1
|
Li Y, Vyas SP, Mehta I, Asada N, Dey I, Taylor TC, Bechara R, Amatya N, Aggor FEY, Coleman BM, Li DD, Yamamoto K, Ezenwa O, Sun Y, Sterneck E, McManus CJ, Panzer U, Biswas PS, Savan R, Das J, Gaffen SL. The RNA binding protein Arid5a drives IL-17-dependent autoantibody-induced glomerulonephritis. J Exp Med 2024; 221:e20240656. [PMID: 39058386 PMCID: PMC11284280 DOI: 10.1084/jem.20240656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Autoantibody-mediated glomerulonephritis (AGN) arises from dysregulated renal inflammation, with urgent need for improved treatments. IL-17 is implicated in AGN and drives pathology in a kidney-intrinsic manner via renal tubular epithelial cells (RTECs). Nonetheless, downstream signaling mechanisms provoking kidney pathology are poorly understood. A noncanonical RNA binding protein (RBP), Arid5a, was upregulated in human and mouse AGN. Arid5a-/- mice were refractory to AGN, with attenuated myeloid infiltration and impaired expression of IL-17-dependent cytokines and transcription factors (C/EBPβ, C/EBPδ). Transcriptome-wide RIP-Seq revealed that Arid5a inducibly interacts with conventional IL-17 target mRNAs, including CEBPB and CEBPD. Unexpectedly, many Arid5a RNA targets corresponded to translational regulation and RNA processing pathways, including rRNAs. Indeed, global protein synthesis was repressed in Arid5a-deficient cells, and C/EBPs were controlled at the level of protein rather than RNA accumulation. IL-17 prompted Arid5a nuclear export and association with 18S rRNA, a 40S ribosome constituent. Accordingly, IL-17-dependent renal autoimmunity is driven by Arid5a at the level of ribosome interactions and translation.
Collapse
Affiliation(s)
- Yang Li
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shachi P Vyas
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Isha Mehta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nariaki Asada
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Ipsita Dey
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tiffany C Taylor
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rami Bechara
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nilesh Amatya
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Felix E Y Aggor
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bianca M Coleman
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - De-Dong Li
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenta Yamamoto
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ogechukwu Ezenwa
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yeque Sun
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ulf Panzer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Partha S Biswas
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Venz R, Goyala A, Soto-Gamez A, Yenice T, Demaria M, Ewald CY. In-vivo screening implicates endoribonuclease Regnase-1 in modulating senescence-associated lysosomal changes. GeroScience 2024; 46:1499-1514. [PMID: 37644339 PMCID: PMC10828269 DOI: 10.1007/s11357-023-00909-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Accumulation of senescent cells accelerates aging and age-related diseases, whereas preventing this accumulation extends the lifespan in mice. A characteristic of senescent cells is increased staining with β-galactosidase (β-gal) ex vivo. Here, we describe a progressive accumulation of β-gal staining in the model organism C. elegans during aging. We show that distinct pharmacological and genetic interventions targeting the mitochondria and the mTORC1 to the nuclear core complex axis, the non-canonical apoptotic, and lysosomal-autophagy pathways slow the age-dependent accumulation of β-gal. We identify a novel gene, rege-1/Regnase-1/ZC3H12A/MCPIP1, modulating β-gal staining via the transcription factor ets-4/SPDEF. We demonstrate that knocking down Regnase-1 in human cell culture prevents senescence-associated β-gal accumulation. Our data provide a screening pipeline to identify genes and drugs modulating senescence-associated lysosomal phenotypes.
Collapse
Affiliation(s)
- Richard Venz
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Abel Soto-Gamez
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Tugce Yenice
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Marco Demaria
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
3
|
Yoshinaga M, Takeuchi O. Regulation of inflammatory diseases via the control of mRNA decay. Inflamm Regen 2024; 44:14. [PMID: 38491500 PMCID: PMC10941436 DOI: 10.1186/s41232-024-00326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammation orchestrates a finely balanced process crucial for microorganism elimination and tissue injury protection. A multitude of immune and non-immune cells, alongside various proinflammatory cytokines and chemokines, collectively regulate this response. Central to this regulation is post-transcriptional control, governing gene expression at the mRNA level. RNA-binding proteins such as tristetraprolin, Roquin, and the Regnase family, along with RNA modifications, intricately dictate the mRNA decay of pivotal mediators and regulators in the inflammatory response. Dysregulated activity of these factors has been implicated in numerous human inflammatory diseases, underscoring the significance of post-transcriptional regulation. The increasing focus on targeting these mechanisms presents a promising therapeutic strategy for inflammatory and autoimmune diseases. This review offers an extensive overview of post-transcriptional regulation mechanisms during inflammatory responses, delving into recent advancements, their implications in human diseases, and the strides made in therapeutic exploitation.
Collapse
Affiliation(s)
- Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
4
|
Jiang Y, Gruszka D, Zeng C, Swindell WR, Gaskill C, Sorensen C, Brown W, Gangwar RS, Tsoi LC, Webster J, Sigurðardóttir SL, Sarkar MK, Uppala R, Kidder A, Xing X, Plazyo O, Xing E, Billi AC, Maverakis E, Kahlenberg JM, Gudjonsson JE, Ward NL. Suppression of TCF4 promotes a ZC3H12A-mediated self-sustaining inflammatory feedback cycle involving IL-17RA/IL-17RE epidermal signaling. JCI Insight 2024; 9:e172764. [PMID: 38470486 PMCID: PMC11141873 DOI: 10.1172/jci.insight.172764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
IL-17C is an epithelial cell-derived proinflammatory cytokine whose transcriptional regulation remains unclear. Analysis of the IL17C promoter region identified TCF4 as putative regulator, and siRNA knockdown of TCF4 in human keratinocytes (KCs) increased IL17C. IL-17C stimulation of KCs (along with IL-17A and TNF-α stimulation) decreased TCF4 and increased NFKBIZ and ZC3H12A expression in an IL-17RA/RE-dependent manner, thus creating a feedback loop. ZC3H12A (MCPIP1/Regnase-1), a transcriptional immune-response regulator, also increased following TCF4 siRNA knockdown, and siRNA knockdown of ZC3H12A decreased NFKBIZ, IL1B, IL36G, CCL20, and CXCL1, revealing a proinflammatory role for ZC3H12A. Examination of lesional skin from the KC-Tie2 inflammatory dermatitis mouse model identified decreases in TCF4 protein concomitant with increases in IL-17C and Zc3h12a that reversed following the genetic elimination of Il17c, Il17ra, and Il17re and improvement in the skin phenotype. Conversely, interference with Tcf4 in KC-Tie2 mouse skin increased Il17c and exacerbated the inflammatory skin phenotype. Together, these findings identify a role for TCF4 in the negative regulation of IL-17C, which, alone and with TNF-α and IL-17A, feed back to decrease TCF4 in an IL-17RA/RE-dependent manner. This loop is further amplified by IL-17C-TCF4 autocrine regulation of ZC3H12A and IL-17C regulation of NFKBIZ to promote self-sustaining skin inflammation.
Collapse
Affiliation(s)
- Yanyun Jiang
- Department of Dermatology, Ann Arbor, Michigan, USA
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dennis Gruszka
- Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chang Zeng
- Department of Dermatology, Ann Arbor, Michigan, USA
| | - William R. Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christa Gaskill
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christian Sorensen
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Whitney Brown
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roopesh Singh Gangwar
- Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lam C. Tsoi
- Department of Dermatology, Ann Arbor, Michigan, USA
| | - Joshua Webster
- Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | - Enze Xing
- Department of Dermatology, Ann Arbor, Michigan, USA
| | | | - Emanual Maverakis
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nicole L. Ward
- Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4) and Vanderbilt Center for Immunobiology (VCI), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Dhamija B, Marathe S, Sawant V, Basu M, Attrish D, Mukherjee D, Kumar S, Pai MGJ, Wad S, Sawant A, Nayak C, Venkatesh KV, Srivastava S, Barthel SR, Purwar R. IL-17A Orchestrates Reactive Oxygen Species/HIF1α-Mediated Metabolic Reprogramming in Psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:302-316. [PMID: 38019129 PMCID: PMC11100423 DOI: 10.4049/jimmunol.2300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023]
Abstract
Immune cell-derived IL-17A is one of the key pathogenic cytokines in psoriasis, an immunometabolic disorder. Although IL-17A is an established regulator of cutaneous immune cell biology, its functional and metabolic effects on nonimmune cells of the skin, particularly keratinocytes, have not been comprehensively explored. Using multiomics profiling and systems biology-based approaches, we systematically uncover significant roles for IL-17A in the metabolic reprogramming of human primary keratinocytes (HPKs). High-throughput liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance spectroscopy revealed IL-17A-dependent regulation of multiple HPK proteins and metabolites of carbohydrate and lipid metabolism. Systems-level MitoCore modeling using flux-balance analysis identified IL-17A-mediated increases in HPK glycolysis, glutaminolysis, and lipid uptake, which were validated using biochemical cell-based assays and stable isotope-resolved metabolomics. IL-17A treatment triggered downstream mitochondrial reactive oxygen species and HIF1α expression and resultant HPK proliferation, consistent with the observed elevation of these downstream effectors in the epidermis of patients with psoriasis. Pharmacological inhibition of HIF1α or reactive oxygen species reversed IL-17A-mediated glycolysis, glutaminolysis, lipid uptake, and HPK hyperproliferation. These results identify keratinocytes as important target cells of IL-17A and reveal its involvement in multiple downstream metabolic reprogramming pathways in human skin.
Collapse
Affiliation(s)
- Bhavuk Dhamija
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Soumitra Marathe
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Vinanti Sawant
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Moumita Basu
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Diksha Attrish
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | | | - Sushant Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | | | - Siddhi Wad
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Abhijeet Sawant
- Plastic Surgery Department, TNMC and BYL Nair Charitable Hospital, Mumbai, India
| | - Chitra Nayak
- Skin and Venereal Diseases Department, TNMC and BYL Nair Charitable Hospital, Mumbai, India
| | - KV Venkatesh
- Department of Chemical Engineering, IIT Bombay, Mumbai, India
| | | | - Steven R. Barthel
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rahul Purwar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
6
|
Yoshinaga M, Takeuchi O. RNA Metabolism Governs Immune Function and Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:145-161. [PMID: 38467978 DOI: 10.1007/978-981-99-9781-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Inflammation is a complex process that protects our body from various insults such as infection, injury, and stress. Proper inflammation is beneficial to eliminate the insults and maintain organ homeostasis, however, it can become detrimental if uncontrolled. To tightly regulate inflammation, post-transcriptional mechanisms governing RNA metabolism play a crucial role in monitoring the expression of immune-related genes, such as tumor necrosis factor (TNF) and interleukin-6 (IL-6). These mechanisms involve the coordinated action of various RNA-binding proteins (RBPs), including the Regnase family, Roquin, and RNA methyltransferases, which are responsible for mRNA decay and/or translation regulation. The collaborative efforts of these RBPs are essential in preventing aberrant immune response activation and consequently safeguarding against inflammatory and autoimmune diseases. This review provides an overview of recent advancements in our understanding of post-transcriptional regulation within the immune system and explores the specific roles of individual RBPs in RNA metabolism and regulation.
Collapse
Affiliation(s)
- Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Bechara R, Vagner S, Mariette X. Post-transcriptional checkpoints in autoimmunity. Nat Rev Rheumatol 2023; 19:486-502. [PMID: 37311941 DOI: 10.1038/s41584-023-00980-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Post-transcriptional regulation is a fundamental process in gene expression that has a role in diverse cellular processes, including immune responses. A core concept underlying post-transcriptional regulation is that protein abundance is not solely determined by transcript abundance. Indeed, transcription and translation are not directly coupled, and intervening steps occur between these processes, including the regulation of mRNA stability, localization and alternative splicing, which can impact protein abundance. These steps are controlled by various post-transcription factors such as RNA-binding proteins and non-coding RNAs, including microRNAs, and aberrant post-transcriptional regulation has been implicated in various pathological conditions. Indeed, studies on the pathogenesis of autoimmune and inflammatory diseases have identified various post-transcription factors as important regulators of immune cell-mediated and target effector cell-mediated pathological conditions. This Review summarizes current knowledge regarding the roles of post-transcriptional checkpoints in autoimmunity, as evidenced by studies in both haematopoietic and non-haematopoietic cells, and discusses the relevance of these findings for developing new anti-inflammatory therapies.
Collapse
Affiliation(s)
- Rami Bechara
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Le Kremlin Bicêtre, France.
| | - Stephan Vagner
- Institut Curie, CNRS UMR3348, INSERM U1278, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Xavier Mariette
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Le Kremlin Bicêtre, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Bicêtre, Department of Rheumatology, Le Kremlin Bicêtre, France
| |
Collapse
|
8
|
Yang G, Lee HE, Trzeciak M, Pawelczyk T, Takeuchi O, Kang HC, Cho YY, Lee HS, Lee JY. Regnase-1 plays an essential role in maintaining skin immune homeostasis via regulation of chemokine expression. Biomed Pharmacother 2023; 162:114558. [PMID: 36966666 DOI: 10.1016/j.biopha.2023.114558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Regnase-1 is an endoribonuclease that regulates the stability of target genes. Here, we investigated whether Regnase-1 plays a regulatory role in the pathophysiology of atopic dermatitis, a chronic inflammatory skin disease. Regnase-1 levels were decreased in skin and serum of atopic dermatitis patients and mice. Regnase-1+/- mice exhibited more severe atopic dermatitis symptoms than wild-type mice in a house dust mite allergen-induced atopic dermatitis model. Regnase-1 deficiency led to the global changes in gene expression related with innate immune and inflammatory responses, in particular chemokines. The skin Regnase-1 level had an inverse relationship with chemokine expression when we analyzed samples of atopic dermatitis patients and Regnase-1-deficient mice, suggesting that potentiated chemokine production contributes to the augmented inflammation at lesion sites. Subcutaneous administration of recombinant Regnase-1 to mice significantly ameliorated atopic dermatitis-like skin inflammation with reduced chemokine production in a house dust mite-induced atopic dermatitis NC/Nga mouse model. These results indicate that Regnase-1 plays an essential role in maintaining skin immune homeostasis as a regulator of chemokine expression. Modulating Regnase-1 activity may be an efficient therapeutic strategy for treating chronic inflammatory diseases, including atopic dermatitis.
Collapse
Affiliation(s)
- Gabsik Yang
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Department of Pharmacology, College of Korean Medicine, Woosuk University, Jeonbuk 565-701, Republic of Korea
| | - Hye Eun Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology, and Allergology, Medical University of Gdansk, Gdansk 80-214, Poland
| | - Tadeusz Pawelczyk
- Department of Molecular Medicine, Medical University of Gdansk, Gdansk 80-214, Poland
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| |
Collapse
|
9
|
Szukala W, Pilarczyk-Zurek M, Folkert J, Kotlinowski J, Koziel J, Jura J. Depletion of Mcpip1 in murine myeloid cells results in intestinal dysbiosis followed by allergic inflammation. Biochim Biophys Acta Mol Basis Dis 2023:166764. [PMID: 37257731 DOI: 10.1016/j.bbadis.2023.166764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
MCPIP1 (called also Regnase-1) is a negative regulator of inflammation. Knockout of the Zc3h12a gene, encoding Mcpip1 in cells of myeloid origin (Mcpip1MKO), has a pathological effect on many organs. The aim of this study was to comprehensively analyze pathological changes in the skin caused by Mcpip1 deficiency in phagocytes with an emphasis on its molecular mechanism associated with microbiome dysbiosis. Mcpip1MKO mice exhibited spontaneous wound formation on the skin. On a molecular level, the Th2-type immune response was predominantly characterized by an increase in Il5 and Il13 transcript levels, as well as eosinophil and mast cell infiltration. Irritation by DNFB led to a more severe skin contact allergy in Mcpip1MKO mice. Allergic reactions on the skin were strongly influenced by gut dysbiosis and enhanced systemic dissemination of bacteria. This process was followed by activation of the C/EBP pathway in peripheral macrophages, leading to local changes in the cytokine microenvironment that promoted the Th2 response. A reduced bacterial load inhibited allergic inflammation, indicating the role of intestinal dysbiosis in the development of skin diseases. Our results clearly show that MCPIP1 in phagocytes is an essential negative regulator that controls the gut-skin axis.
Collapse
Affiliation(s)
- Weronika Szukala
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, 30-387 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, 30-348 Krakow, Poland
| | - Magdalena Pilarczyk-Zurek
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Gronostajowa 7, 30-387 Krakow, Poland
| | - Justyna Folkert
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jerzy Kotlinowski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, 30-387 Krakow, Poland
| | - Joanna Koziel
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Jolanta Jura
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
10
|
Morisaka H, Takaishi M, Akira S, Sano S. Keratinocyte Regnase-1, a Downregulator of Skin Inflammation, Contributes to Protection against Tumor Promotion by Limiting Cyclooxygenase-2 Expression. J Invest Dermatol 2022; 143:731-739. [PMID: 36470473 DOI: 10.1016/j.jid.2022.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
We previously showed that the ribonuclease Regnase-1 (Reg1) in keratinocytes plays a role in mitigating skin inflammation by downregulating proinflammatory cytokines. In this study, we explored whether Reg1 also has a protective role against skin carcinogenesis. The chemically induced two-stage carcinogenesis protocol revealed that epidermis-specific Reg1-deficient (Reg1-knockout [Reg1-cKO]) mice developed skin tumors with shorter latency and more multiplicity than control mice. In addition, repeated UVB irradiation readily provoked solar keratosis-like lesions in Reg1-cKO mice. Increased levels of cyclooxygenase 2, whose mRNA (Ptgs2) is reportedly a target of Reg1, have been known to be associated with the development of squamous cell carcinomas. Indeed, Ptgs2 mRNA levels were upregulated in the skin of Reg1-cKO mice after treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. The level of prostaglandin E2 was higher in 12-O-tetradecanoylphorbol-13-acetate‒treated Reg1-cKO mouse skin than in control mice skin. Moreover, in vivo inhibition of cyclooxygenase 2 attenuated the 12-O-tetradecanoylphorbol-13-acetate‒induced epidermal thickening in Reg1-cKO mice. Finally, REG1 knockdown in human squamous cell carcinomas lines enhanced PTGS2 mRNA levels after 12-O-tetradecanoylphorbol-13-acetate treatment. In conclusion, epidermal Reg1 plays a regulatory role not only in skin inflammation but also in tumor promotion through the downregulation of cyclooxygenase 2. Therefore, forced expression of Reg1 under inflammatory conditions may be relevant to preventing skin cancer.
Collapse
Affiliation(s)
- Hiroyuki Morisaka
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Mikiro Takaishi
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center, World Premier Institute for Immunology, Osaka University, Suita, Japan; Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan.
| |
Collapse
|
11
|
Xu Y, Liang J, Gao W, Sun Y, Zhang Y, Shan F, Ge J, Xia Q. Peripheral blood cytokines as potential diagnostic biomarkers of suicidal ideation in patients with first-episode drug-naïve major depressive disorder. Front Public Health 2022; 10:1021309. [PMID: 36420006 PMCID: PMC9678225 DOI: 10.3389/fpubh.2022.1021309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Objective Major Depressive Disorder (MDD) is a leading cause of disability, with a high risk of suicidal ideation (SI). Few studies have evaluated the potential of multiple cytokines as biomarkers for SI in patients with MDD. In the present study, we examined the serum levels of multiple cytokines in patients with first-episode drug-naïve MDD, with the aim to discover and identify serum cytokines-based biomarkers for identification of SI in MDD. Methods A total of 55 patients with first-episode drug-naïve MDD were enrolled and divided into two groups: 26 MDD patients without SI and 29 MDD patients with SI. Beck Scale for Suicide Ideation was used to estimate SI. A total of 37 cytokines were measured using Multiplex Luminex Assays. The levels of serum cytokines between MDD patients without SI and MDD patients with SI were compared and diagnostic values of different cytokines were evaluated using the receiver operating characteristic (ROC) curve method for discriminating MDD patients with SI from MDD patients without SI. The relationship between the group and the abnormal cytokines were investigated in multiple linear regression models, with adjustments for age, gender, BMI, smoking, and Hamilton Depression Rating Scale-24 (HAMD-24) scores. Results The levels of CCL26 and VEGF in MDD patients with SI were significantly lower than those in MDD patients without SI (all P < 0.05). On the contrary, the levels of IL-17C, CXCL10, and TNF-β in MDD patients with SI were significantly higher than those in MDD patients without SI (all P < 0.05). Moreover, the results of multiple linear regression revealed that group was a significant independent predictor of serum IL-17C, CCL-26, VEGF, and TNF-β levels (all P < 0.05). In terms of CXC10, group was also likely to be a significant independent predictor (β = 0.257, P = 0.063). Furthermore, the AUC values of IL-17C and TNF-β were 0.728 and 0.732, respectively. Additionally, a combined panel of IL-17C and TNF-β achieved a high accuracy in discriminating MDD patients with SI from MDD patients without SI (AUC = 0.848, sensitivity = 75.9%, specificity = 72.7%). Conclusions These results suggested that circulating IL-17C and TNF-β may hold promise in the discovery of biomarkers for identification of SI in MDD.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Liang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China,Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Wenfan Gao
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China,Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Yanhong Sun
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China,Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Yuanyuan Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China,Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Feng Shan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China,Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Jinfang Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China,School of Pharmacy, Anhui Medical University, Hefei, China,*Correspondence: Jinfang Ge
| | - Qingrong Xia
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China,Anhui Clinical Research Center for Mental Disorders, Hefei, China,Qingrong Xia
| |
Collapse
|
12
|
Roles of RNA-binding proteins in immune diseases and cancer. Semin Cancer Biol 2022; 86:310-324. [PMID: 35351611 DOI: 10.1016/j.semcancer.2022.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023]
Abstract
Genetic information that is transcribed from DNA to mRNA, and then translated from mRNA to protein, is regulated by complex and sophisticated post-transcriptional mechanisms. Recently, it has become clear that mRNA degradation not only acts to remove unnecessary mRNA, but is also closely associated with the regulation of translation initiation, and is essential for maintaining cellular homeostasis. Various RNA-binding proteins (RBPs) have been reported to play central roles in the mechanisms of mRNA stability and translation initiation through various signal transduction pathways, and to modulate gene expression faster than the transcription process via post-transcriptional modifications in response to intracellular and extracellular stimuli, without de novo protein synthesis. On the other hand, inflammation is necessary for the elimination of pathogens associated with infection, and is tightly controlled to avoid the overexpression of inflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor (TNF). It is increasingly becoming clear that RBPs play important roles in the post-transcriptional regulation of these immune responses. Furthermore, it has been shown that the aberrant regulation of RBPs leads to chronic inflammation and autoimmune diseases. Although it has been recognized since the time of Rudolf Virchow in the 19th century that cancer-associated inflammation contributes to tumor onset and progression, involvement of the disruption of the balance between anti-tumor immunity via the immune surveillance system and pro-tumor immunity by cancer-associated inflammation in the malignant transformation of cancer remains elusive. Recently, the dysregulated expression and activation of representative RBPs involved in regulation of the production of pro-inflammatory cytokines have been shown to be involved in tumor progression. In this review, we summarize the recent progress in our understanding of the functional roles of these RBPs in several types of immune responses, and the involvement of RBP dysregulation in the pathogenesis of immune diseases and cancer, and discuss possible therapeutic strategies against cancer by targeting RBPs, coupled with immunotherapy.
Collapse
|
13
|
Ruggiero A, Megna M, Fabbrocini G, Fornaro L, Villani A. Drug safety evaluation of ixekizumab for psoriasis: a review of the current knowledge. Expert Opin Drug Saf 2022; 21:1249-1257. [PMID: 36250261 DOI: 10.1080/14740338.2022.2134855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Since Anti-IL-17s availability, concerns about their safety have been raised due to the inhibition of physiological activities that IL-17A plays in the immune response against infections. Ixekizumab is a humanized monoclonal antibody specifically targeting IL-17A approved for the treatment of moderate-to-severe psoriasis. AREAS COVERED The aim of this review is to evaluate the safety profile of ixekizumab in moderate to severe psoriasis patients. A compressive literature review included article since March 2022. EXPERT OPINION in our analysis, most of the reported AEs were mild or moderate and rarely required treatment discontinuation. Among the class specific AEs to consider during ixekizumab treatment, there are the risk of Candida spp infections and the risk of IBD, which both were reported more frequently than if compared with placebo or other biologics (etanercept, ustekinumab, guselkumab). However, the reported candidiasis resulted mild-to moderate, and easily managed. The risk of IBD (both exacerbation and de novo diagnosis) represents a class effect of IL-17 inhibitors, which should be well evaluated before considering starting ixekizumab treatment. the most common AEs were represented by nasopharyngitis, upper respiratory tract infection, and injection-site reactions. The analysed studies confirmed the favourable safety profile of ixekizumab even in more recently published studies.
Collapse
Affiliation(s)
- Angelo Ruggiero
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Matteo Megna
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Gabriella Fabbrocini
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Luigi Fornaro
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Alessia Villani
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
14
|
Tse KM, Vandenbon A, Cui X, Mino T, Uehata T, Yasuda K, Sato A, Tsujimura T, Hia F, Yoshinaga M, Kinoshita M, Okuno T, Takeuchi O. Enhancement of Regnase-1 expression with stem loop-targeting antisense oligonucleotides alleviates inflammatory diseases. Sci Transl Med 2022; 14:eabo2137. [PMID: 35544597 DOI: 10.1126/scitranslmed.abo2137] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Regnase-1 is an ribonuclease that plays essential roles in restricting inflammation through degrading messenger RNAs (mRNAs) involved in immune reactions via the recognition of stem-loop (SL) structures in the 3' untranslated regions (3'UTRs). Dysregulated expression of Regnase-1 is associated with the pathogenesis of inflammatory and autoimmune diseases in mice and humans. Here, we developed a therapeutic strategy to suppress inflammatory responses by blocking Regnase-1 self-regulation, which was mediated by the simultaneous use of two antisense phosphorodiamidate morpholino oligonucleotides (MOs) to alter the binding of Regnase-1 toward the SL structures in its 3'UTR. Regnase-1-targeting MOs not only enhanced Regnase-1 expression by stabilizing mRNAs but also effectively reduced the expression of multiple proinflammatory transcripts that were controlled by Regnase-1 in macrophages. Intratracheal administration of Regnase-1-targeting MOs ameliorated acute respiratory distress syndrome and chronic fibrosis through suppression of inflammatory cascades. In addition, intracranial treatment with Regnase-1-targeting MOs attenuated the development of experimental autoimmune encephalomyelitis by promoting the expansion of homeostatic microglia and regulatory T cell populations. Regnase-1 expression was inversely correlated with disease severity in patients with multiple sclerosis, and MOs targeting human Regnase-1 SL structures were effective in mitigating cytokine production in human immune cells. Collectively, MO-mediated disruption of the Regnase-1 self-regulation pathway is a potential therapeutic strategy to enhance Regnase-1 abundance, which, in turn, provides therapeutic benefits for treating inflammatory diseases by suppressing inflammation.
Collapse
Affiliation(s)
- Ka Man Tse
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Alexis Vandenbon
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Xiaotong Cui
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Takuya Uehata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Keiko Yasuda
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Ayuko Sato
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Fabian Hia
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Yang H, Gao C, Wang X, Qiu F, Wei M, Xia F. Associations between vaginal flora, MIP-1α, IL-17A, and clinical pregnancy rate in AIH. Am J Reprod Immunol 2022; 88:e13543. [PMID: 35357057 DOI: 10.1111/aji.13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
PROBLEM To investigate how asymptomatic bacterial imbalance affects the clinical pregnancy rate after artificial insemination with the husband's semen (AIH). METHODS This study included married heterosexual couples who underwent AIH. According to the follow-up results, participants were divided into the pregnancy and non-pregnancy groups. Based on the first 10 pair participants in each group with vaginal flora bacterial 16S rRNA sequencing results, six semen samples received bacterial-sperm mixed test. Moreover, 34 cytokines were detected in the peripheral blood sera of the first three pairs by high-throughput Luminex, which were verified in vaginal secretions, cervical mucus, and blood sera from the first 200 pairs by ELISA. RESULTS The results of the 16S sequencing of vaginal secretions showed that compared with the pregnant group, the non-pregnant group had a significantly increased bacterial species diversity, which was mainly manifested by a decrease in Lactobacillus crispatus and an increase in Prevotella bivia. When Prevotella bivia or Lactobacillus crispatus were mixed with sperms, the sperm motility was decreased (p < .05). The vaginal posterior fornix secretions, cervical mucus, and peripheral blood sera of the non-pregnant group showed decreased levels of MIP-1α and increased levels of IL-17A (p < .05). CONCLUSION The imbalance of vaginal flora leading to the increase of Prevotella bivia and the decrease of Lactobacillus crispatus may cause an imbalance of immune regulation. Low expression of MIP-1α and high expression of IL-17A were associated with reduced clinical pregnancy rate in AIH.
Collapse
Affiliation(s)
- Hui Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China.,Department of Gynecology and Obstetrics, Huaian Maternal and Child Health Care Hospital, Huai'an, Jiangsu, P.R. China
| | - Chengzhen Gao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Xia Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Fenglong Qiu
- Department of Gynecology and Obstetrics, Huaian Maternal and Child Health Care Hospital, Huai'an, Jiangsu, P.R. China
| | - Mian Wei
- Department of Gynecology and Obstetrics, Huaian Maternal and Child Health Care Hospital, Huai'an, Jiangsu, P.R. China
| | - Fei Xia
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
16
|
Muromoto R, Oritani K, Matsuda T. Current understanding of the role of tyrosine kinase 2 signaling in immune responses. World J Biol Chem 2022; 13:1-14. [PMID: 35126866 PMCID: PMC8790287 DOI: 10.4331/wjbc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/06/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Immune system is a complex network that clears pathogens, toxic substrates, and cancer cells. Distinguishing self-antigens from non-self-antigens is critical for the immune cell-mediated response against foreign antigens. The innate immune system elicits an early-phase response to various stimuli, whereas the adaptive immune response is tailored to previously encountered antigens. During immune responses, B cells differentiate into antibody-secreting cells, while naïve T cells differentiate into functionally specific effector cells [T helper 1 (Th1), Th2, Th17, and regulatory T cells]. However, enhanced or prolonged immune responses can result in autoimmune disorders, which are characterized by lymphocyte-mediated immune responses against self-antigens. Signal transduction of cytokines, which regulate the inflammatory cascades, is dependent on the members of the Janus family of protein kinases. Tyrosine kinase 2 (Tyk2) is associated with receptor subunits of immune-related cytokines, such as type I interferon, interleukin (IL)-6, IL-10, IL-12, and IL-23. Clinical studies on the therapeutic effects and the underlying mechanisms of Tyk2 inhibitors in autoimmune or chronic inflammatory diseases are currently ongoing. This review summarizes the findings of studies examining the role of Tyk2 in immune and/or inflammatory responses using Tyk2-deficient cells and mice.
Collapse
Affiliation(s)
- Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
17
|
Szukala W, Lichawska-Cieslar A, Pietrzycka R, Kulecka M, Rumienczyk I, Mikula M, Chlebicka I, Konieczny P, Dziedzic K, Szepietowski JC, Fontemaggi G, Rys J, Jura J. Loss of epidermal MCPIP1 is associated with aggressive squamous cell carcinoma. J Exp Clin Cancer Res 2021; 40:391. [PMID: 34903245 PMCID: PMC8667402 DOI: 10.1186/s13046-021-02202-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma (SCC) of the skin is a common form of nonmelanoma skin cancer. Monocyte chemotactic protein 1-induced protein 1 (MCPIP1), also called Regnase-1, is an RNase with anti-inflammatory properties. In normal human skin, its expression is predominantly restricted to the suprabasal epidermis. The main aim of this study was to investigate whether MCPIP1 is involved in the pathogenesis of SCC. METHODS We analyzed the distribution of MCPIP1 in skin biopsies of patients with actinic keratoses (AKs) and SCCs. To explore the mechanisms by which MCPIP1 may modulate tumorigenesis in vivo, we established a mouse model of chemically induced carcinogenesis. RESULTS Skin expression of MCPIP1 changed during the transformation of precancerous lesions into cutaneous SCC. MCPIP1 immunoreactivity was high in the thickened area of the AK epidermis but was predominantly restricted to keratin pearls in fully developed SCC lesions. Accelerated development of chemically induced skin tumors was observed in mice with loss of epidermal MCPIP1 (Mcpip1eKO). Papillomas that developed in Mcpip1eKO mouse skin were larger and characterized by elevated expression of markers typical of keratinocyte proliferation and tumor angiogenesis. This phenotype was correlated with enhanced expression of IL-6, IL-33 and transforming growth factor-beta (TGF-β). Moreover, our results demonstrated that in keratinocytes, the RNase MCPIP1 is essential for the negative regulation of genes encoding SCC antigens and matrix metallopeptidase 9. CONCLUSIONS Overall, our results provide a mechanistic understanding of how MCPIP1 contributes to the development of epidermoid carcinoma.
Collapse
Affiliation(s)
- Weronika Szukala
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Agata Lichawska-Cieslar
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Roza Pietrzycka
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Maria Kulecka
- Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Marymoncka 99/103, 01-813, Warsaw, Poland.,Maria Skłodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Izabela Rumienczyk
- Maria Skłodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Michal Mikula
- Maria Skłodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Iwona Chlebicka
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368, Wroclaw, Poland
| | - Piotr Konieczny
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Katarzyna Dziedzic
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368, Wroclaw, Poland
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00-144, Rome, Italy
| | - Janusz Rys
- Maria Skłodowska-Curie National Research Institute of Oncology, Garncarska 11, 31-115, Krakow, Poland
| | - Jolanta Jura
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
18
|
Mino T, Takeuchi O. Regnase-1-related endoribonucleases in health and immunological diseases. Immunol Rev 2021; 304:97-110. [PMID: 34514623 DOI: 10.1111/imr.13023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Dynamic changes in gene expression are key factors in the development and activation of immune cells. RNA metabolism is one of the critical steps for the control of gene expression. Together with transcriptional regulation, mRNA decay by specific ribonucleases (RNases) plays a vital role in shaping gene expression. In addition to the canonical exoribonuclease-mediated mRNA degradation through the recognition of cis-elements in mRNA 3' untranslated regions by RNA-binding proteins (RBPs), endoribonucleases are involved in the control of mRNAs in immune cells. In this review, we gleam insights on how Regnase-1, an endoribonuclease necessary for regulating immune cell activation and maintenance of immune homeostasis, degrades RNAs involved in immune cell activation. Additionally, we provide insights on recent studies which uncover the role of Regnase-1-related RNases, including Regnase-2, Regnase-3, and Regnase-4, as well as N4BP1 and KHNYN, in immune regulation and antiviral immunity. As the dysregulation of immune mRNA decay leads to pathologies such as autoimmune diseases or impaired activation of immune responses, RNases are deemed as essential components of regulatory feedback mechanisms that modulate inflammation. Given the critical role of RNases in autoimmunity, RNases can be perceived as emerging targets in the development of novel therapeutics.
Collapse
Affiliation(s)
- Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Li DD, Bechara R, Ramani K, Jawale CV, Li Y, Kolls JK, Gaffen SL, Biswas PS. RTEC-intrinsic IL-17-driven inflammatory circuit amplifies antibody-induced glomerulonephritis and is constrained by Regnase-1. JCI Insight 2021; 6:e147505. [PMID: 34236049 PMCID: PMC8410033 DOI: 10.1172/jci.insight.147505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/19/2021] [Indexed: 01/12/2023] Open
Abstract
Antibody-mediated glomerulonephritis (AGN) is a clinical manifestation of many autoimmune kidney diseases for which few effective treatments exist. Chronic inflammatory circuits in renal glomerular and tubular cells lead to tissue damage in AGN. These cells are targeted by the cytokine IL-17, which has recently been shown to be a central driver of the pathogenesis of AGN. However, surprisingly little is known about the regulation of pathogenic IL-17 signaling in the kidney. Here, using a well-characterized mouse model of AGN, we show that IL-17 signaling in renal tubular epithelial cells (RTECs) is necessary for AGN development. We also show that Regnase-1, an RNA binding protein with endoribonuclease activity, is a negative regulator of IL-17 signaling in RTECs. Accordingly, mice with a selective Regnase-1 deficiency in RTECs exhibited exacerbated kidney dysfunction in AGN. Mechanistically, Regnase-1 inhibits IL-17-driven expression of the transcription factor IκBξ and, consequently, its downstream gene targets, including Il6 and Lcn2. Moreover, deletion of Regnase-1 in human RTECs reduced inflammatory gene expression in a IκBξ-dependent manner. Overall, these data identify an IL-17-driven inflammatory circuit in RTECs during AGN that is constrained by Regnase-1.
Collapse
Affiliation(s)
- De-Dong Li
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania. USA
| | - Rami Bechara
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania. USA
| | - Kritika Ramani
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania. USA
| | - Chetan V Jawale
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania. USA
| | - Yang Li
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania. USA
| | - Jay K Kolls
- Tulane University, Department of Medicine, New Orleans, Louisiana, USA
| | - Sarah L Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania. USA
| | - Partha S Biswas
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania. USA
| |
Collapse
|
20
|
Krajewski PK, Szukała W, Lichawska-Cieślar A, Matusiak Ł, Jura J, Szepietowski JC. MCPIP1/Regnase-1 Expression in Keratinocytes of Patients with Hidradenitis Suppurativa: Preliminary Results. Int J Mol Sci 2021; 22:ijms22147241. [PMID: 34298861 PMCID: PMC8307415 DOI: 10.3390/ijms22147241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
The pathogenesis of hidradenitis suppurativa (HS) is yet to be fully understood. However, inflammation is a key element in the development of skin lesions. The aim of this study was to evaluate the expression of monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in the skin of patients suffering from HS. Skin biopsies of 15 patients with HS and 15 healthy controls were obtained and processed for immunohistochemistry, western blot, and real time PCR. The highest mean MCPIP1 mRNA expression was found in the inflammatory lesional skin of HS patients. It was significantly higher than MCPIP1 mRNA expression in the biopsies from both healthy controls and non-lesional skin of HS patients. Western blot analysis indicated that expression of MCPIP1 was elevated within both lesional and non-lesional skin compared to the healthy control. The increased MCPIP1 mRNA and protein expression level in HS lesions may indicate its possible role in the disease pathogenesis.
Collapse
Affiliation(s)
- Piotr K. Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
| | - Weronika Szukała
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
| | - Agata Lichawska-Cieślar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
- Correspondence: (A.L.-C.); (J.C.S.)
| | - Łukasz Matusiak
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-392 Krakow, Poland; (W.S.); (J.J.)
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368 Wroclaw, Poland; (P.K.K.); (Ł.M.)
- Correspondence: (A.L.-C.); (J.C.S.)
| |
Collapse
|
21
|
Yan B, Guo Y, Gui Y, Jiang ZS, Zheng XL. Multifunctional RNase MCPIP1 and its Role in Cardiovascular Diseases. Curr Med Chem 2021; 28:3385-3405. [PMID: 33191882 DOI: 10.2174/0929867327999201113100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/20/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
Abstract
Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), one of the MCPIP family members, is characterized by the presence of both C-x8-C-x5-C-x3-H (CCCH)- type zinc finger and PilT-N-terminal domains. As a potent regulator of innate immunity, MCPIP1 exerts anti-inflammatory effects through its ribonuclease (RNase) and deubiquitinating enzyme activities to degrade cytokine mRNAs and inhibit nuclear factor- kappa B (NF-κB), respectively. MCPIP1 is expressed not only in immune cells but also in many other cell types, including cardiomyocytes, vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Increasing evidence indicates that MCPIP1 plays a role in the regulation of cardiac functions and is involved in the processes of vascular diseases, such as ischemia-reperfusion (I/R) and atherosclerosis. To better understand the emerging roles of MCPIP1 in the cardiovascular system, we reviewed the current literature with respect to MCPIP1 functions and discussed its association with the pathogenesis of cardiovascular diseases and the implication as a therapeutic target.
Collapse
Affiliation(s)
- Binjie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Yanan Guo
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| | - Yu Gui
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| |
Collapse
|
22
|
The endoribonuclease N4BP1 prevents psoriasis by controlling both keratinocytes proliferation and neutrophil infiltration. Cell Death Dis 2021; 12:488. [PMID: 33990547 PMCID: PMC8121926 DOI: 10.1038/s41419-021-03774-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
Psoriasis is a common chronic skin disease, characterized by abnormal interplay between hyperproliferative epidermal keratinocytes and self-reactive immune cells with not fully addressed molecular mechanism. N4BP1 (NEDD4-binding protein 1) is considered as an immune regulator for a long time but its physiological role is not determined yet. Here, we found that the expression of N4BP1 in skin was highest among all 54 tested tissues, and its expression was further upregulated in psoriatic skin. N4BP1-deficient mice exhibited normal grossly, but developed severe and prolonged IMQ-induced psoriasis-like disease comparing to controls. N4BP1 mainly expressed in keratinocytes and located on nucleus. Up- but not downregulated genes in N4BP1-deficient skin were specifically enriched in keratinocyte proliferation and differentiation. The proliferation of N4BP1-deficient primary keratinocytes was faster compared to that of controls. The upregulated genes upon ablation of N4BP1 were highly enriched in targets of AP-1 transcription factor. Knocking out N4BP1 resulted in upregulation of JunB and FosB, and conversely, overexpression of N4BP1 greatly reduced their expression. Furthermore, N4BP1 binds with JunB and FosB encoding mRNAs and greatly reduces their stability. In addition, with a high expression in neutrophils, N4BP1 limits survival of neutrophils in blood and infiltration of neutrophils in psoriatic skin by targeting CXCL1, CCL20, and S100A8. These findings demonstrate that N4BP1 controls the proper function of keratinocytes and neutrophils by negatively regulating JunB, FosB, and CXCL1, respectively, and that is critical for psoriasis prevention.
Collapse
|
23
|
Bechara R, McGeachy MJ, Gaffen SL. The metabolism-modulating activity of IL-17 signaling in health and disease. J Exp Med 2021; 218:211951. [PMID: 33822846 PMCID: PMC8025242 DOI: 10.1084/jem.20202191] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/08/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022] Open
Abstract
IL-17 was discovered nearly 30 yr ago, but it has only been recently appreciated that a key function of this cytokine is to orchestrate cellular and organismal metabolism. Indeed, metabolic regulation is integrated into both the physiological and the pathogenic aspects of IL-17 responses. Thus, understanding the interplay between IL-17 and downstream metabolic processes could ultimately inform therapeutic opportunities for diseases involving IL-17, including some not traditionally linked to this cytokine pathway. Here, we discuss the emerging pathophysiological roles of IL-17 related to cellular and organismal metabolism, including metabolic regulation of IL-17 signal transduction.
Collapse
Affiliation(s)
- Rami Bechara
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
24
|
Nakatsuka Y, Yaku A, Handa T, Vandenbon A, Hikichi Y, Motomura Y, Sato A, Yoshinaga M, Tanizawa K, Watanabe K, Hirai T, Chin K, Suzuki Y, Uehata T, Mino T, Tsujimura T, Moro K, Takeuchi O. Profibrotic function of pulmonary group 2 innate lymphoid cells is controlled by regnase-1. Eur Respir J 2021; 57:13993003.00018-2020. [PMID: 32978308 DOI: 10.1183/13993003.00018-2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022]
Abstract
Regnase-1 is an RNase critical for post-transcriptional control of pulmonary immune homeostasis in mice by degrading immune-related mRNAs. However, little is known about the cell types Regnase-1 controls in the lung, and its relevance to human pulmonary diseases.Regnase-1-dependent changes in lung immune cell types were examined by a competitive bone marrow transfer mouse model, and group 2 innate lymphoid cells (ILC2s) were identified. Then the associations between Regnase-1 in ILC2s and human diseases were investigated by transcriptome analysis and a bleomycin-induced pulmonary fibrosis mouse model. The clinical significance of Regnase-1 in ILC2s was further assessed using patient-derived cells.Regnase-1-deficiency resulted in the spontaneous proliferation and activation of ILC2s in the lung. Intriguingly, genes associated with pulmonary fibrosis were highly upregulated in Regnase-1-deficient ILC2s compared with wild-type, and supplementation of Regnase-1-deficient ILC2s augmented bleomycin-induced pulmonary fibrosis in mice. Regnase-1 suppresses mRNAs encoding transcription factors Gata3 and Egr1, which are potent to regulate fibrosis-associated genes. Clinically, Regnase-1 protein levels in ILC2 negatively correlated with the ILC2 population in bronchoalveolar lavage fluid. Furthermore, idiopathic pulmonary fibrosis (IPF) patients with ILC2s >1500 cells·mL-1 peripheral blood exhibited poorer prognosis than patients with lower numbers, implying the contribution of Regnase-1 in ILC2s for the progression of IPF.Collectively, Regnase-1 was identified as a critical post-transcriptional regulator of the profibrotic function of ILC2s both in mouse and human, suggesting that Regnase-1 may be a novel therapeutic target for IPF.
Collapse
Affiliation(s)
- Yoshinari Nakatsuka
- Dept of Respiratory Care and Sleep Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ai Yaku
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Dept of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Handa
- Dept of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Alexis Vandenbon
- Laboratory of Systems Virology, Dept of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Hikichi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yasutaka Motomura
- Dept of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayuko Sato
- Dept of Pathology, Hyogo College of Medicine, Hyogo, Japan
| | - Masanori Yoshinaga
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiminobu Tanizawa
- Dept of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kizuku Watanabe
- Dept of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Dept of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuo Chin
- Dept of Respiratory Care and Sleep Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yutaka Suzuki
- Laboratory of Functional Genomics, Dept of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Takuya Uehata
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mino
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Dept of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Osamu Takeuchi
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Regnase-1 Deficiency Restrains Klebsiella pneumoniae Infection by Regulation of a Type I Interferon Response. mBio 2021; 13:e0379221. [PMID: 35100872 PMCID: PMC8805030 DOI: 10.1128/mbio.03792-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Excessive inflammation can cause tissue damage and autoimmunity, sometimes accompanied by severe morbidity or mortality. Numerous negative feedback mechanisms exist to prevent unchecked inflammation, but this restraint may come at the cost of suboptimal infection control. Regnase-1 (MCPIP1), a feedback regulator of IL-17 and LPS signaling, binds and degrades target mRNAs. Consequently, Reg1 deficiency exacerbates autoimmunity in multiple models. However, the role of Reg1 in bacterial immunity remains poorly defined. Here, we show that mice deficient in Reg1 are resistant to Klebsiella pneumoniae (KP). Reg1 deficiency did not accelerate bacterial eradication. Rather, Reg1-deficient alveolar macrophages had elevated Ifnb1 and enrichment of type I IFN genes. Blockade of IFNR during KP infection reversed disease improvement. Reg1 did not impact Ifnb1 stability directly, but Irf7 expression was affected. Thus, Reg1 suppresses type I IFN signaling restricting resistance to KP, suggesting that Reg1 could potentially be a target in severe bacterial infections. IMPORTANCE Klebsiella pneumoniae (KP) can cause life-threatening bacterial pneumonia and is the third most common cause of ventilator-associated pneumonia in the United States. Host inflammatory responses to infection are necessary to control disease, yet at the same time can cause collateral damage or immunopathology. During immune responses, many events are established within the infected tissue to limit unchecked inflammation. However, this restraint of immunity can impair infection control, and it is not fully understood how this balance is maintained during different infection settings. In this study we explored the possibility that a host-derived negative regulator of RNA, Regnase-1, limits immunity to KP by dampening inflammation. Indeed, mice with reduced Regnase-1 levels showed improved survival to KP infection, linked to regulation of type I interferons. Therefore, although restraint of Reg1 is beneficial to prevent immunopathology, temporary blockade of Reg1 could potentially be exploited to improve host defense during infectious settings such as KP.
Collapse
|
26
|
Abstract
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
Collapse
Affiliation(s)
- Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| | - Kazuhiko Maeda
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| |
Collapse
|
27
|
Xu R, Li Y, Liu Y, Qu J, Cao W, Zhang E, He J, Cai Z. How are MCPIP1 and cytokines mutually regulated in cancer-related immunity? Protein Cell 2020; 11:881-893. [PMID: 32548715 PMCID: PMC7719135 DOI: 10.1007/s13238-020-00739-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Cytokines are secreted by various cell types and act as critical mediators in many physiological processes, including immune response and tumor progression. Cytokines production is precisely and timely regulated by multiple mechanisms at different levels, ranging from transcriptional to post-transcriptional and posttranslational processes. Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), a potent immunosuppressive protein, was first described as a transcription factor in monocytes treated with monocyte chemoattractant protein-1 (MCP-1) and subsequently found to possess intrinsic RNase and deubiquitinase activities. MCPIP1 tightly regulates cytokines expression via various functions. Furthermore, cytokines such as interleukin 1 beta (IL-1B) and MCP-1 and inflammatory cytokines inducer lipopolysaccharide (LPS) strongly induce MCPIP1 expression. Mutually regulated MCPIP1 and cytokines form a complicated network in the tumor environment. In this review, we summarize how MCPIP1 and cytokines reciprocally interact and elucidate the effect of the network formed by these components in cancer-related immunity with aim of exploring potential clinical benefits of their mutual regulation.
Collapse
Affiliation(s)
- Ruyi Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Yang Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Jianwei Qu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China.
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
28
|
McGowan J, Peter C, Kim J, Popli S, Veerman B, Saul-McBeth J, Conti H, Pruett-Miller SM, Chattopadhyay S, Chakravarti R. 14-3-3ζ-TRAF5 axis governs interleukin-17A signaling. Proc Natl Acad Sci U S A 2020; 117:25008-25017. [PMID: 32968020 PMCID: PMC7547158 DOI: 10.1073/pnas.2008214117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
IL-17A is a therapeutic target in many autoimmune diseases. Most nonhematopoietic cells express IL-17A receptors and respond to extracellular IL-17A by inducing proinflammatory cytokines. The IL-17A signal transduction triggers two broad, TRAF6- and TRAF5-dependent, intracellular signaling pathways to produce representative cytokines (IL-6) and chemokines (CXCL-1), respectively. Our limited understanding of the cross-talk between these two branches has generated a crucial gap of knowledge, leading to therapeutics indiscriminately blocking IL-17A and global inhibition of its target genes. In previous work, we discovered an elevated expression of 14-3-3 proteins in inflammatory aortic disease, a rare human autoimmune disorder with increased levels of IL-17A. Here we report that 14-3-3ζ is essential for IL-17 signaling by differentially regulating the signal-induced IL-6 and CXCL-1. Using genetically manipulated human and mouse cells, and ex vivo and in vivo rat models, we uncovered a function of 14-3-3ζ. As a part of the molecular mechanism, we show that 14-3-3ζ interacts with several TRAF proteins; in particular, its interaction with TRAF5 and TRAF6 is increased in the presence of IL-17A. In contrast to TRAF6, we found TRAF5 to be an endogenous suppressor of IL-17A-induced IL-6 production, an effect countered by 14-3-3ζ. Furthermore, we observed that 14-3-3ζ interaction with TRAF proteins is required for the IL-17A-induced IL-6 levels. Together, our results show that 14-3-3ζ is an essential component of IL-17A signaling and IL-6 production, an effect that is suppressed by TRAF5. To the best of our knowledge, this report of the 14-3-3ζ-TRAF5 axis, which differentially regulates IL-17A-induced IL-6 and CXCL-1 production, is unique.
Collapse
Affiliation(s)
- Jenna McGowan
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Cara Peter
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Joshua Kim
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Sonam Popli
- Department of Medical Microbiology & Immunology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Brent Veerman
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Jessica Saul-McBeth
- Department of Biological Sciences, College of Natural Sciences & Mathematics, University of Toledo, Toledo, OH 43614
| | - Heather Conti
- Department of Biological Sciences, College of Natural Sciences & Mathematics, University of Toledo, Toledo, OH 43614
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology & Immunology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Ritu Chakravarti
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614;
| |
Collapse
|
29
|
Lichawska-Cieslar A, Konieczny P, Szukala W, Declercq W, Fu M, Jura J. Loss of keratinocyte Mcpip1 abruptly activates the IL-23/Th17 and Stat3 pathways in skin inflammation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118866. [PMID: 33007332 PMCID: PMC8938940 DOI: 10.1016/j.bbamcr.2020.118866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Agata Lichawska-Cieslar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Piotr Konieczny
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Weronika Szukala
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Wim Declercq
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Mingui Fu
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 5100 Rockhill Rd, Kansas City, MO 64110, USA
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
30
|
Musson R, Szukała W, Jura J. MCPIP1 RNase and Its Multifaceted Role. Int J Mol Sci 2020; 21:ijms21197183. [PMID: 33003343 PMCID: PMC7582464 DOI: 10.3390/ijms21197183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation is an organism’s physiological response to harmful septic and aseptic stimuli. This process begins locally through the influx of immune system cells to the damaged tissue and the subsequent activation and secretion of inflammatory mediators to restore homeostasis in the organism. Inflammation is regulated at many levels, and one of these levels is post-transcriptional regulation, which controls the half-life of transcripts that encode inflammatory mediators. One of the proteins responsible for controlling the amount of mRNA in a cell is the RNase monocyte chemoattractant protein-induced protein 1 (MCPIP1). The studies conducted so far have shown that MCPIP1 is involved not only in the regulation of inflammation but also in many other physiological and pathological processes. This paper provides a summary of the information on the role of MCPIP1 in adipogenesis, angiogenesis, cell differentiation, cancer, and skin inflammation obtained to date.
Collapse
|
31
|
Billi AC, Gudjonsson JE, Voorhees JJ. Psoriasis: Past, Present, and Future. J Invest Dermatol 2020; 139:e133-e142. [PMID: 31648690 DOI: 10.1016/j.jid.2019.08.437] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/09/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | | | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
32
|
Systemic MCPIP1 deficiency in mice impairs lipid homeostasis. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2020; 1:1-9. [PMID: 34909637 PMCID: PMC8663940 DOI: 10.1016/j.crphar.2020.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023] Open
Abstract
Atherosclerosis involves interactions between inflammation system and dyslipidemia. MCPIP1 (Monocyte Chemotactic Protein induced Protein-1) is induced by proinflammatory molecules and serves as a negative feedback loop in regulating inflammatory responses. Our current study was designed to test the role of MCPIP1 in maintaining lipid homeostasis, the latter a pivotal factor that contributes to the pathogenesis of atherosclerosis. We found that MCPIP1 knockout mice displayed a decrease in levels of serum HDL-cholesterol and total triglycerides but an increase in serum LDL/VLDL-cholesterol levels when compared to wild-type mice. Additionally, ApoA-1 expression was reduced but LPL expression was upregulated in plasma from MCPIP1 knockout mice. The livers from the MCPIP1 knockout mice revealed a decrease in hepatocyte number and an increase in collagen deposition when compared to wild-type mice. These findings suggest that MCPIP1 deficiency can induce liver fibrosis, alter the expression of lipoproteins, and affect transportation and metabolism of lipids, indicating that MCPIP1 is involved in maintaining lipid homeostasis, possibly via negatively regulating inflammatory responses. Atherosclerosis is the result of interaction between inflammation and dyslipidemia. MCPIP1 is a negative regulator in inflammatory responses. MCPIP1 is upregulated in the atherosclerotic plaques. MCPIP1 deficiency induces dyslipidemia and hepatic remodeling. MCPIP1 deficiency may increase the risk of atherosclerosis.
Collapse
|
33
|
Matsushita K, Tanaka H, Yasuda K, Adachi T, Fukuoka A, Akasaki S, Koida A, Kuroda E, Akira S, Yoshimoto T. Regnase-1 degradation is crucial for IL-33- and IL-25-mediated ILC2 activation. JCI Insight 2020; 5:131480. [PMID: 31990689 DOI: 10.1172/jci.insight.131480] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are a critical innate source of type 2 cytokines in allergic inflammation. Although ILC2s are recognized as a critical cell population in the allergic inflammation, the regulatory mechanism(s) of ILC2s are less well understood. Here, we show that Regnase-1, an immune regulatory RNAse that degrades inflammatory mRNAs, negatively regulates ILC2 function and that IκB kinase (IKK) complex-mediated Regnase-1 degradation is essential for IL-33- and IL-25-induced ILC2 activation. ILC2s from Regnase-1AA/AA mice expressing a Regnase-1 S435A/S439A mutant resistant to IKK complex-mediated degradation accumulated Regnase-1 protein in response to IL-33 and IL-25. IL-33- and IL-25-stimulated Regnase-1AA/AA ILC2s showed reduced cell proliferation and type 2 cytokine (IL-5, IL-9, and IL-13) production and increased cell death. In addition, Il2ra and Il1rl1, but not Il5, Il9, or Il13, mRNAs were destabilized in IL-33-stimulated Regnase-1AA/AA ILC2s. In vivo, Regnase-1AA/AA mice showed attenuated acute type 2 pulmonary inflammation induced by the instillation of IL-33, IL-25, or papain. Furthermore, the expulsion of Nippostrongylus brasiliensis was significantly delayed in Regnase-1AA/AA mice. These results demonstrate that IKK complex-mediated Regnase-1 degradation is essential for ILC2-mediated type 2 responses both in vitro and in vivo. Therefore, controlling Regnase-1 degradation is a potential therapeutic target for ILC2-contributed allergic disorders.
Collapse
Affiliation(s)
- Kazufumi Matsushita
- Laboratory of Allergic Diseases, Institute for Advanced Medical Sciences, and.,Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hiroki Tanaka
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and.,Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Koubun Yasuda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Takumi Adachi
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Ayumi Fukuoka
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shoko Akasaki
- Laboratory of Allergic Diseases, Institute for Advanced Medical Sciences, and
| | - Atsuhide Koida
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and.,Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tomohiro Yoshimoto
- Laboratory of Allergic Diseases, Institute for Advanced Medical Sciences, and.,Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
34
|
Nies JF, Panzer U. IL-17C/IL-17RE: Emergence of a Unique Axis in T H17 Biology. Front Immunol 2020; 11:341. [PMID: 32174926 PMCID: PMC7054382 DOI: 10.3389/fimmu.2020.00341] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Therapeutic targeting of IL-17A and its receptor IL-17RA with antibodies has turned out to be a tremendous success in the treatment of several autoimmune conditions. As the IL-17 cytokine family consists of six members (IL-17A to F), it is intriguing to elucidate the biological function of these five other molecules to identify more potential targets. In the past decade, IL-17C has emerged as quite a unique member of this pro-inflammatory cytokine group. In contrast to the well-described IL-17A and IL-17F, IL-17C is upregulated at very early timepoints of several disease settings. Also, the cellular source of the homodimeric cytokine differs from the other members of the family: Epithelial rather than hematopoietic cells were identified as the producers of IL-17C, while its receptor IL-17RE is expressed on TH17 cells as well as the epithelial cells themselves. Numerous investigations led to the current understanding that IL-17C (a) maintains an autocrine loop in the epithelium reinforcing innate immune barriers and (b) stimulates highly inflammatory TH17 cells. Functionally, the IL-17C/RE axis has been described to be involved in the pathogenesis of several diseases ranging from infectious and autoimmune conditions to cancer development and progression. This body of evidence has paved the way for the first clinical trials attempting to neutralize IL-17C in patients. Here, we review the latest knowledge about identification, regulation, and function of the IL-17C/IL-17receptor E pathway in inflammation and immunity, with a focus on the mechanisms underlying tissue injury. We also discuss the rationale for the translation of these findings into new therapeutic approaches in patients with immune-mediated disease.
Collapse
Affiliation(s)
- Jasper F Nies
- Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf Hamburg, Hamburg, Germany
| | - Ulf Panzer
- Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf Hamburg, Hamburg, Germany.,Hamburg Center of Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
35
|
Nyati KK, Zaman MMU, Sharma P, Kishimoto T. Arid5a, an RNA-Binding Protein in Immune Regulation: RNA Stability, Inflammation, and Autoimmunity. Trends Immunol 2020; 41:255-268. [PMID: 32035762 DOI: 10.1016/j.it.2020.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
AT-rich interactive domain 5A (ARID5A/Arid5a) is a known cofactor of transcription factors (TFs) that contributes to cell growth and differentiation. It has recently been recognized for its unique function in the stabilization of mRNA, which is associated with inflammatory autoimmune diseases. Studies have revolutionized our understanding of the post-transcriptional regulation of inflammatory genes by revealing the fundamental events underpinning novel functions and activities of Arid5a. We review current research on Arid5a, which has focused our attention towards the therapeutic potential of this factor in the putative treatment of inflammatory and autoimmune disorders, including experimental autoimmune encephalomyelitis and sepsis in mice.
Collapse
Affiliation(s)
- Kishan Kumar Nyati
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka 565 0871, Japan; Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India.
| | - Mohammad Mahabub-Uz Zaman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka 565 0871, Japan.
| |
Collapse
|
36
|
Konieczny P, Lichawska-Cieslar A, Kwiecinska P, Cichy J, Pietrzycka R, Szukala W, Declercq W, Devos M, Paziewska A, Rumienczyk I, Kulecka M, Mikula M, Fu M, Borowczyk J, Santamaria-Babí LF, Jura J. Keratinocyte-specific ablation of Mcpip1 impairs skin integrity and promotes local and systemic inflammation. J Mol Med (Berl) 2019; 97:1669-1684. [PMID: 31786670 DOI: 10.1007/s00109-019-01853-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
MCPIP1 (Regnase-1, encoded by the ZC3H12A gene) regulates the mRNA stability of several inflammatory cytokines. Due to the critical role of this RNA endonuclease in the suppression of inflammation, Mcpip1 deficiency in mice leads to the development of postnatal multiorgan inflammation and premature death. Here, we generated mice with conditional deletion of Mcpip1 in the epidermis (Mcpip1EKO). Mcpip1 loss in keratinocytes resulted in the upregulated expression of transcripts encoding factors related to inflammation and keratinocyte differentiation, such as IL-36α/γ cytokines, S100a8/a9 antibacterial peptides, and Sprr2d/2h proteins. Upon aging, the Mcpip1EKO mice showed impaired skin integrity that led to the progressive development of spontaneous skin pathology and systemic inflammation. Furthermore, we found that the lack of epidermal Mcpip1 expression impaired the balance of keratinocyte proliferation and differentiation. Overall, we provide evidence that keratinocyte-specific Mcpip1 activity is crucial for the maintenance of skin integrity as well as for the prevention of excessive local and systemic inflammation. KEY MESSAGES: Loss of murine epidermal Mcpip1 upregulates transcripts related to inflammation and keratinocyte differentiation. Keratinocyte Mcpip1 function is essential to maintain the integrity of skin in adult mice. Ablation of Mcpip1 in mouse epidermis leads to the development of local and systemic inflammation.
Collapse
Affiliation(s)
- Piotr Konieczny
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Agata Lichawska-Cieslar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Patrycja Kwiecinska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Roza Pietrzycka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Weronika Szukala
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Wim Declercq
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Michael Devos
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Izabela Rumienczyk
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Mingui Fu
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 5100 Rockhill Rd, Kansas City, MO, 64110, USA
| | - Julia Borowczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.,Current address: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Gabrielle Perret-Gentil 4, 1211, Geneva, Switzerland
| | - Luis F Santamaria-Babí
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University de Barcelona, Gran Via de les Corts Catalanes 585, 08007, Barcelona, Spain
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
37
|
IL-17 receptor-based signaling and implications for disease. Nat Immunol 2019; 20:1594-1602. [PMID: 31745337 DOI: 10.1038/s41590-019-0514-y] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
IL-17 is a highly versatile pro-inflammatory cytokine crucial for a variety of processes, including host defense, tissue repair, the pathogenesis of inflammatory disease and the progression of cancer. In contrast to its profound impact in vivo, IL-17 exhibits surprisingly moderate activity in cell-culture models, which presents a major knowledge gap about the molecular mechanisms of IL-17 signaling. Emerging studies are revealing a new dimension of complexity in the IL-17 pathway that may help explain its potent and diverse in vivo functions. Discoveries of new mRNA stabilizers and receptor-directed mRNA metabolism have provided insights into the means by which IL-17 cooperates functionally with other stimuli in driving inflammation, whether beneficial or destructive. The integration of IL-17 with growth-receptor signaling in specific cell types offers new understanding of the mitogenic effect of IL-17 on tissue repair and cancer. This Review summarizes new developments in IL-17 signaling and their pathophysiological implications.
Collapse
|
38
|
McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 Family of Cytokines in Health and Disease. Immunity 2019; 50:892-906. [PMID: 30995505 DOI: 10.1016/j.immuni.2019.03.021] [Citation(s) in RCA: 850] [Impact Index Per Article: 141.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
The interleukin 17 (IL-17) family of cytokines contains 6 structurally related cytokines, IL-17A through IL-17F. IL-17A, the prototypical member of this family, just passed the 25th anniversary of its discovery. Although less is known about IL-17B-F, IL-17A (commonly known as IL-17) has received much attention for its pro-inflammatory role in autoimmune disease. Over the past decade, however, it has become clear that the functions of IL-17 are far more nuanced than simply turning on inflammation. Accumulating evidence indicates that IL-17 has important context- and tissue-dependent roles in maintaining health during response to injury, physiological stress, and infection. Here, we discuss the functions of the IL-17 family, with a focus on the balance between the pathogenic and protective roles of IL-17 in cancer and autoimmune disease, including results of therapeutic blockade and novel aspects of IL-17 signal transduction regulation.
Collapse
Affiliation(s)
- Mandy J McGeachy
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Sarah L Gaffen
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Yoshinaga M, Takeuchi O. RNA binding proteins in the control of autoimmune diseases. Immunol Med 2019; 42:53-64. [DOI: 10.1080/25785826.2019.1655192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
40
|
Zhu L, Liao SE, Fukunaga R. Drosophila Regnase-1 RNase is required for mRNA and miRNA profile remodelling during larva-to-adult metamorphosis. RNA Biol 2019; 16:1386-1400. [PMID: 31195914 DOI: 10.1080/15476286.2019.1630799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metamorphosis is an intricate developmental process in which large-scale remodelling of mRNA and microRNA (miRNA) profiles leads to orchestrated tissue remodelling and organogenesis. Whether, which, and how, ribonucleases (RNases) are involved in the RNA profile remodelling during metamorphosis remain unknown. Human Regnase-1 (also known as MCPIP1 and Zc3h12a) RNase remodels RNA profile by cleaving specific RNAs and is a crucial modulator of immune-inflammatory and cellular defence. Here, we studied Drosophila CG10889, which we named Drosophila Regnase-1, an ortholog of human Regnase-1. The larva-to-adult metamorphosis in Drosophila includes two major transitions, larva-to-pupa and pupa-to-adult. regnase-1 knockout flies developed until the pupa stage but could not complete pupa-to-adult transition, dying in puparium case. Regnase-1 RNase activity is required for completion of pupa-to-adult transition as transgenic expression of wild-type Drosophila Regnase-1, but not the RNase catalytic-dead mutants, rescued the pupa-to-adult transition in regnase-1 knockout. High-throughput RNA sequencing revealed that regnase-1 knockout flies fail to remodel mRNA and miRNA profiles during the larva-to-pupa transition. Thus, we uncovered the roles of Drosophila Regnase-1 in the larva-to-adult metamorphosis and large-scale remodelling of mRNA and miRNA profiles during this metamorphosis process.
Collapse
Affiliation(s)
- Li Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Susan E Liao
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
41
|
Yoshinaga M, Takeuchi O. Post-transcriptional control of immune responses and its potential application. Clin Transl Immunology 2019; 8:e1063. [PMID: 31236273 DOI: 10.1002/cti2.1063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammation is the host response against stresses such as infection. Although the inflammation process is required for the elimination of pathogens, uncontrolled inflammation leads to tissue destruction and inflammatory diseases. To avoid this, the inflammatory response is tightly controlled by multiple layers of regulation. Post-transcriptional control of inflammatory mRNAs is increasingly understood to perform critical roles in this process. This is mediated primarily by a set of RNA binding proteins (RBPs) including tristetraprolin, Roquin and Regnase-1, and RNA methylases. These key regulators coordinate the inflammatory response by modulating mRNA pools in both immune and local nonimmune cells. In this review, we provide an overview of the post-transcriptional coordination of immune responses in various tissues and discuss how RBP-mediated regulation of inflammation may be harnessed as a potential class of treatments for inflammatory diseases.
Collapse
Affiliation(s)
- Masanori Yoshinaga
- Department of Medical Chemistry Graduate School of Medicine Kyoto University Kyoto Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry Graduate School of Medicine Kyoto University Kyoto Japan
| |
Collapse
|
42
|
Tanaka H, Arima Y, Kamimura D, Tanaka Y, Takahashi N, Uehata T, Maeda K, Satoh T, Murakami M, Akira S. Phosphorylation-dependent Regnase-1 release from endoplasmic reticulum is critical in IL-17 response. J Exp Med 2019; 216:1431-1449. [PMID: 31072819 PMCID: PMC6547859 DOI: 10.1084/jem.20181078] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 03/07/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
The endoribonuclease Regnase-1 suppresses inflammation through RNA degradation. Here, we show that Regnase-1 is phosphorylated and inactivated by the Act1-TBK1-IKKi axis during IL-17 stimulation. Moreover, this phosphorylation substantially contributes to the mRNA stabilization needed for amplification of TH17-cell–mediated inflammation. Regnase-1 (also known as Zc3h12a or MCPIP-1) is an endoribonuclease involved in mRNA degradation of inflammation-associated genes. Regnase-1 is inactivated in response to external stimuli through post-translational modifications including phosphorylation, yet the precise role of phosphorylation remains unknown. Here, we demonstrate that interleukin (IL)-17 induces phosphorylation of Regnase-1 in an Act1-TBK1/IKKi–dependent manner, especially in nonhematopoietic cells. Phosphorylated Regnase-1 is released from the endoplasmic reticulum (ER) into the cytosol, thereby losing its mRNA degradation function, which leads to expression of IL-17 target genes. By using CRISPR/Cas-9 technology, we generated Regnase-1 mutant mice, in which IL-17–induced Regnase-1 phosphorylation is completely blocked. Mutant mice (Regnase-1AA/AA and Regnase-1ΔCTD/ΔCTD) were resistant to the IL-17–mediated inflammation caused by T helper 17 (Th17) cells in vivo. Thus, Regnase-1 plays a critical role in the development of IL-17–mediated inflammatory diseases via the Act1-TBK1-IKKi axis, and blockade of Regnase-1 phosphorylation sites may be promising for treatment of Th17-associated diseases.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yasunobu Arima
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Daisuke Kamimura
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Yuki Tanaka
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Noriyuki Takahashi
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan
| | - Takuya Uehata
- Department of Host Defense, Research Institute for Microbial Research, Osaka University, Osaka, Japan
| | - Kazuhiko Maeda
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Host Defense, Research Institute for Microbial Research, Osaka University, Osaka, Japan
| | - Takashi Satoh
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Host Defense, Research Institute for Microbial Research, Osaka University, Osaka, Japan
| | - Masaaki Murakami
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan .,Department of Host Defense, Research Institute for Microbial Research, Osaka University, Osaka, Japan
| |
Collapse
|
43
|
Xia Y, Chen H, Xiao H, Yang J, Li Z, Wang Y, Yang T, Wang B. Immune regulation mechanism of vitamin D level and IL-17/IL-17R pathway in Crohn's disease. Exp Ther Med 2019; 17:3423-3428. [PMID: 30988721 PMCID: PMC6447769 DOI: 10.3892/etm.2019.7389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
Immune regulation mechanism of vitamin D level and interleukin (IL)-17/IL-17 receptor (IL-17R) pathway in Crohn's disease was studied. Of 40 clean mature healthy rats, 10 rats were used as control group based on random number table, the remaining 30 rats to establish Crohn's disease rat models. After successful modeling, 30 rats were divided into model group, low-dose group and high-dose group with random number table. On the 1st day after modeling, rats in low-dose group were given a single dose of 1,750 IU of vitamin D, and rats in high-dose group a single dose of 7,500 IU of vitamin D. Changes in the condition of rats after modeling were observed and scored. Enzyme-linked immunosorbent assay was used for detecting IL-12, IL-17 and CXCL11 levels, western blotting for detecting IL-17R level, and flow cytometry for detecting Th1 cell and Th17 cell levels in the lamina propria of colon mucosa. Disease activity index scores were significantly lower in low-dose group and high-dose group of rats than those in model group (P<0.05). Those were significantly lower in high-dose group of rats than those in low-dose group (P<0.05). IL-17 and IL-17R levels were significantly lower in high-dose group of rats than those in low-dose group (P<0.05). Th1 cell level was significantly higher in high-dose group of rats than that in low-dose group (P<0.05), but Th17 cell level was lower than that in low-dose group (P<0.05). IL-12 levels were significantly higher in model group, low-dose group and highdose group of rats than those in control group (P<0.05). CXCL11 levels were significantly lower in model group, low-dose group and high-dose group of rats than those in control group (P<0.05). Vitamin D can effectively treat Crohn's disease, which may improve the chemotaxis and differentiation of Th1 cells by inhibiting IL-17/IL-17R pathway, thereby improving immune function and reducing the severity of disease.
Collapse
Affiliation(s)
- Yanli Xia
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Hongwei Chen
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Hongli Xiao
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Jing Yang
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Zhibin Li
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Youchun Wang
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Tian Yang
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Baoyong Wang
- Department of Gastroenterology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471000, P.R. China
| |
Collapse
|
44
|
Tyka K, Jörns A, Turatsinze JV, Eizirik DL, Lenzen S, Gurgul-Convey E. MCPIP1 regulates the sensitivity of pancreatic beta-cells to cytokine toxicity. Cell Death Dis 2019; 10:29. [PMID: 30631045 PMCID: PMC6328635 DOI: 10.1038/s41419-018-1268-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/29/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022]
Abstract
The autoimmune-mediated beta-cell death in type 1 diabetes (T1DM) is associated with local inflammation (insulitis). We examined the role of MCPIP1 (monocyte chemotactic protein–induced protein 1), a novel cytokine-induced antiinflammatory protein, in this process. Basal MCPIP1 expression was lower in rat vs. human islets and beta-cells. Proinflammatory cytokines stimulated MCPIP1 expression in rat and human islets and in insulin-secreting cells. Moderate overexpression of MCPIP1 protected insulin-secreting INS1E cells against cytokine toxicity by a mechanism dependent on the presence of the PIN/DUB domain in MCPIP1. It also reduced cytokine-induced Chop and C/ebpβ expression and maintained MCL-1 expression. The shRNA-mediated suppression of MCPIP1 led to the potentiation of cytokine-mediated NFκB activation and cytokine toxicity in human EndoC-βH1 beta-cells. MCPIP1 expression was very high in infiltrated beta-cells before and after diabetes manifestation in the LEW.1AR1-iddm rat model of human T1DM. The extremely high expression of MCPIP1 in clonal beta-cells was associated with a failure of the regulatory feedback-loop mechanism, ER stress induction and high cytokine toxicity. In conclusion, our data indicate that the expression level of MCPIP1 affects the susceptibility of insulin-secreting cells to cytokines and regulates the mechanism of beta-cell death in T1DM.
Collapse
Affiliation(s)
- Karolina Tyka
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Jean-Valery Turatsinze
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany.,Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany
| | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
45
|
Amatya N, Childs EE, Cruz JA, Aggor FEY, Garg AV, Berman AJ, Gudjonsson JE, Atasoy U, Gaffen SL. IL-17 integrates multiple self-reinforcing, feed-forward mechanisms through the RNA binding protein Arid5a. Sci Signal 2018; 11:eaat4617. [PMID: 30301788 PMCID: PMC6188668 DOI: 10.1126/scisignal.aat4617] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interleukin-17A (IL-17A) not only stimulates immunity to fungal pathogens but also contributes to autoimmune pathology. IL-17 is only a modest activator of transcription in experimental tissue culture settings. However, IL-17 controls posttranscriptional events that enhance the expression of target mRNAs. Here, we showed that the RNA binding protein (RBP) Arid5a (AT-rich interactive domain-containing protein 5a) integrated multiple IL-17-driven signaling pathways through posttranscriptional control of mRNA. IL-17 induced expression of Arid5a, which was recruited to the adaptor TRAF2. Arid5a stabilized IL-17-induced cytokine transcripts by binding to their 3' untranslated regions and also counteracted mRNA degradation mediated by the endoribonuclease MCPIP1 (Regnase-1). Arid5a inducibly associated with the eukaryotic translation initiation complex and facilitated the translation of the transcription factors (TFs) IκBζ (Nfkbiz ) and C/EBPβ (Cebpb). These TFs in turn transactivated IL-17-dependent promoters. Together, these data indicated that Arid5a orchestrates a feed-forward amplification loop, which promoted IL-17 signaling by controlling mRNA stability and translation.
Collapse
Affiliation(s)
- Nilesh Amatya
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erin E Childs
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - J Agustin Cruz
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Felix E Y Aggor
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Abhishek V Garg
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrea J Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Johann E Gudjonsson
- Department of Dermatology, Taubman Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ulus Atasoy
- Division of Allergy and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
46
|
Brembilla NC, Senra L, Boehncke WH. The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond. Front Immunol 2018; 9:1682. [PMID: 30127781 PMCID: PMC6088173 DOI: 10.3389/fimmu.2018.01682] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is a frequent chronic inflammatory skin disease, nowadays considered a major global health problem. Several new drugs, targeting the IL-23/IL-17A pathway, have been recently licensed or are in clinical development. These therapies represent a major improvement of the way in which psoriasis is managed, since they show an unprecedented efficacy on skin symptoms of psoriasis. This has been made possible, thanks to an increasingly more accurate pathogenic view of psoriasis. Today, the belief that Th17 cells mediate psoriasis is moving to the concept of psoriasis as an IL-17A-driven disease. New questions arise at the horizon, given that IL-17A is part of a newly described family of cytokines, which has five distinct homologous: IL-17B, IL-17C, IL-17D, IL-17E, also known as IL-25 and IL-17F. IL-17 family cytokines elicit similar effects in target cells, but simultaneously trigger different and sometimes opposite functions in a tissue-specific manner. This is complicated by the fact that IL-17 cytokines show a high capacity of synergisms with other inflammatory stimuli. In this review, we will summarize the current knowledge around the cytokines belonging to the IL-17 family in relation to skin inflammation in general and psoriasis in particular, and discuss possible clinical implications. A comprehensive understanding of the different roles played by the IL-17 cytokines is crucial to appreciate current and developing therapies and to allow an effective pathogenesis- and mechanisms-driven drug design.
Collapse
Affiliation(s)
| | - Luisa Senra
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
47
|
Nakatsuka Y, Vandenbon A, Mino T, Yoshinaga M, Uehata T, Cui X, Sato A, Tsujimura T, Suzuki Y, Sato A, Handa T, Chin K, Sawa T, Hirai T, Takeuchi O. Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia. Mucosal Immunol 2018; 11:1203-1218. [PMID: 29695841 DOI: 10.1038/s41385-018-0024-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/14/2018] [Accepted: 03/20/2018] [Indexed: 02/04/2023]
Abstract
Inhaled pathogens including Pseudomonas aeruginosa initially encounter airway epithelial cells (AECs), which are poised to evoke cell-intrinsic innate defense, affecting second tier of hematopoietic cell-mediated immune reaction. However, it is largely unknown how pulmonary immune responses mediated by a variety of immune cells are coordinated. Here we show that Regnase-1, an endoribonuclease expressed in AECs and immune cells, plays an essential role in coordinating innate responses and adaptive immunity against P. aeruginosa infection. Intratracheal treatment of mice with heat-killed P. aeruginosa resulted in prolonged disappearance of Regnase-1 consistent with sustained expression of Regnase-1 target inflammatory genes, whereas the transcription factor NF-κB was only transiently activated. AEC-specific deletion of Regnase-1 not only augmented innate defenses against P. aeruginosa but also enhanced secretion of Pseudomonas-specific IgA and Th17 accumulation in the lung, culminating in conferring significant resistance against P. aeruginosa re-infection in vivo. Although Regnase-1 directly controls distinct sets of genes in each of AECs and T cells, degradation of Regnase-1 in both cell types is beneficial for maximizing acquired immune responses. Collectively, these results demonstrate that Regnase-1 orchestrates AEC-mediated and immune cell-mediated host defense against pulmonary bacterial infection.
Collapse
Affiliation(s)
- Yoshinari Nakatsuka
- Laboratory of Infection and Prevention, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 253 Shogoin Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Alexis Vandenbon
- Laboratory of Infection and Prevention, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 253 Shogoin Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Mino
- Laboratory of Infection and Prevention, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 253 Shogoin Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Masanori Yoshinaga
- Laboratory of Infection and Prevention, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 253 Shogoin Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Takuya Uehata
- Laboratory of Infection and Prevention, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 253 Shogoin Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Xiaotong Cui
- Laboratory of Infection and Prevention, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 253 Shogoin Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Ayuko Sato
- Department of Pathology, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yutaka Suzuki
- Laboratory of Functional Genomics, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomohiro Handa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuo Chin
- Department of Respiratory Care and Sleep Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Osamu Takeuchi
- Laboratory of Infection and Prevention, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 253 Shogoin Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan. .,Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
48
|
Chen X, Zhao Q, Xie Q, Xing Y, Chen Z. MCPIP1 negatively regulate cellular antiviral innate immune responses through DUB and disruption of TRAF3-TBK1-IKKε complex. Biochem Biophys Res Commun 2018; 503:830-836. [PMID: 29920243 PMCID: PMC7092953 DOI: 10.1016/j.bbrc.2018.06.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/16/2018] [Indexed: 01/12/2023]
Abstract
IFNβ innate immune plays an essential role in antiviral immune. Previous reports suggested that many important regulatory proteins in innate immune pathway may be modified by ubiquitin and that many de-ubiquitination (DUB) proteins may affect immunity. Monocyte chemotactic protein-inducing protein 1 (MCPIP1), one of the CCCH Zn finger-containing proteins, was reported to have DUB function, but its effect on IFNβ innate immune was not fully understood. In this study, we uncovered a novel mechanism that may explain how MCPIP1 efficiently inhibits IFNβ innate immune. It was found that MCPIP1 negatively regulates the IFNβ expression activated by RIG-I, STING, TBK1, IRF3. Furthermore, MCPIP1 inhibits the nuclear translocation of IRF3 upon stimulation with virus, which plays a key role in type I IFN expression. Additionally, MCPIP1 interacts with important modulators of IFNβ expression pathway including IPS1, TRAF3, TBK1 and IKKε. Meanwhile, the interaction between the components in TRAF3-TBK1-IKKε complex was disrupted by MCPIP1. These results collectively suggest MCPIP1 as an innate immune regulator encoded by the host and point to a new mechanism through which MCPIP1 negatively regulates IRF3 activation and type I IFNβ expression.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Division of Infection and Immunity, Department of Biological Technology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Qian Zhao
- Division of Infection and Immunity, Department of Biological Technology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Qing Xie
- Division of Infection and Immunity, Department of Biological Technology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yaling Xing
- Division of Infection and Immunity, Department of Biological Technology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zhongbin Chen
- Division of Infection and Immunity, Department of Biological Technology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
49
|
Takaishi M, Satoh T, Akira S, Sano S. Regnase-1, an Immunomodulator, Limits the IL-36/IL-36R Autostimulatory Loop in Keratinocytes to Suppress Skin Inflammation. J Invest Dermatol 2018; 138:1439-1442. [DOI: 10.1016/j.jid.2017.12.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/25/2017] [Accepted: 12/29/2017] [Indexed: 12/15/2022]
|
50
|
Substrate specificity of human MCPIP1 endoribonuclease. Sci Rep 2018; 8:7381. [PMID: 29743536 PMCID: PMC5943514 DOI: 10.1038/s41598-018-25765-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
MCPIP1, also known as Regnase-1, is a ribonuclease crucial for regulation of stability of transcripts related to inflammatory processes. Here, we report that MCPIP1 acts as an endonuclease by degrading several stem-loop RNA structures and single-stranded RNAs. Our studies revealed cleavage sites present in the stem-loops derived from the 3′ untranslated region of the interleukin-6 transcript. Furthermore, MCPIP1 induced endonuclease cleavage at the loop motif of stem-loop structures. Additionally, we observed that MCPIP1 could cleave single-stranded RNA fragments. However, RNA substrates shorter than 6 nucleotides were not further affected by MCPIP1 nucleolytic activity. In this study, we also determined the dissociation constants of full-length MCPIP1D141N and its ribonuclease domain PIN D141N with twelve oligonucleotides substrates. The equilibrium binding constants (Kd) for MCPIP1D141N and the RNA targets were approximately 10 nM. Interestingly, we observed that the presence of a zinc finger in the PIN domain increases the affinity of this protein fragment to 25-nucleotide-long stem-loop RNA but not to shorter ones. Furthermore, size exclusion chromatography of the MCPIP1 and PIN proteins suggested that MCPIP1 undergoes homooligomerization during interaction with RNA substrates. Our results provide insight into the mechanism of MCPIP1 substrate recognition and its affinity towards various oligonucleotides.
Collapse
|