1
|
Zhang H, Felthaus O, Eigenberger A, Klein S, Prantl L. Treg Cell Therapeutic Strategies for Breast Cancer: Holistic to Local Aspects. Cells 2024; 13:1526. [PMID: 39329710 PMCID: PMC11429654 DOI: 10.3390/cells13181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and preventing autoimmunity through their immunosuppressive function. There have been numerous reports confirming that high levels of Tregs in the tumor microenvironment (TME) are associated with a poor prognosis, highlighting their role in promoting an immunosuppressive environment. In breast cancer (BC), Tregs interact with cancer cells, ultimately leading to the suppression of immune surveillance and promoting tumor progression. This review discusses the dual role of Tregs in breast cancer, and explores the controversies and therapeutic potential associated with targeting these cells. Researchers are investigating various strategies to deplete or inhibit Tregs, such as immune checkpoint inhibitors, cytokine antagonists, and metabolic inhibition. However, the heterogeneity of Tregs and the variable precision of treatments pose significant challenges. Understanding the functional diversity of Tregs and the latest advances in targeted therapies is critical for the development of effective therapies. This review highlights the latest approaches to Tregs for BC treatment that both attenuate Treg-mediated immunosuppression in tumors and maintain immune tolerance, and advocates precise combination therapy strategies to optimize breast cancer outcomes.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany (L.P.)
| | | | | | | | | |
Collapse
|
2
|
Thapa B, Kato S, Nishizaki D, Miyashita H, Lee S, Nesline MK, Previs RA, Conroy JM, DePietro P, Pabla S, Kurzrock R. OX40/OX40 ligand and its role in precision immune oncology. Cancer Metastasis Rev 2024; 43:1001-1013. [PMID: 38526805 PMCID: PMC11300540 DOI: 10.1007/s10555-024-10184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Immune checkpoint inhibitors have changed the treatment landscape for various malignancies; however, their benefit is limited to a subset of patients. The immune machinery includes both mediators of suppression/immune evasion, such as PD-1, PD-L1, CTLA-4, and LAG-3, all of which can be inhibited by specific antibodies, and immune-stimulatory molecules, such as T-cell co-stimulatory receptors that belong to the tumor necrosis factor receptor superfamily (TNFRSF), including OX40 receptor (CD134; TNFRSF4), 4-1BB (CD137; TNFRSF9), and glucocorticoid-induced TNFR-related (GITR) protein (CD357; TNFRSF18). In particular, OX40 and its binding ligand OX40L (CD134L; TNFSF4; CD252) are critical for immunoregulation. When OX40 on activated T cells binds OX40L on antigen-presenting cells, T-cell activation and immune stimulation are initiated via enhanced T-cell survival, proliferation and cytotoxicity, memory T-cell formation, and abrogation of regulatory T cell (Treg) immunosuppressive functions. OX40 agonists are in clinical trials both as monotherapy and in combination with other immunotherapy agents, in particular specific checkpoint inhibitors, for cancer treatment. To date, however, only a minority of patients respond. Transcriptomic profiling reveals that OX40 and OX40L expression vary between and within tumor types, and that only ~ 17% of cancer patients have high OX40 and low OX40L, one of the expression patterns that might be theoretically amenable to OX40 agonist enhancement. Taken together, the data suggest that the OX40/OX40L machinery is a critical part of the immune stimulatory system and that understanding endogenous expression patterns of these molecules and co-existing checkpoints merits further investigation in the context of a precision immunotherapy strategy for cancer therapy.
Collapse
Affiliation(s)
- Bicky Thapa
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | | | - Suzanna Lee
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | | | | | | | | | | | - Razelle Kurzrock
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Santos RLD, Martins MR, Tavares VL, Neto JPD, Torres LC. Analysis of the expression of cytokines and chemokines, platelet-leukocyte aggregates, sCD40L and sCD62P in cutaneous melanoma. J Surg Oncol 2024. [PMID: 39129330 DOI: 10.1002/jso.27748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Cutaneous melanoma (CM) is a malignancy with a variable incidence worldwide and a poor advanced-stage prognosis. Melanoma growth is closely associated with the immune system. METHODS A cross-sectional study was performed on CM patients admitted at the Hospital de Cancer de Pernambuco (HCP) between 2015 and 2018. Fifty-one CM patients were included, and 30 healthy individuals. The study aimed to evaluate the association of platelet activation mechanisms and inflammatory response in patients with cutaneous melanoma. RESULTS Elevated serum IL10 and low serum TNF levels in CM patients compared to controls (p < 0.05). High IL6 levels in patients with negative lymph nodes LN (-) compared to positive lymph nodes group (LN +, p = 0.0005). Low RANTES levels in patients compared to controls (p < 0.05). Elevated levels of platelet-lymphocyte (PLA), platelet-monocytes (PMA), and platelet-neutrophils (PNA) aggregates were observed in patients compared to controls (p < 0.05). CM patients with stage II had lower PMA levels than stages I and III (p < 0.05). High PMA levels were observed in patients with LN (+) compared to the LN (-) group (p < 0.0001). Patients with SSM had high levels of sCD40L and sCD62P compared to controls (p < 0.05)). High sCD40L levels in stage II compared to the stage III group, and sCD62P in stages I and II compared to the stage III group (p < 0.05). High sCD62P levels in patients with LN (-) compared to the group LN (+) (p < 0.05). CONCLUSION It was observed the immunosuppressive profile in CM may favor tumor progression. High levels of platelet-leukocyte aggregates, sCD40L, and sCD62P may be associated with the worst prognosis.
Collapse
Affiliation(s)
- Rogerio Luiz Dos Santos
- Translational Research Laboratory Prof. CA Hart (IMIP), Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Hospital de Câncer de Pernambuco, Recife, Brazil
- Skin Cancer Department, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Mário R Martins
- Translational Research Laboratory Prof. CA Hart (IMIP), Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Hospital de Câncer de Pernambuco, Recife, Brazil
- Skin Cancer Department, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Valéria Lobo Tavares
- Translational Research Laboratory Prof. CA Hart (IMIP), Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Hospital de Câncer de Pernambuco, Recife, Brazil
| | | | - Leuridan Cavalcante Torres
- Translational Research Laboratory Prof. CA Hart (IMIP), Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Hospital de Câncer de Pernambuco, Recife, Brazil
- Postgraduate program in Translational Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
4
|
Kurt İnci B, Acar E, Gürler F, İlhan A, Yıldız F, Ardıç F, Öksüzoğlu B, Özdemir N, Özet A, Esendağlı G, Yazıcı O. Prognostic Role of OX40, LAG-3, TIM-3 and PD-L1 Expression in Bone and Soft Tissue Sarcomas. J Clin Med 2024; 13:3620. [PMID: 38930150 PMCID: PMC11204964 DOI: 10.3390/jcm13123620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction: The current study aims to evaluate the OX40, TIM-3, LAG-3, and PD-L1 targeted pathways in the regulation of T-cell activity in sarcoma patients to determine their relationship with overall survival (OS). Method: This study included one hundred and eleven patients with bone and soft tissue sarcoma diagnosed in two centers between 2010 and 2020. OX40, LAG-3, TIM-3 and PD-L1 expression levels were evaluated immunohistochemically from pathology preparations. Results: PD-L1 staining was detected in tumor cells, OX40, LAG-3, TIM-3 staining was detected in inflammatory cells in tumor tissue. In univariate analysis, no significant relationship was found between OX40, TIM-3, LAG-3, and PD-L1 staining and overall survival (respectively: p = 0.12, p = 0.49, p = 0.31, p = 0.95). When grade and stage at diagnosis, which were found to be significant in univariate analysis, along with OX-40, TIM-3, LAG-3, and PD-L1, were evaluated in multivariate analysis, a positive effect of OX-40 staining on overall survival was determined (p = 0.009). Considering the correlation between PDL-1 and OX40, TIM-3, and LAG-3 staining, a significant positive correlation was found between PDL-1 and TIM-3 and LAG-3 staining (respectively; p = 0.002, p = 0.001). Conclusions: There was no significant relationship between the PDL-1 staining percentage of tumor cells and OX40, TIM-3, and LAG-3 staining in inflammatory cells with the OS of sarcoma patients. However, detecting a significant positive correlation between PDL-1 staining and TIM-3 and LAG-3 staining also holds promise for finding effective targetable combination therapies that can prolong survival in sarcoma patients in the future.
Collapse
Affiliation(s)
- Bediz Kurt İnci
- Medical Oncology Department, Gazi University Hospital, 2906500 Ankara, Turkey; (F.G.); (N.Ö.); (A.Ö.); (O.Y.)
| | - Elif Acar
- Pathology Department, Gazi University Hospital, 2906500 Ankara, Turkey; (E.A.); (G.E.)
| | - Fatih Gürler
- Medical Oncology Department, Gazi University Hospital, 2906500 Ankara, Turkey; (F.G.); (N.Ö.); (A.Ö.); (O.Y.)
| | - Ayşegül İlhan
- Medical Oncology Department, Dr. Abdurrahman Yurtaslan Ankara Oncology Hospital, 2906200 Ankara, Turkey; (A.İ.); (F.Y.); (B.Ö.)
| | - Fatih Yıldız
- Medical Oncology Department, Dr. Abdurrahman Yurtaslan Ankara Oncology Hospital, 2906200 Ankara, Turkey; (A.İ.); (F.Y.); (B.Ö.)
| | - Fisun Ardıç
- Pathology Department, Dr. Abdurrahman Yurtaslan Ankara Oncology Hospital, 2906200 Ankara, Turkey;
| | - Berna Öksüzoğlu
- Medical Oncology Department, Dr. Abdurrahman Yurtaslan Ankara Oncology Hospital, 2906200 Ankara, Turkey; (A.İ.); (F.Y.); (B.Ö.)
| | - Nuriye Özdemir
- Medical Oncology Department, Gazi University Hospital, 2906500 Ankara, Turkey; (F.G.); (N.Ö.); (A.Ö.); (O.Y.)
| | - Ahmet Özet
- Medical Oncology Department, Gazi University Hospital, 2906500 Ankara, Turkey; (F.G.); (N.Ö.); (A.Ö.); (O.Y.)
| | - Güldal Esendağlı
- Pathology Department, Gazi University Hospital, 2906500 Ankara, Turkey; (E.A.); (G.E.)
| | - Ozan Yazıcı
- Medical Oncology Department, Gazi University Hospital, 2906500 Ankara, Turkey; (F.G.); (N.Ö.); (A.Ö.); (O.Y.)
| |
Collapse
|
5
|
Murphy C, Devis-Jauregui L, Struck R, Boloix A, Gallagher C, Gavin C, Cottone F, Fernandez AS, Madden S, Roma J, Segura MF, Piskareva O. In vivo cisplatin-resistant neuroblastoma metastatic model reveals tumour necrosis factor receptor superfamily member 4 (TNFRSF4) as an independent prognostic factor of survival in neuroblastoma. PLoS One 2024; 19:e0303643. [PMID: 38809883 PMCID: PMC11135766 DOI: 10.1371/journal.pone.0303643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Neuroblastoma is the most common solid extracranial tumour in children. Despite major advances in available therapies, children with drug-resistant and/or recurrent neuroblastoma have a dismal outlook with 5-year survival rates of less than 20%. Therefore, tackling relapsed tumour biology by developing and characterising clinically relevant models is a priority in finding targetable vulnerability in neuroblastoma. Using matched cisplatin-sensitive KellyLuc and resistant KellyCis83Luc cell lines, we developed a cisplatin-resistant metastatic MYCN-amplified neuroblastoma model. The average number of metastases per mouse was significantly higher in the KellyCis83Luc group than in the KellyLuc group. The vast majority of sites were confirmed as having lymph node metastasis. Their stiffness characteristics of lymph node metastasis values were within the range reported for the patient samples. Targeted transcriptomic profiling of immuno-oncology genes identified tumour necrosis factor receptor superfamily member 4 (TNFRSF4) as a significantly dysregulated MYCN-independent gene. Importantly, differential TNFRSF4 expression was identified in tumour cells rather than lymphocytes. Low TNFRSF4 expression correlated with poor prognostic indicators in neuroblastoma, such as age at diagnosis, stage, and risk stratification and significantly associated with reduced probability of both event-free and overall survival in neuroblastoma. Therefore, TNFRSF4 Low expression is an independent prognostic factor of survival in neuroblastoma.
Collapse
Affiliation(s)
- Catherine Murphy
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laura Devis-Jauregui
- Faculty of Medicine, Cell Biology Unit, Department of Pathology and Experimental Therapeutics, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, L’Hospitalet de Llobregat, Spain
| | - Ronja Struck
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ariadna Boloix
- Vall d’Hebron Research Institute, Group of Childhood Cancer & Blood Disorders, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ciara Gallagher
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Cian Gavin
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Federica Cottone
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Aroa Soriano Fernandez
- Vall d’Hebron Research Institute, Group of Childhood Cancer & Blood Disorders, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stephen Madden
- Data Science Centre, School of Population Health, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Josep Roma
- Vall d’Hebron Research Institute, Group of Childhood Cancer & Blood Disorders, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel F. Segura
- Vall d’Hebron Research Institute, Group of Childhood Cancer & Blood Disorders, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Piskareva
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
6
|
Baudouin R, Hans S, Lisan Q, Morin B, Adimi Y, Martin J, Lechien JR, Tartour E, Badoual C. Prognostic Significance of the Microenvironment in Human Papillomavirus Oropharyngeal Carcinoma: A Systematic Review. Laryngoscope 2024; 134:1507-1516. [PMID: 37642393 DOI: 10.1002/lary.31010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE The immune microenvironment of HPV-associated (HPV+) oropharyngeal squamous cell carcinomas (OPSCCs) (HPV+OPSCCs) differs from that of HPV-independent oropharyngeal cancers (HPV-independent OPSCCs). The literature on the subject is very abundant, demanding an organized synthesis of this wealth of information to evaluate the hypothesis associating the favorable prognosis of HPV+OPSCC patients with a different immune microenvironment. A systematic review of the literature was conducted regarding the microenvironment of HPV+OPSCCs. DATA SOURCE MEDLINE/PubMed, Embase, and Cochrane Library databases. REVIEW METHODS A literature search was performed following PRISMA guidelines (Moher D. PLoS Med. 2009). The PEO (Population, Exposure, and Outcome) framework is detailed as follows: P: patients with oropharyngeal squamous cell carcinomas, E: human papillomavirus (HPV), and O: histological and immunological composition of the tumoral microenvironment (TME). No meta-analysis was performed. RESULTS From 1,202 studies that were screened, 58 studies were included (n = 6,474 patients; n = 3,581 (55%) HPV+OPSCCs and n = 2,861(45%) HPV-independent OPSCCs). The presence of tumor-infiltrating lymphocytes (TIL), CD3+ in 1,733 patients, CD4+ in 520 patients, and CD8+ (cytotoxic T lymphocytes (CTL)) in 3,104 patients, and high levels of PD-L1 expression in 1,222 patients is strongly correlated with an improved clinical outcome in HPV+OPSCCs. CONCLUSION This systematic review provides the most comprehensive information on the immune microenvironment of HPV+OPSCCs to date. Tumor-infiltrating lymphocytes and PD-L1 expression are associated with a favorable prognosis. B, CD8+ and resident memory cells densities are higher in HPV+OPSCCs. The importance of myeloid lineages is still a matter of debate and research. LEVEL OF EVIDENCE NA Laryngoscope, 134:1507-1516, 2024.
Collapse
Affiliation(s)
- R Baudouin
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Montigny-le-Bretonneux, France
| | - S Hans
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Montigny-le-Bretonneux, France
| | - Q Lisan
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Montigny-le-Bretonneux, France
| | - B Morin
- Department of Pathology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
- Department of Biological Immunology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| | - Y Adimi
- Department of Pathology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
- Department of Biological Immunology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| | - J Martin
- Department of Pathology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
- Department of Biological Immunology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| | - J R Lechien
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Montigny-le-Bretonneux, France
| | - E Tartour
- Department of Biological Immunology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| | - C Badoual
- Department of Pathology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| |
Collapse
|
7
|
Al-Danakh A, Safi M, Jian Y, Yang L, Zhu X, Chen Q, Yang K, Wang S, Zhang J, Yang D. Aging-related biomarker discovery in the era of immune checkpoint inhibitors for cancer patients. Front Immunol 2024; 15:1348189. [PMID: 38590525 PMCID: PMC11000233 DOI: 10.3389/fimmu.2024.1348189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.
Collapse
Affiliation(s)
- Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Safi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Linlin Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xinqing Zhu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kangkang Yang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Surgery, Healinghands Clinic, Dalian, Liaoning, China
| |
Collapse
|
8
|
Galvez-Cancino F, Simpson AP, Costoya C, Matos I, Qian D, Peggs KS, Litchfield K, Quezada SA. Fcγ receptors and immunomodulatory antibodies in cancer. Nat Rev Cancer 2024; 24:51-71. [PMID: 38062252 DOI: 10.1038/s41568-023-00637-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 12/24/2023]
Abstract
The discovery of both cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) as negative regulators of antitumour immunity led to the development of numerous immunomodulatory antibodies as cancer treatments. Preclinical studies have demonstrated that the efficacy of immunoglobulin G (IgG)-based therapies depends not only on their ability to block or engage their targets but also on the antibody's constant region (Fc) and its interactions with Fcγ receptors (FcγRs). Fc-FcγR interactions are essential for the activity of tumour-targeting antibodies, such as rituximab, trastuzumab and cetuximab, where the killing of tumour cells occurs at least in part due to these mechanisms. However, our understanding of these interactions in the context of immunomodulatory antibodies designed to boost antitumour immunity remains less explored. In this Review, we discuss our current understanding of the contribution of FcγRs to the in vivo activity of immunomodulatory antibodies and the challenges of translating results from preclinical models into the clinic. In addition, we review the impact of genetic variability of human FcγRs on the activity of therapeutic antibodies and how antibody engineering is being utilized to develop the next generation of cancer immunotherapies.
Collapse
Affiliation(s)
- Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Alexander P Simpson
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Cristobal Costoya
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Ignacio Matos
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Danwen Qian
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Karl S Peggs
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
9
|
Redmond WL. Challenges and opportunities in the development of combination immunotherapy with OX40 agonists. Expert Opin Biol Ther 2023; 23:901-912. [PMID: 37587644 PMCID: PMC10530613 DOI: 10.1080/14712598.2023.2249396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Costimulatory members of the tumor necrosis factor receptor family, such as OX40 (CD134), provide essential survival and differentiation signals that enhance T cell function. Specifically, OX40 (CD134) agonists stimulate potent anti-tumor immunity in a variety of preclinical models but their therapeutic impact in patients with advanced malignancies has been limited thus far. AREAS COVERED In this review, we discuss the current state of combination immunotherapy with OX40 agonists including preclinical studies and recent clinical trials. We also discuss the strengths and limitations of these approaches and provide insight into alternatives that may help enhance the efficacy of combination OX40 agonist immunotherapy. EXPERT OPINION OX40 agonist immunotherapy has not yet demonstrated significant clinical activity as a monotherapy or in combination with immune checkpoint blockade (ICB), likely due to several factors including the timing of administration, drug potency, and selection of agents for combination therapy clinical trials. We believe that careful consideration of the biological mechanisms regulating OX40 expression and function may help inform new approaches, particularly in combination with novel agents, capable of increasing the therapeutic efficacy of this approach.
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St., 2N35, Portland, OR, 97213
| |
Collapse
|
10
|
Hirschhorn D, Budhu S, Kraehenbuehl L, Gigoux M, Schröder D, Chow A, Ricca JM, Gasmi B, De Henau O, Mangarin LMB, Li Y, Hamadene L, Flamar AL, Choi H, Cortez CA, Liu C, Holland A, Schad S, Schulze I, Betof Warner A, Hollmann TJ, Arora A, Panageas KS, Rizzuto GA, Duhen R, Weinberg AD, Spencer CN, Ng D, He XY, Albrengues J, Redmond D, Egeblad M, Wolchok JD, Merghoub T. T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell 2023; 186:1432-1447.e17. [PMID: 37001503 PMCID: PMC10994488 DOI: 10.1016/j.cell.2023.03.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 10/11/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
Cancer immunotherapies, including adoptive T cell transfer, can be ineffective because tumors evolve to display antigen-loss-variant clones. Therapies that activate multiple branches of the immune system may eliminate escape variants. Here, we show that melanoma-specific CD4+ T cell therapy in combination with OX40 co-stimulation or CTLA-4 blockade can eradicate melanomas containing antigen escape variants. As expected, early on-target recognition of melanoma antigens by tumor-specific CD4+ T cells was required. Surprisingly, complete tumor eradication was dependent on neutrophils and partly dependent on inducible nitric oxide synthase. In support of these findings, extensive neutrophil activation was observed in mouse tumors and in biopsies of melanoma patients treated with immune checkpoint blockade. Transcriptomic and flow cytometry analyses revealed a distinct anti-tumorigenic neutrophil subset present in treated mice. Our findings uncover an interplay between T cells mediating the initial anti-tumor immune response and neutrophils mediating the destruction of tumor antigen loss variants.
Collapse
Affiliation(s)
- Daniel Hirschhorn
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Sadna Budhu
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Lukas Kraehenbuehl
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Mathieu Gigoux
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - David Schröder
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Chow
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jacob M Ricca
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Billel Gasmi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Olivier De Henau
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Levi Mark B Mangarin
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Yanyun Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linda Hamadene
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Anne-Laure Flamar
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Hyejin Choi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Czrina A Cortez
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Cailian Liu
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Aliya Holland
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Sara Schad
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Isabell Schulze
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Allison Betof Warner
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arshi Arora
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine S Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabrielle A Rizzuto
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebekka Duhen
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Andrew D Weinberg
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Christine N Spencer
- Department of Informatics, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - David Ng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jedd D Wolchok
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA; Department of Medicine and Graduate Schools, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA; Department of Medicine and Graduate Schools, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Zhao L, Zhang W, Liu M, Jia R, Wang J, Wang F, Xu Y. OX40L enhances the immunogenicity of dendritic cells and inhibits tumor metastasis in mice. Microbiol Immunol 2023; 67:79-89. [PMID: 36345699 DOI: 10.1111/1348-0421.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022]
Abstract
A well preserved immune system is a powerful tool to prevent foreign invasion or to suppress internal mutation, which must be tightly controlled by co-stimulatory molecules in different pathophysiological conditions. One such critical molecule is OX40L expressed on activated antigen-presenting cells (APCs). Consistently, its abnormality is associated with various immunological disorders such as autoinflammatory diseases and allergy. However, a comprehensive analysis of the immune-moderating role of OX40L in dendritic cells (DCs), the most powerful APCs to initiate immune responses in vivo, and investigation of its anti-tumor efficacy in the disease setting have not been performed properly. In this study, genetic approaches for both gain-of-function and reduction-of-function were employed to reveal that OX40L was required for the efficient presentation, but not uptake, of antigens by DCs to stimulate CD4+ , as well as CD8+ T cells in vivo. As a result, CD4+ T cells were promoted towards Th1, but inhibited on Treg differentiation, by the LPS-induced OX40L on DCs, which was supported by their altered expression of co-inhibitory receptor, PD-L1. CD8+ T cells, on the other hand, also enhanced their cytotoxicity towards target cells in response to OX40L expression on the DCs transferred in vivo. Finally, in a DC-mediated tumor immunity model, the strong immunogenic roles of OX40L on DCs led to better metastasis inhibition in vivo. Collectively, our results demonstrate that OX40L could serve as a potential target in the DC-based vaccine for enhanced anti-tumor efficacy in vivo.
Collapse
Affiliation(s)
- Lin Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Meng Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Ruoyu Jia
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Juncheng Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
12
|
Oncolytic Newcastle disease virus expressing the co-stimulator OX40L as immunopotentiator for colorectal cancer therapy. Gene Ther 2023; 30:64-74. [PMID: 34602608 DOI: 10.1038/s41434-021-00256-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/02/2021] [Accepted: 03/26/2021] [Indexed: 11/08/2022]
Abstract
NDV as an attractive candidate for oncolytic immunotherapy selectively lyses tumor cells but shows limited anti-tumor immunity. Immune co-stimulator OX40 ligand (OX40L) boosts anti-tumor immunity response by delivering a potent costimulatory signal to CD4+ and CD8+ T cells. To improve the anti-tumor immunity of NDV, the recombinant NDV expressing the murine OX40L (rNDV-mOX40L) was engineered. The viral growth kinetics was examined in CT26 cell lines. The ability of rNDV-mOX40L to express mOX40L was detected in the infected tumor cells and tumor tissues. The anti-tumor activity of rNDV-mOX40L was studied in the CT26 animal model. Tumor-specific CD4+, CD8+ and OX40+ T cells were examined by immunohistochemistry staining. The virus growth curve showed that the insertion of the mOX40L gene did not affect the growth kinetics of NDV. rNDV-mOX40L expresses mOX40L and effectively inhibits the growth of CT26 colorectal cancer in vivo. The tumor inhibition rate of the rNDV-mOX40L-treated group was increased by 15.8% compared to that of NDV-treated group in the CT26 model. Furthermore, immunohistochemistry staining of tumor tissues removed from the CT26 model revealed that intense infiltration of tumor-specific CD4+, CD8+ T cells, especially OX40+ T cells were found in the rNDV-mOX40L-treated group. FACS showed that rNDV-mOX40L significantly enhanced the number of CD4+ and CD8+ T cells in spleen. Moreover, compared to the NDV-treated group, the level of mouse IFN-γ protein in the tumor site increased significantly in the rNDV-mOX40L-treated group. Taken together, rNDV-mOX40L exhibited superior anti-tumor immunity by stimulating tumor-specific T cells and may be a promising agent for cancer immunotherapy.
Collapse
|
13
|
Das A, Deka D, Banerjee A, Radhakrishnan AK, Zhang H, Sun XF, Pathak S. A Concise Review on the Role of Natural and Synthetically Derived Peptides in Colorectal Cancer. Curr Top Med Chem 2022; 22:2571-2588. [PMID: 35578849 DOI: 10.2174/1568026622666220516105049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 01/20/2023]
Abstract
Colorectal cancer being the second leading cause of cancer-associated deaths has become a significant health concern around the globe. Though there are various cancer treatment approaches, many of them show adverse effects and some compromise the health of cancer patients. Hence, significant efforts are being made for the evolution of a novel biological therapeutic approach with better efficacy and minimal side effects. Current research suggests that the application of peptides in colorectal cancer therapeutics holds the possibility of the emergence of an anticancer reagent. The primary beneficial factors of peptides are their comparatively rapid and easy process of synthesis and the enormous potential for chemical alterations that can be evaluated for designing novel peptides and enhancing the delivery capacity of peptides. Peptides might be utilized as agents with cytotoxic activities or as a carrier of a specific drug or as cytotoxic agents that can efficiently target the tumor cells. Further, peptides can also be used as a tool for diagnostic purposes. The recent analysis aims at developing peptides that have the potential to efficiently target the tumor moieties without harming the nearby normal cells. Additionally, decreasing the adverse effects, and unfolding the other therapeutic properties of potential peptides, are also the subject matter of in-depth analysis. This review provides a concise summary of the function of both natural and synthetically derived peptides in colorectal cancer therapeutics that are recently being evaluated and their potent applications in the clinical field.
Collapse
Affiliation(s)
- Alakesh Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Hong Zhang
- School of Medicine, Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| |
Collapse
|
14
|
Davis EJ, Martin-Liberal J, Kristeleit R, Cho DC, Blagden SP, Berthold D, Cardin DB, Vieito M, Miller RE, Hari Dass P, Orcurto A, Spencer K, Janik JE, Clark J, Condamine T, Pulini J, Chen X, Mehnert JM. First-in-human phase I/II, open-label study of the anti-OX40 agonist INCAGN01949 in patients with advanced solid tumors. J Immunother Cancer 2022; 10:jitc-2021-004235. [PMID: 36316061 PMCID: PMC9628691 DOI: 10.1136/jitc-2021-004235] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND OX40 is a costimulatory receptor upregulated on antigen-activated T cells and constitutively expressed on regulatory T cells (Tregs). INCAGN01949, a fully human immunoglobulin G1κ anti-OX40 agonist monoclonal antibody, was designed to promote tumor-specific immunity by effector T-cell activation and Fcγ receptor-mediated Treg depletion. This first-in-human study was conducted to determine the safety, tolerability, and preliminary efficacy of INCAGN01949. METHODS Phase I/II, open-label, non-randomized, dose-escalation and dose-expansion study conducted in patients with advanced or metastatic solid tumors. Patients received INCAGN01949 monotherapy (7-1400 mg) in 14-day cycles while deriving benefit. Safety measures, clinical activity, pharmacokinetics, and pharmacodynamic effects were assessed and summarized with descriptive statistics. RESULTS Eighty-seven patients were enrolled; most common tumor types were colorectal (17.2%), ovarian (8.0%), and non-small cell lung (6.9%) cancers. Patients received a median three (range 1-9) prior therapies, including immunotherapy in 24 patients (27.6%). Maximum tolerated dose was not reached; one patient (1.1%) receiving 350 mg dose reported dose-limiting toxicity of grade 3 colitis. Treatment-related adverse events were reported in 45 patients (51.7%), with fatigue (16 (18.4%)), rash (6 (6.9%)), and diarrhea (6 (6.9%)) being most frequent. One patient (1.1%) with metastatic gallbladder cancer achieved a partial response (duration of 6.3 months), and 23 patients (26.4%) achieved stable disease (lasting >6 months in one patient). OX40 receptor occupancy was maintained over 90% among all patients receiving doses of ≥200 mg, while no treatment-emergent antidrug antibodies were detected across all dose levels. Pharmacodynamic results demonstrated that treatment with INCAGN01949 did not enhance proliferation or activation of T cells in peripheral blood or reduce circulating Tregs, and analyses of tumor biopsies did not demonstrate any consistent increase in effector T-cell infiltration or function, or decrease in infiltrating Tregs. CONCLUSION No safety concerns were observed with INCAGN01949 monotherapy in patients with metastatic or advanced solid tumors. However, tumor responses and pharmacodynamic effects on T cells in peripheral blood and post-therapy tumor biopsies were limited. Studies evaluating INCAGN01949 in combination with other therapies are needed to further evaluate the potential of OX40 agonism as a therapeutic approach in patients with advanced solid tumors. TRIAL REGISTRATION NUMBER NCT02923349.
Collapse
Affiliation(s)
| | | | | | - Daniel C Cho
- Perlmutter Cancer Center, NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Dominik Berthold
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Dana B Cardin
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maria Vieito
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Prashanth Hari Dass
- Early Phase Clinical Trials Unit, Churchill Hospital, University of Oxford, Oxford, UK
| | - Angela Orcurto
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | | | - Jason Clark
- Incyte Corporation, Wilmington, Delaware, USA
| | | | | | - Xuejun Chen
- Incyte Corporation, Wilmington, Delaware, USA
| | | |
Collapse
|
15
|
Hamid O, Chiappori AA, Thompson JA, Doi T, Hu-Lieskovan S, Eskens FALM, Ros W, Diab A, Spano JP, Rizvi NA, Wasser JS, Angevin E, Ott PA, Forgie A, Yang W, Guo C, Chou J, El-Khoueiry AB. First-in-human study of an OX40 (ivuxolimab) and 4-1BB (utomilumab) agonistic antibody combination in patients with advanced solid tumors. J Immunother Cancer 2022; 10:jitc-2022-005471. [PMID: 36302562 PMCID: PMC9621185 DOI: 10.1136/jitc-2022-005471] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Ivuxolimab (PF-04518600) and utomilumab (PF-05082566) are humanized agonistic IgG2 monoclonal antibodies against OX40 and 4-1BB, respectively. This first-in-human, multicenter, open-label, phase I, dose-escalation/dose-expansion study explored safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity of ivuxolimab+utomilumab in patients with advanced solid tumors. METHODS Dose-escalation: patients with advanced bladder, gastric, or cervical cancer, melanoma, head and neck squamous cell carcinoma, or non-small cell lung cancer (NSCLC) who were unresponsive to available therapies, had no standard therapy available or declined standard therapy were enrolled into five dose cohorts: ivuxolimab (0.1-3 mg/kg every 2 weeks (Q2W)) intravenously plus utomilumab (20 or 100 mg every 4 weeks (Q4W)) intravenously. Dose-expansion: patients with melanoma (n=10) and NSCLC (n=20) who progressed on prior anti-programmed death receptor 1/programmed death ligand-1 and/or anti-cytotoxic T-lymphocyte-associated antigen 4 (melanoma) received ivuxolimab 30 mg Q2W intravenously plus utomilumab 20 mg Q4W intravenously. Adverse events (AEs) were graded per National Cancer Institute Common Terminology Criteria for Adverse Events V.4.03 and efficacy was assessed using Response Evaluation Criteria in Solid Tumors (RECIST) V.1.1 and immune-related RECIST (irRECIST). Paired tumor biopsies and whole blood were collected to assess pharmacodynamic effects and immunophenotyping. Whole blood samples were collected longitudinally for immunophenotyping. RESULTS Dose-escalation: 57 patients were enrolled; 2 (3.5%) patients with melanoma (0.3 mg/kg+20 mg and 0.3 mg/kg+100 mg) achieved partial response (PR), 18 (31.6%) patients achieved stable disease (SD); the disease control rate (DCR) was 35.1% across all dose levels. Dose-expansion: 30 patients were enrolled; 1 patient with NSCLC achieved PR lasting >77 weeks. Seven of 10 patients with melanoma (70%) and 7 of 20 patients with NSCLC (35%) achieved SD: median (range) duration of SD was 18.9 (13.9-49.0) weeks for the melanoma cohort versus 24.1 (14.3-77.9+) weeks for the NSCLC cohort; DCR (NSCLC) was 40%. Grade 3-4 treatment-emergent AEs were reported in 28 (49.1%) patients versus 11 (36.7%) patients in dose-escalation and dose-expansion, respectively. There were no grade 5 AEs deemed attributable to treatment. Ivuxolimab area under the concentration-time curve increased in a dose-dependent manner at 0.3-3 mg/kg doses. CONCLUSIONS Ivuxolimab+utomilumab was found to be well tolerated and demonstrated preliminary antitumor activity in selected groups of patients. TRIAL REGISTRATION NUMBER NCT02315066.
Collapse
Affiliation(s)
- Omid Hamid
- Translational Research and Immunotherapy, The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, California, USA
| | | | | | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Siwen Hu-Lieskovan
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ferry A L M Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Willeke Ros
- Department of Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Adi Diab
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Jean-Philippe Spano
- Medical Oncology, APHP-Sorbonne University, IPLEs Inserm1136, Pitie-Salpetrière Hospital-Paris, Paris, France
| | - Naiyer A Rizvi
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Jeffrey S Wasser
- Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Eric Angevin
- Drug Development Department, Institut Gustave Roussy, Villejuif, France
| | - Patrick A Ott
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alison Forgie
- Translational Oncology, Pfizer Inc, San Francisco, California, USA
| | - Wenjing Yang
- Oncology Computational Biology, Pfizer Inc, San Diego, Calfornia, USA
| | - Cen Guo
- Clinical Pharmacology, Pfizer Inc, San Diego, California, USA
| | - Jeffrey Chou
- Early Oncology Development and Clinical Research, Pfizer Inc, San Francisco, California, USA
| | - Anthony B El-Khoueiry
- Department of Internal Medicine, Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| |
Collapse
|
16
|
Marconato M, Kauer J, Salih HR, Märklin M, Heitmann JS. Expression of the immune checkpoint modulator OX40 indicates poor survival in acute myeloid leukemia. Sci Rep 2022; 12:15856. [PMID: 36151238 PMCID: PMC9508266 DOI: 10.1038/s41598-022-19972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Despite therapeutic advances, mortality of Acute Myeloid Leukemia (AML) is still high. Currently, the determination of prognosis which guides treatment decisions mainly relies on genetic markers. Besides molecular mechanisms, the ability of malignant cells to evade immune surveillance influences the disease outcome and, among others, the expression of checkpoints modulators contributes to this. In AML, functional expression of the checkpoint molecule OX40 was reported, but the prognostic relevance of OX40 and its ligand OX40L axis has so far not been investigated. Here we described expression and prognostic relevance of the checkpoint modulators OX40 and OX40L, analyzed on primary AML cells obtained from 92 therapy naïve patients. Substantial expression of OX40 and OX40L on AML blasts was detected in 29% and 32% of the investigated subjects, respectively, without correlation between the expression of the receptor and its ligand. Whereas OX40L expression was not associated with different survival, patients with high expression levels of the receptor (OX40high) on AML blasts survived significantly shorter than OX40low patients (p = 0.009, HR 0.46, 95% CI 0.24–0.86), which identifies OX40 as novel prognostic marker and a potential therapeutic target in AML patients.
Collapse
Affiliation(s)
- Maddalena Marconato
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,DFG Cluster of Excellence 2180 'Image-Guided and Functional Instructed Tumor Therapy' (IFIT), University of Tübingen, Tübingen, Germany
| | - Joseph Kauer
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Department of Oncology and Hematology, University Clinic Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,DFG Cluster of Excellence 2180 'Image-Guided and Functional Instructed Tumor Therapy' (IFIT), University of Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany. .,DFG Cluster of Excellence 2180 'Image-Guided and Functional Instructed Tumor Therapy' (IFIT), University of Tübingen, Tübingen, Germany.
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,DFG Cluster of Excellence 2180 'Image-Guided and Functional Instructed Tumor Therapy' (IFIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Mishra AK, Ali A, Dutta S, Banday S, Malonia SK. Emerging Trends in Immunotherapy for Cancer. Diseases 2022; 10:60. [PMID: 36135216 PMCID: PMC9498256 DOI: 10.3390/diseases10030060] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in cancer immunology have enabled the discovery of promising immunotherapies for various malignancies that have shifted the cancer treatment paradigm. The innovative research and clinical advancements of immunotherapy approaches have prolonged the survival of patients with relapsed or refractory metastatic cancers. Since the U.S. FDA approved the first immune checkpoint inhibitor in 2011, the field of cancer immunotherapy has grown exponentially. Multiple therapeutic approaches or agents to manipulate different aspects of the immune system are currently in development. These include cancer vaccines, adoptive cell therapies (such as CAR-T or NK cell therapy), monoclonal antibodies, cytokine therapies, oncolytic viruses, and inhibitors targeting immune checkpoints that have demonstrated promising clinical efficacy. Multiple immunotherapeutic approaches have been approved for specific cancer treatments, while others are currently in preclinical and clinical trial stages. Given the success of immunotherapy, there has been a tremendous thrust to improve the clinical efficacy of various agents and strategies implemented so far. Here, we present a comprehensive overview of the development and clinical implementation of various immunotherapy approaches currently being used to treat cancer. We also highlight the latest developments, emerging trends, limitations, and future promises of cancer immunotherapy.
Collapse
Affiliation(s)
- Alok K. Mishra
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Amjad Ali
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Shubham Dutta
- MassBiologics, UMass Chan Medical School, Boston, MA 02126, USA
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K. Malonia
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
18
|
Cortellino S, Raveane A, Chiodoni C, Delfanti G, Pisati F, Spagnolo V, Visco E, Fragale G, Ferrante F, Magni S, Iannelli F, Zanardi F, Casorati G, Bertolini F, Dellabona P, Colombo MP, Tripodo C, Longo VD. Fasting renders immunotherapy effective against low-immunogenic breast cancer while reducing side effects. Cell Rep 2022; 40:111256. [PMID: 36001966 DOI: 10.1016/j.celrep.2022.111256] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Immunotherapy is improving the prognosis and survival of cancer patients, but despite encouraging outcomes in different cancers, the majority of tumors are resistant to it, and the immunotherapy combinations are often accompanied by severe side effects. Here, we show that a periodic fasting-mimicking diet (FMD) can act on the tumor microenvironment and increase the efficacy of immunotherapy (anti-PD-L1 and anti-OX40) against the poorly immunogenic triple-negative breast tumors (TNBCs) by expanding early exhausted effector T cells, switching the cancer metabolism from glycolytic to respiratory, and reducing collagen deposition. Furthermore, FMD reduces the occurrence of immune-related adverse events (irAEs) by preventing the hyperactivation of the immune response. These results indicate that FMD cycles have the potential to enhance the efficacy of anti-cancer immune responses, expand the portion of tumors sensitive to immunotherapy, and reduce its side effects.
Collapse
Affiliation(s)
| | - Alessandro Raveane
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Claudia Chiodoni
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pisati
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | | | - Euplio Visco
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | | | | | - Serena Magni
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Fabio Iannelli
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | | | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan 20141, Italy; Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario P Colombo
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Claudio Tripodo
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy; University of Palermo School of Medicine, Palermo, Italy
| | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy; Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
19
|
Mussafi O, Mei J, Mao W, Wan Y. Immune checkpoint inhibitors for PD-1/PD-L1 axis in combination with other immunotherapies and targeted therapies for non-small cell lung cancer. Front Oncol 2022; 12:948405. [PMID: 36059606 PMCID: PMC9430651 DOI: 10.3389/fonc.2022.948405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
It has been widely acknowledged that the use of immune checkpoint inhibitors (ICI) is an effective therapeutic treatment in many late-stage cancers. However, not all patients could benefit from ICI therapy. Several biomarkers, such as high expression of PD-L1, high mutational burden, and higher number of tumor infiltration lymphocytes have shown to predict clinical benefit from immune checkpoint therapies. One approach using ICI in combination with other immunotherapies and targeted therapies is now being investigated to enhance the efficacy of ICI alone. In this review, we summarized the use of other promising immunotherapies and targeted therapies in combination with ICI in treatment of lung cancers. The results from multiple animals and clinical trials were reviewed. We also briefly discussed the possible outlooks for future treatment.
Collapse
Affiliation(s)
- Ofek Mussafi
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, United States
| | - Jie Mei
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
20
|
Li XY, An HB, Zhang LY, Liu H, Shen YC, Yang XT. Non-negative matrix factorization model-based construction for molecular clustering and prognostic assessment of head and neck squamous carcinoma. Heliyon 2022; 8:e10100. [PMID: 35991972 PMCID: PMC9389204 DOI: 10.1016/j.heliyon.2022.e10100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/03/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose We aimed at exploring the efficacy of non-negative matrix factorization (NMF) model-based clustering for prognostic assessment of head and neck squamous carcinoma (HNSCC). Methods The transcriptome microarray data of HNSCC samples were downloaded from The Cancer Genome Atlas (TCGA) and the Shanghai Ninth People’s Hospital. R software packages were used to establish NMF clustering, from which relevant prognostic models were developed. Results Based on NMF, samples were allocated into 2 subgroups. Predictive models were constructed using differentially expressed genes between the two subgroups. The high-risk group was associated with poor prognostic outcomes. Moreover, multi-factor Cox regression analysis revealed that the predictive model was an independent prognostic predictor. Conclusion The NMF-based prognostic model has the potential for prognostic assessment of HNSCC.
Collapse
|
21
|
Combination of OX40 Co-Stimulation, Radiotherapy, and PD-1 Inhibition in a Syngeneic Murine Triple-Negative Breast Cancer Model. Cancers (Basel) 2022; 14:cancers14112692. [PMID: 35681672 PMCID: PMC9179485 DOI: 10.3390/cancers14112692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This experimental study was designed in order to investigate the efficacy of the triple combination of radiation (SBRT), PD-1 blockade, and OX40 co-stimulation in a syngeneic murine model using ‘immunologically cold’ triple-negative breast cancer cells. SBRT can induce immunogenic tumor cell deaths and act as an in situ vaccine while OX40 signaling has been shown to improve anticancer immunity combined with PD-1 inhibition via multiple preclinical studies. In our study, triple combination therapy significantly improved primary/abscopal tumor control and reduced lung metastases compared to single or dual therapies. This was found to be through an increased ratio of CD8+ T cells to regulatory T cells and a reduced proportion of exhausted T cells in the tumor microenvironment. Abstract Immune checkpoint inhibitors have been successful in a wide range of tumor types but still have limited efficacy in immunologically cold tumors, such as breast cancers. We hypothesized that the combination of agonistic anti-OX40 (α-OX40) co-stimulation, PD-1 blockade, and radiotherapy would improve the therapeutic efficacy of the immune checkpoint blockade in a syngeneic murine triple-negative breast cancer model. Murine triple-negative breast cancer cells (4T1) were grown in immune-competent BALB/c mice, and tumors were irradiated with 24 Gy in three fractions. PD-1 blockade and α-OX40 were administered five times every other day. Flow cytometric analyses and immunohistochemistry were used to monitor subsequent changes in the immune cell repertoire. The combination of α-OX40, radiotherapy, and PD-1 blockade significantly improved primary tumor control, abscopal effects, and long-term survival beyond 2 months (60%). In the tumor microenvironment, the ratio of CD8+ T cells to CD4 + FOXP3+ regulatory T cells was significantly elevated and exhausted CD8+ T cells (PD-1+, CTLA-4+, TIM-3+, or LAG-3+ cells) were significantly reduced in the triple combination group. Systemically, α-OX40 co-stimulation and radiation significantly increased the CD103+ dendritic cell response in the spleen and plasma IFN-γ, respectively. Together, our results suggest that the combination of α-OX40 co-stimulation and radiation is a viable approach to overcome therapeutic resistance to PD-1 blockade in immunologically cold tumors, such as triple-negative breast cancer.
Collapse
|
22
|
Krzyżanowska N, Wojas-Krawczyk K, Milanowski J, Krawczyk P. Future Prospects of Immunotherapy in Non-Small-Cell Lung Cancer Patients: Is There Hope in Other Immune Checkpoints Targeting Molecules? Int J Mol Sci 2022; 23:3087. [PMID: 35328510 PMCID: PMC8950480 DOI: 10.3390/ijms23063087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Currently, one of the leading treatments for non-small-cell lung cancer is immunotherapy involving immune checkpoint inhibitors. These monoclonal antibodies restore the anti-tumour immune response altered by negative immune checkpoint interactions. The most commonly used immunotherapeutics in monotherapy are anti-PD-1 and anti-PD-L1 antibodies. The effectiveness of both groups of antibodies has been proven in many clinical trials, which have translated into positive immunotherapeutic registrations for cancer patients worldwide. These antibodies are generally well tolerated, and certain patients achieve durable responses. However, given the resistance of some patients to this form of therapy, along with its other drawbacks, such as adverse events, alternatives are constantly being sought. Specifically, new drugs targeting already known molecules are being tested, and new potential targets are being explored. The aim of this paper is to provide an overview of the latest developments in this area.
Collapse
Affiliation(s)
- Natalia Krzyżanowska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland; (K.W.-K.); (J.M.); (P.K.)
| | | | | | | |
Collapse
|
23
|
Glez-Vaz J, Azpilikueta A, Olivera I, Cirella A, Teijeira A, Ochoa MC, Alvarez M, Eguren-Santamaria I, Luri-Rey C, Rodriguez-Ruiz ME, Nie X, Chen L, Guedan S, Sanamed MF, Luis Perez Gracia J, Melero I. Soluble CD137 as a dynamic biomarker to monitor agonist CD137 immunotherapies. J Immunother Cancer 2022; 10:jitc-2021-003532. [PMID: 35236742 PMCID: PMC8896037 DOI: 10.1136/jitc-2021-003532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background On the basis of efficacy in mouse tumor models, multiple CD137 (4-1BB) agonist agents are being preclinically and clinically developed. The costimulatory molecule CD137 is inducibly expressed as a transmembrane or as a soluble protein (sCD137). Moreover, the CD137 cytoplasmic signaling domain is a key part in approved chimeric antigen receptors (CARs). Reliable pharmacodynamic biomarkers for CD137 ligation and costimulation of T cells will facilitate clinical development of CD137 agonists in the clinic. Methods We used human and mouse CD8 T cells undergoing activation to measure CD137 transcription and protein expression levels determining both the membrane-bound and soluble forms. In tumor-bearing mice plasma sCD137 concentrations were monitored on treatment with agonist anti-CD137 monoclonal antibodies (mAbs). Human CD137 knock-in mice were treated with clinical-grade agonist anti-human CD137 mAb (Urelumab). Sequential plasma samples were collected from the first patients intratumorally treated with Urelumab in the INTRUST clinical trial. Anti-mesothelin CD137-encompassing CAR-transduced T cells were stimulated with mesothelin coated microbeads. sCD137 was measured by sandwich ELISA and Luminex. Flow cytometry was used to monitor CD137 surface expression. Results CD137 costimulation upregulates transcription and protein expression of CD137 itself including sCD137 in human and mouse CD8 T cells. Immunotherapy with anti-CD137 agonist mAb resulted in increased plasma sCD137 in mice bearing syngeneic tumors. sCD137 induction is also observed in human CD137 knock-in mice treated with Urelumab and in mice transiently humanized with T cells undergoing CD137 costimulation inside subcutaneously implanted Matrigel plugs. The CD137 signaling domain-containing CAR T cells readily released sCD137 and acquired CD137 surface expression on antigen recognition. Patients treated intratumorally with low dose Urelumab showed increased plasma concentrations of sCD137. Conclusion sCD137 in plasma and CD137 surface expression can be used as quantitative parameters dynamically reflecting therapeutic costimulatory activity elicited by agonist CD137-targeted agents.
Collapse
Affiliation(s)
- Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Xinxin Nie
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miguel F Sanamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jose Luis Perez Gracia
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain .,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
24
|
Immunologic Effects of Stereotactic Body Radiotherapy in Dogs with Spontaneous Tumors and the Impact of Intratumoral OX40/TLR Agonist Immunotherapy. Int J Mol Sci 2022; 23:ijms23020826. [PMID: 35055015 PMCID: PMC8775899 DOI: 10.3390/ijms23020826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/04/2022] Open
Abstract
Stereotactic body radiotherapy (SBRT) is known to induce important immunologic changes within the tumor microenvironment (TME). However, little is known regarding the early immune responses within the TME in the first few weeks following SBRT. Therefore, we used the canine spontaneous tumor model to investigate TME responses to SBRT, and how local injection of immune modulatory antibodies to OX40 and TLR 3/9 agonists might modify those responses. Pet dogs with spontaneous cancers (melanoma, carcinoma, sarcoma, n = 6 per group) were randomized to treatment with either SBRT or SBRT combined with local immunotherapy. Serial tumor biopsies and serum samples were analyzed for immunologic responses. SBRT alone resulted at two weeks after treatment in increased tumor densities of CD3+ T cells, FoxP3+ Tregs, and CD204+ macrophages, and increased expression of genes associated with immunosuppression. The addition of OX40/TLR3/9 immunotherapy to SBRT resulted in local depletion of Tregs and tumor macrophages and reduced Treg-associated gene expression (FoxP3), suppressed macrophage-associated gene expression (IL-8), and suppressed exhausted T cell-associated gene expression (CTLA4). Increased concentrations of IL-7, IL-15, and IL-18 were observed in serum of animals treated with SBRT and immunotherapy, compared to animals treated with SBRT. A paradoxical decrease in the density of effector CD3+ T cells was observed in tumor tissues that received combined SBRT and immunotherapy as compared to animals treated with SBRT only. In summary, these results obtained in a spontaneous large animal cancer model indicate that addition of OX40/TLR immunotherapy to SBRT modifies important immunological effects both locally and systemically.
Collapse
|
25
|
Karpf L, Trichot C, Faucheux L, Legbre I, Grandclaudon M, Lahoute C, Mattoo H, Pasquier B, Soumelis V. A multivariate modeling framework to quantify immune checkpoint context-dependent stimulation on T cells. Cell Discov 2022; 8:1. [PMID: 34983927 PMCID: PMC8727669 DOI: 10.1038/s41421-021-00352-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
Cells receive, and adjust to, various stimuli, which function as part of complex microenvironments forming their "context". The possibility that a given context impacts the response to a given stimulus defines "context-dependency" and it explains large parts of the functional variability of physiopathological and pharmacological stimuli. Currently, there is no framework to analyze and quantify context-dependency over multiple contexts and cellular response outputs. We established an experimental system including a stimulus of interest, applied to an immune cell type in several contexts. We studied the function of OX40 ligand (OX40L) on T helper (Th) cell differentiation, in 4 molecular (Th0, Th1, Th2, and Th17) and 11 dendritic cell (DC) contexts (monocyte-derived DC and cDC2 conditions). We measured 17 Th output cytokines in 302 observations, and developed a statistical modeling strategy to quantify OX40L context-dependency. This revealed highly variable context-dependency, depending on the output cytokine and context type itself. Among molecular contexts, Th2 was the most influential on OX40L function. Among DC contexts, the DC type rather than the activating stimuli was dominant in controlling OX40L context-dependency. This work mathematically formalizes the complex determinants of OX40L functionality, and provides a unique framework to decipher and quantify the context-dependent variability of any biomolecule or drug function.
Collapse
Affiliation(s)
- Léa Karpf
- grid.418596.70000 0004 0639 6384Institut Curie, PSL University, INSERM U932, Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France
| | - Coline Trichot
- grid.418596.70000 0004 0639 6384Institut Curie, PSL University, INSERM U932, Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France ,grid.417924.dImmunology and Inflammation Therapeutic Area, Sanofi, Vitry-sur-Seine, France
| | - Lilith Faucheux
- grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM UMR-1153, ECSTRRA Team, Paris, France
| | - Iris Legbre
- grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France
| | | | - Charlotte Lahoute
- grid.417924.dImmunology and Inflammation Therapeutic Area, Sanofi, Vitry-sur-Seine, France
| | - Hamid Mattoo
- grid.417555.70000 0000 8814 392XImmunology and Inflammation Therapeutic Area, Sanofi, Cambridge, MA USA
| | - Benoit Pasquier
- grid.417924.dImmunology and Inflammation Therapeutic Area, Sanofi, Vitry-sur-Seine, France
| | - Vassili Soumelis
- Institut Curie, PSL University, INSERM U932, Paris, France. .,Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie, Paris, France.
| |
Collapse
|
26
|
Diab A, Hamid O, Thompson JA, Ros W, Eskens FA, Doi T, Hu-Lieskovan S, Klempner SJ, Ganguly B, Fleener C, Wang X, Joh T, Liao K, Salek-Ardakani S, Taylor CT, Chou J, El-Khoueiry AB. A Phase I, Open-Label, Dose-Escalation Study of the OX40 Agonist Ivuxolimab in Patients with Locally Advanced or Metastatic Cancers. Clin Cancer Res 2022; 28:71-83. [PMID: 34615725 PMCID: PMC9401502 DOI: 10.1158/1078-0432.ccr-21-0845] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/08/2021] [Accepted: 09/30/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Stimulation of effector T cells is an appealing immunotherapeutic approach in oncology. OX40 (CD134) is a costimulatory receptor expressed on activated CD4+ and CD8+ T cells. Induction of OX40 following antigen recognition results in enhanced T-cell activation, proliferation, and survival, and OX40 targeting shows therapeutic efficacy in preclinical studies. We report the monotherapy dose-escalation portion of a multicenter, phase I trial (NCT02315066) of ivuxolimab (PF-04518600), a fully human immunoglobulin G2 agonistic monoclonal antibody specific for human OX40. PATIENTS AND METHODS Adult patients (N = 52) with selected locally advanced or metastatic cancers received ivuxolimab 0.01 to 10 mg/kg. Primary endpoints were safety and tolerability. Secondary/exploratory endpoints included preliminary assessment of antitumor activity and biomarker analyses. RESULTS The most common all-causality adverse events were fatigue (46.2%), nausea (28.8%), and decreased appetite (25.0%). Of 31 treatment-related adverse events, 30 (96.8%) were grade ≤2. No dose-limiting toxicities occurred. Ivuxolimab exposure increased in a dose-proportionate manner from 0.3 to 10 mg/kg. Full peripheral blood target engagement occurred at ≥0.3 mg/kg. Three (5.8%) patients achieved a partial response, and disease control was achieved in 56% of patients. Increased CD4+ central memory T-cell proliferation and activation, and clonal expansion of CD4+ and CD8+ T cells in peripheral blood were observed at 0.1 to 3.0 mg/kg. Increased immune cell infiltrate and OX40 expression were evident in on-treatment tumor biopsies. CONCLUSIONS Ivuxolimab was generally well tolerated with on-target immune activation at clinically relevant doses, showed preliminary antitumor activity, and may serve as a partner for combination studies.
Collapse
Affiliation(s)
- Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Corresponding Author: Adi Diab, UT MD Anderson Cancer Center, 1400 Holcombe Boulevard, Faculty Center Room Fc11.3004, Houston, TX 77030. Phone: 713-745-7336; Fax: 713–745–1046; E-mail:
| | - Omid Hamid
- Immuno-Oncology and Cutaneous Malignancies, The Angeles Clinic and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, California
| | - John A. Thompson
- Division of Medical Oncology, University of Washington School of Medicine/Seattle Cancer Care Alliance, Seattle, Washington
| | - Willeke Ros
- Department of Pharmacology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ferry A.L.M. Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Toshihiko Doi
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Siwen Hu-Lieskovan
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California
| | - Samuel J. Klempner
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | - Anthony B. El-Khoueiry
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| |
Collapse
|
27
|
Li W, Zhang X, Zhang C, Yan J, Hou X, Du S, Zeng C, Zhao W, Deng B, McComb DW, Zhang Y, Kang DD, Li J, Carson WE, Dong Y. Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nat Commun 2021; 12:7264. [PMID: 34907171 PMCID: PMC8671507 DOI: 10.1038/s41467-021-27434-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/18/2021] [Indexed: 01/07/2023] Open
Abstract
Antibodies targeting costimulatory receptors of T cells have been developed for the activation of T cell immunity in cancer immunotherapy. However, costimulatory molecule expression is often lacking in tumor-infiltrating immune cells, which can impede antibody-mediated immunotherapy. Here, we hypothesize that delivery of costimulatory receptor mRNA to tumor-infiltrating T cells will enhance the antitumor effects of antibodies. We first design a library of biomimetic nanoparticles and find that phospholipid nanoparticles (PL1) effectively deliver costimulatory receptor mRNA (CD137 or OX40) to T cells. Then, we demonstrate that the combination of PL1-OX40 mRNA and anti-OX40 antibody exhibits significantly improved antitumor activity compared to anti-OX40 antibody alone in multiple tumor models. This treatment regimen results in a 60% complete response rate in the A20 tumor model, with these mice being resistant to rechallenge by A20 tumor cells. Additionally, the combination of PL1-OX40 mRNA and anti-OX40 antibody significantly boosts the antitumor immune response to anti-PD-1 + anti-CTLA-4 antibodies in the B16F10 tumor model. This study supports the concept of delivering mRNA encoding costimulatory receptors in combination with the corresponding agonistic antibody as a strategy to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Wenqing Li
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Xinfu Zhang
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA ,grid.30055.330000 0000 9247 7930State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Chengxiang Zhang
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Jingyue Yan
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Xucheng Hou
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Shi Du
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Chunxi Zeng
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Weiyu Zhao
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Binbin Deng
- grid.261331.40000 0001 2285 7943Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH 43212 USA
| | - David W. McComb
- grid.261331.40000 0001 2285 7943Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH 43212 USA ,grid.261331.40000 0001 2285 7943Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Yuebao Zhang
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Diana D. Kang
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Junan Li
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - William E. Carson
- grid.412332.50000 0001 1545 0811Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and The OSU James Comprehensive Cancer Center, Columbus, OH USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA. .,The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, 43210, USA. .,The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Radiation Oncology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
28
|
Malkova AM, Sharoyko VV, Zhukova NV, Gubal AR, Orlova RV. Laboratory biomarkers of an effective antitumor immune response. Clinical significance. Cancer Treat Res Commun 2021; 29:100489. [PMID: 34837797 DOI: 10.1016/j.ctarc.2021.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/18/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The modern checkpoint inhibitors block the programmed death-1 receptor and its ligand, cytotoxic T-lymphocyte-associated antigen 4 on tumor cells and lymphocytes, that induces cytotoxic reactions. Nowadays, there are no approved clinical and laboratory predictor markers of immune therapy efficacy, which would allow a more personalized approach to patient selection and treatment. The aim of this review is to analyze possible biomarkers of efficacy for treatment with checkpoint inhibitors according to the pathogenic mechanisms of drug action. The review revealed possible predictive biomarkers, that could be classified to 3 groups: biomarkers of high mutagenic potential of the tumor, biomarkers of high activity of adaptive immunity, biomarkers of low activity of the tumor microenvironment. The determination of the described markers before the start of therapy can be used to formulate a treatment regimen, in which the use of various immunomodulatory drugs, inhibitors of proinflammatory cytokines, angiogenic molecules, and probiotics can be considered.
Collapse
Affiliation(s)
- A M Malkova
- Saint Petersburg State University, 7/9 Universitetskaya Emb., St Petersburg 199034, Russian Federation.
| | - V V Sharoyko
- Saint Petersburg State University, 7/9 Universitetskaya Emb., St Petersburg 199034, Russian Federation.
| | - N V Zhukova
- Saint Petersburg State University, 7/9 Universitetskaya Emb., St Petersburg 199034, Russian Federation.
| | - A R Gubal
- Saint Petersburg State University, 7/9 Universitetskaya Emb., St Petersburg 199034, Russian Federation.
| | - R V Orlova
- Saint Petersburg State University, 7/9 Universitetskaya Emb., St Petersburg 199034, Russian Federation.
| |
Collapse
|
29
|
Corti C, Nicolò E, Curigliano G. Novel immune targets for the treatment of triple-negative breast cancer. Expert Opin Ther Targets 2021; 25:815-834. [PMID: 34763593 DOI: 10.1080/14728222.2021.2006187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION To overcome mechanisms of primary and secondary resistance to the anti-tumor immune response, novel targets such as ICOS, LAG3, and TIM3 are currently being explored at preclinical and early-phase clinical levels. AREAS COVERED This article examines the landscape of the immune therapeutics investigated in early-phase clinical trials for TNBC. Preclinical rationale is provided for each immune target, predominant expression, and function. Clinical implications and preliminary available trial results are discussed and finally, we reflect on aspects of future expectations and challenges in this field. EXPERT OPINION Several immune strategies have been investigated in TNBC, including co-inhibitory molecules beyond PD1-PD-L1 axis, co-stimulatory checkpoints, cancer vaccines, adoptive cell transfer, combination therapies, as well as different routes of administration. Most of approaches showed signs of anti-cancer activity and a good safety profile in early-phase clinical trials. Since IO provided benefit only to a small subgroup of TNBC patients so far, identifying predictive biomarkers is a priority to refine patient-selection. Data from ongoing clinical trials, with the gradually improving interpretation of the breast tumor immune environment, will hopefully refine the role of new immune targets for the treatment of TNBC.
Collapse
Affiliation(s)
- Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Hematology (DIPO), University of Milano, Milano, Italy
| | - Eleonora Nicolò
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Hematology (DIPO), University of Milano, Milano, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Hematology (DIPO), University of Milano, Milano, Italy
| |
Collapse
|
30
|
Roles of OX40 and OX40 Ligand in Mycosis Fungoides and Sézary Syndrome. Int J Mol Sci 2021; 22:ijms222212576. [PMID: 34830466 PMCID: PMC8617822 DOI: 10.3390/ijms222212576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS), the most common types of cutaneous T-cell lymphoma (CTCL), are characterized by proliferation of mature CD4+ T-helper cells. Patients with advanced-stage MF and SS have poor prognosis, with 5-year survival rates of 52%. Although a variety of systemic therapies are currently available, there are no curative options for such patients except for stem cell transplantation, and thus the treatment of advanced MF and SS still remains challenging. Therefore, elucidation of the pathophysiology of MF/SS and development of medical treatments are desired. In this study, we focused on a molecule called OX40. We examined OX40 and OX40L expression and function using clinical samples of MF and SS and CTCL cell lines. OX40 and OX40L were co-expressed on tumor cells of MF and SS. OX40 and OX40L expression was increased and correlated with disease severity markers in MF/SS patients. Anti-OX40 antibody and anti-OX40L antibody suppressed the proliferation of CTCL cell lines both in vitro and in vivo. These results suggest that OX40–OX40L interactions could contribute to the proliferation of MF/SS tumor cells and that the disruption of OX40–OX40L interactions could become a new therapeutic strategy for the treatment of MF/SS.
Collapse
|
31
|
Nobashi TW, Mayer AT, Xiao Z, Chan CT, Chaney AM, James ML, Gambhir SS. Whole-body PET Imaging of T-cell Response to Glioblastoma. Clin Cancer Res 2021; 27:6445-6456. [PMID: 34548318 DOI: 10.1158/1078-0432.ccr-21-1412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy is a promising approach for many oncological malignancies, including glioblastoma, however, there are currently no available tools or biomarkers to accurately assess whole-body immune responses in patients with glioblastoma treated with immunotherapy. Here, the utility of OX40, a costimulatory molecule mainly expressed on activated effector T cells known to play an important role in eliminating cancer cells, was evaluated as a PET imaging biomarker to quantify and track response to immunotherapy. EXPERIMENTAL DESIGN A subcutaneous vaccination approach of CpG oligodeoxynucleotide, OX40 mAb, and tumor lysate at a remote site in a murine orthotopic glioma model was developed to induce activation of T cells distantly while monitoring their distribution in stimulated lymphoid organs with respect to observed therapeutic effects. To detect OX40-positive T cells, we utilized our in-house-developed 89Zr-DFO-OX40 mAb and in vivo PET/CT imaging. RESULTS ImmunoPET with 89Zr-DFO-OX40 mAb revealed strong OX40-positive responses with high specificity, not only in the nearest lymph node from vaccinated area (mean, 20.8%ID/cc) but also in the spleen (16.7%ID/cc) and the tumor draining lymph node (11.4%ID/cc). When the tumor was small (<106 p/sec/cm2/sr in bioluminescence imaging), a high number of responders and percentage shrinkage in tumor signal was indicated after only a single cycle of vaccination. CONCLUSIONS The results highlight the promise of clinically translating cancer vaccination as a potential glioma therapy, as well as the benefits of monitoring efficacy of these treatments using immunoPET imaging of T-cell activation.
Collapse
Affiliation(s)
- Tomomi W Nobashi
- Department of Radiology, Stanford University, Stanford, California.
| | - Aaron T Mayer
- Department of Radiology, Stanford University, Stanford, California. .,Department of Bioengineering, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Bio-X Program at Stanford, Stanford University, Stanford, California
| | - Zunyu Xiao
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Molecular Imaging Research Center of Harbin Medical University, Harbin, China
| | - Carmel T Chan
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Aisling M Chaney
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Michelle L James
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University, Stanford, California.,Department of Bioengineering, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Bio-X Program at Stanford, Stanford University, Stanford, California.,Department of Materials Science and Engineering, Stanford University, Stanford, California.,Canary Center at Stanford, Stanford University, Stanford, California
| |
Collapse
|
32
|
Zhang H, Li F, Cao J, Wang X, Cheng H, Qi K, Wang G, Xu K, Zheng J, Fu YX, Yang X. A chimeric antigen receptor with antigen-independent OX40 signaling mediates potent antitumor activity. Sci Transl Med 2021; 13:13/578/eaba7308. [PMID: 33504651 DOI: 10.1126/scitranslmed.aba7308] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 08/24/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Although chimeric antigen receptor (CAR)-modified T cells have shown great success in the treatment of B cell malignancies, this approach has limited efficacy in patients with solid tumors. Various modifications in CAR structure have been explored to improve this efficacy, including the incorporation of two costimulatory domains. Because costimulatory signals are transduced together with T cell receptor signals during T cell activation, we engineered a type of CAR-T cells with a costimulatory signal that was activated independently from the tumor antigen to recapitulate physiological stimulation. We screened 12 costimulatory receptors to identify OX40 as the most effective CAR-T function enhancer. Our data indicated that these new CAR-T cells showed superior proliferation capability compared to current second-generation CAR-T cells. OX40 signaling reduced CAR-T cell apoptosis through up-regulation of genes encoding Bcl-2 family members and enhanced proliferation through increased activation of the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase), and PI3K-AKT (phosphoinositide 3-kinase to the kinase AKT) pathways. OX40 signaling not only enhanced the cytotoxicity of CAR-T cells but also reduced exhaustion markers, thereby maintaining their function in immunosuppressive tumor microenvironments. In mouse tumor models and in patients with metastatic lymphoma, these CAR-T cells exhibited robust amplification and antitumor activity. Our findings provide an alternative option for CAR-T optimization with the potential to overcome the challenge of treating solid tumors.
Collapse
Affiliation(s)
- Huihui Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fanlin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Cao
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xin Wang
- Shanghai Longyao Biotechnology Limited, Shanghai 201203, China
| | - Hai Cheng
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Kunming Qi
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Kailin Xu
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. .,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Mascarelli DE, Rosa RSM, Toscaro JM, Semionatto IF, Ruas LP, Fogagnolo CT, Lima GC, Bajgelman MC. Boosting Antitumor Response by Costimulatory Strategies Driven to 4-1BB and OX40 T-cell Receptors. Front Cell Dev Biol 2021; 9:692982. [PMID: 34277638 PMCID: PMC8277962 DOI: 10.3389/fcell.2021.692982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy explores several strategies to enhance the host immune system’s ability to detect and eliminate cancer cells. The use of antibodies that block immunological checkpoints, such as anti–programed death 1/programed death 1 ligand and cytotoxic T-lymphocyte–associated protein 4, is widely recognized to generate a long-lasting antitumor immune response in several types of cancer. Evidence indicates that the elimination of tumors by T cells is the key for tumor control. It is well known that costimulatory and coinhibitory pathways are critical regulators in the activation of T cells. Besides blocking checkpoints inhibitors, the agonistic signaling on costimulatory molecules also plays an important role in T-cell activation and antitumor response. Therefore, molecules driven to costimulatory pathways constitute promising targets in cancer therapy. The costimulation of tumor necrosis factor superfamily receptors on lymphocytes surface may transduce signals that control the survival, proliferation, differentiation, and effector functions of these immune cells. Among the members of the tumor necrosis factor receptor superfamily, there are 4-1BB and OX40. Several clinical studies have been carried out targeting these molecules, with agonist monoclonal antibodies, and preclinical studies exploring their ligands and other experimental approaches. In this review, we discuss functional aspects of 4-1BB and OX40 costimulation, as well as the progress of its application in immunotherapies.
Collapse
Affiliation(s)
- Daniele E Mascarelli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Rhubia S M Rosa
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Jessica M Toscaro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Medical School, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isadora F Semionatto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Luciana P Ruas
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Carolinne T Fogagnolo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Medical School of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriel C Lima
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Pro Rectory of Graduation, University of São Paulo, São Paulo, Brazil
| | - Marcio C Bajgelman
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil.,Medical School, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
34
|
Pourakbari R, Hajizadeh F, Parhizkar F, Aghebati-Maleki A, Mansouri S, Aghebati-Maleki L. Co-stimulatory agonists: An insight into the immunotherapy of cancer. EXCLI JOURNAL 2021; 20:1055-1085. [PMID: 34267616 PMCID: PMC8278219 DOI: 10.17179/excli2021-3522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Immune checkpoint pathways consist of stimulatory pathways, which can function like a strong impulse to promote T helper cells or killer CD8+ cells activation and proliferation. On the other hand, inhibitory pathways keep self-tolerance of the immune response. Increasing immunological activity by stimulating and blocking these signaling pathways are recognized as immune checkpoint therapies. Providing the best responses of CD8+ T cell needs the activation of T cell receptor along with the co-stimulation that is generated via stimulatory checkpoint pathways ligation including Inducible Co-Stimulator (ICOS), CD40, 4-1BB, GITR, and OX40. In cancer, programmed cell death receptor-1 (PD-1), Programmed cell death ligand-1(PD-L1) and Cytotoxic T Lymphocyte-Associated molecule-4 (CTLA-4) are the most known inhibitory checkpoint pathways, which can hinder the immune responses which have specifically anti-tumor characteristics and attenuate T cell activation and also cytokine production. The use of antagonistic monoclonal antibodies (mAbs) that block CTLA-4 or PD-1 activation is used in a variety of malignancies. It has been reported that they can lead to an increase in T cells and thereby strengthen anti-tumor immunity. Agonists of stimulatory checkpoint pathways can induce strong immunologic responses in metastatic patients; however, for achieving long-lasting benefits for the wide range of patients, efficient combinatorial therapies are required. In the present review, we focus on the preclinical and basic research on the molecular and cellular mechanisms by which immune checkpoint inhibitor blockade or other approaches with co-stimulatory agonists work together to improve T-cell antitumor immunity.
Collapse
Affiliation(s)
- Ramin Pourakbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Hajizadeh
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Parhizkar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Mansouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
35
|
van den Bijgaart RJE, Schuurmans F, Fütterer JJ, Verheij M, Cornelissen LAM, Adema GJ. Immune Modulation Plus Tumor Ablation: Adjuvants and Antibodies to Prime and Boost Anti-Tumor Immunity In Situ. Front Immunol 2021; 12:617365. [PMID: 33936033 PMCID: PMC8079760 DOI: 10.3389/fimmu.2021.617365] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
In situ tumor ablation techniques, like radiotherapy, cryo- and heat-based thermal ablation are successfully applied in oncology for local destruction of tumor masses. Although diverse in technology and mechanism of inducing cell death, ablative techniques share one key feature: they generate tumor debris which remains in situ. This tumor debris functions as an unbiased source of tumor antigens available to the immune system and has led to the concept of in situ cancer vaccination. Most studies, however, report generally modest tumor-directed immune responses following local tumor ablation as stand-alone treatment. Tumors have evolved mechanisms to create an immunosuppressive tumor microenvironment (TME), parts of which may admix with the antigen depot. Provision of immune stimuli, as well as approaches that counteract the immunosuppressive TME, have shown to be key to boost ablation-induced anti-tumor immunity. Recent advances in protein engineering have yielded novel multifunctional antibody formats. These multifunctional antibodies can provide a combination of distinct effector functions or allow for delivery of immunomodulators specifically to the relevant locations, thereby mitigating potential toxic side effects. This review provides an update on immune activation strategies that have been tested to act in concert with tumor debris to achieve in situ cancer vaccination. We further provide a rationale for multifunctional antibody formats to be applied together with in situ ablation to boost anti-tumor immunity for local and systemic tumor control.
Collapse
Affiliation(s)
- Renske J E van den Bijgaart
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fabian Schuurmans
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jurgen J Fütterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Robotics and Mechatronics, University of Twente, Enschede, Netherlands
| | - Marcel Verheij
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lenneke A M Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
36
|
Vathiotis IA, Johnson JM, Argiris A. Enhancing programmed cell death protein 1 axis inhibition in head and neck squamous cell carcinoma: Combination immunotherapy. Cancer Treat Rev 2021; 97:102192. [PMID: 33819755 DOI: 10.1016/j.ctrv.2021.102192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Anti-programmed cell death protein 1 immunotherapy has become the new standard in the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). However, the population that benefits is small, warranting drug combinations and novel approaches. HNSCC is a profoundly immunosuppressive disease, characterized by the interplay among different immune regulatory pathways. As clinical trials evaluating immunotherapy combinations in patients with HNSCC have started producing preliminary results, preclinical evidence on potential new targets for combination immunotherapy continues to accumulate. This review summarizes emerging clinical and preclinical data on immunotherapy combinations for the treatment of HNSCC.
Collapse
Affiliation(s)
- Ioannis A Vathiotis
- Department of Pathology, Yale University, 310 Cedar Street, New Haven, CT, USA
| | - Jennifer M Johnson
- Department of Medical Oncology, Thomas Jefferson University, 1025 Walnut Street, Suite 700, Philadelphia, PA, USA
| | - Athanassios Argiris
- Department of Medical Oncology, Thomas Jefferson University, 1025 Walnut Street, Suite 700, Philadelphia, PA, USA
| |
Collapse
|
37
|
Germain C, Devi-Marulkar P, Knockaert S, Biton J, Kaplon H, Letaïef L, Goc J, Seguin-Givelet A, Gossot D, Girard N, Validire P, Lefèvre M, Damotte D, Alifano M, Lemoine FM, Steele KE, Teillaud JL, Hammond SA, Dieu-Nosjean MC. Tertiary Lymphoid Structure-B Cells Narrow Regulatory T Cells Impact in Lung Cancer Patients. Front Immunol 2021; 12:626776. [PMID: 33763071 PMCID: PMC7983944 DOI: 10.3389/fimmu.2021.626776] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
The presence of tertiary lymphoid structures (TLS) in the tumor microenvironment is associated with better clinical outcome in many cancers. In non-small cell lung cancer (NSCLC), we have previously showed that a high density of B cells within TLS (TLS-B cells) is positively correlated with tumor antigen-specific antibody responses and increased intratumor CD4+ T cell clonality. Here, we investigated the relationship between the presence of TLS-B cells and CD4+ T cell profile in NSCLC patients. The expression of immune-related genes and proteins on B cells and CD4+ T cells was analyzed according to their relationship to TLS-B density in a prospective cohort of 56 NSCLC patients. We observed that tumor-infiltrating T cells showed marked differences according to TLS-B cell presence, with higher percentages of naïve, central-memory, and activated CD4+ T cells and lower percentages of both immune checkpoint (ICP)-expressing CD4+ T cells and regulatory T cells (Tregs) in the TLS-Bhigh tumors. A retrospective study of 538 untreated NSCLC patients showed that high TLS-B cell density was even able to counterbalance the deleterious impact of high Treg density on patient survival, and that TLS-Bhigh Treglow patients had the best clinical outcomes. Overall, the correlation between the density of TLS-Bhigh tumors with early differentiated, activated and non-regulatory CD4+ T cell cells suggest that B cells may play a central role in determining protective T cell responses in NSCLC patients.
Collapse
Affiliation(s)
- Claire Germain
- Sorbonne Université, UMRS 1135, Faculté de Médecine Sorbonne Université, Paris, France.,Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Priyanka Devi-Marulkar
- Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Samantha Knockaert
- Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Jérôme Biton
- Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Hélène Kaplon
- Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Laïla Letaïef
- Sorbonne Université, UMRS 1135, Faculté de Médecine Sorbonne Université, Paris, France.,Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Jérémy Goc
- Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Agathe Seguin-Givelet
- Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Thoracic Department, Curie-Montsouris Thorax Institute, Institut Mutualiste Montsouris, Paris, France.,Université Sorbonne Paris Nord, Sorbonne Paris Cité, Faculté de Médecine SMBH, Bobigny, France
| | - Dominique Gossot
- Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Thoracic Department, Curie-Montsouris Thorax Institute, Institut Mutualiste Montsouris, Paris, France
| | - Nicolas Girard
- Oncology Department, Curie-Montsouris Thorax Institute, Institut Curie, Paris, France
| | - Pierre Validire
- Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Marine Lefèvre
- Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Thoracic Department, Curie-Montsouris Thorax Institute, Institut Mutualiste Montsouris, Paris, France.,Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Diane Damotte
- Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France.,Department of Pathology, Assistance Publique-Hopitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - Marco Alifano
- Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France.,Department of Thoracic Surgery, Assistance Publique-Hopitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - François M Lemoine
- Sorbonne Université, UMRS 1135, Faculté de Médecine Sorbonne Université, Paris, France.,Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Keith E Steele
- Oncology Translational Sciences, AstraZeneca, Gaithersburg, MD, United States
| | - Jean-Luc Teillaud
- Sorbonne Université, UMRS 1135, Faculté de Médecine Sorbonne Université, Paris, France.,Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| | - Scott A Hammond
- Oncology Research, AstraZeneca, Gaithersburg, MD, United States
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne Université, UMRS 1135, Faculté de Médecine Sorbonne Université, Paris, France.,Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Sorbonne Université, UMRS 1138, Paris, France.,Laboratory "Cancer, Immune Control, and Escape", INSERM U1138, Cordeliers Research Center, Paris, France.,Université de Paris, UMRS 1138, Paris, France
| |
Collapse
|
38
|
Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. Nat Commun 2021; 12:1047. [PMID: 33594075 PMCID: PMC7886909 DOI: 10.1038/s41467-021-21383-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the success of checkpoint blockade in some cancer patients, there is an unmet need to improve outcomes. Targeting alternative pathways, such as costimulatory molecules (e.g. OX40, GITR, and 4-1BB), can enhance T cell immunity in tumor-bearing hosts. Here we describe the results from a phase Ib clinical trial (NCT02274155) in which 17 patients with locally advanced head and neck squamous cell carcinoma (HNSCC) received a murine anti-human OX40 agonist antibody (MEDI6469) prior to definitive surgical resection. The primary endpoint was to determine safety and feasibility of the anti-OX40 neoadjuvant treatment. The secondary objective was to assess the effect of anti-OX40 on lymphocyte subsets in the tumor and blood. Neoadjuvant anti-OX40 was well tolerated and did not delay surgery, thus meeting the primary endpoint. Peripheral blood phenotyping data show increases in CD4+ and CD8+ T cell proliferation two weeks after anti-OX40 administration. Comparison of tumor biopsies before and after treatment reveals an increase of activated, conventional CD4+ tumor-infiltrating lymphocytes (TIL) in most patients and higher clonality by TCRβ sequencing. Analyses of CD8+ TIL show increases in tumor-antigen reactive, proliferating CD103+ CD39+ cells in 25% of patients with evaluable tumor tissue (N = 4/16), all of whom remain disease-free. These data provide evidence that anti-OX40 prior to surgery is safe and can increase activation and proliferation of CD4+ and CD8+ T cells in blood and tumor. Our work suggests that increases in the tumor-reactive CD103+ CD39+ CD8+ TIL could serve as a potential biomarker of anti-OX40 clinical activity. Different neoadjuvant therapies have been proposed to improve immunotherapy for cancer treatment. Here, the authors perform a phase Ib clinical trial where an agonist OX40 antibody provided prior to surgery is well tolerated and increases proliferation and activation of tumor antigen-specific T cells in head and neck cancer patients.
Collapse
|
39
|
The Landscape of Immunotherapy in Advanced NSCLC: Driving Beyond PD-1/PD-L1 Inhibitors (CTLA-4, LAG3, IDO, OX40, TIGIT, Vaccines). Curr Oncol Rep 2021; 23:126. [PMID: 34453261 PMCID: PMC8397682 DOI: 10.1007/s11912-021-01124-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In this review, we analyzed the current landscape of non-PD-(L)1 targeting immunotherapy. RECENT FINDINGS The advent of immunotherapy has completely changed the standard approach toward advanced NSCLC. Inhibitors of the PD-1/PD-L1 axis have quickly taken place as first-line treatment for NSCLC patients without targetable "driver" mutations. However, a non-negligible portion of patients derive modest benefit from immune-checkpoint inhibitors, and valid second-line alternatives are lacking, pushing researchers to analyze other molecules and pathways as potentially viable targets in the struggle against NSCLC. Starting from the better characterized CTLA-4 inhibitors, we then critically collected the actual knowledge on NSCLC vaccines as well as on other emerging molecules, many of them in their early phase of testing, to provide to the reader a comprehensive overview of the state of the art of immunotherapy in NSCLC beyond PD-1/PD-L1 inhibitors.
Collapse
|
40
|
Economopoulou P, Kotsantis I, Psyrri A. Tumor Microenvironment and Immunotherapy Response in Head and Neck Cancer. Cancers (Basel) 2020; 12:E3377. [PMID: 33203092 PMCID: PMC7696050 DOI: 10.3390/cancers12113377] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment (TME) encompasses cellular and non-cellular components which play an important role in tumor evolution, invasion, and metastasis. A complicated interplay between tumor cells and adjacent TME cells, such as stromal cells, immune cells, inflammatory cells, and cytokines, leads to severe immunosuppression and the proliferation of cancer cells in several solid tumors. An immunosuppressive TME has a significant impact on treatment resistance and may guide response to immunotherapy. In head and neck cancer (HNC), immunotherapeutic drugs have been incorporated in everyday clinical practice. However, despite an exceptional rate of durable responses, only a low percentage of patients respond. In this review, we will focus on the complex interactions occurring in this dynamic system, the TME, which orchestrate key events that lead to tumor progression, immune escape, and resistance. Furthermore, we will summarize current clinical trials that depict the TME as a potential therapeutic target for improved patient selection.
Collapse
Affiliation(s)
| | | | - Amanda Psyrri
- Section of Medical Oncology, Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (I.K.)
| |
Collapse
|
41
|
Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 2020; 20:651-668. [PMID: 32433532 PMCID: PMC7238960 DOI: 10.1038/s41577-020-0306-5] [Citation(s) in RCA: 2177] [Impact Index Per Article: 544.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
The T lymphocyte, especially its capacity for antigen-directed cytotoxicity, has become a central focus for engaging the immune system in the fight against cancer. Basic science discoveries elucidating the molecular and cellular biology of the T cell have led to new strategies in this fight, including checkpoint blockade, adoptive cellular therapy and cancer vaccinology. This area of immunological research has been highly active for the past 50 years and is now enjoying unprecedented bench-to-bedside clinical success. Here, we provide a comprehensive historical and biological perspective regarding the advent and clinical implementation of cancer immunotherapeutics, with an emphasis on the fundamental importance of T lymphocyte regulation. We highlight clinical trials that demonstrate therapeutic efficacy and toxicities associated with each class of drug. Finally, we summarize emerging therapies and emphasize the yet to be elucidated questions and future promise within the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Alex D Waldman
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jill M Fritz
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
42
|
Haak F, Obrecht I, Tosti N, Weixler B, Mechera R, Däster S, von Strauss M, Delko T, Spagnoli GC, Terracciano L, Sconocchia G, von Flüe M, Kraljević M, Droeser RA. Tumor Infiltration by OX40+ Cells Enhances the Prognostic Significance of CD16+ Cell Infiltration in Colorectal Cancer. Cancer Control 2020; 27:1073274820903383. [PMID: 32107932 PMCID: PMC7053789 DOI: 10.1177/1073274820903383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objectives: Analysis of tumor immune infiltration has been suggested to outperform tumor,
node, metastasis staging in predicting clinical course of colorectal cancer
(CRC). Infiltration by cells expressing OX40, a member of the tumor necrosis
factor receptor family, or CD16, expressed by natural killer cells,
monocytes, and dendritic cells, has been associated with favorable prognosis
in patients with CRC. We hypothesized that assessment of CRC infiltration by
both OX40+ and CD16+ cells might result in enhanced prognostic
significance. Methods: Colorectal cancer infiltration by OX40 and CD16 expressing cells was
investigated in 441 primary CRCs using tissue microarrays and specific
antibodies, by immunohistochemistry. Patients’ survival was evaluated by
Kaplan-Meier and log-rank tests. Multivariate Cox regression analysis,
hazard ratios, and 95% confidence intervals were also used to evaluate
prognostic significance of OX40+ and CD16+ cell infiltration. Results: Colorectal cancer infiltration by OX40+ and CD16+ cells was subclassified
into 4 groups with high or low infiltration levels in all possible
combinations. High levels of infiltration by both OX40+ and CD16+ cells were
associated with lower pT stage, absence of peritumoral lymphocytic (PTL)
inflammation, and a positive prognostic impact. Patients bearing tumors with
high infiltration by CD16+ and OX40+ cells were also characterized by
significantly longer overall survival, as compared with the other groups.
These results were confirmed by analyzing an independent validation
cohort. Conclusions: Combined infiltration by OX40+ and CD16+ immune cells is an independent
favorable prognostic marker in CRC. The prognostic value of CD16+ immune
cell infiltration is significantly improved by the combined analysis with
OX40+ cell infiltration.
Collapse
Affiliation(s)
- Fabian Haak
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Isabelle Obrecht
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Nadia Tosti
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Benjamin Weixler
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland.,Department of General, Visceral and Vascular Surgery, Charite Campus Benjamin Franklin, Berlin, Germany
| | - Robert Mechera
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Silvio Däster
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Marco von Strauss
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Tarik Delko
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Giulio C Spagnoli
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Markus von Flüe
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Marko Kraljević
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Raoul A Droeser
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
43
|
Mo S, Gu L, Xu W, Liu J, Ding D, Wang Z, Yang J, Kong L, Zhao Y. Bifunctional macromolecule activating both OX40 and interferon-α signaling displays potent therapeutic effects in mouse HBV and tumor models. Int Immunopharmacol 2020; 89:107099. [PMID: 33091819 DOI: 10.1016/j.intimp.2020.107099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022]
Abstract
Combinatory enhancement of innate and adaptive immune responses is a promising strategy in immunotherapeutic drug development. Bifunctional macromolecules that simultaneously target two mechanisms may provide additional advantages over the combination of targeting two single pathways. Interferon alpha (IFNα) has been used clinically against viral infection such as the chronic infection of hepatitis B virus (CHB) as well as some types of cancers. OX40 is a costimulatory immune checkpoint molecule involved in the activation of T lymphocytes. To test whether simultaneously activating IFNα and OX40 signaling pathway could produce a synergistic therapeutic effect on CHB and tumors, we designed a bifunctional fusion protein composed of a mouse OX40 agonistic monoclonal antibody (OX86) and a mouse IFNα4, joined by a flexible (GGGGS)3 linker. This fusion protein, termed OX86-IFN, can activate both IFNα and OX40. We demonstrated that OX86-IFN could effectively activate T lymphocytes in the peripheral blood of mice. Furthermore, we showed that OX86-IFN had superior therapeutic effect to monotherapies in HBV hydrodynamic transfection and syngeneic tumor models. Collectively, our data suggests that simultaneously targeting interferon and OX40 signaling pathways by bifunctional molecule OX86-IFN elicits potent antiviral and antitumor activities, which could provide a new strategy in developing therapeutic agents against viral infection and tumors.
Collapse
Affiliation(s)
- Shifu Mo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, PR China; Nanjing U-Mab Biopharma Co., Ltd, 699-8 Xuanwu Avenue, Nanjing, Jiangsu 210042, PR China
| | - Liyun Gu
- Nanjing U-Mab Biopharma Co., Ltd, 699-8 Xuanwu Avenue, Nanjing, Jiangsu 210042, PR China
| | - Wei Xu
- Nanjing U-Mab Biopharma Co., Ltd, 699-8 Xuanwu Avenue, Nanjing, Jiangsu 210042, PR China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Dong Ding
- Nanjing U-Mab Biopharma Co., Ltd, 699-8 Xuanwu Avenue, Nanjing, Jiangsu 210042, PR China
| | - Zhichao Wang
- Nanjing U-Mab Biopharma Co., Ltd, 699-8 Xuanwu Avenue, Nanjing, Jiangsu 210042, PR China
| | - Jie Yang
- Nanjing U-Mab Biopharma Co., Ltd, 699-8 Xuanwu Avenue, Nanjing, Jiangsu 210042, PR China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, PR China.
| | - Yong Zhao
- Nanjing U-Mab Biopharma Co., Ltd, 699-8 Xuanwu Avenue, Nanjing, Jiangsu 210042, PR China.
| |
Collapse
|
44
|
Zhao Z, Zhang G, Sun Y, Winoto A. Necroptotic-susceptible dendritic cells exhibit enhanced antitumor activities in mice. Immun Inflamm Dis 2020; 8:468-479. [PMID: 32663380 PMCID: PMC7416022 DOI: 10.1002/iid3.330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Priming of tumor-specific T cells is a key to antitumor immune response and inflammation, in turn, is crucial for proper T-cell activation. As antigen-presenting cells can activate T cells, dendritic cells (DCs) loaded with tumor antigens have been used as immunotherapeutics against certain cancer in humans but their efficacy is modest. Necroptosis is a form of programmed cell death that results in the release of inflammatory contents. We previously generated mice with DC deficiency in a negative regulator of necroptosis, Fas-associated death domain (FADD), and found that these mice suffer from systemic inflammation due to necroptotic DCs. We hypothesize that FADD-deficient DCs could serve as a better vaccine than wild-type (WT) DCs against tumors. MATERIALS AND METHODS FADD-deficient and WT mouse DCs loaded with the relevant tumor peptide were injected onto mice before or after the syngeneic tumor challenge. DC vaccinations were repeated two more times and anti-PD-1 antibodies were coinjected in some experiments. Tumor sizes were measured by caliper, and the percentages of tumor-free mice or mice survived were examined over time. The cytometric analysis was carried out to analyze various immune populations. RESULTS In two separate tumor models, we find that mice receiving FADD-deficient DCs as vaccine rejected tumors significantly better than those receiving a WT DC vaccine. Tumor growth was severely hampered, and survival extended in these mice. More activated CD8 T cells together with elevated cytokines were observed in mice receiving the FADD-deficient DC vaccine. Furthermore, we observed these effects were potent enough to protect against tumor challenge postinjection and can work in conjunction with anti-PD-1 antibodies to reduce the tumor growth. CONCLUSIONS Necroptotic-susceptible DCs are better antitumor vaccines than WT DCs in mice. Our findings suggest that necroptosis-driven inflammation by DCs may be a novel avenue to generating a strong adaptive antitumor response in the clinical setting.
Collapse
Affiliation(s)
- Zhanran Zhao
- Department of Molecular and Cell Biology, Cancer Research LaboratoryUniversity of CaliforniaBerkeleyCalifornia
| | - Guangzhi Zhang
- Department of Molecular and Cell Biology, Cancer Research LaboratoryUniversity of CaliforniaBerkeleyCalifornia
- Present address:
Guangzhi Zhang, Institute of Animal Sciences of Chinese Academy of Agriculture SciencesBeijing100193China
| | - Yuefang Sun
- Department of Molecular and Cell Biology, Cancer Research LaboratoryUniversity of CaliforniaBerkeleyCalifornia
| | - Astar Winoto
- Department of Molecular and Cell Biology, Cancer Research LaboratoryUniversity of CaliforniaBerkeleyCalifornia
| |
Collapse
|
45
|
Haibe Y, El Husseini Z, El Sayed R, Shamseddine A. Resisting Resistance to Immune Checkpoint Therapy: A Systematic Review. Int J Mol Sci 2020; 21:E6176. [PMID: 32867025 PMCID: PMC7504220 DOI: 10.3390/ijms21176176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022] Open
Abstract
The treatment landscape in oncology has witnessed a major revolution with the introduction of checkpoint inhibitors: anti-PD1, anti-PDL1 and anti-CTLA-4. These agents enhance the immune response towards cancer cells instead of targeting the tumor itself, contrary to standard chemotherapy. Although long-lasting durable responses have been observed with immune checkpoints inhibitors, the response rate remains relatively low in many cases. Some patients respond in the beginning but then eventually develop acquired resistance to treatment and progress. Other patients having primary resistance never respond. Multiple studies have been conducted to further elucidate these variations in response in different tumor types and different individuals. This paper provides an overview of the mechanisms of resistance to immune checkpoint inhibitors and highlights the possible therapeutic approaches under investigation aiming to overcome such resistance in order to improve the clinical outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | | | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (Z.E.H.); (R.E.S.)
| |
Collapse
|
46
|
Glisson BS, Leidner RS, Ferris RL, Powderly J, Rizvi NA, Keam B, Schneider R, Goel S, Ohr JP, Burton J, Zheng Y, Eck S, Gribbin M, Streicher K, Townsley DM, Patel SP. Safety and Clinical Activity of MEDI0562, a Humanized OX40 Agonist Monoclonal Antibody, in Adult Patients with Advanced Solid Tumors. Clin Cancer Res 2020; 26:5358-5367. [PMID: 32816951 DOI: 10.1158/1078-0432.ccr-19-3070] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/06/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Immune checkpoint blockade has demonstrated clinical benefits across multiple solid tumor types; however, resistance and relapse often occur. New immunomodulatory targets, which are highly expressed in activated immune cells, are needed. MEDI0562, an agonistic humanized mAb, specifically binds to the costimulatory molecule OX40. This first-in-human study evaluated MEDI0562 in adults with advanced solid tumors. PATIENTS AND METHODS In this phase I, multicenter, open-label, single-arm, dose-escalation (3+3 design) study, patients received 0.03, 0.1, 0.3, 1.0, 3.0, or 10 mg/kg MEDI0562 through intravenous infusion every 2 weeks, until confirmed disease progression or unacceptable toxicity. The primary objective evaluated safety and tolerability. Secondary endpoints included antitumor activity, pharmacokinetics, immunogenicity, and pharmacodynamics. RESULTS In total, 55 patients received ≥1 dose of MEDI0562 and were included in the analysis. The most common tumor type was squamous cell carcinoma of the head and neck (47%). Median duration of treatment was 10 weeks (range, 2-48 weeks). Treatment-related adverse events (TRAEs) occurred in 67% of patients, most commonly fatigue (31%) and infusion-related reactions (14%). Grade 3 TRAEs occurred in 14% of patients with no apparent dose relationship; no TRAEs resulted in death. Two patients had immune-related partial responses per protocol and 44% had stable disease. MEDI0562 induced increased Ki67+ CD4+ and CD8+ memory T-cell proliferation in the periphery and decreased intratumoral OX40+ FOXP3+ cells. CONCLUSIONS MEDI0562 was safely administered at doses up to 10 mg/kg in heavily pretreated patients. On-target pharmacodynamic effects were suggested in this setting. Further evaluation with immune checkpoint inhibitors is ongoing.
Collapse
Affiliation(s)
- Bonnie S Glisson
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Rom S Leidner
- EACRI - Providence Cancer Center, Portland, Oregon, USA
| | | | - John Powderly
- Carolina BioOncology Institute, Huntersville, North Carolina, USA
| | - Naiyer A Rizvi
- Columbia University Medical Center, New York, New York, USA
| | - Bhumsuk Keam
- Seoul National University Hospital, Seoul, South Korea
| | - Reva Schneider
- Mary Crowley Cancer Research - Medical City Dallas, Dallas, Texas, USA
| | - Sanjay Goel
- Montefiore Einstein Cancer Center, Bronx, New York, USA
| | - James P Ohr
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Steven Eck
- AstraZeneca, Gaithersburg, Maryland, USA
| | | | | | | | | |
Collapse
|
47
|
Yuan C, Liu Y, Wang T, Sun M, Chen X. Nanomaterials as Smart Immunomodulator Delivery System for Enhanced Cancer Therapy. ACS Biomater Sci Eng 2020; 6:4774-4798. [DOI: 10.1021/acsbiomaterials.0c00804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Congshan Yuan
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Ting Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Mengjie Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, P.R. China
| |
Collapse
|
48
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
49
|
Poropatich K, Dominguez D, Chan WC, Andrade J, Zha Y, Wray B, Miska J, Qin L, Cole L, Coates S, Patel U, Samant S, Zhang B. OX40+ plasmacytoid dendritic cells in the tumor microenvironment promote antitumor immunity. J Clin Invest 2020; 130:3528-3542. [PMID: 32182225 PMCID: PMC7324178 DOI: 10.1172/jci131992] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Plasmacytoid DCs (pDCs), the major producers of type I interferon, are principally recognized as key mediators of antiviral immunity. However, their role in tumor immunity is less clear. Depending on the context, pDCs can promote or suppress antitumor immune responses. In this study, we identified a naturally occurring pDC subset expressing high levels of OX40 (OX40+ pDC) enriched in the tumor microenvironment (TME) of head and neck squamous cell carcinoma. OX40+ pDCs were distinguished by a distinct immunostimulatory phenotype, cytolytic function, and ability to synergize with conventional DCs (cDCs) in generating potent tumor antigen-specific CD8+ T cell responses. Transcriptomically, we found that they selectively utilized EIF2 signaling and oxidative phosphorylation pathways. Moreover, depletion of pDCs in the murine OX40+ pDC-rich tumor model accelerated tumor growth. Collectively, we present evidence of a pDC subset in the TME that favors antitumor immunity.
Collapse
Affiliation(s)
- Kate Poropatich
- Department of Pathology
- Robert H. Lurie Comprehensive Cancer Center, and
| | - Donye Dominguez
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | - Yuanyuan Zha
- Human Immunologic Monitoring Facility, Office of Shared Research Facilities, University of Chicago, Chicago, Illinois, USA
| | - Brian Wray
- Department of Biochemistry and Molecular Genetics
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lei Qin
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lisa Cole
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Sydney Coates
- Head and Neck Surgery, Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Urjeet Patel
- Robert H. Lurie Comprehensive Cancer Center, and
- Head and Neck Surgery, Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sandeep Samant
- Robert H. Lurie Comprehensive Cancer Center, and
- Head and Neck Surgery, Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, and
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
50
|
Abstract
The immune system has a vital role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). Immune evasion of cancer cells leads to progression of HNSCC. An understanding of this mechanism provides the basis for improved therapies and outcomes for patients. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides an overview of the interaction between immune infiltrating cells in the tumor microenvironment, and the immunologic principles related to HNSCC. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented.
Collapse
Affiliation(s)
- Felix Sim
- Department of Oral and Maxillofacial Surgery, The Royal Melbourne Hospital, 300 Grattan Street, Parkville, Victoria 3050, Australia; Department of Oral and Maxillofacial Surgery, Monash Health, 823 Centre Road, Bentleigh East, Victoria 3165, Australia; Oral and Maxillofacial Surgery Unit, Barwon Health, Ryrie Street & Bellerine Street, Geelong, Victoria 3220, Australia
| | - Rom Leidner
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Providence Cancer Institute, 4805 Northeast Glisan Street, Suite 2N35, Portland, OR 97213, USA
| | - Richard Bryan Bell
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Providence Cancer Institute, 4805 Northeast Glisan Street, Suite 2N35, Portland, OR 97213, USA; Head and Neck Institute, 1849 NW Kearney, Suite 300, Portland, Oregon 97209, USA.
| |
Collapse
|