial cohorts of children with severe impairment to including individuals with average intelligence and mild spastic paraparesis. This broad spectrum of potential clinical manifestations can result in a delayed diagnosis, which families cite as a major stressor. Additionally, a timely diagnosis is increasingly critical with emerging therapies targeting the interferon signaling pathway. Despite the many gains in understanding about AGS, there are still many gaps in our understanding of the cell-type drivers of pathology and characterization of modifying variables that influence clinical outcomes and achievement of timely diagnosis.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Kaley Arnold
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Meghan Swantkowski
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lauren Charlton
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicholson Modesti
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Asif A. Dar
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariko Bennett
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura A. Adang
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Zhao R, Zhang J, Ma J, Qu Y, Yang Z, Yin Z, Li F, Dong Z, Sun Q, Zhu S, Chen ZJ, Gao D. cGAS-activated endothelial cell-T cell cross-talk initiates tertiary lymphoid structure formation. Sci Immunol 2024; 9:eadk2612. [PMID: 39093956 DOI: 10.1126/sciimmunol.adk2612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Aberrant activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway causes autoimmunity in humans and mice; however, the exact mechanism by which the cGAS-STING pathway initiates adaptive immunity and tissue pathology is still not fully understood. Here, we used a cGAS knockin (KI) mouse model that develops systemic autoimmunity. In the lungs of cGAS-KI mice, blood vessels were enclosed by organized lymphoid tissues that resemble tertiary lymphoid structures (TLSs). Cell-intrinsic cGAS induction promoted up-regulation of CCR5 in CD8+ T cells and led to CCL5 production in vascular endothelial cells. Peripheral CD8+ T cells were recruited to the lungs and produced CXCL13 and interferon-γ. The latter triggered endothelial cell death, potentiated CCL5 production, and was essential for TLS establishment. Blocking CCL5 or CCR5, or depleting CD8+ T cells, impaired TLS formation. cGAS-mediated TLS formation also enhanced humoral and antitumor responses. These data demonstrate that cGAS signaling drives a specialized lymphoid structure that underlies autoimmune tissue pathology.
Collapse
Affiliation(s)
- Ruibo Zhao
- Department of General Surgery, First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230007, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Jinghe Zhang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Jialu Ma
- Department of General Surgery, First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230007, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Yali Qu
- Department of General Surgery, First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230007, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Zhenrong Yang
- Department of General Surgery, First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230007, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China
- Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong 510632, China
| | - Fengyin Li
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Zhongjun Dong
- First Affiliated Hospital of Anhui Medical University and Institute for Clinical Immunology, Anhui Medical University, Anhui 230032, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu Zhu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daxing Gao
- Department of General Surgery, First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230007, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| |
Collapse
|
7
|
Ritchie C, Li L. PELI2 is a negative regulator of STING signaling that is dynamically repressed during viral infection. Mol Cell 2024; 84:2423-2435.e5. [PMID: 38917796 PMCID: PMC11246219 DOI: 10.1016/j.molcel.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/12/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
The innate immune cGAS-STING pathway is activated by cytosolic double-stranded DNA (dsDNA), a ubiquitous danger signal, to produce interferon, a potent anti-viral and anti-cancer cytokine. However, STING activation must be tightly controlled because aberrant interferon production leads to debilitating interferonopathies. Here, we discover PELI2 as a crucial negative regulator of STING. Mechanistically, PELI2 inhibits the transcription factor IRF3 by binding to phosphorylated Thr354 and Thr356 on the C-terminal tail of STING, leading to ubiquitination and inhibition of the kinase TBK1. PELI2 sets a threshold for STING activation that tolerates low levels of cytosolic dsDNA, such as that caused by silenced TREX1, RNASEH2B, BRCA1, or SETX. When this threshold is reached, such as during viral infection, STING-induced interferon production temporarily downregulates PELI2, creating a positive feedback loop allowing a robust immune response. Lupus patients have insufficient PELI2 levels and high basal interferon production, suggesting that PELI2 dysregulation may drive the onset of lupus and other interferonopathies.
Collapse
Affiliation(s)
- Christopher Ritchie
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Arc Institute, Palo Alto, CA 94304, USA.
| | - Lingyin Li
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Arc Institute, Palo Alto, CA 94304, USA.
| |
Collapse
|
8
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Luca D, Lee S, Hirota K, Okabe Y, Uehori J, Izawa K, Lanz AL, Schütte V, Sivri B, Tsukamoto Y, Hauck F, Behrendt R, Roers A, Fujita T, Nishikomori R, Lee-Kirsch MA, Kato H. Aberrant RNA sensing in regulatory T cells causes systemic autoimmunity. SCIENCE ADVANCES 2024; 10:eadk0820. [PMID: 38427731 PMCID: PMC10906915 DOI: 10.1126/sciadv.adk0820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
Chronic and aberrant nucleic acid sensing causes type I IFN-driven autoimmune diseases, designated type I interferonopathies. We found a significant reduction of regulatory T cells (Tregs) in patients with type I interferonopathies caused by mutations in ADAR1 or IFIH1 (encoding MDA5). We analyzed the underlying mechanisms using murine models and found that Treg-specific deletion of Adar1 caused peripheral Treg loss and scurfy-like lethal autoimmune disorders. Similarly, knock-in mice with Treg-specific expression of an MDA5 gain-of-function mutant caused apoptosis of peripheral Tregs and severe autoimmunity. Moreover, the impact of ADAR1 deficiency on Tregs is multifaceted, involving both MDA5 and PKR sensing. Together, our results highlight the dysregulation of Treg homeostasis by intrinsic aberrant RNA sensing as a potential determinant for type I interferonopathies.
Collapse
Affiliation(s)
- Domnica Luca
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sumin Lee
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Regulatory Information, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasutaka Okabe
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Junji Uehori
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Anna-Lisa Lanz
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Centre for Rare Diseases (M-ZSE), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Verena Schütte
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Burcu Sivri
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Yuta Tsukamoto
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Centre for Rare Diseases (M-ZSE), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Axel Roers
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Regulatory Information, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, University Hospital Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Ibrahim AGE, Ciullo A, Miyamoto K, Liao K, Jones XM, Yamaguchi S, Li C, Rannou A, Nawaz A, Morris A, Tsi K, Marbán CH, Lee J, Manriquez N, Hong Y, Kumar AN, Dawkins JF, Rogers RG, Marbán E. Augmentation of DNA exonuclease TREX1 in macrophages as a therapy for cardiac ischemic injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581294. [PMID: 39026690 PMCID: PMC11257602 DOI: 10.1101/2024.02.20.581294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Noncoding RNAs (ncRNAs) are increasingly recognized as bioactive. Here we report the development of TY1, a synthetic ncRNA bioinspired by a naturally-occurring human small Y RNA with immunomodulatory properties. TY1 upregulates TREX1, an exonuclease that rapidly degrades cytosolic DNA. In preclinical models of myocardial infarction (MI) induced by ischemia/reperfusion, TY1 reduced scar size. The cardioprotective effect of TY1 was abrogated by prior depletion of macrophages and mimicked by adoptive transfer of macrophages exposed either to TY1 or TREX1. Inhibition of TREX1 in macrophages blocked TY1 cardioprotection. Consistent with a central role for TREX1, TY1 attenuated DNA damage in the post-MI heart. This novel mechanism-pharmacologic upregulation of TREX1 in macrophages-establishes TY1 as the prototype for a new class of ncRNA drugs with disease-modifying bioactivity. One Sentence Summary Upregulation of three prime exonuclease, TREX1, in macrophages enhances tissue repair post myocardial infarction.
Collapse
|
11
|
Jia X, Tan L, Chen S, Tang R, Chen W. Monogenic lupus: Tracing the therapeutic implications from single gene mutations. Clin Immunol 2023; 254:109699. [PMID: 37481012 DOI: 10.1016/j.clim.2023.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Monogenic lupus, a distinctive variant of systemic lupus erythematosus (SLE), is characterized by early onset, family-centric clustering, and heightened disease severity. So far, over thirty genetic variations have been identified as single-gene etiology of SLE and lupus-like phenotypes. The critical role of these gene mutations in disrupting various immune pathways is increasingly recognized. In particular, single gene mutation-driven dysfunction within the innate immunity, notably deficiencies in the complement system, impedes the degradation of free nucleic acid and immune complexes, thereby promoting activation of innate immune cells. The accumulation of these components in various tissues and organs creates a pro-inflammatory microenvironment, characterized by a surge in pro-inflammatory cytokines, chemokines, reactive oxygen species, and type I interferons. Concurrently, single gene mutation-associated defects in the adaptive immune system give rise to the emergence of autoreactive T cells, hyperactivated B cells and plasma cells. The ensuing spectrum of cytokines and autoimmune antibodies drives systemic disease manifestations, primarily including kidney, skin and central nervous system-related phenotypes. This review provides a thorough overview of the single gene mutations and potential consequent immune dysregulations in monogenic lupus, elucidating the pathogenic mechanisms of monogenic lupus. Furthermore, it discusses the recent advances made in the therapeutic interventions for monogenic lupus.
Collapse
Affiliation(s)
- Xiuzhi Jia
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Li Tan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Sixiu Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ruihan Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| |
Collapse
|
12
|
Vinuesa CG, Grenov A, Kassiotis G. Innate virus-sensing pathways in B cell systemic autoimmunity. Science 2023; 380:478-484. [PMID: 37141353 DOI: 10.1126/science.adg6427] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although all multicellular organisms have germ line-encoded innate receptors to sense pathogen-associated molecular patterns, vertebrates also evolved adaptive immunity based on somatically generated antigen receptors on B and T cells. Because randomly generated antigen receptors may also react with self-antigens, tolerance checkpoints operate to limit but not completely prevent autoimmunity. These two systems are intricately linked, with innate immunity playing an instrumental role in the induction of adaptive antiviral immunity. In this work, we review how inborn errors of innate immunity can instigate B cell autoimmunity. Increased nucleic acid sensing, often resulting from defects in metabolizing pathways or retroelement control, can break B cell tolerance and converge into TLR7-, cGAS-STING-, or MAVS-dominant signaling pathways. The resulting syndromes span a spectrum that ranges from chilblain and systemic lupus to severe interferonopathies.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK
- China Centre for Personalised Immunology, Renji Hospital, Shanghai, China
| | | | - George Kassiotis
- The Francis Crick Institute, London, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
13
|
Kim J, Kim HS, Chung JH. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp Mol Med 2023; 55:510-519. [PMID: 36964253 PMCID: PMC10037406 DOI: 10.1038/s12276-023-00965-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/15/2022] [Indexed: 03/26/2023] Open
Abstract
In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Jeonghan Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, 06591, South Korea.
| | - Ho-Shik Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, 06591, South Korea
| | - Jay H Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Gao KM, Marshak-Rothstein A, Fitzgerald KA. Type-1 interferon-dependent and -independent mechanisms in cyclic GMP-AMP synthase-stimulator of interferon genes-driven auto-inflammation. Curr Opin Immunol 2023; 80:102280. [PMID: 36638547 DOI: 10.1016/j.coi.2022.102280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
The cyclic cyclic gaunosine monophosphate adenosine monophosphate (GMP-AMP) synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic dsDNA and initiates immune responses against pathogens. It is also implicated in several auto-inflammatory diseases known as monogenic interferonopathies, specifically Three prime repair exonuclease 1 (Trex1) loss-of-function (LOF), Dnase2 LOF, and stimulator of interferon genes-associated-vasculopathy-with-onset-in-infancy (SAVI). Although monogenic interferonopathies have diverse clinical presentations, they are distinguished by the elevation of type-1 interferons (T1IFNs). However, animal models have demonstrated that T1IFNs contribute to only some disease outcomes and that cGAS-STING activation also promotes T1IFN-independent pathology. For example, while T1IFNs drive the immunopathology associated with Trex1 LOF, disease in Dnase2 LOF is partially independent of T1IFNs, while disease in SAVI appears to occur entirely independent of T1IFNs. Additionally, while the cGAS-STING pathway is well characterized in hematopoietic cells, these animal models point to important roles for STING activity in nonhematopoietic cells in disease. Together, these models illustrate the complex role that cGAS-STING-driven responses play in the pathogenesis of inflammatory diseases across tissues.
Collapse
Affiliation(s)
- Kevin Mj Gao
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ann Marshak-Rothstein
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
15
|
The DNA damage induced immune response: Implications for cancer therapy. DNA Repair (Amst) 2022; 120:103409. [DOI: 10.1016/j.dnarep.2022.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022]
|
16
|
Raftopoulou S, Rapti A, Karathanasis D, Evangelopoulos ME, Mavragani CP. The role of type I IFN in autoimmune and autoinflammatory diseases with CNS involvement. Front Neurol 2022; 13:1026449. [PMID: 36438941 PMCID: PMC9685560 DOI: 10.3389/fneur.2022.1026449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Type I interferons (IFNs) are major mediators of innate immunity, with well-known antiviral, antiproliferative, and immunomodulatory properties. A growing body of evidence suggests the involvement of type I IFNs in the pathogenesis of central nervous system (CNS) manifestations in the setting of chronic autoimmune and autoinflammatory disorders, while IFN-β has been for years, a well-established therapeutic modality for multiple sclerosis (MS). In the present review, we summarize the current evidence on the mechanisms of type I IFN production by CNS cellular populations as well as its local effects on the CNS. Additionally, the beneficial effects of IFN-β in the pathophysiology of MS are discussed, along with the contributory role of type I IFNs in the pathogenesis of neuropsychiatric lupus erythematosus and type I interferonopathies.
Collapse
Affiliation(s)
- Sylvia Raftopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Rapti
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Karathanasis
- First Department of Neurology, National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece
| | | | - Clio P. Mavragani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
17
|
Schumann T, Ramon SC, Schubert N, Mayo MA, Hega M, Maser KI, Ada SR, Sydow L, Hajikazemi M, Badstübner M, Müller P, Ge Y, Shakeri F, Buness A, Rupf B, Lienenklaus S, Utess B, Muhandes L, Haase M, Rupp L, Schmitz M, Gramberg T, Manel N, Hartmann G, Zillinger T, Kato H, Bauer S, Gerbaulet A, Paeschke K, Roers A, Behrendt R. Deficiency for SAMHD1 activates MDA5 in a cGAS/STING-dependent manner. J Exp Med 2022; 220:213670. [PMID: 36346347 PMCID: PMC9648672 DOI: 10.1084/jem.20220829] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Defects in nucleic acid metabolizing enzymes can lead to spontaneous but selective activation of either cGAS/STING or RIG-like receptor (RLR) signaling, causing type I interferon-driven inflammatory diseases. In these pathophysiological conditions, activation of the DNA sensor cGAS and IFN production are linked to spontaneous DNA damage. Physiological, or tonic, IFN signaling on the other hand is essential to functionally prime nucleic acid sensing pathways. Here, we show that low-level chronic DNA damage in mice lacking the Aicardi-Goutières syndrome gene SAMHD1 reduced tumor-free survival when crossed to a p53-deficient, but not to a DNA mismatch repair-deficient background. Increased DNA damage did not result in higher levels of type I interferon. Instead, we found that the chronic interferon response in SAMHD1-deficient mice was driven by the MDA5/MAVS pathway but required functional priming through the cGAS/STING pathway. Our work positions cGAS/STING upstream of tonic IFN signaling in Samhd1-deficient mice and highlights an important role of the pathway in physiological and pathophysiological innate immune priming.
Collapse
Affiliation(s)
- Tina Schumann
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Santiago Costas Ramon
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Schubert
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mohamad Aref Mayo
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Melanie Hega
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Katharina Isabell Maser
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Servi-Remzi Ada
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lukas Sydow
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mona Hajikazemi
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Markus Badstübner
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Patrick Müller
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Yan Ge
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany,Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany,Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin Rupf
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Barbara Utess
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lina Muhandes
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Michael Haase
- Department of Pediatric Surgery, University Hospital Dresden, Dresden, Germany
| | - Luise Rupp
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany,German Cancer Consortium, Partner Site Dresden, and German Cancer Research Center, Heidelberg, Germany
| | - Thomas Gramberg
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolas Manel
- Institut national de la santé et de la recherche médicale U932, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zillinger
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Alexander Gerbaulet
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katrin Paeschke
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Rayk Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany,Correspondence to Rayk Behrendt:
| |
Collapse
|
18
|
Perl A, Agmon-Levin N, Crispín JC, Jorgensen TN. Editorial: New biomarkers for the diagnosis and treatment of systemic lupus erythematosus. Front Immunol 2022; 13:1009038. [PMID: 36311710 PMCID: PMC9599399 DOI: 10.3389/fimmu.2022.1009038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 01/17/2023] Open
Affiliation(s)
- Andras Perl
- Department of Medicine, College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, United States,Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, United States,Department of Microbiology and Immunology, College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, United States,*Correspondence: Andras Perl,
| | - Nancy Agmon-Levin
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Israel
| | - José C. Crispín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Trine N. Jorgensen
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
19
|
Xiong TC, Wei MC, Li FX, Shi M, Gan H, Tang Z, Dong HP, Liuyu T, Gao P, Zhong B, Zhang ZD, Lin D. The E3 ubiquitin ligase ARIH1 promotes antiviral immunity and autoimmunity by inducing mono-ISGylation and oligomerization of cGAS. Nat Commun 2022; 13:5973. [PMID: 36217001 PMCID: PMC9551088 DOI: 10.1038/s41467-022-33671-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) plays a critical role in antiviral immunity and autoimmunity. The activity and stability of cGAS are fine-tuned by post-translational modifications. Here, we show that ariadne RBR E3 ubiquitin protein ligase 1 (ARIH1) catalyzes the mono-ISGylation and induces the oligomerization of cGAS, thereby promoting antiviral immunity and autoimmunity. Knockdown or knockout of ARIH1 significantly inhibits herpes simplex virus 1 (HSV-1)- or cytoplasmic DNA-induced expression of type I interferons (IFNs) and proinflammatory cytokines. Consistently, tamoxifen-treated ER-Cre;Arih1fl/fl mice and Lyz2-Cre; Arih1fl/fl mice are hypersensitive to HSV-1 infection compared with the controls. In addition, deletion of ARIH1 in myeloid cells alleviates the autoimmune phenotypes and completely rescues the autoimmune lethality caused by TREX1 deficiency. Mechanistically, HSV-1- or cytosolic DNA-induced oligomerization and activation of cGAS are potentiated by ISGylation at its K187 residue, which is catalyzed by ARIH1. Our findings thus reveal an important role of ARIH1 in innate antiviral and autoimmune responses and provide insight into the post-translational regulation of cGAS.
Collapse
Affiliation(s)
- Tian-Chen Xiong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Chongqing International Institute for Immunology, Chongqing, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ming-Cong Wei
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fang-Xu Li
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Miao Shi
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hu Gan
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen Tang
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong-Peng Dong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Tianzi Liuyu
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Dong Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Eugster A, Müller D, Gompf A, Reinhardt S, Lindner A, Ashton M, Zimmermann N, Beissert S, Bonifacio E, Günther C. A Novel Type I Interferon Primed Dendritic Cell Subpopulation in TREX1 Mutant Chilblain Lupus Patients. Front Immunol 2022; 13:897500. [PMID: 35911727 PMCID: PMC9327789 DOI: 10.3389/fimmu.2022.897500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022] Open
Abstract
Heterozygous TREX1 mutations are associated with monogenic familial chilblain lupus and represent a risk factor for developing systemic lupus erythematosus. These interferonopathies originate from chronic type I interferon stimulation due to sensing of inadequately accumulating nucleic acids. We here analysed the composition of dendritic cell (DC) subsets, central stimulators of immune responses, in patients with TREX1 deficiency. We performed single-cell RNA-sequencing of peripheral blood DCs and monocytes from two patients with familial chilblain lupus and heterozygous mutations in TREX1 and from controls. Type I interferon pathway genes were strongly upregulated in patients. Cell frequencies of the myeloid and plasmacytoid DC and of monocyte populations in patients and controls were similar, but we describe a novel DC subpopulation highly enriched in patients: a myeloid DC CD1C+ subpopulation characterized by the expression of LMNA, EMP1 and a type I interferon- stimulated gene profile. The presence of this defined subpopulation was confirmed in a second cohort of patients and controls by flow cytometry, also revealing that an increased percentage of patient's cells in the subcluster express costimulatory molecules. We identified a novel type I interferon responsive myeloid DC subpopulation, that might be important for the perpetuation of TREX1-induced chilblain lupus and other type I interferonopathies.
Collapse
Affiliation(s)
- Anne Eugster
- Center for Regenerative Therapies Dresden, Faculty of Medicine Technische Universität (TU), Dresden, Germany
| | - Denise Müller
- Center for Regenerative Therapies Dresden, Faculty of Medicine Technische Universität (TU), Dresden, Germany
| | - Anne Gompf
- Center for Regenerative Therapies Dresden, Faculty of Medicine Technische Universität (TU), Dresden, Germany
| | - Susanne Reinhardt
- Center for Molecular and Cellular Bioengineering (CMCB), DRESDEN-Concept Genome Center Technische Universität, Dresden, Germany
| | - Annett Lindner
- Center for Regenerative Therapies Dresden, Faculty of Medicine Technische Universität (TU), Dresden, Germany
| | - Michelle Ashton
- Center for Regenerative Therapies Dresden, Faculty of Medicine Technische Universität (TU), Dresden, Germany
| | - Nick Zimmermann
- Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Univeristät Dresden, Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Univeristät Dresden, Dresden, Germany
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Faculty of Medicine Technische Universität (TU), Dresden, Germany,Faculty of Medicine, Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Claudia Günther
- Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Univeristät Dresden, Dresden, Germany,*Correspondence: Claudia Günther,
| |
Collapse
|
21
|
Amico G, Hemphill WO, Severino M, Moratti C, Pascarella R, Bertamino M, Napoli F, Volpi S, Rosamilia F, Signa S, Perrino F, Zedde M, Ceccherini I. Genotype-Phenotype Correlation and Functional Insights for Two Monoallelic TREX1 Missense Variants Affecting the Catalytic Core. Genes (Basel) 2022; 13:genes13071179. [PMID: 35885962 PMCID: PMC9323106 DOI: 10.3390/genes13071179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
The TREX1 exonuclease degrades DNA to prevent aberrant nucleic-acid sensing through the cGAS-STING pathway, and dominant Aicardi–Goutières Syndrome type 1 (AGS1) represents one of numerous TREX1-related autoimmune diseases. Monoallelic TREX1 mutations were identified in patients showing early-onset cerebrovascular disease, ascribable to small vessel disease, and CADASIL-like neuroimaging. We report the clinical-neuroradiological features of two patients with AGS-like (Patient A) and CADASIL-like (Patient B) phenotypes carrying the heterozygous p.A136V and p.R174G TREX1 variants, respectively. Genetic findings, obtained by a customized panel including 183 genes associated with monogenic stroke, were combined with interferon signature testing and biochemical assays to determine the mutations’ effects in vitro. Our results for the p.A136V variant are inconsistent with prior biochemistry-pathology correlates for dominant AGS-causing TREX1 mutants. The p.R174G variant modestly altered exonuclease activity in a manner consistent with perturbation of substrate interaction rather than catalysis, which represents the first robust enzymological data for a TREX1 variant identified in a CADASIL-like patient. In conclusion, functional analysis allowed us to interpret the impact of TREX1 variants on patients’ phenotypes. While the p.A136V variant is unlikely to be causative for AGS in Patient A, Patient B’s phenotype is potentially related to the p.R174G variant. Therefore, further functional investigations of TREX1 variants found in CADASIL-like patients are warranted to determine any causal link and interrogate the molecular disease mechanism(s).
Collapse
Affiliation(s)
- Giulia Amico
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy;
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Wayne O. Hemphill
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Correspondence: (W.O.H.); (F.P.)
| | | | - Claudio Moratti
- Neuroradiology Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (C.M.); (R.P.)
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (C.M.); (R.P.)
| | - Marta Bertamino
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Flavia Napoli
- Departments of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Stefano Volpi
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (S.S.)
| | - Francesca Rosamilia
- Biostatistic Unit, Health Science Department (DISSAL), University of Genoa, 16132 Genoa, Italy;
| | - Sara Signa
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (S.S.)
| | - Fred Perrino
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: (W.O.H.); (F.P.)
| | - Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | | |
Collapse
|
22
|
Schubert N, Schumann T, Daum E, Flade K, Ge Y, Hagedorn L, Edelmann W, Müller L, Schmitz M, Kuut G, Hornung V, Behrendt R, Roers A. Genome Replication Is Associated With Release of Immunogenic DNA Waste. Front Immunol 2022; 13:880413. [PMID: 35634291 PMCID: PMC9130835 DOI: 10.3389/fimmu.2022.880413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
Innate DNA sensors detect foreign and endogenous DNA to induce responses to infection and cellular stress or damage. Inappropriate activation by self-DNA triggers severe autoinflammatory conditions, including Aicardi-Goutières syndrome (AGS) that can be caused by defects of the cytosolic DNase 3’repair exonuclease 1 (TREX1). TREX1 loss-of-function alleles are also associated with systemic lupus erythematosus (SLE). Chronic activation of innate antiviral immunity in TREX1-deficient cells depends on the DNA sensor cGAS, implying that accumulating TREX1 DNA substrates cause the inflammatory pathology. Retrotransposon-derived cDNAs were shown to activate cGAS in TREX1-deficient neuronal cells. We addressed other endogenous sources of cGAS ligands in cells lacking TREX1. We find that induced loss of TREX1 in primary cells induces a rapid IFN response that requires ongoing proliferation. The inflammatory phenotype of Trex1-/- mice was partially rescued by additional knock out of exonuclease 1, a multifunctional enzyme providing 5’ flap endonuclease activity for Okazaki fragment processing and postreplicative ribonucleotide excision repair. Our data imply genome replication as a source of DNA waste with pathogenic potential that is efficiently degraded by TREX1.
Collapse
Affiliation(s)
- Nadja Schubert
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Tina Schumann
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Elena Daum
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Karolin Flade
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Yan Ge
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Lara Hagedorn
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Luise Müller
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gunnar Kuut
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rayk Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
GM-CSF Protects Macrophages from DNA Damage by Inducing Differentiation. Cells 2022; 11:cells11060935. [PMID: 35326386 PMCID: PMC8946476 DOI: 10.3390/cells11060935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
At inflammatory loci, pro-inflammatory activation of macrophages produces large amounts of reactive oxygen species (ROS) that induce DNA breaks and apoptosis. Given that M-CSF and GM-CSF induce two different pathways in macrophages, one for proliferation and the other for survival, in this study we wanted to determine if these growth factors are able to protect against the DNA damage produced during macrophage activation. In macrophages treated with DNA-damaging agents we found that GM-CSF protects better against DNA damage than M-CSF. Treatment with GM-CSF resulted in faster recovery of DNA damage than treatment with M-CSF. The number of apoptotic cells induced after DNA damage was higher in the presence of M-CSF. Protection against DNA damage by GM-CSF is not related to its higher capacity to induce proliferation. GM-CSF induces differentiation markers such as CD11c and MHCII, as well as the pro-survival Bcl-2A1 protein, which make macrophages more resistant to DNA damage.
Collapse
|
24
|
Ohto T, Tayeh AA, Nishikomori R, Abe H, Hashimoto K, Baba S, Arias-Loza AP, Soda N, Satoh S, Matsuda M, Iizuka Y, Kondo T, Koseki H, Yan N, Higuchi T, Fujita T, Kato H. Intracellular virus sensor MDA5 mutation develops autoimmune myocarditis and nephritis. J Autoimmun 2022; 127:102794. [PMID: 35168003 DOI: 10.1016/j.jaut.2022.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
Abstract
Mutations in IFIH1 gene encoding viral RNA sensor MDA5 have been reported responsible for many interferonopathies, including Aicardi-Goutières syndrome (AGS) and monogenic lupus, however, the pathological link between IFIH1 mutations and various autoimmune symptoms remains unclear. Here, we generated transgenic mice expressing human MDA5 R779H mutant (R779H Tg), reported in AGS and monogenic lupus patient. Mice spontaneously developed myocarditis and nephritis with upregulation of type I IFNs in the major organs. R779H Tg Mavs-/- and R779H Tg Ifnar-/- showed no phenotypes, indicating direct MDA5-signaling pathway involvement. Rag-2 deficiency and bone marrow cells transfer from wild type to adult mice did not prevent myocarditis development, while mice with cardiomyocyte-specific expression of hMDA5 R779H showed cardiomegaly and high expression of inflammatory cytokines. Taken together, our study clarifies that type I IFNs production and chemokines from cardiomyocytes starts in neonatal period and is critical for the development of myocarditis. Activated lymphocytes and auto-antibodies exacerbate the pathogenesis but are dispensable for the onset.
Collapse
Affiliation(s)
- Taisuke Ohto
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ahmed Abu Tayeh
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine Kurume, Japan
| | - Hiroto Abe
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Japan
| | - Kyota Hashimoto
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Japan
| | - Shiro Baba
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Anahi-Paula Arias-Loza
- Graduate School of Medicine, Dentistry and Parmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nobumasa Soda
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Japan
| | - Saya Satoh
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Masashi Matsuda
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Yusuke Iizuka
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Takashi Kondo
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Takahiro Higuchi
- Molecular Imaging of the Heart, Comprehensive Heart Failure Center (CHFC) and Department of Nuclear Medicine, University Hospital Würzburg, Germany; Graduate School of Medicine, Dentistry and Parmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takashi Fujita
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Japan; Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Hiroki Kato
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Japan; Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
25
|
Lindahl H, Bryceson YT. Neuroinflammation Associated With Inborn Errors of Immunity. Front Immunol 2022; 12:827815. [PMID: 35126383 PMCID: PMC8807658 DOI: 10.3389/fimmu.2021.827815] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 01/16/2023] Open
Abstract
The advent of high-throughput sequencing has facilitated genotype-phenotype correlations in congenital diseases. This has provided molecular diagnosis and benefited patient management but has also revealed substantial phenotypic heterogeneity. Although distinct neuroinflammatory diseases are scarce among the several thousands of established congenital diseases, elements of neuroinflammation are increasingly recognized in a substantial proportion of inborn errors of immunity, where it may even dominate the clinical picture at initial presentation. Although each disease entity is rare, they collectively can constitute a significant proportion of neuropediatric patients in tertiary care and may occasionally also explain adult neurology patients. We focus this review on the signs and symptoms of neuroinflammation that have been reported in association with established pathogenic variants in immune genes and suggest the following subdivision based on proposed underlying mechanisms: autoinflammatory disorders, tolerance defects, and immunodeficiency disorders. The large group of autoinflammatory disorders is further subdivided into IL-1β-mediated disorders, NF-κB dysregulation, type I interferonopathies, and hemophagocytic syndromes. We delineate emerging pathogenic themes underlying neuroinflammation in monogenic diseases and describe the breadth of the clinical spectrum to support decisions to screen for a genetic diagnosis and encourage further research on a neglected phenomenon.
Collapse
Affiliation(s)
- Hannes Lindahl
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T. Bryceson
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Brogelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
26
|
Aditi, Downing SM, Schreiner PA, Kwak YD, Li Y, Shaw TI, Russell HR, McKinnon PJ. Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair. Neuron 2021; 109:3962-3979.e6. [PMID: 34655526 PMCID: PMC8686690 DOI: 10.1016/j.neuron.2021.09.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022]
Abstract
Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H2 (RNASEH2) is a genome surveillance factor critical for DNA integrity by removing ribonucleotides incorporated into replicating DNA. Here we show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes and neuroinflammation. Cerebellar defects after RNASEH2B inactivation are rescued by p53 but not cGAS deletion, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology. Coincident inactivation of Atm and Rnaseh2 further affected cerebellar development causing ataxia, which was dependent upon aberrant activation of non-homologous end-joining (NHEJ). The loss of ATM also markedly exacerbates cGAS-dependent type I interferon signaling. Thus, DNA damage-dependent signaling rather than type I interferon signaling underlies neurodegeneration in this class of neurodevelopmental/neuroinflammatory disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Susanna M Downing
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick A Schreiner
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Young Don Kwak
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yang Li
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Helen R Russell
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
27
|
Li F, Wang N, Zheng Y, Luo Y, Zhang Y. cGAS- Stimulator of Interferon Genes Signaling in Central Nervous System Disorders. Aging Dis 2021; 12:1658-1674. [PMID: 34631213 PMCID: PMC8460300 DOI: 10.14336/ad.2021.0304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Cytosolic nucleic acid sensors contribute to the initiation of innate immune responses by playing a critical role in the detection of pathogens and endogenous nucleic acids. The cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS) and its downstream effector, stimulator of interferon genes (STING), mediate innate immune signaling by promoting the release of type I interferons (IFNs) and other inflammatory cytokines. These biomolecules are suggested to play critical roles in host defense, senescence, and tumor immunity. Recent studies have demonstrated that cGAS-STING signaling is strongly implicated in the pathogenesis of central nervous system (CNS) diseases which are underscored by neuroinflammatory-driven disease progression. Understanding and regulating the interactions between cGAS-STING signaling and the nervous system may thus provide an effective approach to prevent or delay late-onset CNS disorders. Here, we present a review of recent advances in the literature on cGAS-STING signaling and provide a comprehensive overview of the modulatory patterns of the cGAS-STING pathway in CNS disorders.
Collapse
Affiliation(s)
- Fengjuan Li
- 1Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ningqun Wang
- 2Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yangmin Zheng
- 2Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yumin Luo
- 2Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yongbo Zhang
- 1Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
28
|
Aicardi-Goutières syndrome-associated mutation at ADAR1 gene locus activates innate immune response in mouse brain. J Neuroinflammation 2021; 18:169. [PMID: 34332594 PMCID: PMC8325854 DOI: 10.1186/s12974-021-02217-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Aicardi-Goutières syndrome (AGS) is a severe infant or juvenile-onset autoimmune disease characterized by inflammatory encephalopathy with an elevated type 1 interferon-stimulated gene (ISG) expression signature in the brain. Mutations in seven different protein-coding genes, all linked to DNA/RNA metabolism or sensing, have been identified in AGS patients, but none of them has been demonstrated to activate the IFN pathway in the brain of an animal. The molecular mechanism of inflammatory encephalopathy in AGS has not been well defined. Adenosine Deaminase Acting on RNA 1 (ADAR1) is one of the AGS-associated genes. It carries out A-to-I RNA editing that converts adenosine to inosine at double-stranded RNA regions. Whether an AGS-associated mutation in ADAR1 activates the IFN pathway and causes autoimmune pathogenesis in the brain is yet to be determined. Methods Mutations in the ADAR1 gene found in AGS patients were introduced into the mouse genome via CRISPR/Cas9 technology. Molecular activities of the specific p.K999N mutation were investigated by measuring the RNA editing levels in brain mRNA substrates of ADAR1 through RNA sequencing analysis. IFN pathway activation in the brain was assessed by measuring ISG expression at the mRNA and protein level through real-time RT-PCR and Luminex assays, respectively. The locations in the brain and neural cell types that express ISGs were determined by RNA in situ hybridization (ISH). Potential AGS-related brain morphologic changes were assessed with immunohistological analysis. Von Kossa and Luxol Fast Blue staining was performed on brain tissue to assess calcification and myelin, respectively. Results Mice bearing the ADAR1 p.K999N were viable though smaller than wild type sibs. RNA sequencing analysis of neuron-specific RNA substrates revealed altered RNA editing activities of the mutant ADAR1 protein. Mutant mice exhibited dramatically elevated levels of multiple ISGs within the brain. RNA ISH of brain sections showed selective activation of ISG expression in neurons and microglia in a patchy pattern. ISG-15 mRNA was upregulated in ADAR1 mutant brain neurons whereas CXCL10 mRNA was elevated in adjacent astroglia. No calcification or gliosis was detected in the mutant brain. Conclusions We demonstrated that an AGS-associated mutation in ADAR1, specifically the p.K999N mutation, activates the IFN pathway in the mouse brain. The ADAR1 p.K999N mutant mouse replicates aspects of the brain interferonopathy of AGS. Neurons and microglia express different ISGs. Basal ganglia calcification and leukodystrophy seen in AGS patients were not observed in K999N mutant mice, indicating that development of the full clinical phenotype may need an additional stimulus besides AGS mutations. This mutant mouse presents a robust tool for the investigation of AGS and neuroinflammatory diseases including the modeling of potential “second hits” that enable severe phenotypes of clinically variable diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02217-9.
Collapse
|
29
|
Jütte BB, Krollmann C, Cieslak K, Koerber RM, Boor P, Graef CM, Bartok E, Wagner M, Carell T, Landsberg J, Aymans P, Wenzel J, Brossart P, Teichmann LL. Intercellular cGAMP transmission induces innate immune activation and tissue inflammation in Trex1 deficiency. iScience 2021; 24:102833. [PMID: 34368651 PMCID: PMC8326191 DOI: 10.1016/j.isci.2021.102833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022] Open
Abstract
Intercellular transmission of the second messenger 2′,3′-cGAMP, synthesized by the viral DNA sensor cGAMP synthase (cGAS), is a potent mode of bystander activation during host defense. However, whether this mechanism also contributes to cGAS-dependent autoimmunity remains unknown. Here, using a murine bone marrow transplantation strategy, we demonstrate that, in Trex1−/−-associated autoimmunity, cGAMP shuttling from radioresistant to immune cells induces NF-κB activation, interferon regulatory factor 3 (IRF3) phosphorylation, and subsequent interferon signaling. cGAMP travel prevented myeloid cell and lymphocyte death, promoting their accumulation in secondary lymphoid tissue. Nonetheless, it did not stimulate B cell differentiation into autoantibody-producing plasmablasts or aberrant T cell priming. Although cGAMP-mediated bystander activation did not induce spontaneous organ disease, it did trigger interface dermatitis after UV light exposure, similar to cutaneous lupus erythematosus. These findings reveal that, in Trex1-deficiency, intercellular cGAMP transfer propagates cGAS signaling and, under conducive conditions, causes tissue inflammation. In Trex1−/−-associated autoimmunity radioresistant cells transfer cGAMP to immune cells cGAMP shuttling induces NF-κB activation, IRF3 and IFN signaling in vivo Intercellular cGAMP transmission is sufficient to cause UV skin inflammation
Collapse
Affiliation(s)
- Bianca B. Jütte
- Department of Medicine III, University Hospital Bonn, Bonn, Germany
| | - Calvin Krollmann
- Department of Medicine III, University Hospital Bonn, Bonn, Germany
| | - Kevin Cieslak
- Department of Medicine III, University Hospital Bonn, Bonn, Germany
| | | | - Peter Boor
- Institute of Pathology and Division of Nephrology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Claus M. Graef
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Eva Bartok
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- Unit of Experimental Immunology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Mirko Wagner
- Department of Chemistry, Ludwig Maximilians University Munich, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig Maximilians University Munich, Munich, Germany
| | | | - Pia Aymans
- Department of Dermatology, University Hospital Bonn, Bonn, Germany
| | - Jörg Wenzel
- Department of Dermatology, University Hospital Bonn, Bonn, Germany
| | - Peter Brossart
- Department of Medicine III, University Hospital Bonn, Bonn, Germany
| | - Lino L. Teichmann
- Department of Medicine III, University Hospital Bonn, Bonn, Germany
- Corresponding author
| |
Collapse
|
30
|
Yum S, Li M, Fang Y, Chen ZJ. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc Natl Acad Sci U S A 2021; 118:e2100225118. [PMID: 33785602 PMCID: PMC8040795 DOI: 10.1073/pnas.2100225118] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The induction of type I interferons through the transcription factor interferon regulatory factor 3 (IRF3) is considered a major outcome of stimulator of interferon genes (STING) activation that drives immune responses against DNA viruses and tumors. However, STING activation can also trigger other downstream pathways such as nuclear factor κB (NF-κB) signaling and autophagy, and the roles of interferon (IFN)-independent functions of STING in infectious diseases or cancer are not well understood. Here, we generated a STING mouse strain with a mutation (S365A) that disrupts IRF3 binding and therefore type I interferon induction but not NF-κB activation or autophagy induction. We also generated STING mice with mutations that disrupt the recruitment of TANK-binding kinase 1 (TBK1), which is important for both IRF3 and NF-κB activation but not autophagy induction (L373A or ∆CTT, which lacks the C-terminal tail). The STING-S365A mutant mice, but not L373A or ∆CTT mice, were still resistant to herpes simplex virus 1 (HSV-1) infections and mounted an antitumor response after cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) treatment despite the absence of STING-induced interferons. These results demonstrate that STING can function independently of type I interferons and autophagy, and that TBK1 recruitment to STING is essential for antiviral and antitumor immunity.
Collapse
Affiliation(s)
- Seoyun Yum
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Minghao Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Yan Fang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148;
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| |
Collapse
|
31
|
Hemphill WO, Simpson SR, Liu M, Salsbury FR, Hollis T, Grayson JM, Perrino FW. TREX1 as a Novel Immunotherapeutic Target. Front Immunol 2021; 12:660184. [PMID: 33868310 PMCID: PMC8047136 DOI: 10.3389/fimmu.2021.660184] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in the TREX1 3' → 5' exonuclease are associated with a spectrum of autoimmune disease phenotypes in humans and mice. Failure to degrade DNA activates the cGAS-STING DNA-sensing pathway signaling a type-I interferon (IFN) response that ultimately drives immune system activation. TREX1 and the cGAS-STING DNA-sensing pathway have also been implicated in the tumor microenvironment, where TREX1 is proposed to degrade tumor-derived DNA that would otherwise activate cGAS-STING. If tumor-derived DNA were not degraded, the cGAS-STING pathway would be activated to promote IFN-dependent antitumor immunity. Thus, we hypothesize TREX1 exonuclease inhibition as a novel immunotherapeutic strategy. We present data demonstrating antitumor immunity in the TREX1 D18N mouse model and discuss theory surrounding the best strategy for TREX1 inhibition. Potential complications of TREX1 inhibition as a therapeutic strategy are also discussed.
Collapse
Affiliation(s)
- Wayne O. Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sean R. Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mingyong Liu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States
| | - Thomas Hollis
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jason M. Grayson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fred W. Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
32
|
Santa P, Garreau A, Serpas L, Ferriere A, Blanco P, Soni C, Sisirak V. The Role of Nucleases and Nucleic Acid Editing Enzymes in the Regulation of Self-Nucleic Acid Sensing. Front Immunol 2021; 12:629922. [PMID: 33717156 PMCID: PMC7952454 DOI: 10.3389/fimmu.2021.629922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Detection of microbial nucleic acids by the innate immune system is mediated by numerous intracellular nucleic acids sensors. Upon the detection of nucleic acids these sensors induce the production of inflammatory cytokines, and thus play a crucial role in the activation of anti-microbial immunity. In addition to microbial genetic material, nucleic acid sensors can also recognize self-nucleic acids exposed extracellularly during turn-over of cells, inefficient efferocytosis, or intracellularly upon mislocalization. Safeguard mechanisms have evolved to dispose of such self-nucleic acids to impede the development of autoinflammatory and autoimmune responses. These safeguard mechanisms involve nucleases that are either specific to DNA (DNases) or RNA (RNases) as well as nucleic acid editing enzymes, whose biochemical properties, expression profiles, functions and mechanisms of action will be detailed in this review. Fully elucidating the role of these enzymes in degrading and/or processing of self-nucleic acids to thwart their immunostimulatory potential is of utmost importance to develop novel therapeutic strategies for patients affected by inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Pauline Santa
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Anne Garreau
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | | | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Immunology and Immunogenetic Department, Bordeaux University Hospital, Bordeaux, France
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| |
Collapse
|
33
|
Turnier JL, Kahlenberg JM. The Role of Cutaneous Type I IFNs in Autoimmune and Autoinflammatory Diseases. THE JOURNAL OF IMMUNOLOGY 2020; 205:2941-2950. [PMID: 33229366 DOI: 10.4049/jimmunol.2000596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/18/2020] [Indexed: 01/31/2023]
Abstract
IFNs are well known as mediators of the antimicrobial response but also serve as important immunomodulatory cytokines in autoimmune and autoinflammatory diseases. An increasingly critical role for IFNs in evolution of skin inflammation in these patients has been recognized. IFNs are produced not only by infiltrating immune but also resident skin cells, with increased baseline IFN production priming for inflammatory cell activation, immune response amplification, and development of skin lesions. The IFN response differs by cell type and host factors and may be modified by other inflammatory pathway activation specific to individual diseases, leading to differing clinical phenotypes. Understanding the contribution of IFNs to skin and systemic disease pathogenesis is key to development of new therapeutics and improved patient outcomes. In this review, we summarize the immunomodulatory role of IFNs in skin, with a focus on type I, and provide insight into IFN dysregulation in autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Jessica L Turnier
- Department of Pediatrics, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109; and
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
34
|
Onizawa H, Kato H, Kimura H, Kudo T, Soda N, Shimizu S, Funabiki M, Yagi Y, Nakamoto Y, Priller J, Nishikomori R, Heike T, Yan N, Tsujimura T, Mimori T, Fujita T. Aicardi-Goutières syndrome-like encephalitis in mutant mice with constitutively active MDA5. Int Immunol 2020; 33:225-240. [PMID: 33165593 DOI: 10.1093/intimm/dxaa073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/31/2020] [Indexed: 12/25/2022] Open
Abstract
MDA5 is a cytoplasmic sensor of viral RNA, triggering type I interferon (IFN-I) production. Constitutively active MDA5 has been linked to autoimmune diseases such as systemic lupus erythematosus, Singleton-Merten syndrome (SMS) and Aicardi-Goutières syndrome (AGS), a genetically determined inflammatory encephalopathy. However, AGS research is challenging due to the lack of animal models. We previously reported lupus-like nephritis and SMS-like bone abnormalities in adult mice with constitutively active MDA5 (Ifih1G821S/+), and herein demonstrate that these mice also exhibit high lethality and spontaneous encephalitis with high IFN-I production during the early postnatal period. Increases in the number of microglia were observed in MDA5/MAVS signaling- and IFN-I-dependent manners. Furthermore, microglia showed an activated state with an increased phagocytic capability and reduced expression of neurotrophic factors. Although multiple auto-antibodies including lupus-related ones were detected in the sera of the mice as well as AGS patients, Ifih1G821S/+Rag2-/- mice also exhibited up-regulation of IFN-I, astrogliosis and microgliosis, indicating that auto-antibodies or lymphocytes are not required for the development of the encephalitis. The IFN-I signature without lymphocytic infiltration observed in Ifih1G821S/+ mice is a typical feature of AGS. Collectively, our results suggest that the Ifih1G821S/+ mice are a model recapitulating AGS and that microglia are a potential target for AGS therapy.
Collapse
Affiliation(s)
- Hideo Onizawa
- Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science.,Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroki Kato
- Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science.,Institue of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tomoo Kudo
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Nobumasa Soda
- Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science
| | - Shota Shimizu
- Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science
| | - Masahide Funabiki
- Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science.,Department of Clinical Immunology and Rheumatology, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Yusuke Yagi
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany.,University of Edinburgh and UK DRI, Edinburgh, UK
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Science, Kurume, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Ijinkai Takeda General Hospital, Kyoto, Japan
| | - Takashi Fujita
- Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science
| |
Collapse
|
35
|
Forrer Charlier C, Martins RAP. Protective Mechanisms Against DNA Replication Stress in the Nervous System. Genes (Basel) 2020; 11:E730. [PMID: 32630049 PMCID: PMC7397197 DOI: 10.3390/genes11070730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The precise replication of DNA and the successful segregation of chromosomes are essential for the faithful transmission of genetic information during the cell cycle. Alterations in the dynamics of genome replication, also referred to as DNA replication stress, may lead to DNA damage and, consequently, mutations and chromosomal rearrangements. Extensive research has revealed that DNA replication stress drives genome instability during tumorigenesis. Over decades, genetic studies of inherited syndromes have established a connection between the mutations in genes required for proper DNA repair/DNA damage responses and neurological diseases. It is becoming clear that both the prevention and the responses to replication stress are particularly important for nervous system development and function. The accurate regulation of cell proliferation is key for the expansion of progenitor pools during central nervous system (CNS) development, adult neurogenesis, and regeneration. Moreover, DNA replication stress in glial cells regulates CNS tumorigenesis and plays a role in neurodegenerative diseases such as ataxia telangiectasia (A-T). Here, we review how replication stress generation and replication stress response (RSR) contribute to the CNS development, homeostasis, and disease. Both cell-autonomous mechanisms, as well as the evidence of RSR-mediated alterations of the cellular microenvironment in the nervous system, were discussed.
Collapse
Affiliation(s)
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
36
|
Simpson SR, Hemphill WO, Hudson T, Perrino FW. TREX1 - Apex predator of cytosolic DNA metabolism. DNA Repair (Amst) 2020; 94:102894. [PMID: 32615442 DOI: 10.1016/j.dnarep.2020.102894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
The cytosolic Three prime Repair EXonuclease 1 (TREX1) is a powerful DNA-degrading enzyme required for clearing cytosolic DNA to prevent aberrant inflammation and autoimmunity. In the absence of TREX1 activity, cytosolic DNA pattern recognition receptors of the innate immune system are constitutively activated by undegraded TREX1 substrates. This triggers a chronic inflammatory response in humans expressing mutant TREX1 alleles, eliciting a spectrum of rare autoimmune diseases dependent on the nature of the mutation. The precise origins of cytosolic DNA targeted by TREX1 continue to emerge, but DNA emerging from the nucleus or taken up by the cell could represent potential sources. In this Review, we explore the biochemical and immunological data supporting the role of TREX1 in suppressing cytosolic DNA sensing, and discuss the possibility that TREX1 may contribute to maintenance of genome integrity.
Collapse
Affiliation(s)
- Sean R Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Wayne O Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Teesha Hudson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
37
|
Simpson SR, Rego SL, Harvey SE, Liu M, Hemphill WO, Venkatadri R, Sharma R, Grayson JM, Perrino FW. T Cells Produce IFN-α in the TREX1 D18N Model of Lupus-like Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:348-359. [PMID: 31826941 PMCID: PMC6946867 DOI: 10.4049/jimmunol.1900220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023]
Abstract
Autoimmunity can result when cells fail to properly dispose of DNA. Mutations in the three-prime repair exonuclease 1 (TREX1) cause a spectrum of human autoimmune diseases resembling systemic lupus erythematosus. The cytosolic dsDNA sensor, cyclic GMP-AMP synthase (cGAS), and the stimulator of IFN genes (STING) are required for pathogenesis, but specific cells in which DNA sensing and subsequent type I IFN (IFN-I) production occur remain elusive. In this study, we demonstrate that TREX1 D18N catalytic deficiency causes dysregulated IFN-I signaling and autoimmunity in mice. Moreover, we show that bone marrow-derived cells drive this process. We identify both innate immune and, surprisingly, activated T cells as sources of pathological IFN-α production. These findings demonstrate that TREX1 enzymatic activity is crucial to prevent inappropriate DNA sensing and IFN-I production in immune cells, including normally low-level IFN-α-producing cells. These results expand our understanding of DNA sensing and innate immunity in T cells and may have relevance to the pathogenesis of human disease caused by TREX1 mutation.
Collapse
Affiliation(s)
- Sean R Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Stephen L Rego
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Scott E Harvey
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Mingyong Liu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157; and
| | - Wayne O Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Rajkumar Venkatadri
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157; and
| | - Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157;
| |
Collapse
|
38
|
Marks ZRC, Campbell N, deWeerd NA, Lim SS, Gearing LJ, Bourke NM, Hertzog PJ. PROPERTIES AND FUNCTIONS OF THE NOVEL TYPE I INTERFERON EPSILON. Semin Immunol 2019; 43:101328. [PMID: 31734130 DOI: 10.1016/j.smim.2019.101328] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022]
Abstract
Interferon epsilon (IFNε) is a type I IFN with unusual patterns of expression and therefore, function. It is constitutively expressed by reproductive tract epithelium and regulated by hormones during estrus cycle, reproduction, and menopause and by exogenous hormones. The IFNe protein is encoded by a gene in the type I IFN locus, binds to IFNAR1 and 2 which are required for signaling via the JAK STAT pathway. Its affinity for binding receptors and transducing signals is less potent than IFNα or β subtypes in vitro. Nevertheless, in vivo experiments indicate its efficacy in regulating mucosal immune responses and protecting from bacterial and viral infections. These studies demonstrate a different mechanism of action to type I IFNs. In this organ system with dynamic fluxes in cellularity, requirement to tolerate an implanted fetus, and be protected from disease, there is co-option of a special IFN from a family of effective immunoregulators, with unique controls and modified potency to make it a safe and effective constitutive reproductive tract cytokine.
Collapse
Affiliation(s)
- Zoe R C Marks
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University Clayton Victoria, Australia
| | - Nicole Campbell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University Clayton Victoria, Australia
| | - Nicole A deWeerd
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University Clayton Victoria, Australia
| | - San S Lim
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University Clayton Victoria, Australia
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University Clayton Victoria, Australia
| | - Nollaig M Bourke
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University Clayton Victoria, Australia; Department of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University Clayton Victoria, Australia.
| |
Collapse
|
39
|
West PK, Viengkhou B, Campbell IL, Hofer MJ. Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia 2019; 67:1821-1841. [PMID: 31033014 DOI: 10.1002/glia.23634] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 01/03/2025]
Abstract
Microglia are the resident macrophages of the central nervous system (CNS). They are a heterogenous, exquisitely responsive, and highly plastic cell population, which enables them to perform diverse roles. They sense and respond to the local production of many different signals, including an assorted range of cytokines. Microglia respond strongly to interleukin-6 (IL-6) and members of the type I interferon (IFN-I) family, IFN-alpha (IFN-α), and IFN-beta (IFN-β). Although these cytokines are essential in maintaining homeostasis and for activating and regulating immune responses, their chronic production has been linked to the development of distinct human neurological diseases, termed "cerebral cytokinopathies." IL-6 and IFN-α have been identified as key mediators in the pathogenesis of neuroinflammatory disorders including neuromyelitis optica and Aicardi-Goutières syndrome, respectively, whereas IFN-β has an emerging role as a causal factor in age-associated cognitive decline. One of the key features that unites these diseases is the presence of highly reactive microglia. The current understanding is that microglia contribute to the development of cerebral cytokinopathies and represent an important therapeutic target. However, it remains to be resolved whether microglia have beneficial or detrimental effects. Here we review and discuss what is currently known about the microglial response to IL-6 and IFN-I, based on both animal models and clinical studies. Foundational knowledge regarding the microglial response to IL-6 and IFN-I is now being used to devise therapeutic strategies to ameliorate neuroinflammation and promote repair: either through targeting microglia, or by targeting the reduction of CNS levels or downstream biological pathways of IL-6 or IFN-I.
Collapse
Affiliation(s)
- Phillip K West
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Barney Viengkhou
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Iain L Campbell
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Abstract
Healthy tissues of the body express relatively low basal levels of interferons. However, following detection of microbial invasion by sentinel receptors, a cascade of events initiates leading to the transcriptional induction of interferon genes. Interferons are secreted and act primarily as paracrine cytokines to bind neighboring cell surface receptors. Binding to interferon receptors activates a signal pathway to the nucleus inducing a set of interferon-stimulated genes. The biological activity of these genes confers the unique antiviral and innate immune response of interferons. The rapid induction of interferons is critical to survival, and equally critical is the recovery from this defensive state. Either an aberrant response to infection or an inherited genetic disorder that leads to sustained or increased interferon levels can tip the balance towards pathogenesis.
Collapse
Affiliation(s)
- Nancy C Reich
- Stony Brook University, Dept Molecular Genetics & Microbiology, 11796 Stony Brook, NY, USA.
| |
Collapse
|
41
|
Kumar V. A STING to inflammation and autoimmunity. J Leukoc Biol 2019; 106:171-185. [PMID: 30990921 DOI: 10.1002/jlb.4mir1018-397rr] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
Various intracellular pattern recognition receptors (PRRs) recognize cytosolic pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Cyclic GMP-AMP synthase (cGAS), a cytosolic PRR, recognizes cytosolic nucleic acids including dsDNAs. The recognition of dsDNA by cGAS generates cyclic GMP-AMP (GAMP). The cGAMP is then recognized by STING generating type 1 IFNs and NF-κB-mediated generation of pro-inflammatory cytokines and molecules. Thus, cGAS-STING signaling mediated recognition of cytosolic dsDNA causing the induction of type 1 IFNs plays a crucial role in innate immunity against cytosolic pathogens, PAMPs, and DAMPs. The overactivation of this system may lead to the development of autoinflammation and autoimmune diseases. The article opens with the introduction of different PRRs involved in the intracellular recognition of dsDNA and gives a brief introduction of cGAS-STING signaling. The second section briefly describes cGAS as intracellular PRR required to recognize intracellular nucleic acids (dsDNA and CDNs) and the formation of cGAMP. The cGAMP acts as a second messenger to activate STING- and TANK-binding kinase 1-mediated generation of type 1 IFNs and the activation of NF-κB. The third section of the article describes the role of cGAS-STING signaling in the induction of autoinflammation and various autoimmune diseases. The subsequent fourth section describes both chemical compounds developed and the endogenous negative regulators of cGAS-STING signaling required for its regulation. Therapeutic targeting of cGAS-STING signaling could offer new ways to treat inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
42
|
Mathavarajah S, Salsman J, Dellaire G. An emerging role for calcium signalling in innate and autoimmunity via the cGAS-STING axis. Cytokine Growth Factor Rev 2019; 50:43-51. [PMID: 30955997 DOI: 10.1016/j.cytogfr.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
Type I interferons are effector cytokines essential for the regulation of the innate immunity. A key effector of the type I interferon response that is dysregulated in autoimmunity and cancer is the cGAS-STING signalling axis. Recent work suggests that calcium and associated signalling proteins can regulate both cGAS-STING and autoimmunity. How calcium regulates STING activation is complex and involves both stimulatory and inhibitory mechanisms. One of these is calmodulin-mediated signalling that is necessary for STING activation. The alterations in calcium flux that occur during STING activation can also regulate autophagy, which in turn plays a role in innate immunity through the clearance of intracellular pathogens. Also connected to calcium signalling pathways is the cGAS inhibitor TREX1, a cytoplasmic exonuclease linked to several autoimmune diseases including systemic lupus erythematosus (SLE). In this review, we summarize these and other findings that indicate a regulatory role for calcium signalling in innate and autoimmunity through the cGAS-STING pathway.
Collapse
Affiliation(s)
| | - Jayme Salsman
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
43
|
Gregg RW, Sarkar SN, Shoemaker JE. Mathematical modeling of the cGAS pathway reveals robustness of DNA sensing to TREX1 feedback. J Theor Biol 2019; 462:148-157. [DOI: 10.1016/j.jtbi.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/09/2018] [Accepted: 11/01/2018] [Indexed: 01/12/2023]
|
44
|
Scheu S, Ali S, Mann-Nüttel R, Richter L, Arolt V, Dannlowski U, Kuhlmann T, Klotz L, Alferink J. Interferon β-Mediated Protective Functions of Microglia in Central Nervous System Autoimmunity. Int J Mol Sci 2019; 20:E190. [PMID: 30621022 PMCID: PMC6337097 DOI: 10.3390/ijms20010190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination and axonal damage. It often affects young adults and can lead to neurological disability. Interferon β (IFNβ) preparations represent widely used treatment regimens for patients with relapsing-remitting MS (RRMS) with therapeutic efficacy in reducing disease progression and frequency of acute exacerbations. In mice, IFNβ therapy has been shown to ameliorate experimental autoimmune encephalomyelitis (EAE), an animal model of MS while genetic deletion of IFNβ or its receptor augments clinical severity of disease. However, the complex mechanism of action of IFNβ in CNS autoimmunity has not been fully elucidated. Here, we review our current understanding of the origin, phenotype, and function of microglia and CNS immigrating macrophages in the pathogenesis of MS and EAE. In addition, we highlight the emerging roles of microglia as IFNβ-producing cells and vice versa the impact of IFNβ on microglia in CNS autoimmunity. We finally discuss recent progress in unraveling the underlying molecular mechanisms of IFNβ-mediated effects in EAE.
Collapse
Affiliation(s)
- Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany.
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany.
- Cells in Motion, Cluster of Excellence, University of Münster, 48149 Münster, Germany.
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany.
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany.
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany.
| | - Luisa Klotz
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Judith Alferink
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany.
- Cells in Motion, Cluster of Excellence, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
45
|
Changes in the biochemical taste of cytoplasmic and cell-free DNA are major fuels for inflamm-aging. Semin Immunol 2018; 40:6-16. [DOI: 10.1016/j.smim.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
|
46
|
Vijay N, Chande A. A hypothetical new role for single-stranded DNA binding proteins in the immune system. Immunobiology 2018; 223:671-676. [DOI: 10.1016/j.imbio.2018.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
|
47
|
Matz KM, Guzman RM, Goodman AG. The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:35-136. [PMID: 30904196 PMCID: PMC6445394 DOI: 10.1016/bs.ircmb.2018.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate immunity, the first line of defense against invading pathogens, is an ancient form of host defense found in all animals, from sponges to humans. During infection, innate immune receptors recognize conserved molecular patterns, such as microbial surface molecules, metabolites produces during infection, or nucleic acids of the microbe's genome. When initiated, the innate immune response activates a host defense program that leads to the synthesis proteins capable of pathogen killing. In mammals, the induction of cytokines during the innate immune response leads to the recruitment of professional immune cells to the site of infection, leading to an adaptive immune response. While a fully functional innate immune response is crucial for a proper host response and curbing microbial infection, if the innate immune response is dysfunctional and is activated in the absence of infection, autoinflammation and autoimmune disorders can develop. Therefore, it follows that the innate immune response must be tightly controlled to avoid an autoimmune response from host-derived molecules, yet still unencumbered to respond to infection. In this review, we will focus on the innate immune response activated from cytosolic nucleic acids, derived from the microbe or host itself. We will depict how viruses and bacteria activate these nucleic acid sensing pathways and their mechanisms to inhibit the pathways. We will also describe the autoinflammatory and autoimmune disorders that develop when these pathways are hyperactive. Finally, we will discuss gaps in knowledge with regard to innate immune response failure and identify where further research is needed.
Collapse
Affiliation(s)
- Keesha M Matz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - R Marena Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States; Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States.
| |
Collapse
|
48
|
Haag SM, Gulen MF, Reymond L, Gibelin A, Abrami L, Decout A, Heymann M, van der Goot FG, Turcatti G, Behrendt R, Ablasser A. Targeting STING with covalent small-molecule inhibitors. Nature 2018; 559:269-273. [PMID: 29973723 DOI: 10.1038/s41586-018-0287-8] [Citation(s) in RCA: 669] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
Aberrant activation of innate immune pathways is associated with a variety of diseases. Progress in understanding the molecular mechanisms of innate immune pathways has led to the promise of targeted therapeutic approaches, but the development of drugs that act specifically on molecules of interest remains challenging. Here we report the discovery and characterization of highly potent and selective small-molecule antagonists of the stimulator of interferon genes (STING) protein, which is a central signalling component of the intracellular DNA sensing pathway1,2. Mechanistically, the identified compounds covalently target the predicted transmembrane cysteine residue 91 and thereby block the activation-induced palmitoylation of STING. Using these inhibitors, we show that the palmitoylation of STING is essential for its assembly into multimeric complexes at the Golgi apparatus and, in turn, for the recruitment of downstream signalling factors. The identified compounds and their derivatives reduce STING-mediated inflammatory cytokine production in both human and mouse cells. Furthermore, we show that these small-molecule antagonists attenuate pathological features of autoinflammatory disease in mice. In summary, our work uncovers a mechanism by which STING can be inhibited pharmacologically and demonstrates the potential of therapies that target STING for the treatment of autoinflammatory disease.
Collapse
Affiliation(s)
- Simone M Haag
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Muhammet F Gulen
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Luc Reymond
- Biomolecular Screening Facility, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Antoine Gibelin
- Biomolecular Screening Facility, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Alexiane Decout
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Michael Heymann
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - F Gisou van der Goot
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Rayk Behrendt
- Institute for Immunology, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
49
|
Monogenic systemic lupus erythematosus: insights in pathophysiology. Rheumatol Int 2018; 38:1763-1775. [DOI: 10.1007/s00296-018-4048-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
50
|
Sase S, Takanohashi A, Vanderver A, Almad A. Astrocytes, an active player in Aicardi-Goutières syndrome. Brain Pathol 2018; 28:399-407. [PMID: 29740948 PMCID: PMC8028286 DOI: 10.1111/bpa.12600] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 01/10/2023] Open
Abstract
Aicardi-Goutières syndrome (AGS) is an early-onset, autoimmune and genetically heterogeneous disorder with severe neurologic injury. Molecular studies have established that autosomal recessive mutations in one of the following genes are causative: TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1 and IFIH1/MDA5. The phenotypic presentation and pathophysiology of AGS is associated with over-production of the cytokine Interferon-alpha (IFN-α) and its downstream signaling, characterized as type I interferonopathy. Astrocytes are one of the major source of IFN in the central nervous system (CNS) and it is proposed that they could be key players in AGS pathology. Astrocytes are the most ubiquitous glial cell in the CNS and perform a number of crucial and complex functions ranging from formation of blood-brain barrier, maintaining ionic homeostasis, metabolic support to synapse formation and elimination in healthy CNS. Involvement of astrocytic dysfunction in neurological diseases-Alexander's disease, Epilepsy, Alzheimer's and amyotrophic lateral sclerosis (ALS)-has been well-established. It is now known that compromised astrocytic function can contribute to CNS abnormalities and severe neurodegeneration, nevertheless, its contribution in AGS is unclear. The current review discusses known molecular and cellular pathways for AGS mutations and how it stimulates IFN-α signaling. We shed light on how astrocytes might be key players in the phenotypic presentations of AGS and emphasize the cell-autonomous and non-cell-autonomous role of astrocytes. Understanding the contribution of astrocytes will help reveal mechanisms underlying interferonopathy and develop targeted astrocyte specific therapeutic treatments in AGS.
Collapse
Affiliation(s)
- Sunetra Sase
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPA
| | - Asako Takanohashi
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPA
| | - Adeline Vanderver
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - Akshata Almad
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPA
| |
Collapse
|