1
|
Li P, Xiao J, Zhou B, Wei J, Luo J, Chen W. SYNE1 mutation may enhance the response to immune checkpoint blockade therapy in clear cell renal cell carcinoma patients. Aging (Albany NY) 2020; 12:19316-19324. [PMID: 33031058 PMCID: PMC7732295 DOI: 10.18632/aging.103781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/14/2020] [Indexed: 01/24/2023]
Abstract
As one of the 10 most common cancers in men, the incidence of renal cell carcinoma (RCC) has been increasing in recent years. Clear cell renal cell carcinoma (ccRCC) is the most common pathological type of RCC, counting for 80%-90% of cases. Immunotherapy is becoming increasingly important in the treatment of advanced RCC. Tumor mutation burden (TMB) is a potent marker for predicting the response to immune checkpoint blockade (ICB) treatment. Here, we analyzed somatic mutation data for ccRCC from The Cancer Genome Atlas datasets. We found that the frequently mutated gene SYNE1 is associated with higher TMBs and with a poor clinical prognosis. To further investigate the relationship between SYNE1 mutation and the immune system, we used Gene Set Enrichment Analysis and the CIBERSORT algorithm. They showed that SYNE1 mutations correlate with immune system pathways and immune cell tumor infiltration. We also found that SYNE1 mutation correlated with a better response to ICB therapy. Thus, mutation of SYNE1 correlates with a higher TMB and a poorer outcome in ccRCC, but may mediate better responses to ICB therapy.
Collapse
Affiliation(s)
- Pengju Li
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, P. R. China
| | - Jeifei Xiao
- Department of Extracorporeal Circulation, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, P. R. China
| | - Bangfen Zhou
- Department of Urology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R.China
| | - Jinhuan Wei
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, P. R. China
| | - Junhang Luo
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, P. R. China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, P. R. China
| |
Collapse
|
2
|
Wilson EA, Anderson KS. Lost in the crowd: identifying targetable MHC class I neoepitopes for cancer immunotherapy. Expert Rev Proteomics 2018; 15:1065-1077. [PMID: 30408427 DOI: 10.1080/14789450.2018.1545578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The recent development of checkpoint blockade immunotherapy for cancer has led to impressive clinical results across multiple tumor types. There is mounting evidence that immune recognition of tumor derived MHC class I (MHC-I) restricted epitopes bearing cancer specific mutations and alterations is a crucial mechanism in successfully triggering immune-mediated tumor rejection. Therapeutic targeting of these cancer specific epitopes (neoepitopes) is emerging as a promising opportunity for the generation of personalized cancer vaccines and adoptive T cell therapies. However, one major obstacle limiting the broader application of neoepitope based therapies is the difficulty of selecting highly immunogenic neoepitopes among the wide array of presented non-immunogenic HLA ligands derived from self-proteins. Areas covered: In this review, we present an overview of the MHC-I processing and presentation pathway, as well as highlight key areas that contribute to the complexity of the associated MHC-I peptidome. We cover recent technological advances that simplify and optimize the identification of targetable neoepitopes for cancer immunotherapeutic applications. Expert commentary: Recent advances in computational modeling, bioinformatics, and mass spectrometry are unlocking the underlying mechanisms governing antigen processing and presentation of tumor-derived neoepitopes.
Collapse
Affiliation(s)
- Eric A Wilson
- a Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA
| | - Karen S Anderson
- a Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA.,b Department of Medical Oncology , Mayo Clinic Arizona , Scottsdale , AZ , USA
| |
Collapse
|
3
|
Korenkov D, Nguyen THO, Isakova-Sivak I, Smolonogina T, Brown LE, Kedzierska K, Rudenko L. Live Attenuated Influenza Vaccines engineered to express the nucleoprotein of a recent isolate stimulate human influenza CD8 + T cells more relevant to current infections. Hum Vaccin Immunother 2018; 14:941-946. [PMID: 29252117 DOI: 10.1080/21645515.2017.1417713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Live attenuated influenza vaccines (LAIV) induce CD8+ T lymphocyte responses that play an important role in killing virus-infected cells. Despite the relative conservation of internal influenza A proteins, the epitopes recognized by T cells can undergo drift under immune pressure. The internal proteins of Russian LAIVs are derived from the master donor virus A/Leningrad/134/17/57 (Len/17) isolated 60 years ago and as such, some CD8+ T cell epitopes may vary between the vaccine and circulating wild-type strains. To partially overcome this issue, the nucleoprotein (NP) gene of wild-type virus can be incorporated into LAIV reassortant virus, along with the HA and NA genes. The present study compares the human CD8+ T cell memory responses to H3N2 LAIVs with the Len/17 or the wild-type NP using an in vitro model.
Collapse
Affiliation(s)
- D Korenkov
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia.,b Department of Microbiology & Immunology , University of Melbourne, at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - T H O Nguyen
- b Department of Microbiology & Immunology , University of Melbourne, at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - I Isakova-Sivak
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| | - T Smolonogina
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| | - L E Brown
- b Department of Microbiology & Immunology , University of Melbourne, at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - K Kedzierska
- b Department of Microbiology & Immunology , University of Melbourne, at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - L Rudenko
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| |
Collapse
|
4
|
Strategies to enhance immunogenicity of cDNA vaccine encoded antigens by modulation of antigen processing. Vaccine 2016; 34:5132-5140. [PMID: 27593157 DOI: 10.1016/j.vaccine.2016.08.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/21/2016] [Accepted: 08/12/2016] [Indexed: 11/20/2022]
Abstract
Most vaccines are based on protective humoral responses while for intracellular pathogens CD8(+) T cells are regularly needed to provide protection. However, poor processing efficiency of antigens is often a limiting factor in CD8(+) T cell priming, hampering vaccine efficacy. The multistage cDNA vaccine H56, encoding three secreted Mycobacterium tuberculosis antigens, was used to test a complete strategy to enhance vaccine' immunogenicity. Potential CD8(+) T cell epitopes in H56 were predicted using the NetMHC3.4/ANN program. Mice were immunized with H56 cDNA using dermal DNA tattoo immunization and epitope candidates were tested for recognition by responding CD8(+) T cells in ex vivo assays. Seven novel CD8(+) T cell epitopes were identified. H56 immunogenicity could be substantially enhanced by two strategies: (i) fusion of the H56 sequence to cDNA of proteins that modify intracellular antigen processing or provide CD4(+) T cell help, (ii) by substitution of the epitope's hydrophobic C-terminal flanking residues for polar glutamic acid, which facilitated their proteasome-mediated generation. We conclude that this whole strategy of in silico prediction of potential CD8(+) T cell epitopes in novel antigens, followed by fusion to sequences with immunogenicity-enhancing properties or modification of epitope flanking sequences to improve proteasome-mediated processing, may be exploited to design novel vaccines against emerging or 'hard to treat' intracellular pathogens.
Collapse
|
5
|
Optimizing T-cell receptor gene therapy for hematologic malignancies. Blood 2016; 127:3305-11. [PMID: 27207802 DOI: 10.1182/blood-2015-11-629071] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/27/2016] [Indexed: 01/26/2023] Open
Abstract
Recent advances in genetic engineering have enabled the delivery of clinical trials using patient T cells redirected to recognize tumor-associated antigens. The most dramatic results have been seen with T cells engineered to express a chimeric antigen receptor (CAR) specific for CD19, a differentiation antigen expressed in B cells and B lineage malignancies. We propose that antigen expression in nonmalignant cells may contribute to the efficacy of T-cell therapy by maintaining effector function and promoting memory. Although CAR recognition is limited to cell surface structures, T-cell receptors (TCRs) can recognize intracellular proteins. This not only expands the range of tumor-associated self-antigens that are amenable for T-cell therapy, but also allows TCR targeting of the cancer mutagenome. We will highlight biological bottlenecks that potentially limit mutation-specific T-cell therapy and may require high-avidity TCRs that are capable of activating effector function when the concentrations of mutant peptides are low. Unexpectedly, modified TCRs with artificially high affinities function poorly in response to low concentration of cognate peptide but pose an increased safety risk as they may respond optimally to cross-reactive peptides. Recent gene-editing tools, such as transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats, provide a platform to delete endogenous TCR and HLA genes, which removes alloreactivity and decreases immunogenicity of third-party T cells. This represents an important step toward generic off-the-shelf T-cell products that may be used in the future for the treatment of large numbers of patients.
Collapse
|
6
|
Platteel ACM, Mishto M, Textoris-Taube K, Keller C, Liepe J, Busch DH, Kloetzel PM, Sijts AJAM. CD8(+) T cells of Listeria monocytogenes-infected mice recognize both linear and spliced proteasome products. Eur J Immunol 2016; 46:1109-18. [PMID: 26909514 DOI: 10.1002/eji.201545989] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/25/2016] [Accepted: 02/17/2016] [Indexed: 02/05/2023]
Abstract
CD8(+) T cells responding to infection recognize pathogen-derived epitopes presented by MHC class-I molecules. While most of such epitopes are generated by proteasome-mediated antigen cleavage, analysis of tumor antigen processing has revealed that epitopes may also derive from proteasome-catalyzed peptide splicing (PCPS). To determine whether PCPS contributes to epitope processing during infection, we analyzed the fragments produced by purified proteasomes from a Listeria monocytogenes polypeptide. Mass spectrometry identified a known H-2K(b) -presented linear epitope (LLO296-304 ) in the digests, as well as four spliced peptides that were trimmed by ERAP into peptides with in silico predicted H-2K(b) binding affinity. These spliced peptides, which displayed sequence similarity with LLO296-304 , bound to H-2K(b) molecules in cellular assays and one of the peptides was recognized by CD8(+) T cells of infected mice. This spliced epitope differed by one amino acid from LLO296-304 and double staining with LLO296-304 - and spliced peptide-folded MHC multimers showed that LLO296-304 and its spliced variant were recognized by the same CD8(+) T cells. Thus, PCPS multiplies the variety of peptides that is processed from an antigen and leads to the production of epitope variants that can be recognized by cross-reacting pathogen-specific CD8(+) T cells. Such mechanism may reduce the chances for pathogen immune evasion.
Collapse
Affiliation(s)
- Anouk C M Platteel
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Michele Mishto
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Interdepartmental Centre "Luigi Galvani" for Bioinformatics, Biophysics and Biocomplexity (CIG), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Christin Keller
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Juliane Liepe
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, UK
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, TU Munich, Munich, Germany
| | - Peter M Kloetzel
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alice J A M Sijts
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Textoris-Taube K, Keller C, Liepe J, Henklein P, Sidney J, Sette A, Kloetzel PM, Mishto M. The T210M Substitution in the HLA-a*02:01 gp100 Epitope Strongly Affects Overall Proteasomal Cleavage Site Usage and Antigen Processing. J Biol Chem 2015; 290:30417-28. [PMID: 26507656 DOI: 10.1074/jbc.m115.695189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 01/01/2023] Open
Abstract
MHC class I-restricted epitopes, which carry a tumor-specific mutation resulting in improved MHC binding affinity, are preferred T cell receptor targets in innovative adoptive T cell therapies. However, T cell therapy requires efficient generation of the selected epitope. How such mutations may affect proteasome-mediated antigen processing has so far not been studied. Therefore, we analyzed by in vitro experiments the effect on antigen processing and recognition of a T210M exchange, which previously had been introduced into the melanoma gp100209-217 tumor epitope to improve the HLA-A*02:01 binding and its immunogenicity. A quantitative analysis of the main steps of antigen processing shows that the T210M exchange affects proteasomal cleavage site usage within the mutgp100201-230 polypeptide, leading to the generation of an unique set of cleavage products. The T210M substitution qualitatively affects the proteasome-catalyzed generation of spliced and non-spliced peptides predicted to bind HLA-A or -B complexes. The T210M substitution also induces an enhanced production of the mutgp100209-217 epitope and its N-terminally extended peptides. The T210M exchange revealed no effect on ERAP1-mediated N-terminal trimming of the precursor peptides. However, mutant N-terminally extended peptides exhibited significantly increased HLA-A*02:01 binding affinity and elicited CD8(+) T cell stimulation in vitro similar to the wtgp100209-217 epitope. Thus, our experiments demonstrate that amino acid exchanges within an epitope can result in the generation of an altered peptide pool with new antigenic peptides and in a wider CD8(+) T cell response also towards N-terminally extended versions of the minimal epitope.
Collapse
Affiliation(s)
- Kathrin Textoris-Taube
- From the Institut für Biochemie, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christin Keller
- From the Institut für Biochemie, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Juliane Liepe
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, SW7 2AZ, United Kingdom, and
| | - Petra Henklein
- From the Institut für Biochemie, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | - Peter M Kloetzel
- From the Institut für Biochemie, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany,
| | - Michele Mishto
- From the Institut für Biochemie, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany,
| |
Collapse
|
8
|
Mechanisms of HIV protein degradation into epitopes: implications for vaccine design. Viruses 2014; 6:3271-92. [PMID: 25196483 PMCID: PMC4147695 DOI: 10.3390/v6083271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 12/02/2022] Open
Abstract
The degradation of HIV-derived proteins into epitopes displayed by MHC-I or MHC-II are the first events leading to the priming of HIV-specific immune responses and to the recognition of infected cells. Despite a wealth of information about peptidases involved in protein degradation, our knowledge of epitope presentation during HIV infection remains limited. Here we review current data on HIV protein degradation linking epitope production and immunodominance, viral evolution and impaired epitope presentation. We propose that an in-depth understanding of HIV antigen processing and presentation in relevant primary cells could be exploited to identify signatures leading to efficient or inefficient epitope presentation in HIV proteomes, and to improve the design of immunogens eliciting immune responses efficiently recognizing all infected cells.
Collapse
|
9
|
Lu YF, Sheng H, Zhang Y, Li ZY. Computational prediction of cleavage using proteasomal in vitro digestion and MHC I ligand data. J Zhejiang Univ Sci B 2014; 14:816-28. [PMID: 24009202 DOI: 10.1631/jzus.b1200299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteasomes are responsible for the production of the majority of cytotoxic T lymphocyte (CTL) epitopes. Hence, it is important to identify correctly which peptides will be generated by proteasomes from an unknown protein. However, the pool of proteasome cleavage data used in the prediction algorithms, whether from major histocompatibility complex (MHC) I ligand or in vitro digestion data, is not identical to in vivo proteasomal digestion products. Therefore, the accuracy and reliability of these models still need to be improved. In this paper, three types of proteasomal cleavage data, constitutive proteasome (cCP), immunoproteasome (iCP) in vitro cleavage, and MHC I ligand data, were used for training cleave-site predictive methods based on the kernel-function stabilized matrix method (KSMM). The predictive accuracies of the KSMM+pair coefficients were 75.0%, 72.3%, and 83.1% for cCP, iCP, and MHC I ligand data, respectively, which were comparable to the results from support vector machine (SVM). The three proteasomal cleavage methods were combined in turn with MHC I-peptide binding predictions to model MHC I-peptide processing and the presentation pathway. These integrations markedly improved MHC I peptide identification, increasing area under the receiver operator characteristics (ROC) curve (AUC) values from 0.82 to 0.91. The results suggested that both MHC I ligand and proteasomal in vitro degradation data can give an exact simulation of in vivo processed digestion. The information extracted from cCP and iCP in vitro cleavage data demonstrated that both cCP and iCP are selective in their usage of peptide bonds for cleavage.
Collapse
Affiliation(s)
- Yu-feng Lu
- School of Mathematical Sciences, Dalian University of Technology, Dalian 116023, China; College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China; School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | | | | | | |
Collapse
|
10
|
Lindenstrøm T, Aagaard C, Christensen D, Agger EM, Andersen P. High-frequency vaccine-induced CD8⁺ T cells specific for an epitope naturally processed during infection with Mycobacterium tuberculosis do not confer protection. Eur J Immunol 2014; 44:1699-709. [PMID: 24677089 DOI: 10.1002/eji.201344358] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 12/26/2022]
Abstract
Relatively few MHC class I epitopes have been identified from Mycobacterium tuberculosis, but during the late stage of infection, CD8(+) T-cell responses to these epitopes are often primed at an extraordinary high frequency. Although clearly available for recognition during infection, their role in resistance to mycobacterial infections still remain unclear. As an alternative to DNA and viral vaccination platforms, we have exploited a novel CD8(+) T-cell-inducing adjuvant, cationic adjuvant formulation 05 (dimethyldioctadecylammonium/trehalose dibehenate/poly (inositic:cytidylic) acid), to prime high-frequency CD8 responses to the immunodominant H2-K(b) -restricted IMYNYPAM epitope contained in the vaccine Ag tuberculosis (TB)10.4/Rv0288/ESX-H (where ESX is mycobacterial type VII secretion system). We report that the amino acid C-terminal to this minimal epitope plays a decisive role in proteasomal cleavage and epitope priming. The primary structure of TB10.4 is suboptimal for proteasomal processing of the epitope and amino acid substitutions in the flanking region markedly increased epitope-specific CD8(+) T-cell responses. One of the optimized sequences was contained in the closely related TB10.3/Rv3019c/ESX-R Ag and when recombinantly expressed and administered in the cationic adjuvant formulation 05 adjuvant, this Ag promoted very high CD8(+) T-cell responses. This abundant T-cell response was functionally active but provided no protection against challenge, suggesting that CD8(+) T cells play a limited role in protection against M. tuberculosis in the mouse model.
Collapse
Affiliation(s)
- Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| | | | | | | | | |
Collapse
|
11
|
Unger WW, Velthuis J, Abreu JRF, Laban S, Quinten E, Kester MGD, Reker-Hadrup S, Bakker AH, Duinkerken G, Mulder A, Franken KLMC, Hilbrands R, Keymeulen B, Peakman M, Ossendorp F, Drijfhout JW, Schumacher TN, Roep BO. Discovery of low-affinity preproinsulin epitopes and detection of autoreactive CD8 T-cells using combinatorial MHC multimers. J Autoimmun 2011; 37:151-9. [PMID: 21636247 DOI: 10.1016/j.jaut.2011.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/04/2011] [Accepted: 05/09/2011] [Indexed: 11/27/2022]
Abstract
Autoreactive cytotoxic CD8 T-cells (CTLs) play a key pathogenic role in the destruction of insulin-producing beta-cells resulting in type 1 diabetes. However, knowledge regarding their targets is limited, restricting the ability to monitor the course of the disease and immune interventions. In a multi-step discovery process to identify novel CTL epitopes in human preproinsulin (PPI), PPI was digested with purified human proteasomes, and resulting COOH-fragments aligned with algorithm-predicted HLA-binding peptides to yield nine potential HLA-A1, -A2, -A3 or -B7-restricted candidates. An UV-exchange method allowed the generation of a repertoire of multimers including low-affinity HLA-binding peptides. These were labeled with quantum dot-fluorochromes and encoded in a combinatorial fashion, allowing parallel and sensitive detection of specific, low-avidity T-cells. Significantly increased frequencies of T-cells against four novel PPI epitopes (PPI(4-13)/B7, PPI(29-38)/A2, PPI(76-84)/A3 and PPI(79-88)/A3) were detected in stored blood of patients with recent onset diabetes but not in controls. Changes in frequencies of circulating CD8 T-cells against these novel epitopes were detected in blood of islet graft recipients at different time points after transplantation, which correlated with clinical outcome. In conclusion, our novel strategy involving a sensitive multiplex detection technology and requiring minimal volumes of stored blood represents a major improvement in the direct ex-vivo characterization and enumeration of immune cells in the pathogenesis of type 1 diabetes.
Collapse
Affiliation(s)
- Wendy W Unger
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ndhlovu ZM, Piechocka-Trocha A, Vine S, McMullen A, Koofhethile KC, Goulder PJR, Ndung'u T, Barouch DH, Walker BD. Mosaic HIV-1 Gag antigens can be processed and presented to human HIV-specific CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:6914-24. [PMID: 21576505 DOI: 10.4049/jimmunol.1004231] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyvalent mosaic HIV immunogens offer a potential solution for generating vaccines that can elicit immune responses against genetically diverse viruses. However, it is unclear whether key T cell epitopes can be processed and presented from these synthetic Ags and recognized by epitope-specific human T cells. In this study, we tested the ability of mosaic HIV immunogens expressed by recombinant, replication-incompetent adenovirus serotype 26 vectors to process and present major HIV clade B and clade C CD8 T cell epitopes in human cells. A bivalent mosaic vaccine expressing HIV Gag sequences was used to transduce PBMCs from 12 HIV-1-infected individuals from the United States and 10 HIV-1-infected individuals from South Africa; intracellular cytokine staining, together with tetramer staining, was used to assess the ability of mosaic Gag Ags to stimulate pre-existing memory responses compared with natural clade B and C vectors. Mosaic Gag Ags expressed all eight clade B epitopes tested in 12 United States subjects and all 5 clade C epitopes tested in 10 South African subjects. Overall, the magnitude of cytokine production induced by stimulation with mosaic Ags was comparable to clade B and clade C Ags tested, but the mosaic Ags elicited greater cross-clade recognition. Additionally, mosaic Ags induced HIV-specific CD4 T cell responses. Our studies demonstrate that mosaic Ags express major clade B and clade C viral T cell epitopes in human cells, as well as support the evaluation of mosaic HIV-1 vaccines in humans.
Collapse
Affiliation(s)
- Zaza M Ndhlovu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell Mol Life Sci 2011; 68:1491-502. [PMID: 21387144 PMCID: PMC3071949 DOI: 10.1007/s00018-011-0657-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 02/07/2023]
Abstract
The ubiquitin–proteasome system (UPS) degrades intracellular proteins into peptide fragments that can be presented by major histocompatibility complex (MHC) class I molecules. While the UPS is functional in all mammalian cells, its subunit composition differs depending on cell type and stimuli received. Thus, cells of the hematopoietic lineage and cells exposed to (pro)inflammatory cytokines express three proteasome immunosubunits, which form the catalytic centers of immunoproteasomes, and the proteasome activator PA28. Cortical thymic epithelial cells express a thymus-specific proteasome subunit that induces the assembly of thymoproteasomes. We here review new developments regarding the role of these different proteasome components in MHC class I antigen processing, T cell repertoire selection and CD8 T cell responses. We further discuss recently discovered functions of proteasomes in peptide splicing, lymphocyte survival and the regulation of cytokine production and inflammatory responses.
Collapse
|
14
|
Diez-Rivero CM, Chenlo B, Zuluaga P, Reche PA. Quantitative modeling of peptide binding to TAP using support vector machine. Proteins 2010; 78:63-72. [PMID: 19705485 DOI: 10.1002/prot.22535] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The transport of peptides to the endoplasmic reticulum by the transporter associated with antigen processing (TAP) is a necessary step towards determining CD8 T cell epitopes. In this work, we have studied the predictive performance of support vector machine models trained on single residue positions and residue combinations drawn from a large dataset consisting of 613 nonamer peptides of known affinity to TAP. Predictive performance of these TAP affinity models was evaluated under 10-fold cross-validation experiments and measured using Pearson's correlation coefficients (R(p)). Our results show that every peptide position (P1-P9) contributes to TAP binding (minimum R(p) of 0.26 +/- 0.11 was achieved by a model trained on the P6 residue), although the largest contributions to binding correspond to the C-terminal end (R(p) = 0.68 +/- 0.06) and the P1 (R(p) = 0.51 +/- 0.09) and P2 (0.57 +/- 0.08) residues of the peptide. Training the models on additional peptide residues generally improved their predictive performance and a maximum correlation (R(p) = 0.89 +/- 0.03) was achieved by a model trained on the full-length sequences or a residue selection consisting of the first 5 N- and last 3 C-terminal residues of the peptides included in the training set. A system for predicting the binding affinity of peptides to TAP using the methods described here is readily available for free public use at http://imed.med.ucm.es/Tools/tapreg/.
Collapse
Affiliation(s)
- Carmen M Diez-Rivero
- Laboratorio de Inmuno Medicina, Departamento de Microbiología I-Immunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Starodubova E, Boberg A, Ivanov A, Latyshev O, Petrakova N, Kuzmenko Y, Litvina M, Chernousov A, Kochetkov S, Karpov V, Wahren B, Isaguliants MG. Potent cross-reactive immune response against the wild-type and drug-resistant forms of HIV reverse transcriptase after the chimeric gene immunization. Vaccine 2010; 28:1975-86. [PMID: 20188253 DOI: 10.1016/j.vaccine.2009.10.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
HIV reverse transcriptase (RT) can be considered as a target and an instrument of immunotherapy aimed at limiting the emergence and spread of drug-resistant HIV. The chimeric genes coding for the wild-type and multi-drug-resistant RT (RT1.14) fused to lysosome-associated membrane protein 1 (LAMP-1) were injected intramuscularly into BALB/c mice. The immune response was assessed by ELISpot, cytokine ELISA intracellular IFN-gamma staining, and antibody ELISA. The genes for RT- and RT1.14-LAMP fusions (RT-LAMP and RT1.14-LAMP) were immunogenic generating a mixed Th1/Th2-profile of immune response, while the wild-type RT gene induced only weak immune response. Specific secretion of Th1-cytokines increased with increasing level of RT modification: RT
Collapse
Affiliation(s)
- Elizaveta Starodubova
- Swedish Institute for Infectious Disease Control, Nobelsvägen 18, 17182 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Malhotra U, Nolin J, Horton H, Li F, Corey L, Mullins JI, McElrath MJ. Functional properties and epitope characteristics of T-cells recognizing natural HIV-1 variants. Vaccine 2009; 27:6678-87. [PMID: 19747576 DOI: 10.1016/j.vaccine.2009.08.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/17/2009] [Accepted: 08/26/2009] [Indexed: 11/18/2022]
Abstract
To understand how broad recognition of HIV-1 variants may be achieved we examined T-cell reactivity in newly infected persons as well as vaccine recipients to a broad spectrum of potential T-cell epitope (PTE) variants containing conservative, semi-conservative and non-conservative amino acid substitutions. Among early infected persons T-cells recognized epitope variants with one substitution at a significantly higher frequency versus those with two (P=0.0098) and three (P=0.0125) substitutions. Furthermore T-cells recognized variants containing conservative substitutions at a higher frequency versus those containing semi-conservative (P=0.0029) and non-conservative (P<0.0001) substitutions. Similar effects were observed on recognition of variants by vaccine-induced T-cells. Moreover even when variants were recognized, the IFN-gamma and granzyme B responses as well as T-cell proliferation were of lower magnitude. Finally, we show that epitope distribution is strongly influenced by both processing preferences and amino acid entropy. We conclude that induction of broad immunity is likely to require immunogen sequences that encompass multiple variants. However, cost-effective design of peptide and sequence based vaccine immunogens that provide maximal coverage of circulating sequences may be achieved through emphasis on virus domains likely to be T-cell targets.
Collapse
Affiliation(s)
- U Malhotra
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Wahl A, McCoy W, Schafer F, Bardet W, Buchli R, Fremont DH, Hildebrand WH. T-cell tolerance for variability in an HLA class I-presented influenza A virus epitope. J Virol 2009; 83:9206-14. [PMID: 19553306 PMCID: PMC2738244 DOI: 10.1128/jvi.00932-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/21/2009] [Indexed: 11/20/2022] Open
Abstract
To escape immune recognition, viruses acquire amino acid substitutions in class I human leukocyte antigen (HLA)-presented cytotoxic T-lymphocyte (CTL) epitopes. Such viral escape mutations may (i) prevent peptide processing, (ii) diminish class I HLA binding, or (iii) alter T-cell recognition. Because residues 418 to 426 of the hypervariable influenza A virus nucleoprotein (NP(418-426)) epitope are consistently bound by class I HLA and presented to CTL, we assessed the impact that intraepitope sequence variability has upon T-cell recognition. CTL elicited by intranasal influenza virus infection were tested for their cross-recognition of 20 natural NP(418-426) epitope variants. Six of the variant epitopes, of both H1N1 and H3N2 origin, were cross-recognized by CTL while the remaining NP(418-426) epitope variants escaped targeting. A pattern emerged whereby variability at position 5 (P5) within the epitope reduced T-cell recognition, changes at P4 or P6 enabled CTL escape, and a mutation at P8 enhanced T-cell recognition. These data demonstrate that substitutions at P4 and/or P6 facilitate influenza virus escape from T-cell recognition and provide a model for the number, nature, and location of viral mutations that influence T-cell cross-recognition.
Collapse
Affiliation(s)
- Angela Wahl
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 975 Northeast 10th Street, Oklahoma City, Oklahoma, 73104, Department of Pathology and Immunology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, Pure Protein L.L.C., 800 Research Parkway, Suite 340, Oklahoma City, Oklahoma 73104
| | - William McCoy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 975 Northeast 10th Street, Oklahoma City, Oklahoma, 73104, Department of Pathology and Immunology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, Pure Protein L.L.C., 800 Research Parkway, Suite 340, Oklahoma City, Oklahoma 73104
| | - Fredda Schafer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 975 Northeast 10th Street, Oklahoma City, Oklahoma, 73104, Department of Pathology and Immunology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, Pure Protein L.L.C., 800 Research Parkway, Suite 340, Oklahoma City, Oklahoma 73104
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 975 Northeast 10th Street, Oklahoma City, Oklahoma, 73104, Department of Pathology and Immunology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, Pure Protein L.L.C., 800 Research Parkway, Suite 340, Oklahoma City, Oklahoma 73104
| | - Rico Buchli
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 975 Northeast 10th Street, Oklahoma City, Oklahoma, 73104, Department of Pathology and Immunology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, Pure Protein L.L.C., 800 Research Parkway, Suite 340, Oklahoma City, Oklahoma 73104
| | - Daved H. Fremont
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 975 Northeast 10th Street, Oklahoma City, Oklahoma, 73104, Department of Pathology and Immunology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, Pure Protein L.L.C., 800 Research Parkway, Suite 340, Oklahoma City, Oklahoma 73104
| | - William H. Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 975 Northeast 10th Street, Oklahoma City, Oklahoma, 73104, Department of Pathology and Immunology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, Pure Protein L.L.C., 800 Research Parkway, Suite 340, Oklahoma City, Oklahoma 73104
| |
Collapse
|
18
|
The protective immune response against infectious bronchitis virus induced by multi-epitope based peptide vaccines. Biosci Biotechnol Biochem 2009; 73:1500-4. [PMID: 19584555 DOI: 10.1271/bbb.80864] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peptide vaccine was found to be an effective and powerful approach to a variety of pathogens. To explore multi-epitope based peptide vaccines against infectious bronchitis virus (IBV), the immunogenic peptides were fused to the 3' terminal of glutathione S transferase gene (GST) and expressed in Escherichia coli. ELISA and Western blot analysis showed that the purified fusion proteins had excellent immune activity with chicken anti-IBV serum. During the vaccination course, the candidate peptide vaccines induced strong humoral and cellular response, and provided up to 80.0% immune protection, while all non-immunized chickens in the negative control group manifested obvious typical symptoms and died after virus challenge. Our finding provides a new way to develop multi-epitope based peptide vaccine against IBV.
Collapse
|
19
|
Spierings E, Gras S, Reiser JB, Mommaas B, Almekinders M, Kester MGD, Chouquet A, Le Gorrec M, Drijfhout JW, Ossendorp F, Housset D, Goulmy E. Steric Hindrance and Fast Dissociation Explain the Lack of Immunogenicity of the Minor Histocompatibility HA-1Arg Null Allele. THE JOURNAL OF IMMUNOLOGY 2009; 182:4809-16. [DOI: 10.4049/jimmunol.0803911] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Skowera A, Ellis RJ, Varela-Calviño R, Arif S, Huang GC, Van-Krinks C, Zaremba A, Rackham C, Allen JS, Tree TIM, Zhao M, Dayan CM, Sewell AK, Unger WW, Unger W, Drijfhout JW, Ossendorp F, Roep BO, Peakman M. CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J Clin Invest 2008; 118:3390-402. [PMID: 18802479 DOI: 10.1172/jci35449] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 07/21/2008] [Indexed: 12/15/2022] Open
Abstract
The final pathway of beta cell destruction leading to insulin deficiency, hyperglycemia, and clinical type 1 diabetes is unknown. Here we show that circulating CTLs can kill beta cells via recognition of a glucose-regulated epitope. First, we identified 2 naturally processed epitopes from the human preproinsulin signal peptide by elution from HLA-A2 (specifically, the protein encoded by the A*0201 allele) molecules. Processing of these was unconventional, requiring neither the proteasome nor transporter associated with processing (TAP). However, both epitopes were major targets for circulating effector CD8+ T cells from HLA-A2+ patients with type 1 diabetes. Moreover, cloned preproinsulin signal peptide-specific CD8+ T cells killed human beta cells in vitro. Critically, at high glucose concentration, beta cell presentation of preproinsulin signal epitope increased, as did CTL killing. This study provides direct evidence that autoreactive CTLs are present in the circulation of patients with type 1 diabetes and that they can kill human beta cells. These results also identify a mechanism of self-antigen presentation that is under pathophysiological regulation and could expose insulin-producing beta cells to increasing cytotoxicity at the later stages of the development of clinical diabetes. Our findings suggest that autoreactive CTLs are important targets for immune-based interventions in type 1 diabetes and argue for early, aggressive insulin therapy to preserve remaining beta cells.
Collapse
Affiliation(s)
- Ania Skowera
- Department of Immunobiology, King's College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The specificity and polymorphism of the MHC class I prevents the global adaptation of HIV-1 to the monomorphic proteasome and TAP. PLoS One 2008; 3:e3525. [PMID: 18949050 PMCID: PMC2569417 DOI: 10.1371/journal.pone.0003525] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 09/29/2008] [Indexed: 11/19/2022] Open
Abstract
The large diversity in MHC class I molecules in a population lowers the chance that a virus infects a host to which it is pre-adapted to escape the MHC binding of CTL epitopes. However, viruses can also lose CTL epitopes by escaping the monomorphic antigen processing components of the pathway (proteasome and TAP) that create the epitope precursors. If viruses were to accumulate escape mutations affecting these monomorphic components, they would become pre-adapted to all hosts regardless of the MHC polymorphism. To assess whether viruses exploit this apparent vulnerability, we study the evolution of HIV-1 with bioinformatic tools that allow us to predict CTL epitopes, and quantify the frequency and accumulation of antigen processing escapes. We found that within hosts, proteasome and TAP escape mutations occur frequently. However, on the population level these escapes do not accumulate: the total number of predicted epitopes and epitope precursors in HIV-1 clade B has remained relatively constant over the last 30 years. We argue that this lack of adaptation can be explained by the combined effect of the MHC polymorphism and the high specificity of individual MHC molecules. Because of these two properties, only a subset of the epitope precursors in a host are potential epitopes, and that subset differs between hosts. We estimate that upon transmission of a virus to a new host 39%–66% of the mutations that caused epitope precursor escapes are released from immune selection pressure.
Collapse
|
22
|
Abstract
HIV-1 resistance to currently employed antiretroviral drugs and drug-associated adverse reactions and toxicity point to a need for additional measures to control HIV-1 replication in HIV-infected patients. The immune system of HIV-infected individuals mount an immune response against the regions harboring drug-resistance mutations, sometimes stronger than that against the parental wild-type sequences. A potent cross-reactive immune response against drug-resistant pol proteins can suppress the replication of drug-escaping HIV. This suggests the possibility for a vaccination against existing and anticipated drug-resistant HIV variants. If successful, therapeutic vaccines against drug resistance would ease the therapeutic modalities and limit the spread of drug-resistant HIV. A better understanding of the complex interactions between patterns of drug-resistance mutations, immune responses against these mutations and their antigen presentation by particular human lymphocyte antigen alleles could help to tailor these vaccines after new drugs/new mutations. In this review, we describe the developments in the field of immunization against mutations conferring drug resistance and evaluate their prospects for human vaccination.
Collapse
Affiliation(s)
- Andreas Boberg
- Swedish Institute for Infectious Disease Control, 171 82 Solna, Sweden.
| | | |
Collapse
|
23
|
Speetjens FM, Lauwen MM, Franken KL, Janssen-van Rhijn CM, van Duikeren S, Bres SA, van de Velde CJH, Melief CJM, Kuppen PJK, van der Burg SH, Morreau H, Offringa R. Prediction of the immunogenic potential of frameshift-mutated antigens in microsatellite instable cancer. Int J Cancer 2008; 123:838-45. [PMID: 18506693 DOI: 10.1002/ijc.23570] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microsatellite instable (MSI) cancers express frameshift-mutated antigens, the C-terminal polypeptides of which are foreign to the immune system. Consequently, these antigens constitute a unique pool of tumor-specific antigens that can be exploited for patient diagnosis and selective, immune-mediated targeting of cancers. However, other than their sequence, very little is known about the characteristics of the majority of these proteins. We therefore developed a methodology for predicting their immunogenic behavior that is based on a gene-expression system, in which each of the proteins was fused to a short C-terminal polypeptide comprising two epitopes that can be readily detected by T-cells and antibodies, respectively. In this manner, accumulation of the antigens and processing of peptides derived thereof into MHC can be monitored systematically. The antigens, which accumulate in the cells in which they are synthesized, are of primary interest for cancer immunotherapy, because peptide epitopes derived thereof can be presented by dendritic cells in addition to the tumor cells themselves. As a result, these antigens constitute the best targets for a coordinated immune response by both CD8+ and CD4+ T-cells, which increases the likelihood that tumor-induced immunity would be detectable against these antigens in cancer patients, as well as the potential value of these antigens as components of anticancer vaccines. Our data indicate that, of 15 frameshift-mutated antigens examined in our study, 4 (TGFbetaR2-1, MARCKS-1, MARCKS-2 and CDX2-2) are of primary interest, and 4 additional antigens (TAF1B-1, PCNXL2-2, TCF7L2-2 and Baxalpha+1) are of moderate interest for further tumor immunological research.
Collapse
Affiliation(s)
- Frank M Speetjens
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Le Gall S, Stamegna P, Walker BD. Portable flanking sequences modulate CTL epitope processing. J Clin Invest 2008; 117:3563-75. [PMID: 17975674 DOI: 10.1172/jci32047] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 09/05/2007] [Indexed: 02/05/2023] Open
Abstract
Peptide presentation is critical for immune recognition of pathogen-infected cells by CD8+ T lymphocytes. Although a limited number of immunodominant peptide epitopes are consistently observed in diseases such as HIV-1 infection, the relationship between immunodominance and antigen processing in humans is largely unknown. Here, we have demonstrated that endogenous processing and presentation of a human immunodominant HIV-1 epitope is more efficient than that of a subdominant epitope. Furthermore, we have shown that the regions flanking the immunodominant epitope constitute a portable motif that increases the production and antigenicity of otherwise subdominant epitopes. We used a novel in vitro degradation assay involving cytosolic extracts as well as endogenous intracellular processing assays to examine 2 well-characterized HIV-1 Gag overlapping epitopes presented by the same HLA class I allele, one of which is consistently immunodominant and the other subdominant in infected persons. The kinetics and products of degradation of HIV-1 Gag favored the production of peptides encompassing the immunodominant epitope and destruction of the subdominant one. Notably, cytosolic digestion experiments revealed flanking residues proximal to the immunodominant epitope that increased the production and antigenicity of otherwise subdominant epitopes. Furthermore, specific point mutations in these portable flanking sequences modulated the production and antigenicity of epitopes. Such portable epitope processing determinants provide what we believe is a novel approach to optimizing CTL responses elicited by vaccine vectors.
Collapse
Affiliation(s)
- Sylvie Le Gall
- Partners AIDS Research Center and Howard Hughes Medical Institute, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts 02129, USA.
| | | | | |
Collapse
|
25
|
Hu J, Cladel NM, Christensen ND. Increased immunity to cottontail rabbit papillomavirus infection in EIII/JC inbred rabbits after vaccination with a mutant E6 that correlates with spontaneous regression. Viral Immunol 2007; 20:320-5. [PMID: 17603848 DOI: 10.1089/vim.2006.0104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our previous studies showed that a progressive cottontail rabbit papillomavirus (CRPV) strain containing a single amino acid change in E6 (E6G252E) induced papilloma regression in EIII/JC inbred rabbits. This finding implied that the point mutation might cause an increase in the antigenicity of the mutant versus the wild-type E6. To test this hypothesis, groups of four EIII/JC inbred rabbits were immunized with wild-type CRPVE6, CRPVE6G252E, CRPV E5, or with vector alone. A gene gun delivery system was used to deliver the DNA vaccines. Two of four rabbits from both E6G252E- and wild-type E6-vaccinated groups were free of papillomas at week 12 after viral challenge. Significantly smaller papillomas were found on E6G252E-vaccinated rabbits than on E6-, E5-, and control vector-vaccinated rabbits (p = 0.01, unpaired Student t test) and these small papillomas regressed at week 20 after viral challenge. E5 vaccination failed to provide protection against viral challenge, and the mean papilloma size was also comparable to that of the control vector-vaccinated rabbits (p > 0.05, unpaired Student t test). We conclude that a single amino acid change in the CRPV E6 protein (G252E) increased protection against wild-type infectious CRPV.
Collapse
Affiliation(s)
- Jiafen Hu
- Department of Pathology, Jake Gittlen Cancer Research Foundation, Hershey, Pennsylvania, USA
| | | | | |
Collapse
|
26
|
Malhotra U, Li F, Nolin J, Allison M, Zhao H, Mullins JI, Self S, McElrath MJ. Enhanced detection of human immunodeficiency virus type 1 (HIV-1) Nef-specific T cells recognizing multiple variants in early HIV-1 infection. J Virol 2007; 81:5225-37. [PMID: 17329342 PMCID: PMC1900243 DOI: 10.1128/jvi.02564-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A human immunodeficiency virus (HIV)-preventive vaccine will likely need to induce broad immunity that can recognize antigens expressed within circulating strains. To understand the potentially relevant responses that T-cell based vaccines should elicit, we examined the ability of T cells from early infected persons to recognize a broad spectrum of potential T-cell epitopes (PTE) expressed by the products encoded by the HIV type 1 (HIV-1) nef gene, which is commonly included in candidate vaccines. T cells were evaluated for gamma interferon (IFN-gamma) secretion using two peptide panels: subtype B consensus (CON) peptides and a novel peptide panel providing 70% coverage of PTE in subtype B HIV-1 Nef. Eighteen of 23 subjects' T cells recognized HIV-1 Nef. In one subject, Nef-specific T cells were detected with the PTE but not with the CON peptides. The greatest frequency of responses spanned Nef amino acids 65 to 103 and 113 to 147, with multiple epitope variants being recognized. Detection of both the epitope domain number and the response magnitude was enhanced using the PTE peptides. On average, we detected 2.7 epitope domains with the PTE peptides versus 1.7 domains with the CON peptides (P = 0.0034). The average response magnitude was 2,169 spot-forming cells (SFC)/10(6) peripheral blood mononuclear cells (PBMC) with the PTE peptides versus 1,010 SFC/10(6) PBMC with CON peptides (P = 0.0046). During early HIV-1 infection, Nef-specific T cells capable of recognizing multiple variants are commonly induced, and these responses are readily detected with the PTE peptide panel. Our findings suggest that Nef responses induced by a given vaccine strain before HIV-1 exposure may be sufficiently broad to recognize most variants within subtype B HIV-1.
Collapse
Affiliation(s)
- Uma Malhotra
- Program in Infectious Diseases, Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., D3-100, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Textoris-Taube K, Henklein P, Pollmann S, Bergann T, Weisshoff H, Seifert U, Drung I, Mügge C, Sijts A, Kloetzel PM, Kuckelkorn U. The N-terminal flanking region of the TRP2360-368 melanoma antigen determines proteasome activator PA28 requirement for epitope liberation. J Biol Chem 2007; 282:12749-54. [PMID: 17308306 DOI: 10.1074/jbc.m611644200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasomes are known to produce major histocompatibility complex (MHC) class I ligands from endogenous antigens. The interferon-gamma-inducible proteasome activator PA28 plays an important role in the generation of MHC ligands by proteasomes. Generation of the HLA-A(*)0201 restricted melanoma antigen TRP2(360-368) by the proteasome has been shown to be dependent on the function of PA28 in vitro and in vivo (Sun, Y., Sijts, A. J., Song, M., Janek, K., Nussbaum, A. K., Kral, S., Schirle, M., Stevanovic, S., Paschen, A., Schild, H., Kloetzel, P. M., and Schadendorf, D. (2002) Cancer Res. 62, 2875-2882). Here we analyzed the role of the epitope sequence environment in determining this PA28 dependence. Experiments using the melanoma TRP2(288-296) epitope and the murine cytomegalovirus-derived pp89 epitope precursor peptide for epitope replacement revealed that the TRP2(360-368) flanking sequences can transfer PA28 dependence onto otherwise PA28 independent epitopes. Moreover, the N-terminal flanking sequence is sufficient to establish PA28 dependence of an epitope by allowing PA28-induced coordinated dual cleavages. These results show that N-terminal flanking sequences strongly influence epitope generation efficiency and that PA28 function is particularly relevant for the generation of normally poorly excised peptide products.
Collapse
|
28
|
Malhotra U, Nolin J, Mullins JI, McElrath MJ. Comprehensive epitope analysis of cross-clade Gag-specific T-cell responses in individuals with early HIV-1 infection in the US epidemic. Vaccine 2007; 25:381-90. [PMID: 17112643 DOI: 10.1016/j.vaccine.2006.07.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/17/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
To elucidate the mechanisms underlying cross-clade T-cell reactivity, we evaluated responses to Gag peptides based on clades A, B, C, and M-group sequences at the epitope level by IFN-gamma ELISpot assay in 25 subjects following primary clade B infection. T-cell reactivity to CON (consensus), COT (center of tree), and ANC (most recent common ancestor) B peptides was similar and a high level of cross-reactivity was noted to clade A, C, and M-group peptides. T-cell responses to 15 of the 16 epitopes reacted with at least 1 of the 2 heterologous peptides (A or C or both) and 7 epitopes were invariant across all 3 clades. The remaining 9 epitopes were associated with a total of 11 variant sequences, and with the exception of 1, all substitutions were outside the HLA anchor positions. We conclude that Gag-specific cross-clade T-cell responses producing IFN-gamma can be detected in primary HIV-1 infection. Cross-reactivity is attributable to the recognized epitopes being either invariant across clades or differing by single amino acid substitutions outside the HLA anchor sites. Semi-conservative and non-conservative substitutions that presumably involve the T-cell receptor contact sites have significant effects on T-cell recognition. Finally, further studies are needed to determine if the detection of cross-clade IFN-gamma T-cell responses indeed translates to cross-reactive antiviral activity.
Collapse
Affiliation(s)
- Uma Malhotra
- Program in Infectious Diseases, Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. D3-100, Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
29
|
Zimbwa P, Milicic A, Frater J, Scriba TJ, Willis A, Goulder PJR, Pillay T, Gunthard H, Weber JN, Zhang HT, Phillips RE. Precise identification of a human immunodeficiency virus type 1 antigen processing mutant. J Virol 2006; 81:2031-8. [PMID: 17108020 PMCID: PMC1797578 DOI: 10.1128/jvi.00968-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) evokes a strong immune response, but the virus persists. Polymorphisms within known antigenic sites result in loss of immune recognition and can be positively selected. Amino acid variation outside known HLA class I restricted epitopes can also enable immune escape by interfering with the processing of the optimal peptide antigen. However, the lack of precise rules dictating epitope generation and the enormous genetic diversity of HIV make prediction of processing mutants very difficult. Polymorphism E169D in HIV-1 reverse transcriptase (RT) is significantly associated with HLA-B*0702 in HIV-1-infected individuals. This polymorphism does not map within a known HLA-B*0702 epitope; instead, it is located five residues downstream of a HLA-B*0702-restricted epitope SPAIFQSSM (SM9). Here we investigate the association between E169D and HLA-B*0702 for immune escape via the SM9 epitope. We show that this single amino acid variation prevents the immune recognition of the flanked SM9 epitope by cytotoxic T cells through lack of generation of the epitope, which is a result of aberrant proteasomal cleavage. The E169D polymorphism also maps within and abrogates the recognition of an HLA-A*03-restricted RT epitope MR9. This study highlights the potential for using known statistical associations as indicators for viral escape but also the complexity involved in interpreting the immunological consequences of amino acid changes in HIV sequences.
Collapse
Affiliation(s)
- Peter Zimbwa
- The James Martin 21st Century School at The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kessler JH, Bres-Vloemans SA, van Veelen PA, de Ru A, Huijbers IJG, Camps M, Mulder A, Offringa R, Drijfhout JW, Leeksma OC, Ossendorp F, Melief CJM. BCR-ABL fusion regions as a source of multiple leukemia-specific CD8+ T-cell epitopes. Leukemia 2006; 20:1738-50. [PMID: 16932347 DOI: 10.1038/sj.leu.2404354] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For immunotherapy of residual disease in patients with Philadelphia-positive leukemias, the BCR-ABL fusion regions are attractive disease-specific T-cell targets. We analyzed these regions for the prevalence of cytotoxic T lymphocyte (CTL) epitopes by an advanced reverse immunology procedure. Seventeen novel BCR-ABL fusion peptides were identified to bind efficiently to the human lymphocyte antigen (HLA)-A68, HLA-B51, HLA-B61 or HLA-Cw4 HLA class I molecules. Comprehensive enzymatic digestion analysis showed that 10 out of the 28 HLA class I binding fusion peptides were efficiently excised after their C-terminus by the proteasome, which is an essential requirement for efficient cell surface expression. Therefore, these peptides are prime vaccine candidates. The other peptides either completely lacked C-terminal liberation or were only inefficiently excised by the proteasome, rendering them inappropriate or less suitable for inclusion in a vaccine. CTL raised against the properly processed HLA-B61 epitope AEALQRPVA from the BCR-ABL e1a2 fusion region, expressed in acute lymphoblastic leukemia (ALL), specifically recognized ALL tumor cells, proving cell surface presentation of this epitope, its applicability for immunotherapy and underlining the accuracy of our epitope identification strategy. Our study provides a reliable basis for the selection of optimal peptides to be included in immunotherapeutic BCR-ABL vaccines against leukemia.
Collapse
MESH Headings
- Amino Acid Sequence
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Epitope Mapping/methods
- Epitopes, T-Lymphocyte/immunology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/immunology
- Fusion Proteins, bcr-abl/metabolism
- HLA-A Antigens/immunology
- HLA-A Antigens/metabolism
- HLA-A2 Antigen
- HLA-B Antigens/immunology
- HLA-B Antigens/metabolism
- HLA-B51 Antigen
- HLA-C Antigens/immunology
- HLA-C Antigens/metabolism
- Humans
- Immunotherapy/methods
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/immunology
Collapse
Affiliation(s)
- J H Kessler
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lety MA, Frehel C, Raynaud C, Dupuis M, Charbit A. Exploring the role of the CTL epitope region of listeriolysin O in the pathogenesis of Listeria monocytogenes. Microbiology (Reading) 2006; 152:1287-1296. [PMID: 16622046 DOI: 10.1099/mic.0.28754-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a facultative intracellular bacterial pathogen responsible for severe opportunistic infections in humans and animals. The secreted cholesterol-dependent cytolysin, listeriolysin O (LLO), mediates phagosomal escape and allows bacterial growth in the cytosol of infected cells. In order to identify new LLO determinants participating in bacterial pathogenesis, this study focused on a major target of LLO proteolytic cleavage in vitro, the CTL epitope region (residues 91–99). Mutations were generated by site-directed mutagenesis in the epitope or in the two clusters of positive charges flanking the epitope. Two LLO mutants (a single mutation K103A and a double mutation R89G, K90G) were normally and stably secreted by L. monocytogenes. In contrast, a mutant carrying four amino acid substitutions in the epitope itself (Y92K, D94A, E97K, Y98F) was highly susceptible to proteolytic degradation. While these three LLO mutant proteins showed a reduced haemolytic activity, they all promoted efficient phagosomal escape and intracellular multiplication in different cell types, and were non-cytotoxic. The deletion of the epitope (Δ91–99), as well as the substitution of two, three or four of the four lysine residues (K103 to K106) by alanine residues did not lead to the production of a detectable protein. These results confirm the lack of correlation between haemolytic activity and phagosomal membrane disruption. They reveal the importance of the 91–99 region in the production of a stable and functional LLO. LD50 determinations in the mouse model suggest a possible link between LLO stability and virulence.
Collapse
Affiliation(s)
- Marie-Annick Lety
- Faculté de Médecine Necker-Enfants Malades, INSERM U-570, 156, rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Claude Frehel
- Faculté de Médecine Necker-Enfants Malades, INSERM U-570, 156, rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Catherine Raynaud
- Faculté de Médecine Necker-Enfants Malades, INSERM U-570, 156, rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Marion Dupuis
- Faculté de Médecine Necker-Enfants Malades, INSERM U-570, 156, rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Alain Charbit
- Faculté de Médecine Necker-Enfants Malades, INSERM U-570, 156, rue de Vaugirard, 75730 Paris Cedex 15, France
| |
Collapse
|
32
|
Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J, Griekspoor A, Mesman E, Verreck FA, Spits H, Schlom J, van Veelen P, Neefjes JJ. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. ACTA ACUST UNITED AC 2006; 203:1259-71. [PMID: 16636135 PMCID: PMC3212727 DOI: 10.1084/jem.20052494] [Citation(s) in RCA: 1266] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Radiotherapy is one of the most successful cancer therapies. Here the effect of irradiation on antigen presentation by MHC class I molecules was studied. Cell surface expression of MHC class I molecules was increased for many days in a radiation dose-dependent manner as a consequence of three responses. Initially, enhanced degradation of existing proteins occurred which resulted in an increased intracellular peptide pool. Subsequently, enhanced translation due to activation of the mammalian target of rapamycin pathway resulted in increased peptide production, antigen presentation, as well as cytotoxic T lymphocyte recognition of irradiated cells. In addition, novel proteins were made in response to gamma-irradiation, resulting in new peptides presented by MHC class I molecules, which were recognized by cytotoxic T cells. We show that immunotherapy is successful in eradicating a murine colon adenocarcinoma only when preceded by radiotherapy of the tumor tissue. Our findings indicate that directed radiotherapy can improve the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Eric A Reits
- Division of Tumor Biology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ito Y, Kondo E, Demachi-Okamura A, Akatsuka Y, Tsujimura K, Tanimoto M, Morishima Y, Takahashi T, Kuzushima K. Three immunoproteasome-associated subunits cooperatively generate a cytotoxic T-lymphocyte epitope of Epstein-Barr virus LMP2A by overcoming specific structures resistant to epitope liberation. J Virol 2006; 80:883-90. [PMID: 16378990 PMCID: PMC1346843 DOI: 10.1128/jvi.80.2.883-890.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The precise roles of gamma interferon-inducible immunoproteasome-associated molecules in generation of cytotoxic T-lymphocyte (CTL) epitopes have yet to be fully elucidated. We describe here a unique epitope derived from the Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) presented by HLA-A*2402 molecules. Generation of the epitope, designated LMP2A(222-230), from the full-length protein requires the immunoproteasome subunit low-molecular-weight protein 7 (ip-LMP7) and the proteasome activator 28-alpha subunit and is accelerated by ip-LMP2, as revealed by gene expression experiments using an LMP2A(222-230)-specific CTL clone as a responder in enzyme-linked immunospot assays. The unequivocal involvement of all three components was confirmed by RNA interference gene silencing. Interestingly, the LMP2A(222-230) epitope could be efficiently generated from incomplete EBV-LMP2A fragments that were produced by puromycin treatment or gene-engineered shortened EBV-LMP2A lacking some of its hydrophobic domains. In addition, epitope generation was increased by a single amino acid substitution from leucine to alanine immediately flanking the C terminus, this being predicted by a web-accessible program to increase the cleavage strength. Taken together, the data indicate that the generation of LMP2A(222-230) is influenced not only by extrinsic factors such as immunoproteasomes but also by intrinsic factors such as the length of the EBV-LMP2A protein and proteasomal cleavage strength at specific positions in the source antigen.
Collapse
Affiliation(s)
- Yoshinori Ito
- Division of Immunology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pinkse GGM, Tysma OHM, Bergen CAM, Kester MGD, Ossendorp F, van Veelen PA, Keymeulen B, Pipeleers D, Drijfhout JW, Roep BO. Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci U S A 2005; 102:18425-30. [PMID: 16339897 PMCID: PMC1317949 DOI: 10.1073/pnas.0508621102] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes is a T cell-mediated autoimmune disease, and insulin is an important target of the autoimmune response associated with beta cell destruction. The mechanism of destruction is still unknown. Here, we provide evidence for CD8 T cell autoreactivity associated with recurrent autoimmunity and loss of beta cell function in type 1 diabetic islet transplant recipients. We first identified an insulin B chain peptide (insB10-18) with extraordinary binding affinity to HLA-A2(*0201) that is expressed by the majority of type 1 diabetes patients. We next demonstrated that this peptide is naturally processed by both constitutive and immuno proteasomes and translocated to the endoplasmic reticulum by the peptide transporter TAP1 to allow binding to HLA-A2 in the endoplasmic reticulum and cell surface presentation. Peripheral blood mononuclear cells from a healthy donor were primed in vitro with this peptide, and CD8 T cells were isolated that specifically recognize target cells expressing the insulin B chain peptide. HLA-A2(insB10-18) tetramer staining revealed a strong association between detection of autoreactive CD8 T cells and recurrent autoimmunity after islet transplantation and graft failure in type 1 diabetic patients. We demonstrate that CD8 T cell autoreactivity is associated with beta cell destruction in type 1 diabetes in humans.
Collapse
Affiliation(s)
- Gabrielle G M Pinkse
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Milicic A, Price DA, Zimbwa P, Booth BL, Brown HL, Easterbrook PJ, Olsen K, Robinson N, Gileadi U, Sewell AK, Cerundolo V, Phillips RE. CD8+ T cell epitope-flanking mutations disrupt proteasomal processing of HIV-1 Nef. THE JOURNAL OF IMMUNOLOGY 2005; 175:4618-26. [PMID: 16177107 DOI: 10.4049/jimmunol.175.7.4618] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CTL play a critical role in the control of HIV and SIV. However, intrinsic genetic instability enables these immunodeficiency viruses to evade detection by CTL through mutation of targeted antigenic sites. These mutations can impair binding of viral epitopes to the presenting MHC class I molecule or disrupt TCR-mediated recognition. In certain regions of the virus, functional constraints are likely to limit the capacity for variation within epitopes. Mutations elsewhere in the protein, however, might still enable immune escape through effects on Ag processing. In this study, we describe the coincident emergence of three mutations in a highly conserved region of Nef during primary HIV-1 infection. These mutations (R69K, A81G, and H87R) flank the HLA B*35-restricted VY8 epitope and persisted to fixation as the early CTL response to this Ag waned. The variant form of Nef showed a reduced capacity to activate VY8-specific CTL, although protein stability and expression levels were unchanged. This effect was associated with altered processing by the proteasome that caused partial destruction of the VY8 epitope. Our data demonstrate that a variant HIV genotype can significantly impair proteasomal epitope processing and substantiate the concept of immune evasion through diminished Ag generation. These observations also indicate that the scale of viral escape may be significantly underestimated if only intraepitope variation is evaluated.
Collapse
Affiliation(s)
- Anita Milicic
- James Martin 21st Century School and Nuffield Department of Clinical Medicine, The Peter Medawar Building, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Strehl B, Seifert U, Krüger E, Heink S, Kuckelkorn U, Kloetzel PM. Interferon-gamma, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol Rev 2005; 207:19-30. [PMID: 16181324 DOI: 10.1111/j.0105-2896.2005.00308.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The proteasome system is a central component of a cascade of proteolytic processing steps required to generate antigenic peptides presented at the cell surface to cytotoxic T lymphocytes by major histocompatibility complex (MHC) class I molecules. The nascent protein pool or DRiPs (defective ribosomal products) appear to represent an important source for MHC class I epitopes. Owing to the destructive activities of aminopeptidases in the cytosol, at most 1% of the peptides generated by the ubiquitin-proteasome system seems to be made available to the immune system. Interferon-gamma (IFN-gamma) helps to override these limitations by the formation of immunoproteasomes, the activator complex PA28, and the induction of several aminopeptidases. Both immunoproteasomes and PA28 use cleavage sites already used by constitutive proteasomes but with altered and in some cases dramatically enhanced frequency. Therefore, two proteolytic cascades appear to have evolved to provide MHC class I epitopes. The 'constitutive proteolytic cascade' is designed to efficiently degrade proteins to single amino acid residues, allowing only a small percentage of peptides to be presented at the cell surface. In contrast, the IFN-gamma-controlled proteolytic cascade generates larger amounts of appropriate antigenic peptides, assuring more peptides to overcome the proteolytic restrictions of the constitutive system, thereby enhancing MHC class I antigen presentation.
Collapse
Affiliation(s)
- Britta Strehl
- Institut für Biochemie, Charité, Berlin University Berlin, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Ambagala APN, Solheim JC, Srikumaran S. Viral interference with MHC class I antigen presentation pathway: the battle continues. Vet Immunol Immunopathol 2005; 107:1-15. [PMID: 15978672 DOI: 10.1016/j.vetimm.2005.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 03/25/2005] [Accepted: 04/06/2005] [Indexed: 01/15/2023]
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) play a critical role in the defense against viral infections. In general, CD8+ CTLs recognize antigenic peptides in the context of the major histocompatibility complex (MHC) class I molecule. The MHC class I molecules are expressed on almost all the nucleated cells in the body. The trimolecular complex consisting of the class I heavy chain, beta2-microglobulin and the peptide are generated by the MHC class I antigen presentation pathway. This pathway is designed to sample the intracellular milieu and present the information to the CTLs trafficking the area. This rigorous sampling of intracellular environment enables the CTLs to quickly identify and eliminate the cells that synthesize non-self proteins as a result of a viral infection. Many viruses, including several viruses of veterinary importance, have evolved astounding strategies to interfere with the MHC class I antigen presentation pathway, as a means of evading the CTL response of the host. This review focuses on the diverse mechanisms of viral evasion of the MHC class I antigen presentation pathway with particular emphasis on viruses of veterinary importance.
Collapse
Affiliation(s)
- Aruna P N Ambagala
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, NE 68583-0905, USA
| | | | | |
Collapse
|
38
|
Ossendorp F, Fu N, Camps M, Granucci F, Gobin SJP, van den Elsen PJ, Schuurhuis D, Adema GJ, Lipford GB, Chiba T, Sijts A, Kloetzel PM, Ricciardi-Castagnoli P, Melief CJM. Differential expression regulation of the alpha and beta subunits of the PA28 proteasome activator in mature dendritic cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:7815-22. [PMID: 15944286 DOI: 10.4049/jimmunol.174.12.7815] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of dendritic cells (DC) by Th-dependent (CD40) or -independent (LPS, CpG, or immune complexes) agonistic stimuli strongly enhances the expression of the proteasome activator PA28alphabeta complex. Upon activation of DC, increased MHC class I presentation occurred of the melanocyte-associated epitope tyrosinase-related protein 2(180-188) in a PA28alphabeta-dependent manner. In contrast to other cell types, regulation of PA28alphabeta expression in DC after maturation was found to be IFN-gamma independent. In the present study, we show that expression of PA28alpha and beta subunits was differentially regulated. Firstly, PA28alpha expression is high in both immature and mature DC. In contrast, PA28beta expression is low in immature DC and strongly increased in mature DC. Secondly, we show the presence of a functional NF-kappaB site in the PA28beta promoter, which is absent in the PA28alpha promoter, indicating regulation of PA28beta expression by transcription factors of the NF-kappaB family. In addition, glycerol gradient analysis of DC lysates revealed elevated PA28alphabeta complex formation upon maturation. Thus, induction of PA28beta expression allows proper PA28alphabeta complex formation, thereby enhancing proteasome activity in activated DC. Therefore, maturation of DC not only improves costimulation but also MHC class I processing. This mechanism enhances the CD8(+) CTL (cross)-priming capacity of mature DC.
Collapse
Affiliation(s)
- Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rutebemberwa A, Currier JR, Jagodzinski L, McCutchan F, Birx D, Marovich M, Cox JH. HIV-1 MN Env 15-mer peptides better detect HIV-1 specific CD8 T cell responses compared with consensus subtypes B and M group 15-mer peptides. AIDS 2005; 19:1165-72. [PMID: 15990569 DOI: 10.1097/01.aids.0000176216.02743.98] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To compare the ability of three Env (15-mer) peptide sets derived from the HIV-1 MN, the subtype B consensus, and the group M consensus to detect HIV-1 specific interferon (IFN)-gamma responses in HIV-1 subtype B infected subjects. METHODS Peripheral blood mononuclear cells were obtained from 17 HIV-1 subtype B seropositive and 5 HIV-1 seronegative subjects. Peptide matrices comprising each peptide set were used in IFN-gamma Elispot assays to screen for T cell epitopes. Following matrix deconvolution, individual peptides were analyzed by IFN-gamma intracellular cytokine-staining to confirm and characterize the responding cells. RESULTS HIV specific IFN-gamma responses were detected in 17 of 17 HIV-1 seropositive and none of 5 HIV-1 seronegative subjects by Elispot. Within the 17 HIV-1 seropositives, 16, 14, and 11 subjects responded to MN, B consensus, and group M env peptides, respectively. Responses were confirmed by intracellular cytokine analysis in 14 subjects and were in the CD3CD8 compartment. Cross-recognition of 'equivalent' peptides (i.e., peptides mapping to the same sequence region from the three peptide sets) was observed in 9 of 17 subjects. Peptide set specific responses to individual peptides were also observed; 11, 1, and 1 subjects demonstrated peptide set specific responses to MN, B consensus, and consensus group M, respectively. CONCLUSION MN derived Env peptides were better able to detect HIV-1 specific CD8 T cell responses, many of which were not detectable by the equivalent clade or group consensus peptides. No single peptide set detected all the IFN-gamma responses within an individual. These results demonstrate the importance of reagent selection for monitoring of HIV responses in HIV-1 infected individuals and subsequently vaccine recipients.
Collapse
Affiliation(s)
- Alleluiah Rutebemberwa
- Henry M. Jackson Foundation and the US Military HIV Research Program, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Liu Z, Wang Z, Chen YH. Predefined spacers between epitopes on a recombinant epitope-peptide impacted epitope-specific antibody response. Immunol Lett 2005; 97:41-5. [PMID: 15626474 DOI: 10.1016/j.imlet.2004.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 09/16/2004] [Accepted: 09/20/2004] [Indexed: 11/24/2022]
Abstract
We have developed a widely applicable method to construct epitope-peptide gene for epitope-vaccine strategy recently. In this study, we wanted to know whether the predefined spacers between epitopes on a recombinant epitope-peptide impacted the production of epitope-specific antibodies. The neutralizing epitope ELDKWA on the C-domain of HIV-1 gp41 was defined by the monoclonal antibody (mAb) 2F5 with broad neutralizing activity. We constructed three recombinant ELDKWA-epitope-peptides with different spacers between epitopes. The recombinant epitope-peptide GST-K8, GST-S8 and GST-R8 were bearing eight copies of ELDKWA-epitope with amino acid spacer GS, GSGGGGS and RS, respectively. GST-K8 and GST-S8 could induce high titer of ELDKWA-epitope-specific antibodies, much better than GST-R8. Besides, both antibodies could recognize the recombinant soluble gp41 and the transfected CHO-WT cells that stably express HIV-1 envelope glycoprotein on the cell surfaces. These experimental results indicated that the spacer GSGGGGS and GS were feasible in constructing a recombinant epitope-vaccine.
Collapse
Affiliation(s)
- Zuqiang Liu
- Laboratory of Immunology, Protein Science Laboratory of MOE, Department of Biology, Institute for Biomedical Science, Tsinghua University, Beijing 100084, PR China
| | | | | |
Collapse
|
41
|
Genovese D, Dettori S, Argentini C, Villano U, Chionne P, Angelico M, Rapicetta M. Molecular epidemiology of hepatitis C virus genotype 4 isolates in Egypt and analysis of the variability of envelope proteins E1 and E2 in patients with chronic hepatitis. J Clin Microbiol 2005; 43:1902-9. [PMID: 15815016 PMCID: PMC1081338 DOI: 10.1128/jcm.43.4.1902-1909.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We analyzed hepatitis C virus (HCV) genotype 4 isolates circulating in the Alexandria District (Egypt) in terms of genetic divergence and the presence of different subtypes. Hypervariable region 1 (HVR1) and the NH2 region of the E2 protein were characterized, and the heterogeneity of subtype 4a isolates was evaluated by analyzing epitope frequencies, immunoproteasome prediction, and possible glycosylation patterns. The heterogeneity of the nucleotide sequences was greater than that found in previous studies, which reported only subtype 4a. Subtype 4a was most common (78% of cases), yet four new subtypes were found, with subtype 4m representing 11% of the cases and the other three subtypes representing another 11%. Substantial heterogeneity was also found when the intrasubtype 4a sequences were analyzed. Differences in the probability of glycosylation and in the positions of the different sites were also observed. The analysis of the predicted cytotoxic-T-lymphocyte epitopes showed differences in both the potential proteosome cleavage and the prediction score. The Egyptian isolates in our study also showed high variability in terms of the HVR1 neutralization epitope. Five of these isolates showed amino acid substitutions never previously observed (a total of six positions). Four of these residues (in four different isolates) were in positions involved in anchoring to the E2 glycoprotein core and in maintaining the HVR1 conformation. The results of this study indicate that HCV genotype 4 in Egypt is extremely variable, not only in terms of sequence, but also in terms of functional and immunological determinants. These data should be taken into account in planning the development of vaccine trials in Egypt.
Collapse
Affiliation(s)
- D Genovese
- Viral Hepatitis Unit, Department of Infectious, Parasitic and Immune-Mediated Disease, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Kimura Y, Gushima T, Rawale S, Kaumaya P, Walker CM. Escape mutations alter proteasome processing of major histocompatibility complex class I-restricted epitopes in persistent hepatitis C virus infection. J Virol 2005; 79:4870-6. [PMID: 15795272 PMCID: PMC1069526 DOI: 10.1128/jvi.79.8.4870-4876.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in hepatitis C virus (HCV) genomes facilitate escape from virus-specific CD8+ T lymphocytes in persistently infected chimpanzees. Our previous studies demonstrated that many of the amino acid substitutions in HCV epitopes prevented T-cell receptor recognition or binding to class I major histocompatibility complex molecules. Here we report that mutations within HCV epitopes also cause their destruction by changing the pattern of proteasome digestion. This mechanism of immune evasion provides further evidence of the potency of CD8+ T-cell selection pressure against HCV and should be considered when evaluating the significance of mutations in viral genomes from persistently infected chimpanzees and humans.
Collapse
Affiliation(s)
- Yoichi Kimura
- Center for Vaccines and Immunity, Children's Hospital, WA4011, 700 Children's Dr., Columbus, OH 43205, USA
| | | | | | | | | |
Collapse
|
43
|
Burlet-Schiltz O, Claverol S, Gairin JE, Monsarrat B. The Use of Mass Spectrometry to Identify Antigens from Proteasome Processing. Methods Enzymol 2005; 405:264-300. [PMID: 16413318 DOI: 10.1016/s0076-6879(05)05011-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Mass spectrometry (MS) is a powerful tool for the characterization of antigenic peptides that play a major role in the immune system. Most of the major histocompatibility complex (MHC) class I peptides are generated during the degradation of intracellular proteins by the proteasome, a catalytic complex present in all eukaryotic cells. This chapter focuses on the contribution of MS to the understanding of the mechanisms of antigen processing by the proteasome. This knowledge may be valuable for the design of specific inhibitors of proteasome, which has recently been recognized as a therapeutic target in cancer therapies and for the development of efficient peptidic vaccines in immunotherapies. Examples from the literature have been chosen to illustrate how MS data can contribute first to the understanding of the mechanisms of proteasomal processing and, second, to the understanding of the crucial role of proteasome in cytotoxic T lymphocytes (CTL) activation. The general strategy based on MS analyses used in these studies is also described.
Collapse
|
44
|
Furutsuki T, Hosoya N, Kawana-Tachikawa A, Tomizawa M, Odawara T, Goto M, Kitamura Y, Nakamura T, Kelleher AD, Cooper DA, Iwamoto A. Frequent transmission of cytotoxic-T-lymphocyte escape mutants of human immunodeficiency virus type 1 in the highly HLA-A24-positive Japanese population. J Virol 2004; 78:8437-45. [PMID: 15280452 PMCID: PMC479048 DOI: 10.1128/jvi.78.16.8437-8445.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although Japan is classified as a country with a low prevalence of human immunodeficiency virus type 1 (HIV-1), domestic sexual transmission has been increasing steadily. Because 70% of the Japanese population expresses HLA-A24 (genotype HLA-A*2402), we wished to assess the effect of the dominant HLA type on the evolution and transmission of HIV-1 among the Japanese population. Twenty-three out of 25 A24-positive Japanese patients had a Y-to-F substitution at the second position [Nef138-10(2F)] in an immunodominant A24-restricted CTL epitope in their HIV-1 nef gene (Nef138-10). None of 12 A24-negative Japanese hemophiliacs but 9 out of 16 patients infected through unprotected sexual intercourse had Nef138-10(2F) (P < 0.01). Two of two A24-positive but none of six A24-negative Australians had Nef138-10(2F). Nef138-10(2F) peptides bound well to the HLA-A*2402 heavy chain; however, Nef138-10(2F) was expressed poorly on the cell surface from the native protein. Thus, HIV-1 with Nef138-10(2F) appears to be a cytotoxic-T-lymphocyte escape mutant and has been transmitted frequently by sexual contact among the highly A24-positive Japanese population.
Collapse
Affiliation(s)
- Tae Furutsuki
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shinoda K, Xin KQ, Jounai N, Kojima Y, Tamura Y, Okada E, Kawamoto S, Okuda K, Klinman D, Okuda K. Polygene DNA vaccine induces a high level of protective effect against HIV-vaccinia virus challenge in mice. Vaccine 2004; 22:3676-90. [PMID: 15315847 DOI: 10.1016/j.vaccine.2004.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2003] [Accepted: 03/14/2004] [Indexed: 11/21/2022]
Abstract
Single HIV-1 subtype DNA vaccine is unlikely to provide reactive protection across a wide range of HIV strains since the HIV virus changes the antigenic sites, particularly, in env gene. To overcome these issues, we constructed a multivalent poly-epitope DNA vaccine. A polygenic DNA vaccine encoding 20 antigenic epitopes from the HIV-1 Env, Gag, and Pol proteins of several clades was constructed using humanized and optimized codons and it was named here hDNA vaccine. In mice, this hDNA vaccine stimulated the following strong (1) antigen-specific serum antibody (Ab) responses, (2) delayed-type hypersensitivity, (3) the activation of IFN-gamma secretion cells targeting gp120 and synthetic antigenic peptides, in addition (4) a significant level of several peptide specific cytotoxic T lymphocytes (CTL) responses. Challenged with modified vaccinia viruses vPE16 and vP1206 expressing HIV-1 env and gag.pol genes, respectively, demonstrated the viral titers in the ovary of the mice vaccinated with hDNA significantly less compared to the unvaccinated mice. Thus, the use of polygene DNA vaccine appears to induce a high level of HIV-specific immune responses and is very effective against challenge with recombinant HIV-vaccinia viruses.
Collapse
MESH Headings
- AIDS Vaccines/immunology
- AIDS Vaccines/therapeutic use
- Amino Acid Sequence
- Animals
- Antibody Formation/immunology
- Cytokines/metabolism
- Enzyme-Linked Immunosorbent Assay
- Gene Products, gag/immunology
- HIV Antibodies/analysis
- HIV Antibodies/biosynthesis
- HIV Envelope Protein gp120/immunology
- HIV Infections/prevention & control
- HIV-1/genetics
- HIV-1/immunology
- Hypersensitivity, Delayed/immunology
- Image Processing, Computer-Assisted
- Immunity, Cellular/immunology
- Immunization
- Interferon-gamma/immunology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Plasmids/genetics
- Plasmids/immunology
- Promoter Regions, Genetic/genetics
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- Kaori Shinoda
- Department of Bacteriology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Seifert U, Liermann H, Racanelli V, Halenius A, Wiese M, Wedemeyer H, Ruppert T, Rispeter K, Henklein P, Sijts A, Hengel H, Kloetzel PM, Rehermann B. Hepatitis C virus mutation affects proteasomal epitope processing. J Clin Invest 2004; 114:250-9. [PMID: 15254592 PMCID: PMC449747 DOI: 10.1172/jci20985] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 05/18/2004] [Indexed: 12/11/2022] Open
Abstract
The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2-restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2-positive and in 11/24 (46%) HLA-A2-negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2-restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2-transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-gamma;-producing and fewer tetramer(+) cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8(+) T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients.
Collapse
Affiliation(s)
- Ulrike Seifert
- Institute of Biochemistry, Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Seifert U, Liermann H, Racanelli V, Halenius A, Wiese M, Wedemeyer H, Ruppert T, Rispeter K, Henklein P, Sijts A, Hengel H, Kloetzel PM, Rehermann B. Hepatitis C virus mutation affects proteasomal epitope processing. J Clin Invest 2004. [PMID: 15254592 DOI: 10.1172/jci200420985] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2-restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2-positive and in 11/24 (46%) HLA-A2-negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2-restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2-transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-gamma;-producing and fewer tetramer(+) cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8(+) T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients.
Collapse
Affiliation(s)
- Ulrike Seifert
- Institute of Biochemistry, Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Suzuki M, Aoshi T, Nagata T, Koide Y. Identification of murine H2-Dd- and H2-Ab-restricted T-cell epitopes on a novel protective antigen, MPT51, of Mycobacterium tuberculosis. Infect Immun 2004; 72:3829-37. [PMID: 15213124 PMCID: PMC427431 DOI: 10.1128/iai.72.7.3829-3837.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both CD4(+) type 1 helper T (Th1) cells and CD8(+) cytotoxic T lymphocytes (CTL) play pivotal roles in protection against Mycobacterium tuberculosis infection. Here, we identified Th1 and CTL epitopes on a novel protective antigen, MPT51, in BALB/c and C57BL/6 mice. Mice were immunized with plasmid DNA encoding MPT51 by using a gene gun, and gamma interferon (IFN-gamma) production from the immune spleen cells was analyzed in response to a synthetic overlapping peptide library covering the mature MPT51 sequence. In BALB/c mice, only one peptide, p21-40, appeared to stimulate the immune splenocytes to produce IFN-gamma. Flow cytometric analysis with intracellular IFN-gamma and the T-cell phenotype revealed that the p21-40 peptide contains an immunodominant CD8(+) T-cell epitope. Further analysis with a computer-assisted algorithm permitted identification of a T-cell epitope, p24-32. In addition, a major histocompatibility complex class I stabilization assay with TAP2-deficient RMA-S cells transfected with K(d), D(d), or L(d) indicated that the epitope is presented by D(d). Finally, we proved that the p24-32/D(d) complex is recognized by IFN-gamma-producing CTL. In C57BL/6 mice, we observed H2-A(b)-restricted dominant and subdominant Th1 epitopes by using T-cell subset depletion analysis and three-color flow cytometry. The data obtained are useful for analyzing the role of MPT51-specific T cells in protective immunity and for designing a vaccine against M. tuberculosis infection.
Collapse
Affiliation(s)
- Mina Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Hamamatsu 431-3192, Japan
| | | | | | | |
Collapse
|
49
|
Burroughs NJ, de Boer RJ, Keşmir C. Discriminating self from nonself with short peptides from large proteomes. Immunogenetics 2004; 56:311-20. [PMID: 15322777 DOI: 10.1007/s00251-004-0691-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 05/26/2004] [Indexed: 10/26/2022]
Abstract
We studied whether the peptides of nine amino acids (9-mers) that are typically used in MHC class I presentation are sufficiently unique for self:nonself discrimination. The human proteome contains 28,783 proteins, comprising 10(7) distinct 9-mers. Enumerating distinct 9-mers for a variety of microorganisms we found that the average overlap, i.e., the probability that a foreign peptide also occurs in the human self, is about 0.2%. This self:nonself overlap increased when shorter peptides were used, e.g., was 30% for 6-mers and 3% for 7-mers. Predicting all 9-mers that are expected to be cleaved by the immunoproteasome and to be translocated by TAP, we find that about 25% of the self and the nonself 9-mers are processed successfully. For the HLA-A*0201 and HLA-A*0204 alleles, we predicted which of the processed 9-mers from each proteome are expected to be presented on the MHC. Both alleles prefer to present processed 9-mers to nonprocessed 9-mers, and both have small preference to present foreign peptides. Because a number of amino acids from each 9-mer bind the MHC, and are therefore not exposed to the TCR, antigen presentation seems to involve a significant loss of information. Our results show that this is not the case because the HLA molecules are fairly specific. Removing the two anchor residues from each presented peptide, we find that the self:nonself overlap of these exposed 7-mers resembles that of 9-mers. Summarizing, the 9-mers used in MHC class I presentation tend to carry sufficient information to detect nonself peptides amongst self peptides.
Collapse
|
50
|
Allen TM, Altfeld M, Yu XG, O'Sullivan KM, Lichterfeld M, Le Gall S, John M, Mothe BR, Lee PK, Kalife ET, Cohen DE, Freedberg KA, Strick DA, Johnston MN, Sette A, Rosenberg ES, Mallal SA, Goulder PJR, Brander C, Walker BD. Selection, transmission, and reversion of an antigen-processing cytotoxic T-lymphocyte escape mutation in human immunodeficiency virus type 1 infection. J Virol 2004; 78:7069-78. [PMID: 15194783 PMCID: PMC421658 DOI: 10.1128/jvi.78.13.7069-7078.2004] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Numerous studies now support that human immunodeficiency virus type 1 (HIV-1) evolution is influenced by immune selection pressure, with population studies showing an association between specific HLA alleles and mutations within defined cytotoxic T-lymphocyte epitopes. Here we combine sequence data and functional studies of CD8 T-cell responses to demonstrate that allele-specific immune pressures also select for mutations flanking CD8 epitopes that impair antigen processing. In persons expressing HLA-A3, we demonstrate consistent selection for a mutation in a C-terminal flanking residue of the normally immunodominant Gag KK9 epitope that prevents its processing and presentation, resulting in a rapid decline in the CD8 T-cell response. This single amino acid substitution also lies within a second HLA-A3-restricted epitope, with the mutation directly impairing recognition by CD8 T cells. Transmission of the mutation to subjects expressing HLA-A3 was shown to prevent the induction of normally immunodominant acute-phase responses to both epitopes. However, subsequent in vivo reversion of the mutation was coincident with delayed induction of new CD8 T-cell responses to both epitopes. These data demonstrate that mutations within the flanking region of an HIV-1 epitope can impair recognition by an established CD8 T-cell response and that transmission of these mutations alters the acute-phase CD8(+) T-cell response. Moreover, reversion of these mutations in the absence of the original immune pressure reveals the potential plasticity of immunologically selected evolutionary changes.
Collapse
Affiliation(s)
- Todd M Allen
- Howard Hughes Medical Institute, Partners AIDS Research Center, Infectious Disease Division, Massachusetts General Hospital, and Division of AIDS, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|