1
|
Kreimeyer H, Gonzalez CG, Fondevila MF, Hsu CL, Hartmann P, Zhang X, Stärkel P, Bosques-Padilla F, Verna EC, Abraldes JG, Brown RS, Vargas V, Altamirano J, Caballería J, Shawcross DL, Louvet A, Lucey MR, Mathurin P, Garcia-Tsao G, Bataller R, Investigators A, Gonzalez DJ, Schnabl B. Faecal proteomics links neutrophil degranulation with mortality in patients with alcohol-associated hepatitis. Gut 2024; 74:103-115. [PMID: 39033024 PMCID: PMC11631684 DOI: 10.1136/gutjnl-2024-332730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE Patients with alcohol-associated hepatitis (AH) have a high mortality. Alcohol exacerbates liver damage by inducing gut dysbiosis, bacterial translocation and inflammation, which is characterised by increased numbers of circulating and hepatic neutrophils. DESIGN In this study, we performed tandem mass tag (TMT) proteomics to analyse proteins in the faeces of controls (n=19), patients with alcohol-use disorder (AUD; n=20) and AH (n=80) from a multicentre cohort (InTeam). To identify protein groups that are disproportionately represented, we conducted over-representation analysis using Reactome pathway analysis and Gene Ontology to determine the proteins with the most significant impact. A faecal biomarker and its prognostic effect were validated by ELISA in faecal samples from patients with AH (n=70), who were recruited in a second and independent multicentre cohort (AlcHepNet). RESULT Faecal proteomic profiles were overall significantly different between controls, patients with AUD and AH (principal component analysis p=0.001, dissimilarity index calculated by the method of Bray-Curtis). Proteins that showed notable differences across all three groups and displayed a progressive increase in accordance with the severity of alcohol-associated liver disease were predominantly those located in neutrophil granules. Over-representation and Reactome analyses confirmed that differentially regulated proteins are part of granules in neutrophils and the neutrophil degranulation pathway. Myeloperoxidase (MPO), the marker protein of neutrophil granules, correlates with disease severity and predicts 60-day mortality. Using an independent validation cohort, we confirmed that faecal MPO levels can predict short-term survival at 60 days. CONCLUSIONS We found an increased abundance of faecal proteins linked to neutrophil degranulation in patients with AH, which is predictive of short-term survival and could serve as a prognostic non-invasive marker.
Collapse
Affiliation(s)
- Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Carlos G Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Marcos F Fondevila
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Cynthia L Hsu
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Divison of Gastroenterology, Hepatology and Nutrition, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Herbert Wertehim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Peter Stärkel
- Department of Hepatology and Gastroenterology, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Francisco Bosques-Padilla
- Hospital Universitario, Departamento de Gastroenterología, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elizabeth C Verna
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Juan G Abraldes
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Alberta, Canada
| | - Robert S Brown
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA
| | - Victor Vargas
- Liver Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Jose Altamirano
- Liver Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Caballería
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Hospital Clinic, Barcelona, Catalunya, Spain
| | - Debbie L Shawcross
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Alexandre Louvet
- Service des Maladies de L'appareil Digestif et Unité INFINITE 1286, Hôpital Huriez, Lille, France
| | - Michael R Lucey
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Philippe Mathurin
- Service des Maladies de L'appareil Digestif et Unité INFINITE 1286, Hôpital Huriez, Lille, France
| | - Guadalupe Garcia-Tsao
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
- Section of Digestive Diseases, VA-CT Healthcare System, West Haven, CT, USA
| | - Ramón Bataller
- Liver Unit, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - David J Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
2
|
Heath EI, Chen W, Choi JE, Dobson K, Smith M, Maj T, Kryczek I, Zou W, Chinnaiyan AM, Qiao Y. Phase II trial of multi-tyrosine kinase inhibitor ESK981 in combination with PD-1 inhibitor nivolumab in patients with metastatic castration-resistant prostate cancer. Invest New Drugs 2024; 42:675-684. [PMID: 39503807 DOI: 10.1007/s10637-024-01482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 12/08/2024]
Abstract
Increasing the response rates of immune checkpoint inhibitors in patients with metastatic castration-resistant prostate cancer (mCRPC) presents a significant challenge. ESK981 is a multi-tyrosine kinase and PIKfyve lipid kinase inhibitor that augments immunotherapeutic responses. In this phase II study, ESK981 was combined with the PD-1 blocking monoclonal antibody nivolumab to test for potentially improved response rates in patients with mCRPC who have progressed on androgen receptor (AR)-targeted agents and chemotherapy. Eligible patients received ESK981 orally once daily for five consecutive days, followed by a two-day break. Patients were also treated with nivolumab intravenously on Day 1 of each 28-day cycle. The primary endpoints were a 50% reduction in prostate-specific antigen (PSA50), and safety. Secondary endpoints included radiographic progression free survival (rPFS) and overall survival (OS). Additional investigations included whole exome sequencing in patients. Ten patients were enrolled. The maximum PSA decline from baseline of 14% was achieved in only one patient. Grade 3 treatment-related adverse events (AEs) included fatigue, anemia, and lymphopenia. There were no Grade 4 events. The median rPFS was 3.7 months (95% CI, 1.6-8.4). The median OS was 9.6 months (95% CI, 1.8-22.4). The study was terminated due to futility after 10 patients. Whole exome sequencing identified AR amplification in 63% of patients (5/8). ESK981 + nivolumab showed no antitumor activity in patients with AR-positive (AR+) mCRPC. Further evaluation of ESK981 combined with the PD-1 inhibitor nivolumab in AR + mCRPC patients is not warranted. (Trial registration: ClinicalTrials.gov NCT04159896. Registration date: November 12, 2019.).
Collapse
Affiliation(s)
- Elisabeth I Heath
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Wei Chen
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jae E Choi
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kimberlee Dobson
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Melanie Smith
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tomasz Maj
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Roy A, DePamphilis ML. Selective Termination of Autophagy-Dependent Cancers. Cells 2024; 13:1096. [PMID: 38994949 PMCID: PMC11240546 DOI: 10.3390/cells13131096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
The goal of cancer research is to identify characteristics of cancer cells that allow them to be selectively eliminated without harming the host. One such characteristic is autophagy dependence. Cancer cells survive, proliferate, and metastasize under conditions where normal cells do not. Thus, the requirement in cancer cells for more energy and macromolecular biosynthesis can evolve into a dependence on autophagy for recycling cellular components. Recent studies have revealed that autophagy, as well as different forms of cellular trafficking, is regulated by five phosphoinositides associated with eukaryotic cellular membranes and that the enzymes that synthesize them are prime targets for cancer therapy. For example, PIKFYVE inhibitors rapidly disrupt lysosome homeostasis and suppress proliferation in all cells. However, these inhibitors selectively terminate PIKFYVE-dependent cancer cells and cancer stem cells with not having adverse effect on normal cells. Here, we describe the biochemical distinctions between PIKFYVE-sensitive and -insensitive cells, categorize PIKFYVE inhibitors into four groups that differ in chemical structure, target specificity and efficacy on cancer cells and normal cells, identify the mechanisms by which they selectively terminate autophagy-dependent cancer cells, note their paradoxical effects in cancer immunotherapy, and describe their therapeutic applications against cancers.
Collapse
Affiliation(s)
- Ajit Roy
- National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Room 6N105, 10 Center Dr., Bethesda, MD 20892-0001, USA;
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Room 4B413, 6 Center Dr., Bethesda, MD 20892-2790, USA
| |
Collapse
|
4
|
Ouologuem L, Bartel K. Endolysosomal transient receptor potential mucolipins and two-pore channels: implications for cancer immunity. Front Immunol 2024; 15:1389194. [PMID: 38840905 PMCID: PMC11150529 DOI: 10.3389/fimmu.2024.1389194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.
Collapse
Affiliation(s)
| | - Karin Bartel
- Department of Pharmacy, Drug Delivery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
5
|
Alavi MS, Soheili V, Roohbakhsh A. The role of transient receptor potential (TRP) channels in phagocytosis: A comprehensive review. Eur J Pharmacol 2024; 964:176302. [PMID: 38154767 DOI: 10.1016/j.ejphar.2023.176302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
When host cells are exposed to foreign particles, dead cells, or cell hazards, a sophisticated process called phagocytosis begins. During this process, macrophages, dendritic cells, and neutrophils engulf the target by expanding their membranes. Phagocytosis of apoptotic cells is called efferocytosis. This process is of significant importance as billions of cells are eliminated daily without provoking inflammation. Both phagocytosis and efferocytosis depend on Ca2+ signaling. A big family of Ca2+ permeable channels is transient receptor potentials (TRPs) divided into nine subfamilies. We aimed to review their roles in phagocytosis. The present review article shows that various TRP channels such as TRPV1, 2, 3, 4, TRPM2, 4, 7, 8, TRPML1, TRPA1, TRPC1, 3, 5, 6 have roles at various stages of phagocytosis. They are involved in the phagocytosis of amyloid β, α-synuclein, myelin debris, bacteria, and apoptotic cells. In particular, TRPC3 and TRPM7 contribute to efferocytosis. These effects are mediated by changing Ca2+ signaling or targeting intracellular enzymes such as Akt. In addition, they contribute to the chemotaxis of phagocytic cells towards targets. Although a limited number of studies have assessed the role of TRP channels in phagocytosis and efferocytosis, their findings indicate that they have critical roles in these processes. In some cases, their ablation completely abolished the phagocytic function of the cells. As a result, TRP channels are potential targets for developing new therapeutics that modulate phagocytosis.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Van de Vyver T, Muntean C, Efimova I, Krysko DV, De Backer L, De Smedt SC, Raemdonck K. The alpha-adrenergic antagonist prazosin promotes cytosolic siRNA delivery from lysosomal compartments. J Control Release 2023; 364:142-158. [PMID: 37816483 DOI: 10.1016/j.jconrel.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/26/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
The widespread use of small interfering RNA (siRNA) is limited by the multiple extra- and intracellular barriers upon in vivo administration. Hence, suitable delivery systems, based on siRNA encapsulation in nanoparticles or its conjugation to targeting ligands, have been developed. Nevertheless, at the intracellular level, these state-of-the-art delivery systems still suffer from a low endosomal escape efficiency. Consequently, the bulk of the endocytosed siRNA drug rapidly accumulates in the lysosomal compartment. We recently reported that a wide variety of cationic amphiphilic drugs (CADs) can promote small nucleic acid delivery from the endolysosomal compartment into the cytosol via transient induction of lysosomal membrane permeabilization. Here, we describe the identification of alternate siRNA delivery enhancers from the NIH Clinical Compound Collection that do not have the typical physicochemical properties of CADs. Additionally, we demonstrate improved endolysosomal escape of siRNA via a cholesterol conjugate and polymeric carriers with the α1-adrenergic antagonist prazosin, which was identified as the best performing delivery enhancer from the compound screen. A more detailed assessment of the mode-of-action of prazosin suggests that a different cellular phenotype compared to typical CAD adjuvants drives cytosolic siRNA delivery. As it has been described in the literature that prazosin also induces cancer cell apoptosis and promotes antigen cross-presentation in dendritic cells, the proof-of-concept data in this work provides opportunities for the repurposing of prazosin in an anti-cancer combination strategy with siRNA.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Cristina Muntean
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium.
| | - Iuliia Efimova
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium.
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium; Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia.
| | - Lynn De Backer
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Kakar R, Ghosh C, Sun Y. Phosphoinositide Signaling in Immune Cell Migration. Biomolecules 2023; 13:1705. [PMID: 38136577 PMCID: PMC10741629 DOI: 10.3390/biom13121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
In response to different immune challenges, immune cells migrate to specific sites in the body, where they perform their functions such as defense against infection, inflammation regulation, antigen recognition, and immune surveillance. Therefore, the migration ability is a fundamental aspect of immune cell function. Phosphoinositide signaling plays critical roles in modulating immune cell migration by controlling cell polarization, cytoskeletal rearrangement, protrusion formation, and uropod contraction. Upon chemoattractant stimulation, specific phosphoinositide kinases and phosphatases control the local phosphoinositide levels to establish polarized phosphoinositide distribution, which recruits phosphoinositide effectors to distinct subcellular locations to facilitate cell migration. In this Special Issue of "Molecular Mechanisms Underlying Cell Adhesion and Migration", we discuss the significance of phosphoinositide production and conversion by phosphoinositide kinases and phosphatases in the migration of different types of immune cells.
Collapse
Affiliation(s)
| | | | - Yue Sun
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.K.); (C.G.)
| |
Collapse
|
8
|
Derkaczew M, Martyniuk P, Hofman R, Rutkowski K, Osowski A, Wojtkiewicz J. The Genetic Background of Abnormalities in Metabolic Pathways of Phosphoinositides and Their Linkage with the Myotubular Myopathies, Neurodegenerative Disorders, and Carcinogenesis. Biomolecules 2023; 13:1550. [PMID: 37892232 PMCID: PMC10605126 DOI: 10.3390/biom13101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Myo-inositol belongs to one of the sugar alcohol groups known as cyclitols. Phosphatidylinositols are one of the derivatives of Myo-inositol, and constitute important mediators in many intracellular processes such as cell growth, cell differentiation, receptor recycling, cytoskeletal organization, and membrane fusion. They also have even more functions that are essential for cell survival. Mutations in genes encoding phosphatidylinositols and their derivatives can lead to many disorders. This review aims to perform an in-depth analysis of these connections. Many authors emphasize the significant influence of phosphatidylinositols and phosphatidylinositols' phosphates in the pathogenesis of myotubular myopathies, neurodegenerative disorders, carcinogenesis, and other less frequently observed diseases. In our review, we have focused on three of the most often mentioned groups of disorders. Inositols are the topic of many studies, and yet, there are no clear results of successful clinical trials. Analysis of the available literature gives promising results and shows that further research is still needed.
Collapse
Affiliation(s)
- Maria Derkaczew
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Piotr Martyniuk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Robert Hofman
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Krzysztof Rutkowski
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- The Nicolaus Copernicus Municipal Polyclinical Hospital in Olsztyn, 10-045 Olsztyn, Poland
| | - Adam Osowski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| |
Collapse
|
9
|
Vines JH, Maib H, Buckley CM, Gueho A, Zhu Z, Soldati T, Murray DH, King JS. A PI(3,5)P2 reporter reveals PIKfyve activity and dynamics on macropinosomes and phagosomes. J Cell Biol 2023; 222:e202209077. [PMID: 37382666 PMCID: PMC10309190 DOI: 10.1083/jcb.202209077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/12/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023] Open
Abstract
Phosphoinositide signaling lipids (PIPs) are key regulators of membrane identity and trafficking. Of these, PI(3,5)P2 is one of the least well-understood, despite key roles in many endocytic pathways including phagocytosis and macropinocytosis. PI(3,5)P2 is generated by the phosphoinositide 5-kinase PIKfyve, which is critical for phagosomal digestion and antimicrobial activity. However PI(3,5)P2 dynamics and regulation remain unclear due to lack of reliable reporters. Using the amoeba Dictyostelium discoideum, we identify SnxA as a highly selective PI(3,5)P2-binding protein and characterize its use as a reporter for PI(3,5)P2 in both Dictyostelium and mammalian cells. Using GFP-SnxA, we demonstrate that Dictyostelium phagosomes and macropinosomes accumulate PI(3,5)P2 3 min after engulfment but are then retained differently, indicating pathway-specific regulation. We further find that PIKfyve recruitment and activity are separable and that PIKfyve activation stimulates its own dissociation. SnxA is therefore a new tool for reporting PI(3,5)P2 in live cells that reveals key mechanistic details of the role and regulation of PIKfyve/PI(3,5)P2.
Collapse
Affiliation(s)
- James H. Vines
- School of Biosciences, University of Sheffield, Firth Court Western Bank, Sheffield, UK
| | - Hannes Maib
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Catherine M. Buckley
- School of Biosciences, University of Sheffield, Firth Court Western Bank, Sheffield, UK
| | - Aurelie Gueho
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Zhou Zhu
- School of Biosciences, University of Sheffield, Firth Court Western Bank, Sheffield, UK
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - David H. Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jason S. King
- School of Biosciences, University of Sheffield, Firth Court Western Bank, Sheffield, UK
| |
Collapse
|
10
|
Nakatsuka Y, Matsumoto M, Inohara N, Núñez G. Pseudomonas aeruginosa hijacks the murine nitric oxide metabolic pathway to evade killing by neutrophils in the lung. Cell Rep 2023; 42:112973. [PMID: 37561628 DOI: 10.1016/j.celrep.2023.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Neutrophils play a critical role in the eradication of Pseudomonas aeruginosa, a major pathogen causing lung infection. However, the mechanisms used by the pathogen to evade neutrophil-mediated killing remain poorly understood. Using a high-density transposon screen, we find that P. aeruginosa colonization in the lung is promoted by pathogen nitrite reductase nirD. nirD is required for ammonia production from nitrite, a metabolite derived from nitrogen oxide (NO) generated by inducible NO synthetase (iNOS) in phagocytes. P. aeruginosa deficient in nirD exhibit reduced survival in wild-type neutrophils but not in iNOS-deficient neutrophils. Mechanistically, nirD enhances P. aeruginosa survival in neutrophils by inhibiting the localization of the pathogen in late phagosomes. P. aeruginosa deficient in nirD show impaired lung colonization after infection in wild-type mice but not in mice with selective iNos deficiency in neutrophils. Thus, P. aeruginosa uses neutrophil iNOS-mediated NO production to limit neutrophil pathogen killing and to promote its colonization in the lung.
Collapse
Affiliation(s)
- Yoshinari Nakatsuka
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA.
| | - Masanori Matsumoto
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA
| | - Naohiro Inohara
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48019, USA.
| |
Collapse
|
11
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Bai S, Wei Y, Liu R, Chen Y, Ma W, Wang M, Chen L, Luo Y, Du J. The role of transient receptor potential channels in metastasis. Biomed Pharmacother 2023; 158:114074. [PMID: 36493698 DOI: 10.1016/j.biopha.2022.114074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the hallmark of failed tumor treatment and is typically associated with death due to cancer. Transient receptor potential (TRP) channels affect changes in intracellular calcium concentrations and participate at every stage of metastasis. Further, they increase the migratory ability of tumor cells, promote angiogenesis, regulate immune function, and promote the growth of tumor cells through changes in gene expression and function. In this review, we explore the potential mechanisms of action of TRP channels, summarize their role in tumor metastasis, compile inhibitors of TRP channels relevant in tumors, and discuss current challenges in research on TRP channels involved in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yuan Wei
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Rong Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuhua Chen
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Wanling Ma
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Minghua Wang
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Li Chen
- Department of obstetrics and gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Rd, Guangming Dist., Shenzhen, Guangdong 518107, China
| | - Yumei Luo
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Juan Du
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
13
|
Feng J, Xie Z, Hu H. Ion channel regulation of gut immunity. J Gen Physiol 2022; 155:213734. [PMID: 36459135 PMCID: PMC9723512 DOI: 10.1085/jgp.202113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/15/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Mounting evidence indicates that gastrointestinal (GI) homeostasis hinges on communications among many cellular networks including the intestinal epithelium, the immune system, and both intrinsic and extrinsic nerves innervating the gut. The GI tract, especially the colon, is the home base for gut microbiome which dynamically regulates immune function. The gut's immune system also provides an effective defense against harmful pathogens entering the GI tract while maintaining immune homeostasis to avoid exaggerated immune reaction to innocuous food and commensal antigens which are important causes of inflammatory disorders such as coeliac disease and inflammatory bowel diseases (IBD). Various ion channels have been detected in multiple cell types throughout the GI tract. By regulating membrane properties and intracellular biochemical signaling, ion channels play a critical role in synchronized signaling among diverse cellular components in the gut that orchestrates the GI immune response. This work focuses on the role of ion channels in immune cells, non-immune resident cells, and neuroimmune interactions in the gut at the steady state and pathological conditions. Understanding the cellular and molecular basis of ion channel signaling in these immune-related pathways and initial testing of pharmacological intervention will facilitate the development of ion channel-based therapeutic approaches for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO,Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China,Correspondence to Jing Feng:
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO,Hongzhen Hu:
| |
Collapse
|
14
|
Hilchey SP, Palshikar MG, Mendelson ES, Shen S, Rasam S, Emo JA, Qu J, Thakar J, Zand MS. Cyclosporine A Modulates LSP1 Protein Levels in Human B Cells to Attenuate B Cell Migration at Low O 2 Levels. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081284. [PMID: 36013463 PMCID: PMC9410508 DOI: 10.3390/life12081284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/20/2022]
Abstract
Coordinated migration of B cells within and between secondary lymphoid tissues is required for robust antibody responses to infection or vaccination. Secondary lymphoid tissues normally expose B cells to a low O2 (hypoxic) environment. Recently, we have shown that human B cell migration is modulated by an O2-dependent molecular switch, centrally controlled by the hypoxia-induced (transcription) factor-1α (HIF1A), which can be disrupted by the immunosuppressive calcineurin inhibitor, cyclosporine A (CyA). However, the mechanisms by which low O2 environments attenuate B cell migration remain poorly defined. Proteomics analysis has linked CXCR4 chemokine receptor signaling to cytoskeletal rearrangement. We now hypothesize that the pathways linking the O2 sensing molecular switch to chemokine receptor signaling and cytoskeletal rearrangement would likely contain phosphorylation events, which are typically missed in traditional transcriptomic and/or proteomic analyses. Hence, we have performed a comprehensive phosphoproteomics analysis of human B cells treated with CyA after engagement of the chemokine receptor CXCR4 with CXCL12. Statistical analysis of the separate and synergistic effects of CyA and CXCL12 revealed 116 proteins whose abundance is driven by a synergistic interaction between CyA and CXCL12. Further, we used our previously described algorithm BONITA to reveal a critical role for Lymphocyte Specific Protein 1 (LSP1) in cytoskeletal rearrangement. LSP1 is known to modulate neutrophil migration. Validating these modeling results, we show experimentally that LSP1 levels in B cells increase with low O2 exposure, and CyA treatment results in decreased LSP1 protein levels. This correlates with the increased chemotactic activity observed after CyA treatment. Lastly, we directly link LSP1 levels to chemotactic capacity, as shRNA knock-down of LSP1 results in significantly increased B cell chemotaxis at low O2 levels. These results directly link CyA to LSP1-dependent cytoskeletal regulation, demonstrating a previously unrecognized mechanism by which CyA modulates human B cell migration. Data are available via ProteomeXchange with identifier PXD036167.
Collapse
Affiliation(s)
- Shannon P. Hilchey
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mukta G. Palshikar
- Biophysics, Structural, and Computational Biology Program, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Eric S. Mendelson
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, NY 14203, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York (SUNY) at Buffalo, Buffalo, NY 14203, USA
| | - Sailee Rasam
- Department of Pharmaceutical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, NY 14203, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York (SUNY) at Buffalo, Buffalo, NY 14203, USA
| | - Jason A. Emo
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, NY 14203, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York (SUNY) at Buffalo, Buffalo, NY 14203, USA
| | - Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Martin S. Zand
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Correspondence:
| |
Collapse
|
15
|
The Immunotherapy and Immunosuppressive Signaling in Therapy-Resistant Prostate Cancer. Biomedicines 2022; 10:biomedicines10081778. [PMID: 35892678 PMCID: PMC9394279 DOI: 10.3390/biomedicines10081778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer is one of the most common malignant tumors in men. Initially, it is androgen-dependent, but it eventually develops into castration-resistant prostate cancer (CRPC), which is incurable with current androgen receptor signaling target therapy and chemotherapy. Immunotherapy, specifically with immune checkpoint inhibitors, has brought hope for the treatment of this type of prostate cancer. Approaches such as vaccines, adoptive chimeric antigen receptor-T (CAR-T) cells, and immune checkpoint inhibitors have been employed to activate innate and adaptive immune responses to treat prostate cancer, but with limited success. Only Sipuleucel-T and the immune checkpoint inhibitor pembrolizumab are approved by the US FDA for the treatment of limited prostate cancer patients. Prostate cancer has a complex tumor microenvironment (TME) in which various immunosuppressive molecules and mechanisms coexist and interact. Additionally, prostate cancer is considered a “cold” tumor with low levels of tumor mutational burden, low amounts of antigen-presenting and cytotoxic T-cell activation, and high levels of immunosuppressive molecules including cytokines/chemokines. Thus, understanding the mechanisms of immunosuppressive signaling activation and immune evasion will help develop more effective treatments for prostate cancer. The purpose of this review is to summarize emerging advances in prostate cancer immunotherapy, with a particular focus on the molecular mechanisms that lead to immune evasion in prostate cancer. At the same time, we also highlight some potential therapeutic targets to provide a theoretical basis for the treatment of prostate cancer.
Collapse
|
16
|
Gu M, Wang Z, Feng F, Yang Y, Sun X, Yang D. Inhibition of PIKfyve Ameliorates the Proliferation and Migration of Vascular Smooth Muscle Cells and Vascular Intima Hyperplasia By Reducing mTORC1 Activity. J Cardiovasc Pharmacol 2022; 79:739-748. [PMID: 35275098 PMCID: PMC9067083 DOI: 10.1097/fjc.0000000000001243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/06/2022] [Indexed: 02/07/2023]
Abstract
ABSTRACT This study was designed to investigate the role and mechanism of PIKfyve in the proliferation and migration of vascular smooth muscle cells (VSMCs) and vascular intima hyperplasia. We first observed increased protein levels of PIKfyve, phospho (p)-S6 Ribosomal Protein (S6)Ser235/236, p-4EBP1Thr37/46 in VSMCs after 24 hours of platelet-derived growth factor (PDGF)-BB treatment. By using cell counting kit-8 assay, Ki-67 immunofluorescence staining and wound healing assay, we found that PIKfyve inhibition ameliorated the enhanced activity of VSMC proliferation and migration induced by PDGF-BB. Silencing PIKfyve also suppressed the phosphorylation of S6 and 4EBP1 (2 major effectors of mammalian target of rapamycin complex 1), glucose consumption, activity of hexokinase, and LDH in PDGF-BB-challenged VSMCs. After rescuing the phosphorylation of S6 and 4EBP1 by silencing Tsc1, the suppressive effects of PIKfyve inhibition on glucose utilization, proliferation, and migration in VSMCs were abolished. The animal model of vascular restenosis was established in C57BL/6J mice by wire injury. We found the expression of PIKfyve was increased in carotid artery at day 28 after injury. Reducing the activity of PIKfyve alleviated vascular neointima hyperplasia after injury. In conclusion, targeting PIKfyve might be a novel effective method to reduce the proliferation and migration of VSMCs and vascular restenosis by affecting mammalian target of rapamycin complex 1-mediated glucose utilization.
Collapse
Affiliation(s)
- Min Gu
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Zhen Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Feifei Feng
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xiongshan Sun
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Dachun Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Giridharan SSP, Luo G, Rivero-Rios P, Steinfeld N, Tronchere H, Singla A, Burstein E, Billadeau DD, Sutton MA, Weisman LS. Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate Retriever-mediated recycling on endosomes. eLife 2022; 11:69709. [PMID: 35040777 PMCID: PMC8816382 DOI: 10.7554/elife.69709] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-surface receptors control how cells respond to their environment. Many cell-surface receptors recycle from endosomes to the plasma membrane via a recently discovered pathway, which includes sorting-nexin SNX17, Retriever, WASH and CCC complexes. Here, using mammalian cells, we discover that PIKfyve and its upstream PI3-kinase VPS34 positively regulate this pathway. VPS34 produces PI3P, which is the substrate for PIKfyve to generate PI3,5P2. We show that PIKfyve controls recycling of cargoes including integrins, receptors that control cell migration. Furthermore, endogenous PIKfyve colocalizes with SNX17, Retriever, WASH and CCC complexes on endosomes. Importantly, PIKfyve inhibition results displacement of Retriever and CCC from endosomes. In addition, we show that recruitment of SNX17 is an early step and requires VPS34. These discoveries suggest that VPS34 and PIKfyve coordinate an ordered pathway to regulate recycling from endosomes and suggest how PIKfyve functions in cell migration.
Collapse
Affiliation(s)
| | - Guangming Luo
- Department of Cell and Developmental Biology, University of Michigan-Ann Arbor
| | - Pilar Rivero-Rios
- Department of Cell and Developmental Biology, University of Michigan-Ann Arbor
| | - Noah Steinfeld
- Department of Cell and Developmental Biology, University of Michigan-Ann Arbor
| | | | - Amika Singla
- Department of Internal Medicine, The University of Texas Southwestern Medical Center
| | - Ezra Burstein
- Department of Internal Medicine, The University of Texas Southwestern Medical Center
| | | | - Michael A Sutton
- Molecular and Integrative Physiology, University of Michigan-Ann Arbor
| | - Lois S Weisman
- Department of Cell and Developmental Biology, University of Michigan-Ann Arbor
| |
Collapse
|
18
|
Davis LC, Morgan AJ, Galione A. Acidic Ca 2+ stores and immune-cell function. Cell Calcium 2021; 101:102516. [PMID: 34922066 DOI: 10.1016/j.ceca.2021.102516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022]
Abstract
Acidic organelles act as intracellular Ca2+ stores; they actively sequester Ca2+ in their lumina and release it to the cytosol upon activation of endo-lysosomal Ca2+ channels. Recent data suggest important roles of endo-lysosomal Ca2+ channels, the Two-Pore Channels (TPCs) and the TRPML channels (mucolipins), in different aspects of immune-cell function, particularly impacting membrane trafficking, vesicle fusion/fission and secretion. Remarkably, different channels on the same acidic vesicles can couple to different downstream physiology. Endo-lysosomal Ca2+ stores can act under different modalities, be they acting alone (via local Ca2+ nanodomains around TPCs/TRPMLs) or in conjunction with the ER Ca2+ store (to either promote or suppress global ER Ca2+ release). These different modalities impinge upon functions as broad as phagocytosis, cell-killing, anaphylaxis, immune memory, thrombostasis, and chemotaxis.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
19
|
Edwards-Jorquera SS, Bosveld F, Bellaïche YA, Lennon-Duménil AM, Glavic Á. Trpml controls actomyosin contractility and couples migration to phagocytosis in fly macrophages. J Cell Biol 2020; 219:133603. [PMID: 31940424 PMCID: PMC7055000 DOI: 10.1083/jcb.201905228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/13/2019] [Accepted: 12/07/2019] [Indexed: 12/29/2022] Open
Abstract
Phagocytes use their actomyosin cytoskeleton to migrate as well as to probe their environment by phagocytosis or macropinocytosis. Although migration and extracellular material uptake have been shown to be coupled in some immune cells, the mechanisms involved in such coupling are largely unknown. By combining time-lapse imaging with genetics, we here identify the lysosomal Ca2+ channel Trpml as an essential player in the coupling of cell locomotion and phagocytosis in hemocytes, the Drosophila macrophage-like immune cells. Trpml is needed for both hemocyte migration and phagocytic processing at distinct subcellular localizations: Trpml regulates hemocyte migration by controlling actomyosin contractility at the cell rear, whereas its role in phagocytic processing lies near the phagocytic cup in a myosin-independent fashion. We further highlight that Vamp7 also regulates phagocytic processing and locomotion but uses pathways distinct from those of Trpml. Our results suggest that multiple mechanisms may have emerged during evolution to couple phagocytic processing to cell migration and facilitate space exploration by immune cells.
Collapse
Affiliation(s)
| | - Floris Bosveld
- Institut Curie, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique UMR 3215, Institut National de la Santé et de la Recherche Médicale U934, Paris, France
| | - Yohanns A Bellaïche
- Institut Curie, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique UMR 3215, Institut National de la Santé et de la Recherche Médicale U934, Paris, France
| | - Ana-María Lennon-Duménil
- Institut Curie, PSL Research University, Institut National de la Santé et de la Recherche Médicale U932 Immunité et Cancer, Paris, France
| | - Álvaro Glavic
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Abstract
Phagocytosis is a pivotal immunological process, and its discovery by Elia Metchnikoff in 1882 was a step toward the establishment of the innate immune system as a separate branch of immunology. Elia Metchnikoff received the Nobel Prize in physiology and medicine for this discovery in 1908. Since its discovery almost 140 years before, phagocytosis remains the hot topic of research in immunology. The phagocytosis research has seen a great advancement since its first discovery. Functionally, phagocytosis is a simple immunological process required to engulf and remove pathogens, dead cells and tumor cells to maintain the immune homeostasis. However, mechanistically, it is a very complex process involving different mechanisms, induced and regulated by several pattern recognition receptors, soluble pattern recognition molecules, scavenger receptors (SRs) and opsonins. These mechanisms involve the formation of phagosomes, their maturation into phagolysosomes causing pathogen destruction or antigen synthesis to present them to major histocompatibility complex molecules for activating an adaptive immune response. Any defect in this mechanism may predispose the host to certain infections and inflammatory diseases (autoinflammatory and autoimmune diseases) along with immunodeficiency. The article is designed to discuss its mechanistic complexity at each level, varying from phagocytosis induction to phagolysosome resolution.
Collapse
Affiliation(s)
- Vijay Kumar
- Faculty of Medicine, Children's Health Queensland Clinical Unit, School of Clinical Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland, Australia.,Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Spix B, Chao YK, Abrahamian C, Chen CC, Grimm C. TRPML Cation Channels in Inflammation and Immunity. Front Immunol 2020; 11:225. [PMID: 32184778 PMCID: PMC7058977 DOI: 10.3389/fimmu.2020.00225] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background: In 1883, Ilya Mechnikov discovered phagocytes and established the concept of phagocytosis by macrophages. In 1908, he was awarded the Nobel Prize in Physiology/Medicine for his findings, which laid the foundations for today's understanding of the innate immune response. Only in the 1960s, Max Cooper and Robert Good significantly advanced our understanding of the immune system by demonstrating that B- and T-cells cooperate to regulate the adaptive immune response. Both, innate and adaptive immune response are essential to effectively protect the individual against infectious agents, such as viruses, bacterial or insect toxins, or allergens. Innate immune responses occur rapidly upon exposure to noxious or infectious agents or organisms, in contrast to the adaptive immune system that needs days rather than hours to develop and acts primarily on the basis of antigen-specific receptors expressed on the surface of B- and T-lymphocytes. In recent years, it has become evident that endosomes and lysosomes are involved in many aspects of immune cell function, such as phagocytosis, antigen presentation and processing by antigen-presenting cells, release of proinflammatory mediators, e.g., by mast cells, or secretion of the pore-forming protein perforin by cytotoxic T lymphocytes. Several lysosomal storage disorders (LSDs) have been associated with defects in immune system function or immune system hyperactivity, such as Gaucher, Fabry, or Niemann-Pick type C1 disease, mucopolysaccharidoses (MPS), gangliosidosis, or juvenile neuronal ceroid lipofuscinosis (JNCL). Beside accumulating evidence on the importance of endolysosomes in immune cell function, recent results suggest direct roles of endolysosomal ion channels, such as the TRPML channels (mucolipins), which are members of the transient receptor potential (TRP) superfamily of non-selective cation channels, for different aspects of immune cell function. The aim of this review is to discuss the current knowledge about the roles of TRPML channels in inflammation and immunity, and to assess their potential as drug targets to influence immune cell functions. Advances: Examples of recently established roles of TRPML channels in immune system function and immune response include the TRPML1-mediated modulation of secretory lysosomes, granzyme B content, and tuning of effector function in NK cells, TRPML1-dependent directional dendritic cell (DC) migration and DC chemotaxis, and the role of TRPML2 in chemokine release from LPS-stimulated macrophages. Outlook: Although our understanding of the functional roles of TRPML channels in inflammation and immunity is still in its infancy, a few interesting findings have been made in the past years, encouraging further and more detailed work on the role of TRPMLs, e.g., in intracellular trafficking and release of chemokines, cytokines, or granzyme B, or in phagocytosis and bacterial toxin and virus trafficking through the endolysosomal machinery.
Collapse
Affiliation(s)
- Barbara Spix
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Yu-Kai Chao
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Carla Abrahamian
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Cheng-Chang Chen
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christian Grimm
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
22
|
Chao YK, Chang SY, Grimm C. Endo-Lysosomal Cation Channels and Infectious Diseases. Rev Physiol Biochem Pharmacol 2020; 185:259-276. [PMID: 32748124 DOI: 10.1007/112_2020_31] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Among the infectious diseases caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, the most prevalent ones today are malaria, tuberculosis, influenza, HIV/AIDS, Ebola, dengue fever, and methicillin-resistant Staphylococcus aureus (MRSA) infection, and most recently Covid-19 (SARS-CoV2). Others with a rather devastating history and high fatality rates such as plague, cholera, or typhus seem less threatening today but have not been eradicated, and with a declining efficacy of current antibiotics they ought to be watched carefully. Another emerging issue in this context is health-care associated infection. About 100,000 hospitalized patients in the USA ( www.cdc.gov ) and 33,000 in Europe ( https://www.ecdc.europa.eu ) die each year as a direct consequence of an infection caused by bacteria resistant to antibiotics. Among viral infections, influenza is responsible for about 3-5 million cases of severe illness, and about 250,000 to 500,000 deaths annually ( www.who.int ). About 37 million people are currently living with HIV infection and about one million die from it each year. Coronaviruses such as MERS-CoV, SARS-CoV, but in particular the recent outbreak of Covid-19 (caused by SARS-CoV2) have resulted in large numbers of infections worldwide with an estimated several hundred thousand deaths (anticipated fatality rate: <5%). With a comparatively low mortality rate dengue virus causes between 50 and 100 million infections every year, leading to 50,000 deaths. In contrast, Ebola virus is the causative agent for one of the deadliest viral diseases. The Ebola outbreak in West Africa in 2014 is considered the largest outbreak in history with more than 11,000 deaths. Many of the deadliest pathogens such as Ebola virus, influenza virus, mycobacterium tuberculosis, dengue virus, and cholera exploit the endo-lysosomal trafficking system of host cells for penetration into the cytosol and replication. Defects in endo-lysosomal maturation, trafficking, fusion, or pH homeostasis can efficiently reduce the cytotoxicity caused by these pathogens. Most of these functions critically depend on endo-lysosomal membrane proteins such as transporters and ion channels. In particular, cation channels such as the mucolipins (TRPMLs) or the two-pore channels (TPCs) are involved in all of these aspects of endo-lysosomal integrity. In this review we will discuss the correlations between pathogen toxicity and endo-lysosomal cation channel function, and their potential as drug targets for infectious disease therapy.
Collapse
Affiliation(s)
- Yu-Kai Chao
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
23
|
Molecular Mechanisms of Calcium Signaling During Phagocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:103-128. [PMID: 32399828 DOI: 10.1007/978-3-030-40406-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger involved in the regulation of numerous cellular functions including vesicular trafficking, cytoskeletal rearrangements and gene transcription. Both global as well as localized Ca2+ signals occur during phagocytosis, although their functional impact on the phagocytic process has been debated. After nearly 40 years of research, a consensus may now be reached that although not strictly required, Ca2+ signals render phagocytic ingestion and phagosome maturation more efficient, and their manipulation make an attractive avenue for therapeutic interventions. In the last decade many efforts have been made to identify the channels and regulators involved in generating and shaping phagocytic Ca2+ signals. While molecules involved in store-operated calcium entry (SOCE) of the STIM and ORAI family have taken center stage, members of the canonical, melastatin, mucolipin and vanilloid transient receptor potential (TRP), as well as purinergic P2X receptor families are now recognized to play significant roles. In this chapter, we review the recent literature on research that has linked specific Ca2+-permeable channels and regulators to phagocytic function. We highlight the fact that lipid mediators are emerging as important regulators of channel gating and that phagosomal ionic homeostasis and Ca2+ release also play essential parts. We predict that improved methodologies for measuring these factors will be critical for future advances in dissecting the intricate biology of this fascinating immune process.
Collapse
|
24
|
Sultana F, Morse LR, Picotto G, Liu W, Jha PK, Odgren PR, Battaglino RA. Snx10 and PIKfyve are required for lysosome formation in osteoclasts. J Cell Biochem 2019; 121:2927-2937. [PMID: 31692073 DOI: 10.1002/jcb.29534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
Bone resorption and organelle homeostasis in osteoclasts require specialized intracellular trafficking. Sorting nexin 10 (Snx10) is a member of the sorting nexin family of proteins that plays crucial roles in cargo sorting in the endosomal pathway by its binding to phosphoinositide(3)phosphate (PI3P) localized in early endosomes. We and others have shown previously that the gene encoding sorting Snx10 is required for osteoclast morphogenesis and function, as osteoclasts from humans and mice lacking functional Snx10 are dysfunctional. To better understand the role and mechanisms by which Snx10 regulates vesicular transport, the aim of the present work was to study PIKfyve, another PI3P-binding protein, which phosphorylates PI3P to PI(3,5)P2. PI(3,5)P2 is known to be required for endosome/lysosome maturation, and the inhibition of PIKfyve causes endosome enlargement. Overexpression of Snx10 also induces accumulation of early endosomes suggesting that both Snx10 and PIKfyve are required for normal endosome/lysosome transition. Apilimod is a small molecule with specific, nanomolar inhibitory activity on PIKfyve but only in the presence of key osteoclast factors CLCN7, OSTM1, and Snx10. This observation suggests that apilimod's inhibitory effects are mediated by endosome/lysosome disruption. Here we show that both Snx10 and PIKfyve colocalize to early endosomes in osteoclasts and coimmunoprecipitate in vesicle fractions. Treatment with 10 nM apilimod or genetic deletion of PIKfyve in cells resulted in the accumulation of early endosomes, and in the inhibition of osteoclast differentiation, lysosome formation, and secretion of TRAP from differentiated osteoclasts. Snx10 and PIKfyve also colocalized in gastric zymogenic cells, another cell type impacted by Snx10 mutations. Apilimod-specific inhibition of PIKfyve required Snx10 expression, as it did not inhibit lysosome biogenesis in Snx10-deficient osteoclasts. These findings suggest that Snx10 and PIKfyve are involved in the regulation of endosome/lysosome homeostasis via the synthesis of PI(3,5)P2 and may point to a new strategy to prevent bone loss.
Collapse
Affiliation(s)
- Farhath Sultana
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Gabriela Picotto
- Cátedra de Bioquímica y Biología Molecular, Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Weimin Liu
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO
| | - Prakash K Jha
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Paul R Odgren
- Departments of Cell Biology and Radiology (retired), University of Massachusetts Medical School, Worcester, MA
| | - Ricardo A Battaglino
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
25
|
Min SH, Suzuki A, Weaver L, Guzman J, Chung Y, Jin H, Gonzalez F, Trasorras C, Zhao L, Spruce LA, Seeholzer SH, Behrens EM, Abrams CS. PIKfyve Deficiency in Myeloid Cells Impairs Lysosomal Homeostasis in Macrophages and Promotes Systemic Inflammation in Mice. Mol Cell Biol 2019; 39:e00158-19. [PMID: 31427458 PMCID: PMC6791654 DOI: 10.1128/mcb.00158-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/29/2019] [Accepted: 08/12/2019] [Indexed: 01/15/2023] Open
Abstract
Macrophages are professional phagocytes that are essential for host defense and tissue homeostasis. Proper membrane trafficking and degradative functions of the endolysosomal system are known to be critical for the function of these cells. We have found that PIKfyve, the kinase that synthesizes the endosomal phosphoinositide phosphatidylinositol-3,5-bisphosphate, is an essential regulator of lysosomal biogenesis and degradative functions in macrophages. Genetically engineered mice lacking PIKfyve in their myeloid cells (PIKfyvefl/fl LysM-Cre) develop diffuse tissue infiltration of foamy macrophages, hepatosplenomegaly, and systemic inflammation. PIKfyve loss in macrophages causes enlarged endolysosomal compartments and impairs the lysosomal degradative function. Moreover, PIKfyve deficiency increases the cellular levels of lysosomal proteins. Although PIKfyve deficiency reduced the activation of mTORC1 pathway and was associated with increased cleavage of TFEB proteins, this does not translate into transcriptional activation of lysosomal genes, suggesting that PIKfyve modulates the abundance of lysosomal proteins by affecting the degradation of these proteins. Our study shows that PIKfyve modulation of lysosomal degradative activity and protein expression is essential to maintain lysosomal homeostasis in macrophages.
Collapse
Affiliation(s)
- Sang Hee Min
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Aae Suzuki
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lehn Weaver
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jessica Guzman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yutein Chung
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Huiyan Jin
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Francina Gonzalez
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Claire Trasorras
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Liang Zhao
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lynn A Spruce
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Edward M Behrens
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charles S Abrams
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Buckley CM, Heath VL, Guého A, Bosmani C, Knobloch P, Sikakana P, Personnic N, Dove SK, Michell RH, Meier R, Hilbi H, Soldati T, Insall RH, King JS. PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection. PLoS Pathog 2019; 15:e1007551. [PMID: 30730983 PMCID: PMC6382210 DOI: 10.1371/journal.ppat.1007551] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/20/2019] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
By engulfing potentially harmful microbes, professional phagocytes are continually at risk from intracellular pathogens. To avoid becoming infected, the host must kill pathogens in the phagosome before they can escape or establish a survival niche. Here, we analyse the role of the phosphoinositide (PI) 5-kinase PIKfyve in phagosome maturation and killing, using the amoeba and model phagocyte Dictyostelium discoideum. PIKfyve plays important but poorly understood roles in vesicular trafficking by catalysing formation of the lipids phosphatidylinositol (3,5)-bisphosphate (PI(3,5)2) and phosphatidylinositol-5-phosphate (PI(5)P). Here we show that its activity is essential during early phagosome maturation in Dictyostelium. Disruption of PIKfyve inhibited delivery of both the vacuolar V-ATPase and proteases, dramatically reducing the ability of cells to acidify newly formed phagosomes and digest their contents. Consequently, PIKfyve- cells were unable to generate an effective antimicrobial environment and efficiently kill captured bacteria. Moreover, we demonstrate that cells lacking PIKfyve are more susceptible to infection by the intracellular pathogen Legionella pneumophila. We conclude that PIKfyve-catalysed phosphoinositide production plays a crucial and general role in ensuring early phagosomal maturation, protecting host cells from diverse pathogenic microbes.
Collapse
Affiliation(s)
- Catherine M. Buckley
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Victoria L. Heath
- Institute of Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Aurélie Guého
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Paulina Knobloch
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Phumzile Sikakana
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Nicolas Personnic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Stephen K. Dove
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Robert H. Michell
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Roger Meier
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Robert H. Insall
- CRUK Beatson Institute, Switchback Road, Bearsden, Glasgow, United Kingdom
| | - Jason S. King
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
27
|
Baranov MV, Bianchi F, Schirmacher A, van Aart MAC, Maassen S, Muntjewerff EM, Dingjan I, Ter Beest M, Verdoes M, Keyser SGL, Bertozzi CR, Diederichsen U, van den Bogaart G. The Phosphoinositide Kinase PIKfyve Promotes Cathepsin-S-Mediated Major Histocompatibility Complex Class II Antigen Presentation. iScience 2018; 11:160-177. [PMID: 30612035 PMCID: PMC6319320 DOI: 10.1016/j.isci.2018.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/28/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Antigen presentation to T cells in major histocompatibility complex class II (MHC class II) requires the conversion of early endo/phagosomes into lysosomes by a process called maturation. Maturation is driven by the phosphoinositide kinase PIKfyve. Blocking PIKfyve activity by small molecule inhibitors caused a delay in the conversion of phagosomes into lysosomes and in phagosomal acidification, whereas production of reactive oxygen species (ROS) increased. Elevated ROS resulted in reduced activity of cathepsin S and B, but not X, causing a proteolytic defect of MHC class II chaperone invariant chain Ii processing. We developed a novel universal MHC class II presentation assay based on a bio-orthogonal "clickable" antigen and showed that MHC class II presentation was disrupted by the inhibition of PIKfyve, which in turn resulted in reduced activation of CD4+ T cells. Our results demonstrate a key role of PIKfyve in the processing and presentation of antigens, which should be taken into consideration when targeting PIKfyve in autoimmune disease and cancer.
Collapse
Affiliation(s)
- Maksim V Baranov
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Frans Bianchi
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Anastasiya Schirmacher
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Melissa A C van Aart
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Sjors Maassen
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Elke M Muntjewerff
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Ilse Dingjan
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | | | - Carolyn R Bertozzi
- Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
28
|
Lancaster CE, Ho CY, Hipolito VEB, Botelho RJ, Terebiznik MR. Phagocytosis: what's on the menu? 1. Biochem Cell Biol 2018; 97:21-29. [PMID: 29791809 DOI: 10.1139/bcb-2018-0008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phagocytosis is an evolutionarily conserved process. In Protozoa, phagocytosis fulfills a feeding mechanism, while in Metazoa, phagocytosis diversified to play multiple organismal roles, including immune defence, tissue homeostasis, and remodeling. Accordingly, phagocytes display a high level of plasticity in their capacity to recognize, engulf, and process targets that differ in composition and morphology. Here, we review how phagocytosis adapts to its multiple roles and discuss in particular the effect of target morphology in phagocytic uptake and phagosome maturation.
Collapse
Affiliation(s)
- Charlene E Lancaster
- a Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4, Canada.,b Department of Cell and System Biology, University of Toronto at Scarborough, Toronto, ON M1C 1A4, Canada
| | - Cheuk Y Ho
- a Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4, Canada
| | - Victoria E B Hipolito
- c Molecular Science Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada.,d Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Roberto J Botelho
- c Molecular Science Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada.,d Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Mauricio R Terebiznik
- a Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4, Canada.,b Department of Cell and System Biology, University of Toronto at Scarborough, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
29
|
Kim HM, Ahn C, Kang BT, Kang JH, Jeung EB, Yang MP. Fucoidan suppresses excessive phagocytic capacity of porcine peripheral blood polymorphonuclear cells by modulating production of tumor necrosis factor-alpha by lipopolysaccharide-stimulated peripheral blood mononuclear cells. Res Vet Sci 2018; 118:413-418. [PMID: 29698903 DOI: 10.1016/j.rvsc.2018.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 11/30/2022]
Abstract
We examined the effect of fucoidan, an immune modulator, on the phagocytic capacity of porcine peripheral blood polymorphonuclear cells (PMNs) exposed to culture supernatant from lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs). For this purpose, we evaluated the phagocytic capacity of porcine PMNs by flow cytometry and measured levels of tumor necrosis factor-alpha (TNF-α) protein and mRNA in porcine PBMCs by enzyme-linked immunosorbent assay (ELISA) and real time-polymerase chain reaction (PCR), respectively. Fucoidan or LPS alone did not affect the phagocytic capacity of PMNs, but phagocytosis by these cells was increased by exposure to culture supernatant from PBMCs treated with fucoidan or LPS. In particular, the culture supernatant from PBMCs treated with LPS revealed excessive phagocytosis of PMNs. This excessive phagocytic capacity was diminished by co-treatment LPS with fucoidan. Production of TNF-α mRNA and protein increased upon treatment of PBMCs with either fucoidan or LPS, but this effect was also diminished by co-treatment LPS with fucoidan. The ability of culture supernatant from PBMCs treated with LPS and/or fucoidan to increase the phagocytic capacity of PMNs was inhibited by anti-recombinant porcine TNF-α polyclonal antibody. These results suggested that fucoidan suppresses the phagocytic capacity of PMNs by modulating TNF-α production by LPS-stimulated PBMCs.
Collapse
Affiliation(s)
- Hyeong-Mok Kim
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Changhwan Ahn
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Byeong-Teck Kang
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ji-Houn Kang
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Eui-Bae Jeung
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Mhan-Pyo Yang
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|