1
|
Li M, Zhou X, Huang D, Zhao Y, Chen J, Dong Z, Chen W, Zhang F, Sun L. Unveiling the Pharmacological Mechanisms of Davidiin's Anti-Diabetic Efficacy in Streptozotocin-Treated Rats: A Comprehensive Analysis of Serum Metabolome. Drug Des Devel Ther 2024; 18:1981-1996. [PMID: 38855535 PMCID: PMC11162635 DOI: 10.2147/dddt.s459931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
Background Polygonum capitatum Buch.-Ham. ex D. Don (P. capitatum), a traditional herb used in Miao medicine, is renowned for its heart-clearing properties. Davidiin, the primary bioactive component (approximately 1%), has been used to treat various conditions, including diabetes. Given its wide range of effects and the diverse biomolecular pathways involved in diabetes, there is a crucial need to study how davidiin interacts with these pathways to better understand its anti-diabetic properties. Materials and Methods Diabetic rats were induced using a high-fat diet and streptozotocin (STZ) administered intraperitoneally at 35 mg/kg. Out of these, 24 rats with blood glucose levels ≥ 11.1 mmol/L and fasting blood glucose levels ≥ 7.0 mmol/L were selected for three experimental groups. These groups were then treated with either metformin (gavage, 140 mg/kg) or davidiin (gavage, 90 mg/kg) for four weeks. After the treatment period, we measured body weight, blood glucose levels, and conducted untargeted metabolic profiling using UPLC-QTOF-MS. Results Davidiin has been shown to effectively treat diabetes by reducing blood glucose levels from 30.2 ± 2.6 mmol/L to 25.1 ± 2.4 mmol/L (P < 0.05). This effect appears stronger than that of metformin, which lowered glucose levels to 26.5 ± 2.6 mmol/L. The primary outcomes of serum metabolomics are significant changes in lipid and lipid-like molecular profiles. Firstly, davidiin may affect phosphatide metabolism by increasing levels of phosphatidylinositol and sphingosine-1-phosphate. Secondly, davidiin could influence cholesterol metabolism by reducing levels of glycocholic acid and glycochenodeoxycholic acid. Lastly, davidiin might impact steroid hormone metabolism by increasing hepoxilin B3 levels and decreasing prostaglandins. Conclusion Our study demonstrates that davidiin modulates various lipid-related metabolic pathways to exert its anti-diabetic effects. These findings offer the first detailed metabolic profile of davidiin's action mechanism, contributing valuable insights to the field of Traditional Chinese Medicine in the context of diabetes treatment.
Collapse
Affiliation(s)
- Mingming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Xin Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Doudou Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yingkui Zhao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Jiani Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Zhiying Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Wansheng Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Lianna Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
2
|
Grander C, Meyer M, Steinacher D, Claudel T, Hausmann B, Pjevac P, Grabherr F, Oberhuber G, Grander M, Brigo N, Jukic A, Schwärzler J, Weiss G, Adolph TE, Trauner M, Tilg H. 24-Norursodeoxycholic acid ameliorates experimental alcohol-related liver disease and activates hepatic PPARγ. JHEP Rep 2023; 5:100872. [PMID: 37818230 PMCID: PMC10561126 DOI: 10.1016/j.jhepr.2023.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 10/12/2023] Open
Abstract
Background & Aims Alcohol-related liver disease (ALD) is a global healthcare challenge with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a synthetic bile acid with anti-inflammatory properties in experimental and human cholestatic liver diseases. In the present study, we explored the efficacy of norUDCA in experimental ALD. Methods NorUDCA was tested in a preventive and therapeutic setting in an experimental ALD model (Lieber-DeCarli diet enriched with ethanol). Liver disease was phenotypically evaluated using histology and biochemical methods, and anti-inflammatory properties and peroxisome proliferator-activated receptor gamma activation by norUDCA were evaluated in cellular model systems. Results NorUDCA administration ameliorated ethanol-induced liver injury, reduced hepatocyte death, and reduced the expression of hepatic pro-inflammatory cytokines including tumour necrosis factor (Tnf), Il-1β, Il-6, and Il-10. NorUDCA shifted hepatic macrophages towards an anti-inflammatory M2 phenotype. Further, norUDCA administration altered the composition of the intestinal microbiota, specifically increasing the abundance of Roseburia, Enterobacteriaceae, and Clostridum spp. In a therapeutic model, norUDCA also ameliorated ethanol-induced liver injury. Moreover, norUDCA suppressed lipopolysaccharide-induced IL-6 expression in human peripheral blood mononuclear cells and evoked peroxisome proliferator-activated receptor gamma activation. Conclusions NorUDCA ameliorated experimental ALD, protected against hepatic inflammation, and affected gut microbial commensalism. NorUDCA could serve as a novel therapeutic agent in the future management of patients with ALD. Impact and implications Alcohol-related liver disease is a global healthcare concern with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a modified bile acid, which was proven to be effective in human cholestatic liver diseases. In the present study, we found a protective effect of norUDCA in experimental alcoholic liver disease. For patients with ALD, norUDCA could be a potential new treatment option.
Collapse
Affiliation(s)
- Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Moritz Meyer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Daniel Steinacher
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna, The University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna, The University of Vienna, Vienna, Austria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Georg Oberhuber
- INNPATH, Tirol-Kliniken University Hospital Innsbruck, Innsbruck, Austria
| | - Manuel Grander
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - Natascha Brigo
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Yang XF, Shang DJ. The role of peroxisome proliferator-activated receptor γ in lipid metabolism and inflammation in atherosclerosis. Cell Biol Int 2023; 47:1469-1487. [PMID: 37369936 DOI: 10.1002/cbin.12065] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/09/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Cardiovascular disease events are the result of functional and structural abnormalities in the arteries and heart. Atherosclerosis is the main cause and pathological basis of cardiovascular diseases. Atherosclerosis is a multifactorial disease associated with dyslipidemia, inflammation, and oxidative stress, among which dyslipidemia and chronic inflammation occur in all processes. Under the influence of lipoproteins, the arterial intima causes inflammation, necrosis, fibrosis, and calcification, leading to plaque formation in specific parts of the artery, which further develops into plaque rupture and secondary thrombosis. Foam cell formation from macrophages is an early event in the development of atherosclerosis. Lipid uptake causes a vascular inflammatory response, and persistent inflammatory infiltration in the lesion area further promotes the development of the disease. Inhibition of macrophage differentiation into foam cell and reduction of the level of proinflammatory factors in macrophages can effectively alleviate the occurrence and development of atherosclerosis. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor that plays an important antiatherosclerotic role by regulating triglyceride metabolism, lipid uptake, cholesterol efflux, macrophage polarity, and inhibiting inflammatory signaling pathways. In addition, PPARγ shifts its binding to ligands and co-activators or co-repressors of transcription of target genes through posttranslational modification, thereby affecting the regulation of its downstream target genes. Many ligand agonists have also been developed targeting PPARγ. In this review, we summarized the role of PPARγ in lipid metabolism and inflammation in development of atherosclerosis, the posttranslational regulatory mechanism of PPARγ, and further discusses the value of PPARγ as an antiatherosclerosis target.
Collapse
Affiliation(s)
- Xue-Feng Yang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - De-Jing Shang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
4
|
The Role of Transcription Factor PPAR-γ in the Pathogenesis of Psoriasis, Skin Cells, and Immune Cells. Int J Mol Sci 2022; 23:ijms23179708. [PMID: 36077103 PMCID: PMC9456565 DOI: 10.3390/ijms23179708] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
The peroxisome proliferator-activated receptor PPAR-γ is one of three PPAR nuclear receptors that act as ligand-activated transcription factors. In immune cells, the skin, and other organs, PPAR-γ regulates lipid, glucose, and amino acid metabolism. The receptor translates nutritional, pharmacological, and metabolic stimuli into the changes in gene expression. The activation of PPAR-γ promotes cell differentiation, reduces the proliferation rate, and modulates the immune response. In the skin, PPARs also contribute to the functioning of the skin barrier. Since we know that the route from identification to the registration of drugs is long and expensive, PPAR-γ agonists already approved for other diseases may also represent a high interest for psoriasis. In this review, we discuss the role of PPAR-γ in the activation, differentiation, and proliferation of skin and immune cells affected by psoriasis and in contributing to the pathogenesis of the disease. We also evaluate whether the agonists of PPAR-γ may become one of the therapeutic options to suppress the inflammatory response in lesional psoriatic skin and decrease the influence of comorbidities associated with psoriasis.
Collapse
|
5
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
6
|
Lee JH, Lee Y, Paik HD, Park E. Antioxidant and immune-modulating activities of egg yolk protein
extracts. Food Sci Anim Resour 2022; 42:321-331. [PMID: 35310562 PMCID: PMC8907799 DOI: 10.5851/kosfa.2022.e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/06/2022] Open
Abstract
Egg yolk is widely used to extract lecithin, which is utilized in the food and
cosmetics industry. After lecithin is removed, the rest of egg yolk is generated
as a by-product. Thus, it is necessary to properly utilize it. In this study,
egg yolk protein extracts were produced using ethanol (EYE-E) and water (EYE-W).
Their antioxidant and immunomodulatory effects were then evaluated. Antioxidant
activities of EYE-E and EYE-W were determined using cellular antioxidant
capacity (CAC) assay and comet assay. EYE-E and EYE-W showed significant
(p<0.05) scavenging effects on intracellular reactive oxygen species
(ROS) in a dose dependent manner. At a concentration of 50 μg/mL, EYE-W
showed higher (p<0.05) antioxidant activity than EYE-E. EYE-E and EYE-W
also exhibited protective effects against DNA damage caused by oxidative stress.
After treatment with EYE-E and EYE-W, DNA damage level of 48.7% due to
oxidative stress was decreased to 36.2% and 31.8% levels,
respectively. In addition, EYE-E and EYE-W showed immunomodulatory effects by
regulating Th1 cytokines (TNF-α and IL-2) and Th2 cytokines (IL-10 and
IL-4) in Balb/c mouse splenocytes. These data suggest that EYE-E and EYE-W could
be used as functional food ingredients with excellent antioxidant and
immunomodulatory activities in the food industry.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365,
Korea
| | - Yunjung Lee
- Department of Food and Nutrition, Kyungnam
University, Changwon 51767, Korea
| | - Hyun-Dong Paik
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University,
Seoul 05029, Korea
| | - Eunju Park
- Department of Food and Nutrition, Kyungnam
University, Changwon 51767, Korea
- Corresponding author : Eunju
Park, Department of Food and Nutrition, Kyungnam University, Changwon, 51767,
Korea, Tel: +82-55-249-2218, Fax: +82-505-999-2104, E-mail:
| |
Collapse
|
7
|
Eguez C, Clark MA, O'Connor AT. 15-Deoxy-Δ- 12,14-prostaglandin J2 effects in vascular smooth muscle cells: Implications in vascular smooth muscle cell proliferation and contractility. Prostaglandins Other Lipid Mediat 2021; 156:106583. [PMID: 34332056 DOI: 10.1016/j.prostaglandins.2021.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/04/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
15-Deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) is an endogenous agonist of the ligand dependent transcriptional factor, peroxisome proliferator-activated receptor -gamma (PPAR-γ). Although PPAR-γ mediates some actions of 15d-PGJ2, many actions of 15d-PGJ2 are independent of PPAR-γ. The PPAR-γ signaling pathway has beneficial effects on tumor progression, inflammation, oxidative stress, and angiogenesis in numerous studies. In this review, various studies were analyzed to understand the effects of 15d-PGJ2 in vascular smooth muscle cells (VSMC)s. 15d-PGJ2 inhibits proliferation of VSMCs during vascular remodeling and it alters the expression of contractile proteins and inflammatory components within these cells as well. However, the effects of 15d-PGJ2 as well as its ability to induce PPAR-γ activation remains controversial as contradictory effects of this prostaglandin in VSMCs exist. Understanding the mechanisms by which 15d-PGJ2 elicit beneficial actions whether by PPAR-γ activation or independently, will aid in developing new therapeutic strategies for diseases such as hypertension with an inflammatory component. Although great advances are being made, more research is needed to reach definitive conclusions.
Collapse
Affiliation(s)
- Carl Eguez
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA(1).
| | - Ann Tenneil O'Connor
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA(1).
| |
Collapse
|
8
|
Duan Y, Qi D, Liu Y, Song Y, Wang X, Jiao S, Li H, Gonzalez FJ, Qi Y, Xu Q, Du J, Qu A. Deficiency of peroxisome proliferator-activated receptor α attenuates apoptosis and promotes migration of vascular smooth muscle cells. Biochem Biophys Rep 2021; 27:101091. [PMID: 34381883 PMCID: PMC8339143 DOI: 10.1016/j.bbrep.2021.101091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) α is widely expressed in the vasculature and has pleiotropic and lipid-lowering independent effects, but its role in the growth and function of vascular smooth muscle cells (VSMCs) during vascular pathophysiology is still unclear. Herein, VSMC-specific PPARα-deficient mice (Ppara ΔSMC) were generated by Cre-LoxP site-specific recombinase technology and VSMCs were isolated from mice aorta. PPARα deficiency attenuated VSMC apoptosis induced by angiotensin (Ang) II and hydrogen peroxide, and increased the migration of Ang II-challenged cells.
Collapse
Key Words
- Ang II, angiotensin II
- Angiotensin II
- EC, endothelial cell
- ECM, extracellular matrix
- ERK, extracellular signal-regulated kinase
- MAPK, mitogen-activated protein kinase
- MCP-1, monocyte chemoattractant protein-1
- PCR, polymerase chain reaction
- PPAR, peroxisome proliferator-activated receptor
- PPARα
- SM22α, smooth muscle 22α
- TGF, tumor growth factor
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- VSMC, vascular smooth muscle cell
- Vascular remodeling
- Vascular smooth muscle cell
Collapse
Affiliation(s)
- Yan Duan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Dan Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Ye Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Huihua Li
- Department of Nutrition and Food Hygiene, School of Public Health, Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongfen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qingbo Xu
- School of Cardiovascular Medicine and Sciences, King' s College of London, London, UK
| | - Jie Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China.,Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| |
Collapse
|
9
|
Li Z, Feng J, Yang S, Meng P, Li J, Li H, Gao X, Zhang Y. Lipopolysaccharide-induced inflammation in human peritoneal mesothelial cells is controlled by ERK1/2-CDK5-PPARγ axis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:850. [PMID: 34164484 PMCID: PMC8184493 DOI: 10.21037/atm-21-1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Peritonitis is a common complication in which the peritoneum becomes inflamed. Peroxisome proliferator-activated receptor (PPAR)γ agonists and extracellular signal-regulated kinases 1/2 (ERK1/2) inactivation have been found to restore damage caused by lipopolysaccharide-induced (LPS) inflammation. This study aimed to investigate the association between PPARγ and ERK1/2 in LPS-induced inflammation in peritonitis. Methods Human peritoneal mesothelial cells were maintained in Dulbecco’s Modified Eagle Medium and treated with LPS under a series of different concentrations and treatment times. Cellular interleukins-1βeta (IL-1β), cellular interleukins-6 (IL-6), cellular interleukins-12 (IL-12) were measured by enzyme-linked immunosorbent assay (ELISA) assay. Expression or activation of cyclin-dependent kinase (CDK)5, ERK1/2, and PPARγ was detected using quantitative real-time PCR and/or western blot. Results LPS induced dose- and time-dependent increments in the cellular IL-1β, IL-6, and IL-12 contents, cyclin-dependent kinase 5 (CDK5) expression, and PPARγSer273 phosphorylation. Treatment with 1 µg/mL LPS for 12 hours was the optimal experimental design for inflammation stimulation. The concentration of LPS over 1 µg/mL or treatment more than 12 hours reduced the inflammatory status. LPS stimulation also activated ERK1/2 and increased its interaction with CDK5. Further, ERK1/2 inhibition by AZD0364 prevented IL-1β, IL-6, IL-12, and CDK5 expression, as well as activation of ERK1/2 and phosphorylation of PPARγ, induced by LPS. Knockdown of CDK5 using its siRNA caused similar changes as AZD0364, minus ERK1/2 inactivation. Conclusions Our results suggested that LPS-induced inflammation in human peritoneal mesothelial cells can be partly suppressed by inhibiting the ERK1/2/CDK5/PPARγ axis.
Collapse
Affiliation(s)
- Zukai Li
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junxia Feng
- The Central Laboratory, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Shen Yang
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Ping Meng
- The Central Laboratory, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Jingchun Li
- The Central Laboratory, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Hongyan Li
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yunfang Zhang
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| |
Collapse
|
10
|
Meng Y, Xu Y, Chang C, Qiu Z, Hu J, Wu Y, Zhang B, Zheng G. Extraction, characterization and anti-inflammatory activities of an inulin-type fructan from Codonopsis pilosula. Int J Biol Macromol 2020; 163:1677-1686. [DOI: 10.1016/j.ijbiomac.2020.09.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
|
11
|
Lee JH, Ahn DU, Paik HD. In Vitro Immune-Enhancing Activity of Ovotransferrin from Egg White via MAPK Signaling Pathways in RAW 264.7 Macrophages. Korean J Food Sci Anim Resour 2018; 38:1226-1236. [PMID: 30675115 PMCID: PMC6335134 DOI: 10.5851/kosfa.2018.e56] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 11/06/2022] Open
Abstract
Ovotransferrin (OTF) is a well-known protein of the transferrin family with strong iron chelating activity, resulting in its antimicrobial activity. Furthermore, OTF is known to have antioxidant, anticancer, and antihypertensive activities. However, there have been few studies about the immune-enhancing activity of OTF. In current study, we investigated the immune-enhancing activity of OTF using the murine macrophage cells in vitro. The effect of OTF on production of pro-inflammatory mediators and cytokines were determined using Griess assay and quantitative real-time PCR. Using Neutral Red uptake assay, we confirmed the effect of OTF on phagocytic activity of macrophages. Ovotransferrin significantly increased the production of nitric oxide (NO) and secretion of inducible nitric oxide synthase (iNOS) mRNA with no cytotoxic activity. Ovotransferrin (2 mg/mL) stimulated NO production up to 31.9±3.5 μM. Ovotransferrin significantly increased the mRNA expression levels of pro-inflammatory cytokines which are tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β), and IL-6: OTF (2 mg/mL) treatment increased the secretion of mRNA for TNF-α, IL-1β, and IL-6 by 22.20-, 37.91-, and 6.17-fold of the negative control, respectively. The phagocytic activity of macrophages was also increased by OTF treatment significantly compared with negative control. Also, OTF treatment increased phosphorylation level of MAPK signaling pathways. These results indicated that OTF has immune-enhancing activity by activating RAW 264.7 macrophages via MAPK pathways.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
12
|
Arizmendi N, Hou C, Guo F, Li Y, Kulka M. Bicyclic eremophilane-type petasite sesquiterpenes potentiate peroxisome proliferator-activated receptor γ activator-mediated inhibition of dendritic cells. Int J Immunopathol Pharmacol 2018; 32:2058738418787739. [PMID: 30014756 PMCID: PMC6050815 DOI: 10.1177/2058738418787739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dendritic cell (DC) activation induces expression of co-stimulatory surface
molecules, as well as migration into secondary lymphoid organs, where they
activate naïve T-cells. A family of plant derivatives, eremophilane-type
petasite sesquiterpenes, can regulate the immune system through DC targeting due
to their anti-inflammatory effects. Peroxisome proliferator–activated receptor
gamma (PPARγ) is involved in inhibition of inflammatory responses and induction
of DCs to acquire a mucosal phenotype. Since mucosal DCs are central in innate
immune responses, we hypothesized that eremophilane-type petasite sesquiterpenes
exerted their anti-inflammatory effects by inhibiting DC maturation and
activation through PPARγ. This study assessed the bicyclic eremophilane-type
petasite sesquiterpene compounds Fukinone and
10βH-8α,12-Epidioxyeremophil-7(11)-en-8β-ol (ZYFDC21 and ZYFDC22) in the
maturation and activation of mouse DC. We measured surface expression of
co-stimulatory molecules by flow cytometry and cell-free supernatant cytokine
production upon lipopolysaccharide stimulation by enzyme-linked immunosorbent
assays (ELISAs) in the presence or absence of PPARγ agonists. DCs were generated
from C57BL/6 mice bone marrow cells and harvested. Cells were exposed to
bicyclic eremophilane-type petasite sesquiterpenes ZYFDC21 or ZYFDC22 in the
presence or absence of synthetic PPARγ agonists (GW1929 and TGZ) or the natural
PPARγ ligand 15d-PGJ2, followed by overnight activation with LPS. We
observed differences in the upregulation of surface expression of CD86, along
with TNF, IL-6, and IL-12p70 released by DCs stimulated with LPS, when using
combinations of bicyclic eremophilane-type petasite sesquiterpenes ZYFDC21 or
ZYFDC22, and PPARγ agonists, in particular the PPARγ ligand 15d-PGJ2.
Our results indicate that bicyclic eremophilane-type petasite sesquiterpenes
ZYFDC21 or ZYFDC22 inhibit maturation and activation of DC, and this activity is
augmented upon PPARγ activation.
Collapse
Affiliation(s)
- Narcy Arizmendi
- 1 Nanotechnology Research Center, National Research Council Canada, Edmonton, AB, Canada
| | - Chenjie Hou
- 2 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujiang Guo
- 2 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- 2 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Marianna Kulka
- 1 Nanotechnology Research Center, National Research Council Canada, Edmonton, AB, Canada.,3 Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Abstract
Background Pioglitazone is a promising compound for treatment of core autism spectrum disorder (ASD) symptoms as it targets multiple relevant pathways, including immune system alterations. Objective This pilot study aimed to elucidate the maximum tolerated dose, safety, preliminary evidence of efficacy, and appropriate outcome measures in autistic children ages 5–12 years old. Methods We conducted a 16-week prospective cohort, single blind, single arm, 2-week placebo run-in, dose-finding study of pioglitazone. Twenty-five participants completed treatment. A modified dose finding method was used to determine safety and dose response among three dose levels: 0.25 mg/kg, 0.5 mg/kg, and 0.75 mg/kg once daily. Results Maximum tolerated dose: there were no serious adverse events (SAEs) and as such the maximum tolerated dose within the range tested was 0.75 mg/Kg once daily. Safety: overall, pioglitazone was well tolerated. Two participants discontinued intervention due to perceived non-efficacy and one due to the inability to tolerate interim blood work. Three participants experienced mild neutropenia. Early evidence of efficacy: statistically significant improvement was observed in social withdrawal, repetitive behaviors, and externalizing behaviors as measured by the Aberrant Behavior Checklist (ABC), Child Yale-Brown Obsessive Compulsive Scale (CY-BOCS), and Repetitive Behavior Scale–Revised (RBS-R). Forty-six percent of those enrolled were deemed to be global responders. Conclusions and relevance Pioglitazone is well-tolerated and shows a potential signal in measures of social withdrawal, repetitive, and externalizing behaviors. Randomized controlled trials using the confirmed dose are warranted. Trial registration ClinicalTrials.gov, NCT01205282. Registration date: September 20, 2010. Electronic supplementary material The online version of this article (10.1186/s13229-018-0241-5) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Socha BM, Łada P, Szczepańska AA, Łupicka M, Korzekwa AJ. The influence of experimentally induced endometritis on the PPAR expression profile in the bovine endometrium. Theriogenology 2018; 122:74-83. [PMID: 30243137 DOI: 10.1016/j.theriogenology.2018.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear receptor superfamily. The PPARs activity can be modified e.g. by arachidonic acid metabolites. Escherichia coli (E. coli) is one of the main infectious agent of endometritis in dairy cows. We hypothesized that PPAR expression profile change in the bovine endometrium under the influence of LPS or E. coli. In experiment 1, endometrial explants were obtained post mortem from heifers and incubated without (control) or with LPS for 12, 24, 48, 72 and 96 h. In experiment 2, heifers were intrauterine infused with 0.9% NaCl (control) or with E. coli suspension in 0.9% NaCl. Endometrial biopsies were performed before (0 h) and 12, 24, 48, 72, 96 h after the infusions. In experiment 1, the increase in protein expression was observed for PPARα 48 h, for PPARβ/δ 24, 72 and 96 h, whereas for PPARγ 12, 24 and 96 h after LPS treatment relative to the control groups. In experiment 2, the up-regulation in protein expression was observed for PPARα 48 and 72 h, for PPARβ/δ 72 and 96 h, for PPARγ1 and PPARγ2 12 and 96 h after the intrauterine infusion with E. coli suspension compared to the control group. Changes in mRNA and protein PPAR expression profile in endometrial explants under the exposure of LPS indicate participation of these nuclear receptors in signal transduction during stimulation with LPS. The patterns of mRNA and protein PPAR expression in endometrial bioptates suggest that during experimentally induced endometritis in vivo, PPARs role may be connected both with enhancement of inflammation as well restoring physiological conditions in uterus.
Collapse
Affiliation(s)
- B M Socha
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences (IARFR PAS), Tuwima Str. 10, 10-747, Olsztyn, Poland
| | - P Łada
- Veterinary Clinic 3VET, Ludowa Str. 78/3, 18-200 Wysokie Mazowieckie, Poland
| | - A A Szczepańska
- Department of Biodiversity Protection, IARFR PAS, Tuwima Str. 10, 10-747, Olsztyn, Poland
| | - M Łupicka
- Department of Biodiversity Protection, IARFR PAS, Tuwima Str. 10, 10-747, Olsztyn, Poland
| | - A J Korzekwa
- Department of Biodiversity Protection, IARFR PAS, Tuwima Str. 10, 10-747, Olsztyn, Poland.
| |
Collapse
|
15
|
Heming M, Gran S, Jauch SL, Fischer-Riepe L, Russo A, Klotz L, Hermann S, Schäfers M, Roth J, Barczyk-Kahlert K. Peroxisome Proliferator-Activated Receptor-γ Modulates the Response of Macrophages to Lipopolysaccharide and Glucocorticoids. Front Immunol 2018; 9:893. [PMID: 29867927 PMCID: PMC5949563 DOI: 10.3389/fimmu.2018.00893] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
Although glucocorticoids (GC) represent the most frequently used immunosuppressive drugs, their effects are still not well understood. In our previous studies, we have shown that treatment of monocytes with GC does not cause a global suppression of monocytic effector functions, but rather induces differentiation of a specific anti-inflammatory phenotype. The anti-inflammatory role of peroxisome proliferator-activated receptor (PPAR)-γ has been extensively studied during recent years. However, a relationship between GC treatment and PPAR-γ expression in macrophages has not been investigated so far. Studies using PPAR-γ-deficient mice have frequently provided controversial results. A potential reason is the use of primary cells, which commonly represent inhomogeneous populations burdened with side effects and influenced by bystander cells. To overcome this constraint, we established ER-Hoxb8-immortalized bone marrow-derived macrophages from Ppargfl/fl and LysM-Cre Ppargfl/fl mice in this study. In contrast to primary macrophages, the ER-Hoxb8 system allows the generation of a homogeneous and well-defined population of resting macrophages. We could show that the loss of PPAR-γ resulted in delayed kinetic of differentiation of monocytes into macrophages as assessed by reduced F4/80, but increased Ly6C expression in early phases of differentiation. As expected, PPAR-γ-deficient macrophages displayed an increased pro-inflammatory phenotype upon long-term LPS stimulation characterized by an elevated production of pro-inflammatory cytokines TNF-α, IL1-β, IL-6, IL-12 and a reduced production of anti-inflammatory cytokine IL-10 compared to PPAR-γ WT cells. Moreover, PPAR-γ-deficient macrophages showed impaired phagocytosis. GC treatment of macrophages led to the upregulation of PPAR-γ expression. However, there were no differences in GC-induced suppression of cytokines between both cell types, implicating a PPAR-γ-independent mechanism. Intriguingly, GC treatment resulted in an increased in vitro migration only in PPAR-γ-deficient macrophages. Performing a newly developed in vivo cell-tracking experiment, we could confirm that GC induces an increased recruitment of PPAR-γ KO, but not PPAR-γ WT macrophages to the site of inflammation. Our findings suggest a specific effect of PPAR-γ on GC-induced migration in macrophages. In conclusion, we could demonstrate that PPAR-γ exerts anti-inflammatory activities and shapes macrophage functions. Moreover, we identified a molecular link between GC and PPAR-γ and could show for the first time that PPAR-γ modulates GC-induced migration in macrophages.
Collapse
Affiliation(s)
- Michael Heming
- Institute of Immunology, University of Muenster, Muenster, Germany.,Department of Neurology, University of Muenster, Muenster, Germany
| | - Sandra Gran
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Saskia-L Jauch
- Institute of Immunology, University of Muenster, Muenster, Germany
| | | | - Antonella Russo
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Luisa Klotz
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Muenster, Muenster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Muenster, Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Muenster, Germany
| | | |
Collapse
|
16
|
Li P, Chen D, Huang Y. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo. Int J Mol Med 2018; 42:237-247. [PMID: 29568876 PMCID: PMC5979934 DOI: 10.3892/ijmm.2018.3585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways.
Collapse
Affiliation(s)
- Peng Li
- Department of Otorhinolaryngology, The Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dan Chen
- Department of Otolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yang Huang
- Department of Otolaryngology, The First People's Hospital of Yunnan Province, Xishan, Kunming 650032, P.R. China
| |
Collapse
|
17
|
Cao X, Zhang L, Chen C, Wang Q, Guo L, Ma Q, Deng P, Zhu G, Li B, Pi Y, Long C, Zhang L, Yu Z, Zhou Z, Li J. The critical role of ABCG1 and PPARγ/LXRα signaling in TLR4 mediates inflammatory responses and lipid accumulation in vascular smooth muscle cells. Cell Tissue Res 2016; 368:145-157. [DOI: 10.1007/s00441-016-2518-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
|
18
|
Reynolds K, Novosad B, Hoffhines A, Gipson J, Johnson J, Peters J, Gonzalez F, Gimble J, Hill M. Pretreatment with troglitazone decreases lethality during endotoxemia in mice. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519020080040701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Troglitazone is an oral antidiabetic drug that is a ligand for peroxisome proliferator activated receptor γ (PPARγ). Based on other studies that have implicated an immunosuppressive role for PPARγ during inflammatory responses, we hypothesized that troglitazone treatment would improve survival in a murine model of endotoxemia and that the protective effect would be mediated by decreased expression of inflammatory mediators. C57Bl/6N x Sv/129 (wild-type [WT]) or PPARα null mice treated for 2 weeks with dietary troglitazone (0.1%) had significantly fewer deaths and a higher LD 50 value compared to control-fed mice when challenged with lipopolysaccharide (LPS). PPARα null mice were more sensitive to the lethal effects of LPS as evidenced by a 2-fold lower LD 50 (6.6 mg/kg) compared to WT mice (14.6 mg/kg). Troglitazone treatment had no significant effect on LPS-induced plasma TNF, glucose, or nitric oxide levels in WT or PPARα null mice at any of the time points examined. However, troglitazone treatment significantly reduced LPS-induced plasma IL-6 levels in both WT and PPARα null mice. The results of these studies suggest that troglitazone treatment protects mice against a lethal challenge of LPS, but whether or not this effect is mediated through decreased expression of inflammatory mediators remains unclear.
Collapse
Affiliation(s)
- Karen Reynolds
- Department of Natural Sciences, Oklahoma Christian University, Oklahoma City, Oklahoma, USA, Department of Radiologic Technology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bo Novosad
- Department of Natural Sciences, Oklahoma Christian University, Oklahoma City, Oklahoma, USA, Department of Radiologic Technology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Adam Hoffhines
- Department of Natural Sciences, Oklahoma Christian University, Oklahoma City, Oklahoma, USA
| | - Jenny Gipson
- Department of Natural Sciences, Oklahoma Christian University, Oklahoma City, Oklahoma, USA
| | - Jared Johnson
- Department of Natural Sciences, Oklahoma Christian University, Oklahoma City, Oklahoma, USA
| | - Jeffrey Peters
- Department of Veterinary Science, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Frank Gonzalez
- Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Gimble
- Tissue Engineering Program, Artecell Inc., Durham, North Carolina, USA
| | - Molly Hill
- Department of Natural Sciences, Oklahoma Christian University, Oklahoma City, Oklahoma, USA, , Department of Radiologic Technology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
19
|
CD97/ADGRE5 Inhibits LPS Induced NF-κB Activation through PPAR-γ Upregulation in Macrophages. Mediators Inflamm 2016; 2016:1605948. [PMID: 26997758 PMCID: PMC4779537 DOI: 10.1155/2016/1605948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022] Open
Abstract
CD97/ADGRE5 protein is predominantly expressed on leukocytes and belongs to the EGF-TM7 receptors family. It mediates granulocytes accumulation in the inflammatory tissues and is involved in firm adhesion of PMNC on activated endothelial cells. There have not been any studies exploring the role of CD97 in LPS induced NF-κB activation in macrophages. Therefore, we first measured the CD97 expression in LPS treated human primary macrophages and subsequently analyzed the levels of inflammatory factor TNF-α and transcription factor NF-κB in these macrophages that have been manipulated with either CD97 knockdown or overexpression. We found that a reported anti-inflammatory transcription factor, PPAR-γ, was involved in the CD97 mediated NF-κB suppression. Furthermore, by immunofluorescence staining, we established that CD97 overexpression not only inhibited LPS induced p65 expression in the nucleus but also promoted the PPAR-γ expression. Moreover, using CD97 knockout THP-1 cells, we further demonstrated that CD97 promoted PPAR-γ expression and decreased LPS induced NF-κB activation. In conclusion, CD97 plays a negative role in LPS induced NF-κB activation and TNF-α secretion, partly through PPAR-γ upregulation.
Collapse
|
20
|
Abstract
BACKGROUND It is well-known that steatotic liver is more susceptible to ischemia-reperfusion (I/R) injury during liver transplantation, liver resection and other liver surgeries. The increasing incidence of non-alcoholic fatty liver disease (NAFLD) decreases the availability of liver donors. Although steatotic liver is now accepted as a source of liver for transplantation, NAFLD exacerbates the liver injury after liver surgery. The present study was to investigate the protective role of ankaflavin in steatotic liver I/R injury. METHODS The model of fatty liver mice was induced with high fat diet in four weeks, ankaflavin or vehicle (saline) was administrated by gavage once a day for one week. The animals were subjected to partial hepatic I/R. Blood samples were collected to measure serum aminotransferases. The liver tissues were used to examine liver steatosis, apoptosis of hepatocytes, hepatic oxidative stress, Kupffer cells and inflammatory cytokines. The effects of ankaflavin on inflammatory cytokines were evaluated in isolated Kupffer cells from the steatotic liver. RESULTS Ankaflavin reduced liver steatosis in high fat diet mice. Compared with normal mice, I/R induced more damage to the mice with steatosis, such as hepatocyte apoptosis, inflammatory cytokines (TNF-alpha, IL-6 and IL-1 beta), serum aminotransferases and thiobarbituric acid reactive substances. Importantly, ankaflavin administration significantly attenuated these changes. In addition, ankaflavin significantly decreased the proliferation of Kupffer cells and the expression of TNF-alpha, IL-6 and IL-1 beta protein in isolated Kupffer cells stimulated by TNF-alpha. CONCLUSION Ankaflavin has protective effects against I/R injury through anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms in fatty livers, these effects are at least partially mediated by inhibiting Kupffer cell functions.
Collapse
|
21
|
Cuaranta-Monroy I, Kiss M, Simandi Z, Nagy L. Genomewide effects of peroxisome proliferator-activated receptor gamma in macrophages and dendritic cells--revealing complexity through systems biology. Eur J Clin Invest 2015; 45:964-75. [PMID: 26251129 DOI: 10.1111/eci.12491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Systems biology approaches have become indispensable tools in biomedical and basic research. These data integrating bioinformatic methods gained prominence after high-throughput technologies became available to investigate complex cellular processes, such as transcriptional regulation and protein-protein interactions, on a scale that had not been studied before. Immunology is one of the medical fields that systems biology impacted profoundly due to the plasticity of cell types involved and the accessibility of a wide range of experimental models. MATERIALS AND METHODS In this review, we summarize the most important recent genomewide studies exploring the function of peroxisome proliferator-activated receptor γ in macrophages and dendritic cells. PPARγ ChIP-seq experiments were performed in adipocytes derived from embryonic stem cells to complement the existing data sets and to provide comparators to macrophage data. Finally, lists of regulated genes generated from such experiments were analysed with bioinformatics and system biology approaches. RESULTS We show that genomewide studies utilizing high-throughput data acquisition methods made it possible to gain deeper insights into the role of PPARγ in these immune cell types. We also demonstrate that analysis and visualization of data using network-based approaches can be used to identify novel genes and functions regulated by the receptor. CONCLUSIONS The example of PPARγ in macrophages and dendritic cells highlights the crucial importance of systems biology approaches in establishing novel cellular functions for long-known signaling pathways.
Collapse
Affiliation(s)
- Ixchelt Cuaranta-Monroy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Mate Kiss
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Zoltan Simandi
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Faculty of Medicine, Debrecen, Hungary.,Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA.,MTA-DE 'Lendulet' Immunogenomics Research Group, Debrecen, Hungary
| |
Collapse
|
22
|
Gupta M, Mahajan VK, Mehta KS, Chauhan PS, Rawat R. Peroxisome proliferator-activated receptors (PPARs) and PPAR agonists: the ‘future’ in dermatology therapeutics? Arch Dermatol Res 2015; 307:767-80. [PMID: 25986745 DOI: 10.1007/s00403-015-1571-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/11/2015] [Accepted: 05/05/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Mrinal Gupta
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra, Tanda, 176001, Himachal Pradesh, India
| | - Vikram K Mahajan
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra, Tanda, 176001, Himachal Pradesh, India.
| | - Karaninder S Mehta
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra, Tanda, 176001, Himachal Pradesh, India
| | - Pushpinder S Chauhan
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra, Tanda, 176001, Himachal Pradesh, India
| | - Ritu Rawat
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra, Tanda, 176001, Himachal Pradesh, India
| |
Collapse
|
23
|
Zizzo G, Cohen PL. The PPAR-γ antagonist GW9662 elicits differentiation of M2c-like cells and upregulation of the MerTK/Gas6 axis: a key role for PPAR-γ in human macrophage polarization. JOURNAL OF INFLAMMATION-LONDON 2015; 12:36. [PMID: 25972766 PMCID: PMC4429687 DOI: 10.1186/s12950-015-0081-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/24/2015] [Indexed: 11/10/2022]
Abstract
Background The nuclear receptors PPAR-γ and LXRs regulate macrophage lipid metabolism and macrophage mediated inflammation. We examined the influence of these molecules on macrophage alternative activation, with particular focus on differentiation of “M2c” anti-inflammatory cells. Methods We cultured human monocytes in M0, M1, M2a or M2c macrophage differentiating conditions, in the presence or absence of PPAR-γ and LXR ligands. Flow cytometry was used to analyze membrane expression of phenotypic markers. Basal and LPS-stimulated production of soluble mediators was measured by ELISA. Efferocytosis assays were performed by coincubating monocytes/macrophages with apoptotic neutrophils. Results We found that PPAR-γ inhibition, using the PPAR-γ antagonist GW9662, elicits differentiation of M2c-like (CD206+ CD163+ CD16+) cells and upregulation of the MerTK/Gas6 axis. Exposure of differentiating macrophages to IFN-γ, GM-CSF or LPS (M1 conditions), however, hampers GW9662 induction of MerTK and Gas6. When macrophages are differentiated with IL-4 (M2a conditions), addition of GW9662 results into an M2a (CD206+ CD209+ CD163− MerTK−) to M2c (CD206high CD209− CD163+ MerTK+) polarization shift. Conversely, in the presence of dexamethasone (M2c conditions), the PPAR-γ agonist rosiglitazone attenuates CD163 and MerTK upregulation. The LXR agonist T0901317 induces MerTK independently of M2c polarization; indeed, CD206, CD163 and CD16 are downregulated. GW9662-differentiated M2c-like cells secrete high levels of Gas6 and low amounts of TNF-α and IL-10, mimicking dexamethasone effects in vitro. However, unlike conventional M2c cells, GW9662-differentiated cells do not show enhanced efferocytic ability. Conclusions Our results provide new insights into the role of PPAR-γ and LXR receptors in human macrophage activation and reveal the existence of different patterns regulating MerTK expression. Unexpectedly, PPAR-γ appears to negatively control the expansion of a discrete subset of M2c-like anti-inflammatory macrophages.
Collapse
Affiliation(s)
- Gaetano Zizzo
- Temple Autoimmunity Center, Temple University, 3500 N. Broad Street, 19140 Philadelphia, PA USA ; Department of Medicine, Section of Rheumatology, Temple University, 3322 N. Broad Street, 19140 Philadelphia, PA USA
| | - Philip L Cohen
- Temple Autoimmunity Center, Temple University, 3500 N. Broad Street, 19140 Philadelphia, PA USA ; Department of Medicine, Section of Rheumatology, Temple University, 3322 N. Broad Street, 19140 Philadelphia, PA USA
| |
Collapse
|
24
|
Zhu L, Zhao Q, Yang T, Ding W, Zhao Y. Cellular metabolism and macrophage functional polarization. Int Rev Immunol 2014; 34:82-100. [PMID: 25340307 DOI: 10.3109/08830185.2014.969421] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrophages are a functionally heterogeneous cell population that is mainly shaped by a variety of microenvironmental stimuli. Interferon γ (IFN-γ), interleukin-1β (IL-1β), and lipopolysaccharide (LPS) induce a classical activation of macrophages (M1), whereas IL-4 and IL-13 induce an alternative activation program in macrophages (M2). Reprogramming of intracellular metabolisms is required for the proper polarization and functions of activated macrophages. Similar to the Warburg effect observed in tumor cells, M1 macrophages increase glucose consumption and lactate release and decreased oxygen consumption rate. In comparison, M2 macrophages mainly employ oxidative glucose metabolism pathways. In addition, fatty acids, vitamins, and iron metabolisms are also related to macrophage polarization. However, detailed metabolic pathways involved in macrophages have remained elusive. Understanding the bidirectional interactions between cellular metabolism and macrophage functions in physiological and pathological situations and the regulatory pathways involved may offer novel therapies for macrophage-associated diseases.
Collapse
Affiliation(s)
- Linnan Zhu
- 1Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
25
|
Fernandez-Bustamante A, Klawitter J, Wilson P, Elkins ND, Agazio A, Shibata T, Uchida K, Christians U, Repine JE. Early increase in alveolar macrophage prostaglandin 15d-PGJ2 precedes neutrophil recruitment into lungs of cytokine-insufflated rats. Inflammation 2014; 36:1030-40. [PMID: 23616184 DOI: 10.1007/s10753-013-9635-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Early detection and prevention is an important goal in acute respiratory distress syndrome research. We determined the concentration of the anti-inflammatory 15-deoxy-Δ(12,14)-prostaglandin-J2 (15d-PGJ2) and other components of the cyclopentenone prostaglandin cascade in relation to lung inflammation in cytokine (IL-1/LPS)-insufflated rats. We found that 15d-PGJ2 levels increase in the bronchoalveolar lavage (BAL) fluid of rats insufflated with cytokines 2 h before. BAL 15d-PGJ2 increases preceded neutrophil recruitment, lung injury, and oxidative stress in the lungs of cytokine-insufflated rats. 15d-PGJ2 was localized in alveolar macrophages that decreased following cytokine insufflation. 15d-PGJ2 may constitute an early biomarker of lung inflammation and may reflect an endogenous attempt to regulate ongoing inflammation in macrophages and elsewhere after cytokine insufflation.
Collapse
Affiliation(s)
- Ana Fernandez-Bustamante
- Department of Anesthesiology, University of Colorado SOM, AO-1, MS 8202, 12631 E 17th Ave, Aurora, CO, 80045, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Peng Q, Liu H, Shi S, Li M. Lycium ruthenicum polysaccharide attenuates inflammation through inhibiting TLR4/NF-κB signaling pathway. Int J Biol Macromol 2014; 67:330-5. [PMID: 24680899 DOI: 10.1016/j.ijbiomac.2014.03.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/07/2014] [Accepted: 03/08/2014] [Indexed: 01/21/2023]
Abstract
Polysaccharide has been reported to possess diverse biological activities, however, the inflammatory activity of polysaccharide isolated from Lycium ruthenicum remains unknown so far. In the present study, we investigated the effects of L. ruthenicum polysaccharide (LRGP3) on inflammatory reaction induced by lipopolysaccharide (LPS) in mouse macrophage RAW264.7 cells and some potential underlying mechanisms. Our results showed that LRGP3 treatment significantly inhibited the LPS-induced NO production and the mRNA expression of iNOS, as well as the level of Toll-like receptor 4 (TLR4). Furthermore, LRGP3 treatment prevented the IκBα degradation and reduced phospho-NF-κB p65 protein expression in LPS-stimulated RAW264.7 cells. Meanwhile, the levels of pro-inflammatory cytokines, such as interleukin (IL)-α, IL-6, tumor necrosis factor (TNF)-α were suppressed by LRGP3 in LPS-stimulated RAW264.7 cells. Taken together, our results suggested that LRGP3 attenuated LPS-induced inflammation via inhibiting TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Huajing Liu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Shihui Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Ming Li
- College of Resources and Environment, Northwest A&F University, YangLing 712100, China.
| |
Collapse
|
27
|
De Boer AA, Monk JM, Robinson LE. Docosahexaenoic acid decreases pro-inflammatory mediators in an in vitro murine adipocyte macrophage co-culture model. PLoS One 2014; 9:e85037. [PMID: 24465472 PMCID: PMC3896343 DOI: 10.1371/journal.pone.0085037] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/24/2013] [Indexed: 01/28/2023] Open
Abstract
Paracrine interactions between adipocytes and macrophages contribute to chronic inflammation in obese adipose tissue. Dietary strategies to mitigate such inflammation include long-chain polyunsaturated fatty acids, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, which act through PPARγ-dependent and independent pathways. We utilized an in vitro co-culture model designed to mimic the ratio of macrophages:adipocytes in obese adipose tissue, whereby murine 3T3-L1 adipocytes were cultured with RAW 264.7 macrophages in direct contact, or separated by a trans-well membrane (contact-independent mechanism), with 125 µM of albumin-complexed DHA, EPA, palmitic acid (PA), or albumin alone (control). Thus, we studied the effect of physical cell contact versus the presence of soluble factors, with or without a PPARγ antagonist (T0070907) in order to elucidate putative mechanisms. After 12 hr, DHA was the most anti-inflammatory, decreasing MCP1 and IL-6 secretion in the contact system (−57%, −63%, respectively, p≤0.05) with similar effects in the trans-well system. The trans-well system allowed for isolation of cell types for inflammatory mediator analysis. DHA decreased mRNA expression (p<0.05) of Mcp1 (−7.1 fold) and increased expression of the negative regulator, Mcp1-IP (+1.5 fold). In macrophages, DHA decreased mRNA expression of pro-inflammatory M1 polarization markers (p≤0.05), Nos2 (iNOS; −7 fold), Tnfα (−4.2 fold) and Nfκb (−2.3 fold), while increasing anti-inflammatory Tgfβ1 (+1.7 fold). Interestingly, the PPARγ antagonist co-administered with DHA or EPA in co-culture reduced (p≤0.05) adiponectin cellular protein, without modulating other cytokines (protein or mRNA). Overall, our findings suggest that DHA may lessen the degree of MCP1 and IL-6 secreted from adipocytes, and may reduce the degree of M1 polarization of macrophages recruited to adipose tissue, thereby decreasing the intensity of pro-inflammatory cross-talk between adipocytes and macrophages in obese adipose tissue.
Collapse
Affiliation(s)
- Anna A. De Boer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Jennifer M. Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Lindsay E. Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
- * E-mail:
| |
Collapse
|
28
|
Jung WK, Lee CM, Lee DS, Na G, Lee DY, Choi I, Park SG, Seo SK, Yang JW, Choi JS, Lee YM, Park WS, Choi IW. The 15-deoxy-δ12,14-prostaglandin J2 inhibits LPS‑stimulated inflammation via enhancement of the platelet‑activating factor acetylhydrolase activity in human retinal pigment epithelial cells. Int J Mol Med 2013; 33:449-56. [PMID: 24337644 DOI: 10.3892/ijmm.2013.1588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/11/2013] [Indexed: 11/06/2022] Open
Abstract
A well-recognized natural ligand of PPARγ, 15-deoxy-δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) possesses immunomodulatory properties. The aim of this study was to elucidate whether 15d-PGJ(2) was able to attenuate lipopolysaccharide (LPS)-induced inflammatory responses in human retinal pigment epithelial (RPE) cells, which are involved in ocular immune responses. In addition, we examined whether the platelet activating factor (PAF) is associated with the anti-inflammatory activity of 15d-PGJ(2). ARPE19 cells treated with varying concentrations of 15d-PGJ(2) and a PAF antagonist (CV3988) were used in this study. The activity of PAF-acetylhydrolase (PAF-AH) was assayed by treatment with 15d-PGJ(2) and CV3988 in the presence of LPS. 15d-PGJ(2) and CV3988 inhibited the LPS-induced mRNA expression and protein production of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) in ARPE19 cells. These effects resulting from 15d-PGJ(2) were not abrogated by the PPARγ antagonist, indicating that the actions were PPARγ-independent. Furthermore, 15d-PGJ(2) and CV3988 enhanced the PAF-AH activity. Additionally, 15d-PGJ(2) inhibited the phosphorylation of the extracellular signal-regulated kinase (ERK) and the activation of nuclear transcription factor-κB (NF-κB). These results demonstrated that 15d-PGJ(2) reduced LPS-stimulated inflammatory responses in ARPE19 cells by enhancing the PAH-AH activity. These results suggest that 15d-PGJ(2) may have potent anti-inflammatory activity against ocular inflammation.
Collapse
Affiliation(s)
- Won-Kyo Jung
- Department of Biomedical Engineering, Pukyong National University, Busan, Republic of Korea
| | - Chang-Min Lee
- Department of Microbiology and Immunology, Medical Research Institute, Pusan National University School of Medicine, Yang-san, Republic of Korea
| | - Dae-Sung Lee
- POSTECH Ocean Science and Technology Institute, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Giyoun Na
- Department of Microbiology, College of Medicine Inje University, Busan, Republic of Korea
| | - Da-Young Lee
- Department of Microbiology, College of Medicine Inje University, Busan, Republic of Korea
| | - Inhak Choi
- Department of Microbiology, College of Medicine Inje University, Busan, Republic of Korea
| | - Sae-Gwang Park
- Department of Microbiology, College of Medicine Inje University, Busan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology, College of Medicine Inje University, Busan, Republic of Korea
| | - Jae-Wook Yang
- Department of Ophthalmology, Busan Paik Hospital, College of Medicine Inje University, Busan, Republic of Korea
| | - Jung Sik Choi
- Department of Internal Medicine, Busan Paik Hospital, College of Medicine Inje University, Busan, Republic of Korea
| | - Young-Min Lee
- Department of Internal Medicine, Busan Paik Hospital, College of Medicine Inje University, Busan, Republic of Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine Inje University, Busan, Republic of Korea
| |
Collapse
|
29
|
Peroxisome proliferator-activated receptor-γ agonist pioglitazone suppresses experimental autoimmune uveitis. Exp Eye Res 2013; 116:291-7. [DOI: 10.1016/j.exer.2013.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/11/2013] [Accepted: 09/27/2013] [Indexed: 12/31/2022]
|
30
|
Novel 2-(2,4-dioxo-1,3-thiazolidin-5-yl)acetamides as antioxidant and/or anti-inflammatory compounds. Eur J Med Chem 2013; 66:305-13. [DOI: 10.1016/j.ejmech.2013.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/20/2013] [Accepted: 06/02/2013] [Indexed: 11/20/2022]
|
31
|
Hou J, Cai S, Kitajima Y, Fujino M, Ito H, Takahashi K, Abe F, Tanaka T, Ding Q, Li XK. 5-Aminolevulinic acid combined with ferrous iron induces carbon monoxide generation in mouse kidneys and protects from renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2013; 305:F1149-57. [PMID: 23904222 DOI: 10.1152/ajprenal.00275.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Renal ischemia reperfusion injury (IRI) is a major factor responsible for acute renal failure. An intermediate in heme synthesis, 5-aminolevulinic acid (5-ALA) is fundamental in aerobic energy metabolism. Heme oxygenase (HO)-1 cleaves heme to form biliverdin, carbon monoxide (CO), and iron (Fe(2+)), which is used with 5-ALA. In the present study, we investigated the role of 5-ALA in the attenuation of acute renal IRI using a mouse model. Male Balb/c mice received 30 mg/kg 5-ALA with Fe(2+) 48, 24, and 2 h before IRI and were subsequently subjected to bilateral renal pedicle occlusion for 45 min. The endogenous CO concentration of the kidneys from the mice administered 5-ALA/Fe(2+) increased significantly, and the peak concentrations of serum creatinine and blood urea nitrogen decreased. 5-ALA/Fe(2+) treatments significantly decreased the tubular damage and number of apoptotic cells. IRI-induced renal thiobarbituric acid-reactive substance levels were also significantly decreased in the 5-ALA/Fe(2+) group. Furthermore, mRNA expression of HO-1, TNF-α, and interferon-γ was significantly increased after IRI. Levels of HO-1 were increased and levels of TNF-α and interferon-γ were decreased in the 5-ALA/Fe(2+)-pretreated renal parenchyma after IRI. F4/80 staining showed reduced macrophage infiltration, and TUNEL staining revealed that there were fewer interstitial apoptotic cells. These findings suggest that 5-ALA/Fe(2+) can protect the kidneys against IRI by reducing macrophage infiltration and decreasing renal cell apoptosis via the generation of CO.
Collapse
Affiliation(s)
- Jiangang Hou
- Div. of Radiation Safety and Immune Tolerance, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tanaka J, Tajima S, Asakawa K, Sakagami T, Moriyama H, Takada T, Suzuki E, Narita I. Preventive effect of irbesartan on bleomycin-induced lung injury in mice. Respir Investig 2013; 51:76-83. [PMID: 23790735 DOI: 10.1016/j.resinv.2012.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/20/2012] [Accepted: 12/28/2012] [Indexed: 06/02/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is a specific form of chronic fibrosing interstitial pneumonia that is limited to the lung. Angiotensin receptor blockers (ARBs) and peroxisome proliferator-activated receptor (PPAR) γ ligands have anti-inflammatory and anti-fibrotic effects. We investigated the effects of irbesartan-an ARB with PPAR γ activity-on the development of bleomycin-induced pulmonary fibrosis in mice. METHODS Lung injury was induced in imprinting control region (ICR) mice by intratracheal instillation of 2mg/kg of bleomycin. The treatment group orally received 20mg/kg of irbesartan for 5 consecutive days before instillation. The mice were sacrificed and were evaluated 14 days after bleomycin instillation. RESULTS Irbesartan reduced the fluid content and hydroxyproline level in the lung and improved the pathological findings as indicated by the Ashcroft score. Total cell counts, the numbers of macrophages, neutrophils, and lymphocytes, and the levels of transforming growth factor (TGF) β1 and monocyte chemotactic protein (MCP) 1 in the bronchoalveolar lavage fluid (BALF) were decreased. Treatment with a PPARγ antagonist GW9662 reversed some of the effects of irbesartan. CONCLUSIONS The results of this study indicated that irbesartan attenuated the development of bleomycin-induced pulmonary fibrosis in mice by decreasing TGF-β1 and MCP-1 via blocking of ATI, by binding to CCR2b, and by PPARγ-mediated inhibition of inflammation.
Collapse
Affiliation(s)
- Junichi Tanaka
- Division of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mandard S, Patsouris D. Nuclear control of the inflammatory response in mammals by peroxisome proliferator-activated receptors. PPAR Res 2013; 2013:613864. [PMID: 23577023 PMCID: PMC3614066 DOI: 10.1155/2013/613864] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/14/2013] [Accepted: 01/29/2013] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that play pivotal roles in the regulation of a very large number of biological processes including inflammation. Using specific examples, this paper focuses on the interplay between PPARs and innate immunity/inflammation and, when possible, compares it among species. We focus on recent discoveries establishing how inflammation and PPARs interact in the context of obesity-induced inflammation and type 2 diabetes, mostly in mouse and humans. We illustrate that PPAR γ ability to alleviate obesity-associated inflammation raises an interesting pharmacologic potential. In the light of recent findings, the protective role of PPAR α and PPAR β / δ against the hepatic inflammatory response is also addressed. While PPARs agonists are well-established agents that can treat numerous inflammatory issues in rodents and humans, surprisingly very little has been described in other species. We therefore also review the implication of PPARs in inflammatory bowel disease; acute-phase response; and central, cardiac, and endothelial inflammation and compare it along different species (mainly mouse, rat, human, and pig). In the light of the data available in the literature, there is no doubt that more studies concerning the impact of PPAR ligands in livestock should be undertaken because it may finally raise unconsidered health and sanitary benefits.
Collapse
Affiliation(s)
- Stéphane Mandard
- Centre de Recherche INSERM-UMR866 “Lipides, Nutrition, Cancer” Faculté de Médecine, Université de Bourgogne 7, Boulevard Jeanne d'Arc, 21079 Dijon Cedex, France
| | - David Patsouris
- Laboratoire CarMeN, UMR INSERM U1060/INRA 1235, Université Lyon 1, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921 Oullins, France
- Department of Chemical Physiology, The Scripps Research Institute, MB-24, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
34
|
Yin H, Zhou Y, Zhu M, Hou S, Li Z, Zhong H, Lu J, Meng T, Wang J, Xia L, Xu Y, Wu Y. Role of mitochondria in programmed cell death mediated by arachidonic acid-derived eicosanoids. Mitochondrion 2012; 13:209-24. [PMID: 23063711 DOI: 10.1016/j.mito.2012.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/24/2012] [Accepted: 10/02/2012] [Indexed: 01/28/2023]
Abstract
Arachidonic acid-derived eicosanoids from cyclooxygenases, lipoxygenases, and cytochrome P450 are important lipid mediators involved in numerous homeostatic and pathophysiological processes. Most eicosanoids act primarily on their respective cell surface G-protein coupled receptors to elicit downstream signaling in an autocrine and paracrine fashion. Emerging evidence indicates that these hormones are also critical in apoptosis in a cell/tissue specific manner. In this review, we summarize the formation of eicosanoids and their roles as mediators in apoptosis, specifically on the roles of mitochondria in mediating these events and the signaling pathways involved. The biological relevance of eicosanoid-mediated apoptosis is also discussed.
Collapse
Affiliation(s)
- Huiyong Yin
- Laboratory of Lipid Metabolism in Human Nutrition and Related Diseases, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jung UJ, Torrejon C, Chang CL, Hamai H, Worgall TS, Deckelbaum RJ. Fatty acids regulate endothelial lipase and inflammatory markers in macrophages and in mouse aorta: a role for PPARγ. Arterioscler Thromb Vasc Biol 2012; 32:2929-37. [PMID: 23042820 DOI: 10.1161/atvbaha.112.300188] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Macrophage endothelial lipase (EL) is associated with increased atherosclerosis and inflammation. Because of their anti-inflammatory properties we hypothesized that n-3 fatty acids, in contrast to saturated fatty acids, would lower macrophages and arterial EL and inflammatory markers. METHODS AND RESULTS Murine J774 and peritoneal macrophages were incubated with eicosapentaenoic acid or palmitic acid in the presence or absence of lipopolysaccaride (LPS). LPS increased EL mRNA and protein. Palmitic acid alone or with LPS dose-dependently increased EL mRNA and protein. In contrast, eicosapentaenoic acid dose-dependently abrogated effects of LPS or palmitic acid on increasing EL expression. EL expression closely linked to peroxisome proliferator activated receptor (PPAR)γ expression. Eicosapentaenoic acid blocked rosiglitazone (a PPARγ agonist)-mediated EL activation and GW9662 (a PPARγ antagonist)-blocked palmitic acid-mediated EL stimulation. Eicosapentaenoic acid alone or with LPS blunted LPS-mediated stimulation of macrophage proinflammatory interleukin-6, interleukin-12p40, and toll-like receptor-4 mRNA and increased anti-inflammatory interleukin-10 and mannose receptor mRNA. In vivo studies in low density lipoprotein receptor knockout mice showed that high saturated fat rich diets, but not n-3 diets, increased arterial EL, PPARγ, and proinflammatory cytokine mRNA. CONCLUSIONS n-3 fatty acids, in contrast to saturated fatty acids, decrease EL in parallel with modulating pro- and anti-inflammatory markers, and these effects on EL link to PPARγ.
Collapse
Affiliation(s)
- Un Ju Jung
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
36
|
Emerging PPARγ-Independent Role of PPARγ Ligands in Lung Diseases. PPAR Res 2012; 2012:705352. [PMID: 22778711 PMCID: PMC3385049 DOI: 10.1155/2012/705352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/28/2012] [Accepted: 04/12/2012] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator activated receptor (PPAR)-γ is a nuclear hormone receptor that is activated by multiple agonists including thiazolidinediones, prostaglandins, and synthetic oleanolic acids. Many PPARγ ligands are under investigation as potential therapies for human diseases. These ligands modulate multiple cellular pathways via both PPARγ-dependent and PPARγ-independent mechanisms. Here, we review the role of PPARγ and PPARγ ligands in lung disease, with emphasis on PPARγ-independent effects. PPARγ ligands show great promise in moderating lung inflammation, as antiproliferative agents in combination to enhance standard chemotherapy in lung cancer and as treatments for pulmonary fibrosis, a progressive fatal disease with no effective therapy. Some of these effects occur when PPARγ is pharmaceutically antagonized or genetically PPARγ and are thus independent of classical PPARγ-dependent transcriptional control. Many PPARγ ligands demonstrate direct binding to transcription factors and other proteins, altering their function and contributing to PPARγ-independent inhibition of disease phenotypes. These PPARγ-independent mechanisms are of significant interest because they suggest new therapeutic uses for currently approved drugs and because they can be used as probes to identify novel proteins and pathways involved in the pathogenesis or treatment of disease, which can then be targeted for further investigation and drug development.
Collapse
|
37
|
Liu X, Yu H, Yang L, Li C, Li L. 15-Deoxy-Δ(12,14)-prostaglandin J(2) attenuates the biological activities of monocyte/macrophage cell lines. Eur J Cell Biol 2012; 91:654-61. [PMID: 22560326 DOI: 10.1016/j.ejcb.2012.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 11/24/2022] Open
Abstract
Monocytes/macrophages link the innate and adaptive immune systems, and in inflammatory disorders their activation leads to tissue damage. 15-Deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), a natural peroxisome proliferator-activated receptor gamma (PPARγ) ligand, has garnered much interest because it possesses anti-inflammatory properties in a number of experimental models. However, whether it regulates monocytes/macrophage pathophysiology is still unknown. This study was designed to examine the effects of 15d-PGJ(2) on the phagocytosis, proliferation and inflammatory cytokines generation in mouse monocyte/macrophage cell line RAW264.7 and J774A.1 cells upon lipopolysaccharide challenge. Our results showed that 15d-PGJ(2) inhibited the phagocytic activity and cell proliferation in a dose-dependent manner, and suppressed proinflammatory cytokines expression, such as tumor necrosis factor-α, transforming growth factor-β1, interleukin-6, and monocyte chemotactic protein-1. These effects were independent of PPARγ, because PPARγ agonist (troglitazone or ciglitazone) and PPARγ antagonist (GW9662) did not affect these activities mentioned above in cells. Treatment of 15d-PGJ(2) also did not modulate expression and distribution of PPARγ. However, these effects of 15d-PGJ(2) were abrogated by antioxidant N-acetylcysteine. Moreover, treatment of 15d-PGJ(2) induced a significant increase in reactive oxygen species production in RAW264.7 and J774A.1 cells. In conclusion, 15d-PGJ(2) attenuates the biological activities of mouse monocyte/macrophage cell line cells involving oxidative stress, independently of PPARγ. These data further underline the anti-inflammation potential of 15d-PGJ(2).
Collapse
Affiliation(s)
- Xin Liu
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | | | | | | | | |
Collapse
|
38
|
Zhang Y, Leung DYM, Richers BN, Liu Y, Remigio LK, Riches DW, Goleva E. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:2127-35. [PMID: 22301548 PMCID: PMC3368346 DOI: 10.4049/jimmunol.1102412] [Citation(s) in RCA: 596] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is estimated that 1 billion people around the world are vitamin D deficient. Vitamin D deficiency has been linked to various inflammatory diseases. However, the mechanism by which vitamin D reduces inflammation remains poorly understood. In this study, we investigated the inhibitory effects of physiologic levels of vitamin D on LPS-stimulated inflammatory response in human blood monocytes and explored potential mechanisms of vitamin D action. We observed that two forms of the vitamin D, 1,25(OH)(2)D(3), and 25(OH)D(3), dose dependently inhibited LPS-induced p38 phosphorylation at physiologic concentrations, IL-6 and TNF-α production by human monocytes. Upon vitamin D treatment, the expression of MAPK phosphatase-1 (MKP-1) was significantly upregulated in human monocytes and murine bone marrow-derived macrophages (BMM). Increased binding of the vitamin D receptor and increased histone H4 acetylation at the identified vitamin D response element of the murine and human MKP-1 promoters were demonstrated. Moreover, in BMM from MKP1(-/-) mice, the inhibition of LPS-induced p38 phosphorylation by vitamin D was completely abolished. Vitamin D inhibition of LPS-induced IL-6 and TNF-α production by BMM from MKP-1(-/-) mice was significantly reduced as compared with wild-type mice. In conclusion, this study identified the upregulation of MKP-1 by vitamin D as a novel pathway by which vitamin D inhibits LPS-induced p38 activation and cytokine production in monocytes/macrophages.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
| | - Donald Y. M. Leung
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
- Department of Pediatrics, University of Colorado Denver Health Sciences, 13123 East 16 Avenue, Aurora, CO 80045 USA
| | - Brittany N. Richers
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
| | - Yusen Liu
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, 700 Children’s Drive, Columbus, Ohio 43205
| | - Linda K. Remigio
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
| | - David W. Riches
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
| |
Collapse
|
39
|
Tonk ECM, Verhoef A, Gremmer ER, van Loveren H, Piersma AH. Relative sensitivity of developmental and immune parameters in juvenile versus adult male rats after exposure to di(2-ethylhexyl) phthalate. Toxicol Appl Pharmacol 2012; 260:48-57. [PMID: 22310177 DOI: 10.1016/j.taap.2012.01.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
The developing immune system displays a relatively high sensitivity as compared to both general toxicity parameters and to the adult immune system. In this study we have performed such comparisons using di(2-ethylhexyl) phthalate (DEHP) as a model compound. DEHP is the most abundant phthalate in the environment and perinatal exposure to DEHP has been shown to disrupt male sexual differentiation. In addition, phthalate exposure has been associated with immune dysfunction as evidenced by effects on the expression of allergy. Male wistar rats were dosed with corn oil or DEHP by gavage from postnatal day (PND) 10-50 or PND 50-90 at doses between 1 and 1000 mg/kg/day. Androgen-dependent organ weights showed effects at lower dose levels in juvenile versus adult animals. Immune parameters affected included TDAR parameters in both age groups, NK activity in juvenile animals and TNF-α production by adherent splenocytes in adult animals. Immune parameters were affected at lower dose levels compared to developmental parameters. Overall, more immune parameters were affected in juvenile animals compared to adult animals and effects were observed at lower dose levels. The results of this study show a relatively higher sensitivity of juvenile versus adult rats. Furthermore, they illustrate the relative sensitivity of the developing immune system in juvenile animals as compared to general toxicity and developmental parameters. This study therefore provides further argumentation for performing dedicated developmental immune toxicity testing as a default in regulatory toxicology.
Collapse
Affiliation(s)
- Elisa C M Tonk
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
40
|
Wang HR, Chen DL, Zhao M, Shu SW, Xiong SX, Gan XD, Chao SP, Cao JL. C-reactive protein induces interleukin-6 and thrombospondin-1 protein and mRNA expression through activation of nuclear factor-ĸB in HK-2 cells. Kidney Blood Press Res 2012; 35:211-9. [PMID: 22223149 DOI: 10.1159/000332402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 08/28/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although C-reactive protein (CRP) is significantly increased in patients with diabetic nephropathy, whether CRP exerts direct proinflammatory effects on human renal tubular epithelial cells (HK-2 cells) is still unclear. METHODS HK-2 cells were incubated with purified CRP at clinically relevant concentrations (0, 5, 10, 20 and 40 μg/ml). The protein and transcript levels of thrombospondin-1 (TSP-1) and interleukin-6 (IL-6) were determined by ELISA and RT-PCR. Phosphorylation of p38MAPK was investigated through Western blot analysis in HK-2 cells induced by CRP. The activation of nuclear factor-kappa B (NF-κB) was studied via EMSA. A specific p38MAPK inhibitor (SB203580) and an NF-κB inhibitor (PDTC; pyrrolidine dithiocarbamate) were used to analyze the signal transduction in CRP induction. To explore the direct or indirect role of CRP in HK-2 cells, IL-6 or TSP-1 antibodies were used. The expression of IL-6, TSP-1 and transforming growth factor-β(1 )(TGF-β(1)) were determined through Western blot analysis in HK-2 cells. RESULTS In HK-2 cells, purified CRP significantly induced protein release and mRNA expression of IL-6 and TSP-1 in a dose- and time-dependent manner. TGF-β(1) protein was overexpressed in HK-2 cells induced by CRP, which cannot be inhibited by IL-6 or TSP-1 antibodies. CRP triggered phosphorylation of p38MAPK and activation of NF-κB-mediated signal transduction. SB203580 (5 μM) and PDTC (50 μM) efficiently suppressed those effects of CRP in HK-2 cells. CONCLUSIONS CRP induces IL-6 and TSP-1 protein release and mRNA expression from HK-2 cells via activation of the p38MAPK and NF-κB signaling pathways and TGF-β(1) was highly expressed in HK-2 cells, suggesting that CRP plays an important role in the propagation and prolongation of inflammation in renal fibrosis.
Collapse
Affiliation(s)
- Hai-rong Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Theaflavin attenuates ischemia–reperfusion injury in a mouse fatty liver model. Biochem Biophys Res Commun 2012; 417:287-93. [DOI: 10.1016/j.bbrc.2011.11.102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 11/18/2011] [Indexed: 01/18/2023]
|
42
|
Wang P, Zhu F, Konstantopoulos K. Interleukin-6 synthesis in human chondrocytes is regulated via the antagonistic actions of prostaglandin (PG)E2 and 15-deoxy-Δ(12,14)-PGJ2. PLoS One 2011; 6:e27630. [PMID: 22096605 PMCID: PMC3214064 DOI: 10.1371/journal.pone.0027630] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/20/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Elevated levels of interleukin-6 (IL-6), prostaglandin (PG)E(2), PGD(2) and its dehydration end product 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) have been detected in joint synovial fluids from patients with rheumatoid arthritis (RA). PGE(2) directly stimulates IL-6 production in human articular chondrocytes. However, the effects of PGD(2) and 15d-PGJ(2) in the absence or presence of PGE(2) on IL-6 synthesis in human chondrocytes have yet to be determined. It is believed that dysregulated overproduction of IL-6 is responsible for the systemic inflammatory manifestations and abnormal laboratory findings in RA patients. METHODOLOGY/PRINCIPAL FINDINGS Using the T/C-28a2 chondrocyte cell line as a model system, we report that exogenous PGE(2) and PGD(2)/15d-PGJ(2) exert antagonistic effects on IL-6 synthesis in human T/C-28a2 chondrocytes. Using a synthesis of sophisticated molecular biology techniques, we determined that PGE(2) stimulates Toll-like receptor 4 (TLR4) synthesis, which is in turn responsible for the activation of the ERK1/2, PI3K/Akt and PKA/CREB pathways that phosphorylate the NF-κB p65 subunit leading to NF-κB activation. Binding of the activated NF-κB p65 subunit to IL-6 promoter induces IL-6 synthesis in human T/C28a2 chondrocytes. PGD(2) or 15d-PGJ(2) concurrently downregulates TLR4 and upregulates caveolin-1, which in turn inhibit the PGE(2)-dependent ERK1/2, PI3-K and PKA activation, and ultimately with NF-κB-dependent IL-6 synthesis in chondrocytes. CONCLUSIONS/SIGNIFICANCE We have delineated the signaling cascade by which PGE(2) and PGD(2)/15d-PGJ(2) exert opposing effects on IL-6 synthesis in human chondrocytes. Elucidation of the molecular pathway of IL-6 synthesis and secretion by chondrocytes will provide insights for developing strategies to reduce inflammation and pain in RA patients.
Collapse
Affiliation(s)
- Pu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fei Zhu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences in Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
43
|
Celinski K, Dworzanski T, Korolczuk A, Slomka M, Radej S, Cichoz-Lach H, Madro A. Activated and inactivated PPARs-γ modulate experimentally induced colitis in rats. Med Sci Monit 2011; 17:BR116-24. [PMID: 21455100 PMCID: PMC3539512 DOI: 10.12659/msm.881712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background This study sought to define the mechanism by which PPAR-γ ligands affect the course of experimentally induced colitis in rats. Material/Methods Inflammation was induced in Wistar rats by a single rectal administration of 2,4,6,-trinitrobenzene sulfonic acid (TNBS). The antagonist of PPARγ antagonist, bisphenol A diglycidyl ether (BADGE), was administrated intraperitoneally 120 mg/kg 4 times every other day. Rosiglitazone 8 mg/kg was administrated by gastric tube 4 times. Body weight was measured daily. After killing, the large intestinal tissue was weighed and collected for histopathologic and immunoenzymatic tests. Levels of IL-6, IL-10, and myeloperoxidase (MPO) were determined in serum and in intestinal homogenates. Results Rats receiving rosiglitazone had higher body weight, whereas large intestine weight/length ratio was lower; histology showed fewer inflammatory markers. Rats receiving TNBS and TNBS along with BADGE had more intensive inflammatory changes. Rosiglitazone alone decreased expression of IL-6; used with TNBS it decreased expression of MPO in intestinal tissue, yet did not increase the expression of IL-10. Decreased levels of MPO indicate reduced neutrophil-dependent immune response. The antagonist of PPAR-γ increased IL-6 in serum and decreased IL-10 in intestinal homogenates. Bisphenol A diglycidyl ether administrated to healthy animals increases serum IL-6 levels. Conclusions Rosiglitazone inhibits experimental inflammation; administration of its selective antagonist abolishes this protective influence. Rosiglitazone inhibits expression of proinflammatory IL-6 and does not affect IL-10. Agonists of PPARs-γ are possibilities for inflammatory bowel disease prevention. Exogenous substances blocking PPARs-γ may contribute to development or relapse of nonspecific inflammatory bowel diseases.
Collapse
Affiliation(s)
- Krzysztof Celinski
- Department of Gastroenterology, Medical University of Lublin, Lublin, Poland.
| | | | | | | | | | | | | |
Collapse
|
44
|
HOLLER JULIA, ZAKRZEWICZ ANNA, GARN HOLGER, HIRSCHBURGER MARKUS, KUMMER WOLFGANG, PADBERG WINFRIED, GRAU VERONIKA. Increased expression of epidermal fatty acid-binding protein by alveolar macrophages during acute rejection of rat lungs. APMIS 2010; 118:791-800. [DOI: 10.1111/j.1600-0463.2010.02662.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Cheng HT, Dauch JR, Oh SS, Hayes JM, Hong Y, Feldman EL. p38 mediates mechanical allodynia in a mouse model of type 2 diabetes. Mol Pain 2010; 6:28. [PMID: 20482876 PMCID: PMC2881061 DOI: 10.1186/1744-8069-6-28] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 05/19/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Painful Diabetic Neuropathy (PDN) affects more than 25% of patients with type 2 diabetes; however, the pathogenesis remains unclear due to lack of knowledge of the molecular mechanisms leading to PDN. In our current study, we use an animal model of type 2 diabetes in order to understand the roles of p38 in PDN. Previously, we have demonstrated that the C57BLK db/db (db/db) mouse, a model of type 2 diabetes that carries the loss-of-function leptin receptor mutant, develops mechanical allodynia in the hind paws during the early stage (6-12 wk of age) of diabetes. Using this timeline of PDN, we can investigate the signaling mechanisms underlying mechanical allodynia in the db/db mouse. RESULTS We studied the role of p38 in lumbar dorsal root ganglia (LDRG) during the development of mechanical allodynia in db/db mice. p38 phosphorylation was detected by immunoblots at the early stage of mechanical allodynia in LDRG of diabetic mice. Phosphorylated p38 (pp38) immunoreactivity was detected mostly in the small- to medium-sized LDRG neurons during the time period of mechanical allodynia. Treatment with an antibody against nerve growth factor (NGF) significantly inhibited p38 phosphorylation in LDRG of diabetic mice. In addition, we detected higher levels of inflammatory mediators, including cyclooxygenase (COX) 2, inducible nitric oxide synthases (iNOS), and tumor necrosis factor (TNF)-alpha in LDRG neurons of db/db mice compared to non-diabetic db+ mice. Intrathecal delivery of SB203580, a p38 inhibitor, significantly inhibited the development of mechanical allodynia and the upregulation of COX2, iNOS and TNF-alpha. CONCLUSIONS Our findings suggest that NGF activated-p38 phosphorylation mediates mechanical allodynia in the db/db mouse by upregulation of multiple inflammatory mediators in LDRG.
Collapse
Affiliation(s)
- Hsinlin T Cheng
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Meng X, Tancharoen S, Kawahara KI, Nawa Y, Taniguchi S, Hashiguchi T, Maruyama I. 1,5-Anhydroglucitol attenuates cytokine release and protects mice with type 2 diabetes from inflammatory reactions. Int J Immunopathol Pharmacol 2010; 23:105-19. [PMID: 20377999 DOI: 10.1177/039463201002300110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1,5-anhydroglucitol (1,5-AG) decreases in diabetic patients and is used as a marker of glycemic control. Type 2 diabetic patients are susceptibile to lipopolysaccharides (LPS), which stimulate macrophages to release large quantities of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6. This study examines the effects of 1,5-AG on lung inflammation induced by LPS and consequent systemic inflammation to determine whether the decrease of 1,5-AG concentration induces susceptibility to LPS. Before the challenge with LPS (1 mg/kg in vivo and 500 ng/ml in vitro), we pretreated db/db mice and RAW264.7 cells with 1,5-AG at 38.5 mg/kg and 500 microg/ml, respectively. The levels of IL-6, TNF-alpha, macrophage chemoattractant protein (MCP)-1 and IL-1beta in the serum and in the cell supernatants were measured. We also measured macrophage recruitment and the expression of inducible nitric oxide synthase (iNOS) in pulmonary tissues. We found that 1,5-AG attenuated serum cytokine release and protected db/db mice from LPS-induced pulmonary inflammation. In addition, 1,5-AG suppressed cytokine release and iNOS expression by suppressing Akt/NF-kB activity in RAW264.7 cells. These results suggest that 1,5-AG may be a mediator in, as well as marker for diabetes, and 1,5-AG intake may confer tolerance to LPS in patients with type 2 diabetes.
Collapse
Affiliation(s)
- X Meng
- Department of Laboratory and Vascular Medicine Cardiovascular and Respiratory Disorders Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Liu Y, Shi J, Lu J, Meng G, Zhu H, Hou Y, Yin Y, Zhao S, Ding B. Activation of peroxisome proliferator-activated receptor-gamma potentiates pro-inflammatory cytokine production, and adrenal and somatotropic changes of weaned pigs after Escherichia coli lipopolysaccharide challenge. Innate Immun 2009; 15:169-78. [PMID: 19474210 DOI: 10.1177/1753425908102014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our previous study demonstrated mRNA and protein expression of peroxisome proliferator-activated receptor-g (PPAR-g) in the immune system of weaned pigs. In this report, to test the hypothesis that activation of PPAR-g in immune system modulates inflammatory response, and adrenal and somatotropic responses associated with immune challenge, we administered intraperitoneally PPAR-g agonist and/or antagonist in weaned pigs subjected to Escherichia coli lipopolysaccharide (LPS) challenge. Unexpectedly, we found that a single injection of the PPAR-g agonist rosiglitazone (given at 3 mg/kg body weight 30 min before LPS injection) failed to block pro-inflammatory cytokine production induced by LPS injection. Rather, plasma levels of tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6), mRNA abundance of TNF-a in thymus, spleen, mesenteric lymph node and peripheral white blood cells, mRNA abundance of IL-6 in thymus, protein levels of TNF-a in spleen and mesenteric lymph node, and protein levels of IL-6 in spleen and mesenteric lymph node, were elevated beyond the levels in control pigs injected with LPS. Furthermore, rosiglitazone potentiated the increase of plasma cortisol and prostaglandin E(2) concentrations, and the decrease of plasma insulin-like growth factor-1 concentration induced by LPS injection. Co-administration of the PPAR-g antagonist bisphenol A diglycidyl ether (given 30 mg/kg body weight) 30 min prior to treatment with rosiglitazone antagonized the effect of the PPAR-g agonist, indicating a PPAR-g-dependent effect. Our data indicate that ligand-induced activation of PPAR-g does not ameliorate but enhances pro-inflammatory cytokine production, and further potentiates the adrenal and somatotropic changes in weaned pigs subjected to E. coli LPS challenge, which suggests that PPAR-g activation may not be useful, but potentially harmful, in the treatment of immune challenge in livestock. Our results raise doubts about the prevalently accepted anti-inflammatory role for PPAR-g activation.
Collapse
Affiliation(s)
- Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Song SH, Kwak IS, Yang BY, Lee DW, Lee SB, Lee MY. Role of rosiglitazone in lipopolysaccharide-induced peritonitis: a rat peritoneal dialysis model. Nephrology (Carlton) 2009; 14:155-63. [PMID: 19207869 DOI: 10.1111/j.1440-1797.2008.01037.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to demonstrate the efficacy of the peroxisome proliferator-activated receptor (PPAR)-gamma agonist, rosiglitazone, in the amelioration or prevention of inflammation including peritoneal fibrosis secondary to the peritonitis in a peritoneal dialysis (PD) model of non-uraemic rats. METHODS Thirty male Sprague-Dawley rats were assigned to six groups according to treatment. A 90 min peritoneal equilibrium test, dialysate cellular components, peritoneal thickness and cellularity were assessed on day 21. Additionally, immunohistochemical stains of peritoneal membrane, such as PPAR-gamma, vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-beta1, collagen-1 and monocyte chemoattractant protein-1 were performed. RESULTS The dialysate neutrophil count and peritoneal thickness in the high-dose rosiglitazone group was significantly decreased compared to the lipopolysaccharide (LPS)-only group. The peritoneal membrane from the LPS-only group showed marked cellular proliferation in the area of the submesothelial compact zone compared with the PD-only group, the rosiglitazone-only group, and the high-dose rosiglitazone group. The 90 min peritoneal equilibrium test (PET) results showed no statistical difference among the six groups excluding dialysate-to-plasma urea ratio. The number of PPAR-gamma expressing cells and the expression of TGF-beta1 were decreased in the high-dose rosiglitazone group compared to the LPS-only group. There were no differences in the expression of VEGF and collagen-1 among the six groups. Interestingly, the number of PPAR-gamma-positive cells was correlated with expression of VEGF, TGF-beta1, collagen-1 and monocyte chemoattractant protein-1 irrespective of the study group. CONCLUSION The results of this study showed that rosiglitazone ameliorated peritoneal inflammation induced by LPS and reduced the TGF-beta1 expression in the peritoneal membranes.
Collapse
Affiliation(s)
- Sang Heon Song
- Department of Internal Medicine, Pusan National University Hospital, Ami-dong, Seo-gu, Busan, Korea.
| | | | | | | | | | | |
Collapse
|
49
|
Jung WK, Park IS, Park SJ, Yea SS, Choi YH, Oh S, Park SG, Choi IW. The 15-deoxy-Delta12,14-prostaglandin J2 inhibits LPS-stimulated AKT and NF-kappaB activation and suppresses interleukin-6 in osteoblast-like cells MC3T3E-1. Life Sci 2009; 85:46-53. [PMID: 19409914 DOI: 10.1016/j.lfs.2009.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/03/2009] [Accepted: 04/21/2009] [Indexed: 12/29/2022]
Abstract
AIMS Periodontitis is a chronic inflammatory disease that results in gingival inflammation and periodontal tissue destruction and is accompanied by alveolar bone resorption and eventual tooth loss. We examined the effect of 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) on periodontitis by inhibiting the production of interleukin-6 (IL-6). MAIN METHODS Osteoblast-like cells MC3T3E-1 were pretreated with 15d-PGJ(2) before being incubated with lipopolysaccharide (LPS), the effect of 15d-PGJ(2) on IL-6 production, expression and its regulatory mechanisms were studied by reverse transcription-polymerase chain reaction (RT-PCR), Western blot, electrophoretic mobility shift assay (EMSA), and confocal laser scanning microscopy study. KEY FINDINGS 15d-PGJ(2) inhibits LPS-stimulated IL-6 production in a concentration-dependent manner in osteoblast-like cells MC3T3E-1, without appreciable cytotoxicity. To further examine the mechanism responsible for the inhibition of IL-6 production by 15d-PGJ(2), we examined the effect of 15d-PGJ(2) on nuclear factor-kappaB (NF-kappaB) activation and the phosphorylation of protein kinase B (Akt). 15d-PGJ(2) treatment clearly reduced the DNA binding activity of NF-kappaB in LPS-stimulated osteoblast-like cells MC3T3E-1, an effect that was mediated by inhibiting the degradation of inhibitor kappaB (IkappaB) and nuclear translocation of NF-kappaB p65 subunit. In addition, 15d-PGJ(2) attenuated the LPS-mediated Akt pathway. These effects of 15d-PGJ(2) were not abrogated by the PPARgamma antagonist, GW9662, indicating that they are PPARgamma-independent actions. SIGNIFICANCE These results suggest that 15d-PGJ(2) possess a potent suppressive effect on inflammatory responses of osteoblast-like cells MC3T3E-1 via the Akt and NF-kappaB pathways independent of PPARgamma and suggest that this compound may offer some insight into the development of a new therapeutic approach to the prevention and treatment of periodontal diseases.
Collapse
Affiliation(s)
- Won-Kyo Jung
- Department of Marine Life Science, Chosun University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Dallaire P, Bellmann K, Laplante M, Gélinas S, Centeno-Baez C, Penfornis P, Peyot ML, Latour MG, Lamontagne J, Trujillo ME, Scherer PE, Prentki M, Deshaies Y, Marette A. Obese mice lacking inducible nitric oxide synthase are sensitized to the metabolic actions of peroxisome proliferator-activated receptor-gamma agonism. Diabetes 2008; 57:1999-2011. [PMID: 18458147 PMCID: PMC2494686 DOI: 10.2337/db08-0540] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Synthetic ligands for peroxisome proliferator-activated receptor-gamma (PPAR-gamma) improve insulin sensitivity in obesity, but it is still unclear whether inflammatory signals modulate their metabolic actions. In this study, we tested whether targeted disruption of inducible nitric oxide (NO) synthase (iNOS), a key inflammatory mediator in obesity, modulates the metabolic effects of rosiglitazone in obese mice. RESEARCH DESIGN AND METHODS iNOS(-/-) and iNOS(+/+) were subjected to a high-fat diet or standard diet for 18 weeks and were then treated with rosiglitazone for 2 weeks. Whole-body insulin sensitivity and glucose tolerance were determined and metabolic tissues harvested to assess activation of insulin and AMP-activated protein kinase (AMPK) signaling pathways and the levels of inflammatory mediators. RESULTS Rosiglitazone was found to similarly improve whole-body insulin sensitivity and insulin signaling to Akt/PKB in skeletal muscle of obese iNOS(-/-) and obese iNOS(+/+) mice. However, rosiglitazone further improved glucose tolerance and liver insulin signaling only in obese mice lacking iNOS. This genotype-specific effect of rosiglitazone on glucose tolerance was linked to a markedly increased ability of the drug to raise plasma adiponectin levels. Accordingly, rosiglitazone increased AMPK activation in muscle and liver only in obese iNOS(-/-) mice. PPAR-gamma transcriptional activity was increased in adipose tissue of iNOS(-/-) mice. Conversely, treatment of 3T3-L1 adipocytes with a NO donor blunted PPAR-gamma activity. CONCLUSIONS Our results identify the iNOS/NO pathway as a critical modulator of PPAR-gamma activation and circulating adiponectin levels and show that invalidation of this key inflammatory mediator improves the efficacy of PPAR-gamma agonism in an animal model of obesity and insulin resistance.
Collapse
Affiliation(s)
- Patrice Dallaire
- Department of Anatomy and Physiology, Laval University, Québec, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|