1
|
Yu ZN, Fan YJ, Nguyen TV, Piao CH, Lee B, Lee S, Shin HS, Song CH, Chai OH. Undaria pinnatifida ameliorates nasal inflammation by inhibiting eosinophil and mast cell activation and modulating the NF-κB/MAPKs signaling pathway. Immun Inflamm Dis 2024; 12:e1215. [PMID: 38488697 PMCID: PMC10941681 DOI: 10.1002/iid3.1215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Allergic rhinitis (AR) is the most prevalent form of atopic disease. Undaria pinnatifida has potent antioxidative, antidiabetic, and anti-inflammatory properties. AIMS We investigated the immunomodulatory effect of Undaria pinnatifida extract (UPE) on allergic inflammation in an AR mouse model. MATERIALS & METHODS Mice were sensitized and intranasally challenged with ovalbumin (OVA), and the Th1/Th2 and Th17/Treg-related cytokines and histopathology were exanimated after UPE treatments. Enzyme-linked immunosorbent assay was performed using serum samples and NALF to detect OVA-specific immunoglobulins and inflammatory cytokines. Mitogen-activated protein kinases (MAPKs) were measured by western blotting analysis, and an in vitro study measured mast cell activation induced by compound 48/80. RESULTS After UPE treatment, nasal and lung allergy symptoms, nasal mucosal swelling, and goblet cell hyperplasia were ameliorated. Oral UPE regulated the balance of Th1/Th2 and Th17/Treg cell differentiation in AR mice in a dose-dependent manner. In addition, UPE attenuated the migration of eosinophils and mast cells to the nasal mucosa by suppressing nuclear factor kappa B (NF-κB)/MAPKs. The levels of anti-OVA IgE and IgG1 were also decreased. DISCUSSION UPE inhibited inflammation by regulating the NF-κB/MAPKs signaling pathway and supressing the activation of critical immune cells such as eosinophils and mast cells. CONCLUSION UPE may have therapeutic potential for AR.
Collapse
Affiliation(s)
- Zhen Nan Yu
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
| | - Yan Jing Fan
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Department of Basic Medicine, School of MedicineLiaocheng UniversityLiaochengShandongChina
| | - Thi Van Nguyen
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
| | - Chun Hua Piao
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Department of Pulmonary and Critical Care MedicineYantai Yuhuangding HospitalYantaiChina
| | - Byung‐Hoo Lee
- Department of Food Science and BiotechnologyGachon UniversitySeongnamSouth Korea
| | - So‐Young Lee
- Division of Food Functionality ResearchKorea Food Research InstituteWanjuSouth Korea
- Division of Food Biotechnology ProgramKorea University of Science and TechnologyDaejeonSouth Korea
| | - Hee Soon Shin
- Division of Food Functionality ResearchKorea Food Research InstituteWanjuSouth Korea
- Division of Food Biotechnology ProgramKorea University of Science and TechnologyDaejeonSouth Korea
| | - Chang Ho Song
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Institute for Medical SciencesJeonbuk National UniversityJeonjuSouth Korea
| | - Ok Hee Chai
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Institute for Medical SciencesJeonbuk National UniversityJeonjuSouth Korea
| |
Collapse
|
2
|
Dong H, Yang W, Li W, Zhu S, Zhu L, Gao P, Hao Y. New insights into autophagy in inflammatory subtypes of asthma. Front Immunol 2023; 14:1156086. [PMID: 37090692 PMCID: PMC10117973 DOI: 10.3389/fimmu.2023.1156086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Asthma is a heterogeneous airway disease characterized by airway inflammation and hyperresponsiveness. Autophagy is a self-degrading process that helps maintain cellular homeostasis. Dysregulation of autophagy is involved in the pathogenesis of many diseases. In the context of asthma, autophagy has been shown to be associated with inflammation, airway remodeling, and responsiveness to drug therapy. In-depth characterization of the role of autophagy in asthma can enhance the understanding of the pathogenesis, and provide a theoretical basis for the development of new biomarkers and targeted therapy for asthma. In this article, we focus on the relationship of autophagy and asthma, and discuss its implications for asthma pathogenesis and treatment.
Collapse
Affiliation(s)
- Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Simin Zhu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Zhu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Peng Gao, ; Yuqiu Hao,
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Peng Gao, ; Yuqiu Hao,
| |
Collapse
|
3
|
Burchett JR, Dailey JM, Kee SA, Pryor DT, Kotha A, Kankaria RA, Straus DB, Ryan JJ. Targeting Mast Cells in Allergic Disease: Current Therapies and Drug Repurposing. Cells 2022; 11:3031. [PMID: 36230993 PMCID: PMC9564111 DOI: 10.3390/cells11193031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
The incidence of allergic disease has grown tremendously in the past three generations. While current treatments are effective for some, there is considerable unmet need. Mast cells are critical effectors of allergic inflammation. Their secreted mediators and the receptors for these mediators have long been the target of allergy therapy. Recent drugs have moved a step earlier in mast cell activation, blocking IgE, IL-4, and IL-13 interactions with their receptors. In this review, we summarize the latest therapies targeting mast cells as well as new drugs in clinical trials. In addition, we offer support for repurposing FDA-approved drugs to target mast cells in new ways. With a multitude of highly selective drugs available for cancer, autoimmunity, and metabolic disorders, drug repurposing offers optimism for the future of allergy therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
4
|
Kawakami T, Kasakura K, Kawakami Y, Ando T. Immunoglobulin E-Dependent Activation of Immune Cells in Rhinovirus-Induced Asthma Exacerbation. FRONTIERS IN ALLERGY 2022; 3:835748. [PMID: 35386658 PMCID: PMC8974681 DOI: 10.3389/falgy.2022.835748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022] Open
Abstract
Acute exacerbation is the major cause of asthma morbidity, mortality, and health-care costs. Respiratory viral infections, particularly rhinovirus (RV) infections, are associated with the majority of asthma exacerbations. The risk for bronchoconstriction with RV is associated with allergic sensitization and type 2 airway inflammation. The efficacy of the humanized anti-IgE monoclonal antibody omalizumab in treating asthma and reducing the frequency and severity of RV-induced asthma exacerbation is well-known. Despite these clinical data, mechanistic details of omalizumab's effects on RV-induced asthma exacerbation have not been well-defined for years due to the lack of appropriate animal models. In this Perspective, we discuss potential IgE-dependent roles of mast cells and dendritic cells in asthma exacerbations.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Toshiaki Kawakami
| | - Kazumi Kasakura
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Yu Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Galli SJ, Gaudenzio N, Tsai M. Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns. Annu Rev Immunol 2021; 38:49-77. [PMID: 32340580 DOI: 10.1146/annurev-immunol-071719-094903] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mast cells have existed long before the development of adaptive immunity, although they have been given different names. Thus, in the marine urochordate Styela plicata, they have been designated as test cells. However, based on their morphological characteristics (including prominent cytoplasmic granules) and mediator content (including heparin, histamine, and neutral proteases), test cells are thought to represent members of the lineage known in vertebrates as mast cells. So this lineage presumably had important functions that preceded the development of antibodies, including IgE. Yet mast cells are best known, in humans, as key sources of mediators responsible for acute allergic reactions, notably including anaphylaxis, a severe and potentially fatal IgE-dependent immediate hypersensitivity reaction to apparently harmless antigens, including many found in foods and medicines. In this review, we briefly describe the origins of tissue mast cells and outline evidence that these cells can have beneficial as well as detrimental functions, both innately and as participants in adaptive immune responses. We also discuss aspects of mast cell heterogeneity and comment on how the plasticity of this lineage may provide insight into its roles in health and disease. Finally, we consider some currently open questions that are yet unresolved.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| | - Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), INSERM UMR 1056, Université de Toulouse, 31 059 Toulouse CEDEX 9, France;
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| |
Collapse
|
6
|
Pohlmeier L, Sonar SS, Rodewald H, Kopf M, Tortola L. Comparative analysis of the role of mast cells in murine asthma models using Kit-sufficient mast cell-deficient animals. Allergy 2021; 76:2030-2043. [PMID: 33559884 DOI: 10.1111/all.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Asthma is a frequent chronic disease that can potentially severely affect the respiratory capacity and well-being of patients. Mast cells (MCs) are regarded as major players in human asthma due to their capacity to release crucial inflammatory mediators following allergen exposure. However, unambiguous characterization of their role in animal models has long been hindered by the unavailability of specific MC-deficient models lacking confounding MC-unrelated effects. This study aims to examine the role of MCs in Kit-sufficient MC-deficient Cpa3Cre /+ mice. METHODS We used a variety of models of acute and chronic asthma employing distinct routes and regimes of sensitization. These sensitizations were done via the peritoneal cavity, the skin, or the lung. Additionally, different allergens, i.e. ovalbumin and house dust mite extract, were used. RESULTS Our results show that the absence of MCs had no impact on the severity of allergic airway inflammation in any of the tested mouse models, as measured by leukocyte infiltration in the airways, cytokine expression, antibody production, airway hyper-responsiveness and mucus production. CONCLUSION This indicates that MCs do not play a major role in murine allergic airway inflammation.
Collapse
Affiliation(s)
- Lea Pohlmeier
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| | | | - Hans‐Reimer Rodewald
- Division for Cellular Immunology German Cancer Research Center Heidelberg Germany
| | - Manfred Kopf
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| |
Collapse
|
7
|
Svanberg S, Li Z, Öhlund P, Roy A, Åbrink M. Mast Cells Limit Ear Swelling Independently of the Chymase Mouse Mast Cell Protease 4 in an MC903-Induced Atopic Dermatitis-Like Mouse Model. Int J Mol Sci 2020; 21:ijms21176311. [PMID: 32878208 PMCID: PMC7503626 DOI: 10.3390/ijms21176311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Atopic dermatitis (AD) is a complex, often lifelong allergic disease with severe pruritus affecting around 10% of both humans and dogs. To investigate the role of mast cells (MCs) and MC-specific proteases on the immunopathogenesis of AD, a vitamin D3-analog (MC903) was used to induce clinical AD-like symptoms in c-kit-dependent MC-deficient Wsh−/− and the MC protease-deficient mMCP-4−/−, mMCP-6−/−, and CPA3−/− mouse strains. MC903-treatment on the ear lobe increased clinical scores and ear-thickening, along with increased MC and granulocyte infiltration and activity, as well as increased levels of interleukin 33 (IL-33) locally and thymic stromal lymphopoietin (TSLP) both locally and systemically. The MC-deficient Wsh−/− mice showed significantly increased clinical score and ear thickening albeit having lower ear tissue levels of IL-33 and TSLP as well as lower serum levels of TSLP as compared to the WT mice. In contrast, although having significantly increased IL-33 ear tissue levels the chymase-deficient mMCP-4−/− mice showed similar clinical score, ear thickening, and TSLP levels in ear tissue and serum as the WT mice, whereas mMCP-6 and CPA3 -deficient mice showed a slightly reduced ear thickening and granulocyte infiltration. Our results suggest that MCs promote and control the level of MC903-induced AD-like inflammation.
Collapse
Affiliation(s)
- Sofie Svanberg
- Evidensia Djurkliniken Öjebyn, Öjagatan 81, 94331 Öjebyn, Sweden;
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
| | - Zhiqiang Li
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
- Department of Immunology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
| | - Pontus Öhlund
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden;
| | - Magnus Åbrink
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
- Correspondence: ; Tel.: +46-70-673-6569
| |
Collapse
|
8
|
Hernandez JD, Yu M, Sibilano R, Tsai M, Galli SJ. Development of multiple features of antigen-induced asthma pathology in a new strain of mast cell deficient BALB/c-Kit W-sh/W-sh mice. J Transl Med 2020; 100:516-526. [PMID: 31857699 PMCID: PMC7102933 DOI: 10.1038/s41374-019-0354-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 11/26/2022] Open
Abstract
Mast cell-deficient mice are widely used to identify and quantify contributions of mast cells to diverse biological responses in vivo, including allergic inflammation. However, despite the fact that scores of genes have been identified as modifiers of allergic inflammation, most mast cell-deficient models have been available only on a single genetic background. We transferred the KitW-sh allele onto the BALB/c background to generate BALB/c mast cell-deficient mice (BALB/c-KitW-sh/W-sh). BALB/c-KitW-sh/W-sh mice have dramatically reduced mast cell numbers (0-2% of wild type) in all tissues examined, as well as subtle hematologic differences from the corresponding wild type mice, including splenomegaly with evidence of increased splenic hematopoiesis. We examined in BALB/c-KitW-sh/W-sh mice models of allergic inflammation that are substantially diminished in C57BL/6-KitW-sh/W-sh mast cell-deficient mice. In a model of acute allergic inflammation, i.e., IgE-dependent passive cutaneous anaphylaxis, both ear swelling and leukocyte infiltration were largely or entirely absent in BALB/c-KitW-sh/W-sh mice. In contrast, in two different models of allergic airway inflammation, airway hyperresponsiveness, lung inflammation, and airway remodeling developed robustly in mast cell-deficient BALB/c-KitW-sh/W-sh mice. These results support the conclusion that the importance of mast cell contributions in various models of allergic inflammation may be at least partially determined by genetic background.
Collapse
Affiliation(s)
- Joseph D Hernandez
- Department of Pathology and the Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mang Yu
- Department of Pathology and the Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Riccardo Sibilano
- Department of Pathology and the Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Mindy Tsai
- Department of Pathology and the Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Mast cells drive IgE-mediated disease but might be bystanders in many other inflammatory and neoplastic conditions. J Allergy Clin Immunol 2019; 144:S19-S30. [DOI: 10.1016/j.jaci.2019.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 01/05/2023]
|
10
|
Ayakannu R, Abdullah NA, Radhakrishnan AK, Lechimi Raj V, Liam CK. Relationship between various cytokines implicated in asthma. Hum Immunol 2019; 80:755-763. [PMID: 31054782 DOI: 10.1016/j.humimm.2019.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023]
Abstract
Asthma is a complex disorder involving immunologic, environmental, genetic and other factors. Today, asthma is the most common disease encountered in clinical medicine in both children and adults worldwide. Asthma is characterized by increased responsiveness of the tracheobronchial tree resulting in chronic swelling and inflammation of the airways recognized to be controlled by the T-helper 2 (Th2) lymphocytes, which secrete cytokines to increase the production of IgE by B cells. There are many cytokines implicated in the development of the chronic inflammatory processes that are often observed in asthma. Ultimately, these cytokines cause the release of mediators such as histamine and leukotrienes (LT), which in turn promote airway remodeling, bronchial hyperresponsiveness and bronchoconstriction. The CD4+ T-lymphocytes from the airways of asthmatics express a panel of cytokines that represent the Th2 cells. The knowledge derived from numerous experimental and clinical studies have allowed physicians and scientists to understand the normal functions of these cytokines and their roles in the pathogenesis of asthma. The main focus of this review is to accentuate the relationship between various cytokines implicated in human asthma. However, some key findings from animal models will be highlighted to support the discoveries from clinical studies.
Collapse
Affiliation(s)
- Rathimalar Ayakannu
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - N A Abdullah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine, Monash University Malaysia, Jalan Lagoon, 47500 Bandar Sunway, Selangor, Malaysia
| | - Vijaya Lechimi Raj
- Department of Pharmacology, Faculty of Medicine, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
| | - C K Liam
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Ohta K, Nagase H, Suzukawa M, Ohta S. Antibody therapy for the management of severe asthma with eosinophilic inflammation. Int Immunol 2018; 29:337-343. [PMID: 28910970 DOI: 10.1093/intimm/dxx045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
One of the characteristic features of asthma is chronic airway inflammation typically with eosinophil infiltration. Most asthmatics can be treated successfully with conventional treatment appropriate for their severity, but in some severe cases, asthma cannot be well controlled even with thorough treatment and this condition is known as 'refractory asthma'. To overcome severe refractory asthma, a new therapeutic strategy with biologics has been developed based on the knowledge of molecular mechanisms of airway inflammation in asthma, induced by the condition of high Th2-type responses and activation of eosinophils as well as allergic reactions. Humanized anti-human IgE antibody (anti-IgE; omalizumab) was the first biological preparation approved for treating asthma. Based on clinical evidence, treatment with anti-IgE (anti-IgE therapy) has been accepted as a new therapeutic approach for severe allergic asthma in adults since 2009 and in children since 2012 and has been shown to have ~60% efficacy. More recently, a humanized anti-IL-5 antibody (anti-IL-5; mepolizumab) was launched in June 2016 and has attracted great interest due to its potential effects. Several clinical studies are also ongoing to evaluate the biological preparations targeting IL-5 receptor α (IL-5Rα), IL-4 receptor α (IL-4Rα), which is shared by IL-4 and IL-13, thymic stromal lymphopoietin (TSLP) and IL-33. The new strategy with biologics targeting eosinophilic airway inflammation might open a new array for us to overcome severe refractory asthma in the future.
Collapse
Affiliation(s)
- Ken Ohta
- Department of Medicine, Division of Allergy and Respiratory Medicine, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose City, Tokyo 204-8686, Japan
| | - Hiroyuki Nagase
- Department of Medicine, Division of Allergy and Respiratory Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8686, Japan
| | - Maho Suzukawa
- Department of Medicine, Division of Allergy and Respiratory Medicine, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose City, Tokyo 204-8686, Japan
| | - Shin Ohta
- Department of Medicine, Division of Allergy and Respiratory Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| |
Collapse
|
12
|
Diabetes Downregulates Allergen-Induced Airway Inflammation in Mice. Mediators Inflamm 2018; 2018:6150843. [PMID: 29849493 PMCID: PMC5925213 DOI: 10.1155/2018/6150843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/20/2018] [Indexed: 12/31/2022] Open
Abstract
Previous studies described that allergic diseases, including asthma, occur less often than expected in patients with type 1 diabetes. Here, we investigated the influence of diabetes on allergic airway inflammation in a model of experimental asthma in mice. Diabetes was induced by intravenous injection of alloxan into 12 h-fasted A/J mice, followed by subcutaneous sensitization with ovalbumin (OVA) and aluminum hydroxide (Al(OH)3), on days 5 and 19 after diabetes induction. Animals were intranasally challenged with OVA (25 μg), from day 24 to day 26. Alloxan-induced diabetes significantly attenuated airway inflammation as attested by the lower number of total leukocytes in the bronchoalveolar lavage fluid, mainly neutrophils and eosinophils. Suppression of eosinophil infiltration in the peribronchiolar space and generation of eosinophilotactic mediators, such as CCL-11/eotaxin, CCL-3/MIP-1α, and IL-5, were noted in the lungs of diabetic sensitized mice. In parallel, reduction of airway hyperreactivity (AHR) to methacholine, mucus production, and serum IgE levels was also noted under diabetic conditions. Our findings show that alloxan diabetes caused attenuation of lung allergic inflammatory response in A/J mice, by a mechanism possibly associated with downregulation of IgE antibody production.
Collapse
|
13
|
Kaur G, Singh N, Jaggi AS. Mast cells in neuropathic pain: an increasing spectrum of their involvement in pathophysiology. Rev Neurosci 2018; 28:759-766. [PMID: 28688228 DOI: 10.1515/revneuro-2017-0007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/04/2017] [Indexed: 02/05/2023]
Abstract
Mast cells are immunological cells that are diversely distributed in different parts of the body. Their role in various pathological conditions such as hypersensitivity, atherosclerosis, pulmonary hypertension, and male infertility has been reported by different scientists. Apart from these, a number of studies have shown their important role in pathogenesis of neuropathic pain of diverse aetiology. They have been found to release active mediators, primarily histamine and serotonin on degranulation in response to different stimuli including chemical, nerve damage, toxin or disease-related conditions. The mast cells stabilizer has shown pain attenuating effects by preventing degranulation of mast cells. Similarly, compound 48/80 (first dose 200 μg/100 g and after 6-h interval, second dose of 500 μg/100 g) caused the degranulation of the accumulated endoneurial histamine and 5-HT antagonists have shown pain relieving effects by attenuating the effects of histamine and serotonin, respectively. On the other hand, the mast cell degranulator compound 48/80 has shown dual action depending on its time of administration. The present review discusses the critical role of mast cells in the generation and maintenance of neuropathic pain in experimental models.
Collapse
|
14
|
Abstract
Allergic asthma is a heterogeneous inflammatory lung disease affecting millions of people worldwide and with a steadily increasing incidence. Mouse models have been of utmost importance in uncovering key inflammatory cell types, cytokines, and pathways in the development and maintenance of allergic asthma. Historically, the mainstay in experimental asthma research was sensitizing rodents to the model protein antigen ovalbumin (OVA) with the pro-Th2 adjuvant aluminum hydroxide, followed by repetitive OVA exposures to the airways to initiate a Th2-skewed adaptive immune response leading to eosinophilic airway inflammation and airway hyperreactivity (AHR). In the last 5 years, OVA is often replaced by naturally occurring allergens such as house dust mite (HDM) or cockroach extracts, but the principle of first sensitizing and then repetitively challenging mice with the same antigen is unchanged. Here, we describe an often used and relevant HDM-based protocol to establish acute allergic asthma, and the methods we have developed to rapidly analyze inflammatory cell infiltration in the bronchalveolar lavage fluid by flow cytometry. Moreover, we explain the methods to restimulate T cells from lung-draining mediastinal lymph nodes with HDM to allow the measurement of cytokine secretion profiles of allergen reactive T cells.
Collapse
|
15
|
McKnight CG, Jude JA, Zhu Z, Panettieri RA, Finkelman FD. House Dust Mite-Induced Allergic Airway Disease Is Independent of IgE and FcεRIα. Am J Respir Cell Mol Biol 2017; 57:674-682. [PMID: 28700253 DOI: 10.1165/rcmb.2016-0356oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
IgE contributes to disease exacerbations but not to baseline airway hyperresponsiveness (AHR) in human asthma. In rodent allergic airway disease (AAD), mast cell and IgE dependence for the induction of AHR has only been observed when mice are immunized with a relatively weak allergen without adjuvant. To evaluate the role of IgE in murine AAD that is induced by a potent allergen, we inoculated BALB/c and FVB/N background wild-type and IgE- or FcεRIα-deficient mice intratracheally with large or limiting doses of house dust mite extract (HDM) and evaluated AHR, pulmonary eosinophilia, goblet cell metaplasia, serum IgE, and lung mastocytosis. We found that neither IgE nor FcεRIα contributed to AAD, even in mice inoculated with the lowest dose of HDM, which readily induced detectable disease, but did not increase serum IgE or pulmonary mast cell levels. In contrast, high doses of HDM strikingly increased serum IgE and pulmonary mast cells, although both AHR and airway mast cell degranulation were equally elevated in wild-type and IgE-deficient mice. Surprisingly, allergen challenge of mice with severe AAD and pulmonary mastocytosis failed to acutely increase airway resistance, lung Newtonian resistance, or hysteresis. Overall, this study shows that, although mice may not reliably model acute asthma exacerbations, mechanisms that are IgE and FcεRIα independent are responsible for AHR and airway inflammation when low doses of a potent allergen are inhaled repetitively.
Collapse
Affiliation(s)
- Christopher G McKnight
- 1 Department of Immunology, Allergy and Rheumatology, University of Cincinnati, Cincinnati, Ohio.,2 Medical Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Joseph A Jude
- 3 Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey.,4 Child Health Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, New Jersey
| | - Zhenqi Zhu
- 1 Department of Immunology, Allergy and Rheumatology, University of Cincinnati, Cincinnati, Ohio
| | - Reynold A Panettieri
- 4 Child Health Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, New Jersey.,5 Rutgers Robert Wood Johnson Medical School, Medicine, Piscataway, New Jersey; and
| | - Fred D Finkelman
- 1 Department of Immunology, Allergy and Rheumatology, University of Cincinnati, Cincinnati, Ohio.,2 Medical Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio.,6 Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
16
|
Kawakami T, Blank U. From IgE to Omalizumab. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4187-4192. [PMID: 27864548 PMCID: PMC5123831 DOI: 10.4049/jimmunol.1601476] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022]
Abstract
IgE is the least abundant Ig isotype, yet it plays a critical role in allergic reactions and host protection from helminth infection. Although IgE was discovered 50 years ago, the ultimate evidence for its role in human allergic diseases was obtained by the efficacy of anti-IgE therapy in many clinical trials on asthma and other allergic diseases. Beginning from the discovery of IgE 50 y ago, followed by studies of IgE receptors and activation mechanisms, this review provides a historic perspective of allergy research that has led to the development of anti-IgE therapy and other strategies targeting IgE and its receptors. Current IgE studies toward future precision medicine are also reviewed.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037;
- Department of Dermatology, University of California San Diego School of Medicine, La Jolla, CA 92093
| | - Ulrich Blank
- INSERM Unité 1149, Centre de Recherche sur I'Inflammation, 75018 Paris, France
- CNRS Equipe de Recherche Labellisée 8252, 75018 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, 75018 Paris, France; and
- Inflamex Laboratory of Excellence, Xavier Bichat Site, 75018 Paris, France
| |
Collapse
|
17
|
Qayum AA, Paranjape A, Abebayehu D, Kolawole EM, Haque TT, McLeod JJA, Spence AJ, Caslin HL, Taruselli MT, Chumanevich AP, Baker B, Oskeritzian CA, Ryan JJ. IL-10-Induced miR-155 Targets SOCS1 To Enhance IgE-Mediated Mast Cell Function. THE JOURNAL OF IMMUNOLOGY 2016; 196:4457-67. [PMID: 27183599 DOI: 10.4049/jimmunol.1502240] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/27/2016] [Indexed: 01/19/2023]
Abstract
IL-10 is an important regulatory cytokine that modulates a wide range of immune cells. Whereas it is best known for its ability to suppress immune responses, IL-10 has been found to be pathogenic in several human and animal studies of immune-mediated diseases. There is a considerable gap in our understanding of the molecular mechanisms behind the stimulatory effects of IL-10 during allergic inflammation. IL-10 treatment has been shown to suppress mast cell TNF production. In this study, we report that whereas TNF secretion was reduced, IL-10 surprisingly enhanced IgE-mediated protease and cytokine production both in vitro and in vivo. This stimulatory effect was consistent in mouse and human skin mast cells. IL-10 enhanced activation of the key FcεRI signaling proteins Stat5, JNK, and ERK. We demonstrate that IL-10 effects are dependent on Stat3 activation, eliciting miR-155 expression, with a resulting loss of suppressor of cytokine signaling-1. The importance of miR-155 was demonstrated by the inability of IL-10 to enhance anaphylaxis in miR-155-deficient mice. Taken together, our results reveal an IL-10-induced, Stat3-miR-155 signaling pathway that can promote mast cell responses.
Collapse
Affiliation(s)
- Amina Abdul Qayum
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284; and
| | - Anuya Paranjape
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284; and
| | - Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284; and
| | | | - Tamara T Haque
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284; and
| | | | - Andrew J Spence
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284; and
| | - Heather L Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284; and
| | - Marcela T Taruselli
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284; and
| | - Alena P Chumanevich
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Bianca Baker
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284; and
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284; and
| |
Collapse
|
18
|
Devos FC, Boonen B, Alpizar YA, Maes T, Hox V, Seys S, Pollaris L, Liston A, Nemery B, Talavera K, Hoet PHM, Vanoirbeek JAJ. Neuro-immune interactions in chemical-induced airway hyperreactivity. Eur Respir J 2016; 48:380-92. [PMID: 27126687 DOI: 10.1183/13993003.01778-2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/02/2016] [Indexed: 01/07/2023]
Abstract
Asthma may be induced by chemical sensitisers, via mechanisms that are still poorly understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves, in chemical-induced AHR.In vitro intracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using an in vivo model, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we demonstrated that AHR does not develop, despite successful sensitisation, in Trpa1 and Trpv1 knockout mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-induced AHR was also abolished in mast cell deficient Kit(Wsh) (/Wsh) mice, and in wild-type mice pretreated with the mast cell stabiliser ketotifen, without changes in immunological parameters.These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the development of TDI-elicited AHR.
Collapse
Affiliation(s)
- Fien C Devos
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Brett Boonen
- Laboratory for Ion Channel Research and TRP Research Platform (TRPLe), Dept of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory for Ion Channel Research and TRP Research Platform (TRPLe), Dept of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Tania Maes
- Laboratory of Pneumology, Dept of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Valérie Hox
- Laboratory of Clinical Immunology, Dept of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Sven Seys
- Laboratory of Clinical Immunology, Dept of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Lore Pollaris
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Laboratory of Genetics of Autoimmunity, Dept of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Benoit Nemery
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Karel Talavera
- Laboratory for Ion Channel Research and TRP Research Platform (TRPLe), Dept of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Peter H M Hoet
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jeroen A J Vanoirbeek
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Suurmond J, Habets KLL, Tatum Z, Schonkeren JJ, Hoen PAC', Huizinga TWJ, Laros JFJ, Toes REM, Kurreeman F. Repeated FcεRI triggering reveals modified mast cell function related to chronic allergic responses in tissue. J Allergy Clin Immunol 2016; 138:869-880. [PMID: 27033170 DOI: 10.1016/j.jaci.2016.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Activation of mast cells through FcεRI plays an important role in acute allergic reactions. However, little is known about the function of mast cells in patients with chronic allergic inflammation or the effect of repeated FcεRI triggering occurring in such responses. OBJECTIVE We aimed to identify changes in mast cell function after repeated FcεRI triggering and to correlate these changes to chronic allergic responses in tissue. METHODS Human cord blood-derived mast cells were treated for 2 weeks with anti-IgE. The function of naive or treated mast cells was analyzed by means of RNA sequencing, quantitative RT-PCR, flow cytometry, and functional assays. Protein secretion was measured with ELISAs and multiplex assays. RESULTS We observed several changes in mast cell function after repeated anti-IgE triggering. Although the acute response was dampened, we identified 289 genes significantly upregulated after repeated anti-IgE. Most of these genes (84%) were not upregulated after a single anti-IgE stimulus, indicating a significantly different response mode characterized by increased antigen presentation, response to bacteria, and chemotaxis. Changes in mast cell function were related to changes in expression of the transcription factors RXRA and BATF and others. Importantly, we found a substantial overlap between genes upregulated after repeated anti-IgE triggering and genes upregulated in tissue from patients with chronic allergy, in particular those of patients with chronic rhinosinusitis. CONCLUSION Our study provides evidence for intrinsic modulation of mast cell function on repeated FcεRI-mediated activation. The overlap with gene expression in tissues is suggestive of a direct link between repeated IgE-mediated activation of mast cells and chronic allergy.
Collapse
Affiliation(s)
- Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kim L L Habets
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zuotian Tatum
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Joris J Schonkeren
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen F J Laros
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fina Kurreeman
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
20
|
Role of IL-4 receptor α-positive CD4(+) T cells in chronic airway hyperresponsiveness. J Allergy Clin Immunol 2015; 137:1852-1862.e9. [PMID: 26688514 DOI: 10.1016/j.jaci.2015.10.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND TH2 cells and their cytokines are associated with allergic asthma in human subjects and with mouse models of allergic airway disease. IL-4 signaling through the IL-4 receptor α (IL-4Rα) chain on CD4(+) T cells leads to TH2 cell differentiation in vitro, implying that IL-4Rα-responsive CD4(+) T cells are critical for the induction of allergic asthma. However, mechanisms regulating acute and chronic allergen-specific TH2 responses in vivo remain incompletely understood. OBJECTIVE This study defines the requirements for IL-4Rα-responsive CD4(+) T cells and the IL-4Rα ligands IL-4 and IL-13 in the development of allergen-specific TH2 responses during the onset and chronic phase of experimental allergic airway disease. METHODS Development of acute and chronic ovalbumin (OVA)-induced allergic asthma was assessed weekly in CD4(+) T cell-specific IL-4Rα-deficient BALB/c mice (Lck(cre)IL-4Rα(-/lox)) and respective control mice in the presence or absence of IL-4 or IL-13. RESULTS During acute allergic airway disease, IL-4 deficiency did not prevent the onset of TH2 immune responses and OVA-induced airway hyperresponsiveness or goblet cell hyperplasia, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. In contrast, deficiency of IL-13 prevented allergic asthma, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. Importantly, chronic allergic inflammation and airway hyperresponsiveness were dependent on IL-4Rα-responsive CD4(+) T cells. Deficiency in IL-4Rα-responsive CD4(+) T cells resulted in increased numbers of IL-17-producing T cells and, consequently, increased airway neutrophilia. CONCLUSION IL-4-responsive T helper cells are dispensable for acute OVA-induced airway disease but crucial in maintaining chronic asthmatic pathology.
Collapse
|
21
|
Kasahara DI, Ninin FMC, Wurmbrand AP, Liao JK, Shore SA. Abrogation of airway hyperresponsiveness but not inflammation by rho kinase insufficiency. Clin Exp Allergy 2015; 45:457-70. [PMID: 25323425 DOI: 10.1111/cea.12438] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/22/2014] [Accepted: 10/03/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Major features of allergic asthma include airway hyperresponsiveness (AHR), eosinophilic inflammation, and goblet cell metaplasia. Rho kinase (ROCK) is a serine/threonine protein kinase that regulates the actin cytoskeleton. By doing so, it can modulate airway smooth muscle cell contraction and leucocyte migration and proliferation. This study was designed to determine the contributions of the two ROCK isoforms, ROCK1 and ROCK2, to AHR, inflammation and goblet cell metaplasia in a mast cell-dependent model of allergic airways disease. METHODS AND RESULTS Repeated intranasal challenges with OVA caused AHR, eosinophilic inflammation, and goblet cell hyperplasia in wild-type (WT) mice. OVA-induced AHR was partially or completely abrogated in mice haploinsufficient for ROCK2 (ROCK2(+/-) ) or ROCK1 (ROCK1(+/-) ), respectively. In contrast, there was no effect of ROCK insufficiency on allergic airways inflammation, although both ROCK1 and ROCK2 insufficiency attenuated mast cell degranulation. Goblet cell hyperplasia, as indicated by PAS staining, was not different in ROCK1(+/-) vs. WT mice. However, in ROCK2(+/-) mice, goblet cell hyperplasia was reduced in medium but not large airways. Maximal acetylcholine-induced force generation was reduced in tracheal rings from ROCK1(+/-) and ROCK2(+/-) vs. WT mice. The ROCK inhibitor, fasudil, also reduced airway responsiveness in OVA-challenged mice, without affecting inflammatory responses. CONCLUSION In a mast cell model of allergic airways disease, ROCK1 and ROCK2 both contribute to AHR, likely through direct effects on smooth muscle cell and effects on mast cell degranulation. In addition, ROCK2 but not ROCK1 plays a role in allergen-induced goblet cell hyperplasia.
Collapse
Affiliation(s)
- David I Kasahara
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | | | | | | | | |
Collapse
|
22
|
Reber LL, Sibilano R, Mukai K, Galli SJ. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol 2015; 8:444-63. [PMID: 25669149 PMCID: PMC4739802 DOI: 10.1038/mi.2014.131] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/27/2014] [Indexed: 02/04/2023]
Abstract
Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs--such as secreting preformed and/or newly synthesized biologically active products--in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Riccardo Sibilano
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Kaori Mukai
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA,Department of Microbiology & Immunology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
23
|
TH9 cells are required for tissue mast cell accumulation during allergic inflammation. J Allergy Clin Immunol 2015; 136:433-40.e1. [PMID: 25746972 DOI: 10.1016/j.jaci.2015.01.021] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/04/2014] [Accepted: 01/23/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND IL-9 is important for the growth and survival of mast cells. IL-9 is produced by T cells, natural killer T cells, mast cells, eosinophils, and innate lymphoid cells, although the cells required for mast cell accumulation during allergic inflammation remain undefined. OBJECTIVE We sought to elucidate the role of TH9 cells in promoting mast cell accumulation in models of allergic lung inflammation. METHODS Adoptive transfer of ovalbumin-specific TH2 and TH9 cells was used to assess the ability of each subset to mediate mast cell accumulation in tissues. Mast cell accumulation was assessed in wild-type mice and mice with PU.1-deficient T cells subjected to acute and chronic models of allergic inflammation. RESULTS Adoptive transfer experiments demonstrated that recipients of TH9 cells had significantly higher mast cell accumulation and expression of mast cell proteases compared with control or TH2 recipients. Mast cell accumulation was dependent on IL-9, but not IL-13, a cytokine required for many aspects of allergic inflammation. In models of acute and chronic allergic inflammation, decreased IL-9 levels in mice with PU.1-deficient T cells corresponded to diminished tissue mast cell numbers and expression of mast cell proteases. Mice with PU.1-deficient T cells have defects in IL-9 production from CD4(+) T cells, but not natural killer T cells or innate lymphoid cells, suggesting a TH cell-dependent phenotype. Rag1(-/-) mice subjected to a chronic model of allergic inflammation displayed reduced mast cell infiltration comparable with accumulation in mice with PU.1-deficient T cells, emphasizing the importance of IL-9 produced by T cells in mast cell recruitment. CONCLUSION TH9 cells are a major source of IL-9 in models of allergic inflammation and play an important role in mast cell accumulation and activation.
Collapse
|
24
|
Galli SJ, Tsai M, Marichal T, Tchougounova E, Reber LL, Pejler G. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv Immunol 2015; 126:45-127. [PMID: 25727288 DOI: 10.1016/bs.ai.2014.11.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such "controversial" results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA.
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; GIGA-Research and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Elena Tchougounova
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
25
|
|
26
|
Deakin A, Duddy G, Wilson S, Harrison S, Latcham J, Fulleylove M, Fung S, Smith J, Pedrick M, McKevitt T, Felton L, Morley J, Quint D, Fattah D, Hayes B, Gough J, Solari R. Characterisation of a K390R ITK kinase dead transgenic mouse--implications for ITK as a therapeutic target. PLoS One 2014; 9:e107490. [PMID: 25250764 PMCID: PMC4174519 DOI: 10.1371/journal.pone.0107490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/05/2014] [Indexed: 11/23/2022] Open
Abstract
Interleukin-2 inducible tyrosine kinase (ITK) is expressed in T cells and plays a critical role in signalling through the T cell receptor. Evidence, mainly from knockout mice, has suggested that ITK plays a particularly important function in Th2 cells and this has prompted significant efforts to discover ITK inhibitors for the treatment of allergic disease. However, ITK is known to have functions outside of its kinase domain and in general kinase knockouts are often not good models for the behaviour of small molecule inhibitors. Consequently we have developed a transgenic mouse where the wild type Itk allele has been replaced by a kinase dead Itk allele containing an inactivating K390R point mutation (Itk-KD mice). We have characterised the immune phenotype of these naive mice and their responses to airway inflammation. Unlike Itk knockout (Itk−/−) mice, T-cells from Itk-KD mice can polymerise actin in response to CD3 activation. The lymph nodes from Itk-KD mice showed more prominent germinal centres than wild type mice and serum antibody levels were significantly abnormal. Unlike the Itk−/−, γδ T cells in the spleens of the Itk-KD mice had an impaired ability to secrete Th2 cytokines in response to anti-CD3 stimulation whilst the expression of ICOS was not significantly different to wild type. However ICOS expression is markedly increased on αβCD3+ cells from the spleens of naïve Itk-KD compared to WT mice. The Itk-KD mice were largely protected from inflammatory symptoms in an Ovalbumin model of airway inflammation. Consequently, our studies have revealed many similarities but some differences between Itk−/−and Itk-KD transgenic mice. The abnormal antibody response and enhanced ICOS expression on CD3+ cells has implications for the consideration of ITK as a therapeutic target.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Blotting, Western
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Cytokines/immunology
- Cytokines/metabolism
- Enzyme Inhibitors/immunology
- Enzyme Inhibitors/therapeutic use
- Female
- Flow Cytometry
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Inducible T-Cell Co-Stimulator Protein/immunology
- Inducible T-Cell Co-Stimulator Protein/metabolism
- Lymphocyte Count
- Male
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Ovalbumin/immunology
- Pneumonia/drug therapy
- Pneumonia/genetics
- Pneumonia/immunology
- Point Mutation
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
Collapse
Affiliation(s)
- Angela Deakin
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Graham Duddy
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Steve Wilson
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Steve Harrison
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Judi Latcham
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Mick Fulleylove
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Sylvia Fung
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Jason Smith
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Mike Pedrick
- Platform Technology and Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Tom McKevitt
- Platform Technology and Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Leigh Felton
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Joanne Morley
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Diana Quint
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Dilniya Fattah
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Brian Hayes
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Jade Gough
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Roberto Solari
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Inhibition of TRPM7 channels reduces degranulation and release of cytokines in rat bone marrow-derived mast cells. Int J Mol Sci 2014; 15:11817-31. [PMID: 24995695 PMCID: PMC4139816 DOI: 10.3390/ijms150711817] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/09/2014] [Accepted: 06/19/2014] [Indexed: 11/16/2022] Open
Abstract
Background: mast cells play an important role in airway inflammation in asthma. The transient receptor potential melastatin-like 7 (TRPM7) channel is expressed in primary human lung mast cells and plays a critical role for cell survival. This study aimed to investigate the role of TRPM7 on degranulation and release of cytokines in rat bone marrow-derived mast cells (BMMCs). Methods: the expression levels of TRPM7 were observed by immunocytochemistry and RT-PCR between normal and asthmatic rat BMMCs. TRPM7-specific shRNA and 2-aminoethoxydiphenyl borate (2-APB) and specific shTRPM7 were used to inhibit the function of TRPM7. Degranulation levels were analyzed by beta-hexosaminidase assay. Histamine, TNF-α, IL-6 and IL-13 levels were measured by ELISA. Results: the expression of TRPM7 was significantly higher in asthmatic rat BMMCs than in the normal control group. After application of 2-APB and down-regulation of TRPM7, the beta-hexosaminidase activity and secretion of histamine, IL-6, IL-13 and TNF-α were significantly decreased in the asthmatic group compared to the control group. Conclusion: this study indicates that TRPM7 channels may be involved in the process of degranulation and release of cytokines in rat bone marrow-derived mast cells.
Collapse
|
28
|
Dellinger A, Zhou Z, Connor J, Madhankumar AB, Pamujula S, Sayes CM, Kepley CL. Application of fullerenes in nanomedicine: an update. Nanomedicine (Lond) 2014; 8:1191-208. [PMID: 23837857 DOI: 10.2217/nnm.13.99] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fullerenes are carbon spheres presently being pursued globally for a wide range of applications in nanomedicine. These molecules have unique electronic properties that make them attractive candidates for diagnostic, therapeutic and theranostic applications. Herein, the latest research is discussed on developing fullerene-based therapeutics as antioxidants for inflammatory diseases, their potential as antiviral/bacterial agents, utility as a drug delivery device and the promise of endohedral fullerenes as new MRI contrast agents. The recent discovery that certain fullerene derivatives can stabilize immune effector cells to prevent or inhibit the release of proinflammatory mediators makes them potential candidates for several diseases such as asthma, arthritis and multiple sclerosis. Gadolinium-containing endohedral fullerenes are being pursued as diagnostic MRI contrast agents for several diseases. Finally, a new class of fullerene-based theranostics has been developed, which combine therapeutic and diagnostic capabilities to specifically detect and kill cancer cells.
Collapse
Affiliation(s)
- Anthony Dellinger
- Joint School of Nanoscience & Nanoengineering, 2907 East Lee Street, Greensboro, NC 27401, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Reber LL, Frossard N. Targeting mast cells in inflammatory diseases. Pharmacol Ther 2014; 142:416-35. [PMID: 24486828 DOI: 10.1016/j.pharmthera.2014.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/24/2022]
Abstract
Although mast cells have long been known to play a critical role in anaphylaxis and other allergic diseases, they also participate in some innate immune responses and may even have some protective functions. Data from the study of mast cell-deficient mice have facilitated our understanding of some of the molecular mechanisms driving mast cell functions during both innate and adaptive immune responses. This review presents an overview of the biology of mast cells and their potential involvement in various inflammatory diseases. We then discuss some of the current pharmacological approaches used to target mast cells and their products in several diseases associated with mast cell activation.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, France
| |
Collapse
|
30
|
Sargurupremraj M, Pukelsheim K, Hofer T, Wjst M. Intermediary quantitative traits--an alternative in the identification of disease genes in asthma? Genes Immun 2013; 15:1-7. [PMID: 24131956 DOI: 10.1038/gene.2013.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/23/2013] [Accepted: 09/09/2013] [Indexed: 01/14/2023]
Abstract
Intermediary quantitative traits are a possible alternative for the identification of disease genes. This may be particularly relevant when diagnostic criteria are not very well defined as described for asthma. We analyzed serum samples from 944 individuals of 218 asthma families for 17 cytokines (eotaxin, GM-CSF, IFNγ, IL1B, IL1RA, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12(p40), IL-13, IL-17, IL-23, IL-33, TSLP and TNF-α) and determined the heritability. Linked chromosomal regions were identified by a genome-wide analysis using 334 autosomal microsatellite marker and association tested by further 550 SNP marker at genes implicated earlier with immune response. Heritability varied with TNF-α and IL-8 levels having the highest and TSLP having the lowest heritability. Linkage was significantly increased only for IL-12(p40) at D17S949. There were multiple significant single-nucleotide polymorphisms (SNP) associations (P<0.05) as found in the transmission disequilibrium test, whereas only a few replicated in parents or children only. These include SNPs in IL1RN that were associated with IL-33 and TSLP levels, and a SNP in NR3C2 that was associated with eotaxin, IL-13 and IFN-γ levels. Circulating level of serum cytokines exhibits genetic associations with asthma traits that are otherwise not detected using clinical diagnosis or when the clinical details are ambiguous.
Collapse
Affiliation(s)
- M Sargurupremraj
- Institute of Lung Biology and Health (iLBD), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Munich-Neuherberg, Germany
| | - K Pukelsheim
- Institute of Lung Biology and Health (iLBD), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Munich-Neuherberg, Germany
| | - T Hofer
- Institute of Lung Biology and Health (iLBD), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Munich-Neuherberg, Germany
| | - M Wjst
- Institute of Lung Biology and Health (iLBD), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Munich-Neuherberg, Germany
| |
Collapse
|
31
|
Lei Y, Gregory JA, Nilsson GP, Adner M. Insights into mast cell functions in asthma using mouse models. Pulm Pharmacol Ther 2013; 26:532-9. [PMID: 23583635 DOI: 10.1016/j.pupt.2013.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 01/07/2023]
Abstract
Therapeutics targeting specific mechanisms of asthma have shown promising results in mouse models of asthma. However, these successes have not transferred well to the clinic or to the treatment of asthma sufferers. We suggest a reason for this incongruity is that mast cell-dependent responses, which may play an important role in the pathogenesis of both atopic and non-atopic asthma, are not a key component in most of the current asthma mouse models. Two reasons for this are that wild type mice have, in contrast to humans, a negligible number of mast cells localized in the smaller airways and in the parenchyma, and that only specific protocols show mast cell-dependent reactions. The development of mast cell-deficient mice and the reconstitution of mast cells within these mice have opened up the possibility to generate mouse models of asthma with a marked role of mast cells. In addition, mast cell-deficient mice engrafted with mast cells have a distribution of mast cells more similar to humans. In this article we review and highlight the mast cell-dependent and -independent responses with respect to airway hyperresponsiveness and inflammation in asthma models using mast cell-deficient and mast cell-engrafted mice.
Collapse
Affiliation(s)
- Ying Lei
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
32
|
Mast cell interleukin-10 drives localized tolerance in chronic bladder infection. Immunity 2013; 38:349-59. [PMID: 23415912 DOI: 10.1016/j.immuni.2012.10.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/09/2012] [Indexed: 01/13/2023]
Abstract
The lower urinary tract's virtually inevitable exposure to external microbial pathogens warrants efficient tissue-specialized defenses to maintain sterility. The observation that the bladder can become chronically infected in combination with clinical observations that antibody responses after bladder infections are not detectable suggest defects in the formation of adaptive immunity and immunological memory. We have identified a broadly immunosuppressive transcriptional program specific to the bladder, but not the kidney, during infection of the urinary tract that is dependent on tissue-resident mast cells (MCs). This involves localized production of interleukin-10 and results in suppressed humoral and cell-mediated responses and bacterial persistence. Therefore, in addition to the previously described role of MCs orchestrating the early innate immunity during bladder infection, they subsequently play a tissue-specific immunosuppressive role. These findings may explain the prevalent recurrence of bladder infections and suggest the bladder as a site exhibiting an intrinsic degree of MC-maintained immune privilege.
Collapse
|
33
|
Mouse models to evaluate the function of genes associated with allergic airway disease. Curr Opin Allergy Clin Immunol 2013; 12:467-74. [PMID: 22885889 DOI: 10.1097/aci.0b013e328357cc17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In recent years, considerable effort has been invested in developing mouse models of allergic airway disease, as a means of evaluating the role of select genes in its pathophysiology. Here, we review the principal models used in this field, including models of allergic asthma and hypersensitivity pneumonitis. As an example of how these models can reveal novel functional roles for genes, we review our work showing a role for the stem-cell-associated gene, Cd34. Through this example, we illustrate the genetic and immunological strategies available in the field to better understand allergic airway inflammation. RECENT FINDINGS CD34 was found to play an important role in the development of two different models of allergic disease, that is, Th2-driven allergic asthma and Th17-driven hypersensitivity pneumonitis. Using a combination of genetically modified mice as well as cell transfers and chimeric mice, we showed that CD34 is important for the efficient trafficking of hematopoietic subsets into and out of the lung, including mast cells, eosinophils and dendritic cells. SUMMARY The currently available array of mutant mice and animal models of allergic disease now offers an opportunity to make profound insights into these diseases and provide preclinical models for the development of therapeutics.
Collapse
|
34
|
Reber LL, Marichal T, Galli SJ. New models for analyzing mast cell functions in vivo. Trends Immunol 2012; 33:613-25. [PMID: 23127755 DOI: 10.1016/j.it.2012.09.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
In addition to their well-accepted role as critical effector cells in anaphylaxis and other acute IgE-mediated allergic reactions, mast cells (MCs) have been implicated in a wide variety of processes that contribute to disease or help to maintain health. Although some of these roles were first suggested by analyses of MC products or functions in vitro, it is critical to determine whether, and under which circumstances, such potential roles actually can be performed by MCs in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products during biological responses in vivo, and comments on some of the similarities and differences in the results obtained with these newer versus older models of MC deficiency.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | | | | |
Collapse
|
35
|
Balaha MF, Tanaka H, Yamashita H, Abdel Rahman MN, Inagaki N. Oral Nigella sativa oil ameliorates ovalbumin-induced bronchial asthma in mice. Int Immunopharmacol 2012; 14:224-31. [PMID: 22800928 DOI: 10.1016/j.intimp.2012.06.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/20/2012] [Accepted: 06/30/2012] [Indexed: 01/13/2023]
Abstract
Nigella sativa oil (NSO) is used in folk medicine as a therapy for many diseases including bronchial asthma. We investigated the possible modulating effects of NSO on asthma-like phenotypes in a mouse model of bronchial asthma. BALB/c mice were actively sensitized by intraperitoneal injections of 50 μg ovalbumin (OVA) with 1mg alum on days 0 and 12. Starting on day 22, they were exposed to OVA (1% (w/v), in sterile physiological saline) for 30 min, three times every 4th day. Negative control animals were exposed to saline in a similar manner. NSO was administered orally for 31 day from day 0 to day 30. On the day of sensitization and challenge, NSO was given 30 min before the treatment. Airway function, number of inflammatory cells in bronchoalveolar lavage fluid (BALF), levels of interleukin (IL)-4, IL-5, IL-13 and interferon (IFN)-γ in BALF, serum levels of total IgE, OVA-specific IgE, IgG1 and IgG2a, and histopathological examination of lung tissues were investigated. Oral treatment with NSO showed significant decrease in airway hyperresponsiveness, the number of total leukocytes, macrophages and eosinophils, levels of IL-4, IL-5 and IL-13 in BALF, serum levels of total IgE, OVA-specific IgE and IgG1, and significant increase in BALF level of IFN-γ and serum level of OVA-specific IgG2a, indicating restoration of local Th1/Th2 balance. Furthermore, it significantly abrogated the histopathological changes of the lungs, as the images were nearly normal. These results suggest that the treatment with oral NSO could be a promising treatment for bronchial asthma in humans.
Collapse
Affiliation(s)
- Mohamed Fathy Balaha
- Pharmacology Department, Faculty of Medicine, Tanta University, Postal No. 31527, El-Gish Street, Tanta, Egypt
| | | | | | | | | |
Collapse
|
36
|
Nayyar A, Dawicki W, Huang H, Lu M, Zhang X, Gordon JR. Induction of prolonged asthma tolerance by IL-10-differentiated dendritic cells: differential impact on airway hyperresponsiveness and the Th2 immunoinflammatory response. THE JOURNAL OF IMMUNOLOGY 2012; 189:72-9. [PMID: 22634620 DOI: 10.4049/jimmunol.1103286] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IL-10-differentiated dendritic cells (DC10s) can prevent allergen sensitization and reverse the asthma phenotype in mice with established disease. However, little is known about the time-frames over which this tolerance is effective. We report that at 2 wk after i.p. or transtracheal delivery of 1 × 10(6) OVA-, but not house dust mite- presenting, DC10s to OVA-asthmatic mice, significant diminution of airway hyperresponsiveness (AHR) was first apparent, whereas AHR was abrogated between 3 and 10 wk posttreatment. At 13 wk, AHR returned to pretreatment levels but could again be reversed by DC10 retreatment. The impact of a single DC10 treatment on airway eosinophil and Th2 cytokine responses to recall OVA challenge, and on OVA-specific IgE/IgG1 responses, was substantial at 3 wk posttreatment, but progressively increased thereafter, such that at 8 mo, airway eosinophil and Th2 responses to recall allergen challenge remained ∼85-95% suppressed relative to saline-treated asthmatic mice. Four biweekly DC10 treatments, whether transtracheal or i.p., reduced all asthma parameters to near background by 8 wk, whereas s.c. DC10 treatments did not affect AHR but did reduce the airway Th2 responses (i.v. DC10 had no discernible effects). Repeated challenge of the DC10-treated mice with aerosolized OVA (100 μg/ml) did not reverse tolerance, but treatment with the indoleamine-2,3-dioxygenase antagonist 1-methyltryptophan or neutralizing anti-IL-10R from days 12 to 21 after DC10 therapy partially reversed tolerance (Th2 cytokine responses, but not AHR). These findings indicate that DC10-induced Th2 tolerance in asthmatic animals is long lived, but that DC10s employ distinct mechanisms to affect AHR versus Th2 immunoinflammatory parameters.
Collapse
Affiliation(s)
- Aarti Nayyar
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
In developed countries, the prevalence of allergy is on the rise. Although the causes are unknown, it seems that (1) the disappearance of microbiota may play a role in the increase of allergies and (2) exposure to bacterial infections during childhood decreases the incidence of allergies. Although several cell types are involved in the development of allergy, mast cells play a major role in orchestrating inflammation. Upon activation, mast cell secretory granules fuse with the plasma membrane, resulting in the release of a number of inflammatory mediators. In addition to allergy, mast cells contribute to the innate immune response against a variety of bacteria. This is accomplished through the secretion of cytokines and other soluble mediators. Interestingly, there is growing evidence that mast cells exposed to bacteria down-regulate degranulation in response to IgE/Allergen stimulation. This inhibitory effect seems to require direct contact between bacteria and mast cells, but the intracellular mechanism by which bacterial contact suppresses allergic responses is unknown. Here, we review different aspects of mast cell physiology and discuss hypotheses as to how bacteria may influence mast cell degranulation.
Collapse
Affiliation(s)
- Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, 223 South 10th Street, Bluemle Life Science Building Room 750, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
38
|
Sawaguchi M, Tanaka S, Nakatani Y, Harada Y, Mukai K, Matsunaga Y, Ishiwata K, Oboki K, Kambayashi T, Watanabe N, Karasuyama H, Nakae S, Inoue H, Kubo M. Role of Mast Cells and Basophils in IgE Responses and in Allergic Airway Hyperresponsiveness. THE JOURNAL OF IMMUNOLOGY 2012; 188:1809-18. [DOI: 10.4049/jimmunol.1101746] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
39
|
Zou T, Satake A, Ojha P, Kambayashi T. Cellular therapies supplement: the role of granulocyte macrophage colony-stimulating factor and dendritic cells in regulatory T-cell homeostasis and expansion. Transfusion 2012; 51 Suppl 4:160S-168S. [PMID: 22074627 DOI: 10.1111/j.1537-2995.2011.03379.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regulatory T cells are a subset of T cells with inhibitory function that are critical for protection against autoimmunity and immunopathology. A failure to maintain adequate regulatory T-cell numbers in the periphery results in autoimmune manifestations, highlighting the importance of the continuous maintenance of peripheral regulatory T cells. The cellular and molecular requirements for regulatory T-cell homeostasis and expansion are not fully understood but involve a complex interplay among dendritic cells, conventional T cells, and regulatory T cells. In addition, soluble factors such as the cytokine granulocyte macrophage colony-stimulating factor may play a role in enhancing these interactions. In this review, we discuss our National Blood Foundation-funded studies relating to the role of granulocyte macrophage colony-stimulating factor and dendritic cells in controlling regulatory T-cell homeostasis and expansion.
Collapse
Affiliation(s)
- Tao Zou
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
40
|
Strandskog G, Villoing S, Iliev DB, Thim HL, Christie KE, Jørgensen JB. Formulations combining CpG containing oliogonucleotides and poly I:C enhance the magnitude of immune responses and protection against pancreas disease in Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1116-1127. [PMID: 21527278 DOI: 10.1016/j.dci.2011.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/16/2011] [Indexed: 05/30/2023]
Abstract
Both CpG oligodeoxynucleotides and double-stranded RNA (poly I:C) have documented effects as treatments against several viral diseases in fish. However, as stand-alone treatments their effects have been modest. We have tested here whether CpG and poly I:C, alone or in combination induce protection against Salmonid Alphavirus (SAV), the causative agent of pancreas disease in Atlantic salmon. Our results revealed a significant reduction of viraemia 2 weeks after ip injection of the combined treatment and 1 week after challenge with SAV subtype 3, followed by reduced SAV induced heart pathology 3 weeks later. The SAV titers in blood samples from the combination group were lower as compared to single treatments with either CpG or poly I:C. Surprisingly, reduced SAV levels could also be found in fish as long as 7 weeks after receiving the combination treatment. The expression of IFNγ and to a lesser extent IFNa and Mx was up-regulated in head kidney and spleen 5 days after the fish had been treated with CpG and poly I:C. Furthermore, the complement factor C4 was depleted in serum 8 weeks post treatment, suggesting complement activation leading to C4 consumption. We hypothesize that the CpG/poly I:C-induced protection against SAV3 is mediated by mechanisms involving type I and type II IFN induced antiviral activity and complement mediated protective responses.
Collapse
Affiliation(s)
- Guro Strandskog
- Norwegian College of Fisheries Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
41
|
Burton OT, Oettgen HC. Beyond immediate hypersensitivity: evolving roles for IgE antibodies in immune homeostasis and allergic diseases. Immunol Rev 2011; 242:128-43. [PMID: 21682742 PMCID: PMC3122143 DOI: 10.1111/j.1600-065x.2011.01024.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Immunoglobulin E (IgE) antibodies have long been recognized as the antigen-specific triggers of allergic reactions. This review briefly introduces the established functions of IgE in immediate hypersensitivity and then focuses on emerging evidence from our own investigations as well as those of others that IgE plays important roles in protective immunity against parasites and exerts regulatory influences in the expression of its own receptors, FcεRI and CD23, as well as controlling mast cell homeostasis. We provide an overview of the multifaceted ways in which IgE antibodies contribute to the pathology of food allergy and speculate regarding potential mechanisms of action of IgE blockade.
Collapse
Affiliation(s)
- Oliver T Burton
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
42
|
Blanchet MR, Bennett JL, Gold MJ, Levantini E, Tenen DG, Girard M, Cormier Y, McNagny KM. CD34 is required for dendritic cell trafficking and pathology in murine hypersensitivity pneumonitis. Am J Respir Crit Care Med 2011; 184:687-98. [PMID: 21642249 DOI: 10.1164/rccm.201011-1764oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RATIONALE Although recent work has shown that CD34 plays an important role in the trafficking of inflammatory cells during Th2-biased inflammatory responses, its role in Th1/Th17-biased disease as well as dendritic cell (DC) trafficking is unknown. OBJECTIVES We used CD34-deficient mice (Cd34(-/-)) to investigate the role of CD34 in the Th1/Th17-biased lung inflammatory disease, hypersensitivity pneumonitis (HP). METHODS HP was induced in wild-type (wt) and Cd34(-/-) mice by repeated intranasal administration of Saccharopolyspora rectivirgula antigen. Lung inflammation was assessed by histology and analysis of bronchoalveolar lavage cells. Primary and secondary immune responses were evaluated by cytokine recall responses of pulmonary inflammatory cells as well as draining lymph node cells. MEASUREMENTS AND MAIN RESULTS Cd34(-/-) mice were highly resistant to the development of HP and exhibited an inflammatory pattern more reflective of a primary response to S. rectivirgula rather than the chronic lymphocytosis that is typical of this disease. Cytokine recall responses from Cd34(-/-) lymph node cells were dampened and consistent with a failure of antigen-loaded Cd34(-/-) DCs to deliver antigen and prime T cells in the draining lymph nodes. In agreement with this interpretation, adoptive transfer of wt DCs into Cd34(-/-) mice was sufficient to restore normal sensitivity to HP. CD34 was found to be expressed by wt DCs, and Cd34(-/-) DCs exhibited an impaired ability to chemotax toward a subset of chemokines in vitro. Finally, expression of human CD34 in Cd34(-/-) mice restored normal susceptibility to HP. CONCLUSIONS We conclude that CD34 is expressed by mucosal DCs and plays an important role in their trafficking through the lung and to the lymph nodes. Our data also suggest that CD34 may play a selective role in the efficient migration of these cells to a subset of chemokines.
Collapse
Affiliation(s)
- Marie-Renée Blanchet
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kagawa S, Fukunaga K, Oguma T, Suzuki Y, Shiomi T, Sayama K, Kimura T, Hirai H, Nagata K, Nakamura M, Asano K. Role of prostaglandin D2 receptor CRTH2 in sustained eosinophil accumulation in the airways of mice with chronic asthma. Int Arch Allergy Immunol 2011; 155 Suppl 1:6-11. [PMID: 21646789 DOI: 10.1159/000327257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The prostaglandin D(2) (PGD(2))/CRTH2 pathway is important for eosinophil trafficking in vitro; however, genetic deficiency of CRTH2 does not suppress in vivo eosinophilic airway inflammation in acute models of asthma, and the role of CRTH2 in the pathogenesis of asthma is still ambiguous. Therefore, in the present study we explored whether the PGD(2)/CRTH2 pathway could affect the phenotypes of chronic asthma. Either CRTH2-deficient (CRTH2-/-) or wild-type mice were sensitized and exposed to ovalbumin (OVA) for 3 days (acute model) or 6 weeks (chronic model). While the magnitude of the acute eosinophilic inflammation was equivalent between CRTH2-/- and wild-type mice, the number of inflammatory cells and eosinophils in bronchoalveolar lavage fluid after chronic OVA exposure was significantly reduced in CRTH2-/- mice (18.0 ± 2.6 × 10(4) cells and 2.0 ± 0.5 × 10(4) cells) compared to wild-type mice (27.9 ± 2.5 × 10(4) cells and 6.8 ± 1.1 × 10(4) cells, p < 0.001). On the contrary, no difference was observed between CRTH2-/- and wild-type mice in terms of airway hyperresponsiveness or remodeling (goblet cell hyperplasia) in the chronic model of asthma. In conclusion, CRTH2 that mediates PGD(2) activity is essential for sustained eosinophilic inflammation in the airways, and its antagonists could exert an anti-inflammatory effect in chronic asthma.
Collapse
Affiliation(s)
- Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Mast cells have been regarded for a long time as effector cells in IgE mediated type I reactions and in host defence against parasites. However, they are resident in all environmental exposed tissues and express a wide variety of receptors, suggesting that these cells can also function as sentinels in innate immune responses. Indeed, studies have demonstrated an important role of mast cells during the induction of life-saving antibacterial responses. Furthermore, recent findings have shown that mast cells promote and modulate the development of adaptive immune responses, making them an important hinge of innate and acquired immunity. In addition, mast cells and several mast cell-produced mediators have been shown to be important during the development of allergic airway diseases. In the present review, we will summarize findings on the role of mast cells during the development of adaptive immune responses and highlight their function, especially during the development of allergic asthma.
Collapse
Affiliation(s)
- Sebastian Reuter
- III Medical Clinic, Johannes Gutenberg-University, Langenbeckstr 1, 55131 Mainz, Germany.
| | | | | |
Collapse
|
45
|
Early activation of mucosal mast cells during the primary immune response in a rodent model of neonatal asthma. Immunol Cell Biol 2010; 89:239-45. [PMID: 20661260 DOI: 10.1038/icb.2010.90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During an allergic inflammatory response in the airway, if a failure of the epithelial cell barrier occurs before the systemic immune response is triggered by allergens, more allergens can invade. Using a rat model of asthma, we previously found that mucosal mast cells, which localise to the epithelial layer of the airways, are activated to promote a pro-asthmatic immune response. In this study, we developed a neonatal rat model of allergic airway hypersensitivity that mimics some features of childhood asthma. Airway hypersensitivity was measured using unrestrained whole-body plethysmography after analysis of the serum IgE titre. Inflammatory cells and inflammatory mediators in bronchoalveolar lavage fluid samples were examined. Two mast cell-specific proteases were detected using PCR. In addition, we analysed the phenotype and the number of mast cells in the airways by immunohistochemistry, and we found that the number of mucosal mast cells and the expression level of the proteases increased 2 weeks after sensitisation. Changes in the IgE titre, airway hypersensitivity and the activation of other inflammatory cells were delayed, appearing during the 4 weeks after sensitisation. Our results indicate that the activation of mucosal mast cells contributes to the pro-asthmatic immune response. This activation may be a biomarker allowing early intervention that could help prevent allergic airway inflammation.
Collapse
|
46
|
Aronica MA, Vogel N. Pathogens and immunologic memory in asthma: what have we learned? Expert Rev Clin Immunol 2010; 1:589-601. [PMID: 20477600 DOI: 10.1586/1744666x.1.4.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Animal models and clinical studies of asthma have generated important insights into the first effector phase leading to the development of allergic airway disease and bronchial hyper-reactivity. In contrast, mechanisms related to asthma chronicity or persistence are less well understood. The CD4(+) T-helper 2 lymphocytes are known initiators of the inflammatory response associated with asthma. There is now increasing evidence that memory T-cells, sensitized against allergenic, occupational or viral antigens, are also involved in the persistence of asthma. Additionally, the role of pathogens in asthma has been linked to both the initial susceptibility to and flares of this disease. This review will discuss the potential links between infection and asthma, the role of the memory T-cells in asthma, and the potential mechanisms by which these factors interact to lead to the development and/or persistence of asthma.
Collapse
Affiliation(s)
- Mark A Aronica
- Cleveland Clinic Foundation, Department of Pulmonary, Allergy and Critical Care Medicine, Cleveland, OH 44195, USA.
| | | |
Collapse
|
47
|
Chronic allergen challenge induces bronchial mast cell accumulation in BALB/c but not C57BL/6 mice and is independent of IL-9. Immunogenetics 2010; 62:499-506. [PMID: 20480160 PMCID: PMC2910299 DOI: 10.1007/s00251-010-0452-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/27/2010] [Indexed: 11/28/2022]
Abstract
As genetically engineered mutant mice deficient in single genes are usually generated on a C57BL/6 background, to study mast cell trafficking in mutant mice, we initially investigated whether mast cells accumulated in bronchi in C57BL/6 mice challenged with OVA allergen acutely or chronically for 1 to 3 months. The total number of bronchial mast cells were quantitated using toluidine blue staining in airways of different sizes, i.e. , small (<90 µm), medium (90–155 µm), or large (>150 µm) airways. Non-OVA challenged and acute OVA challenged mice (C57BL/6 and BALB/c) had no detectable bronchial mast cells. Chronic OVA challenge in BALB/c mice for 1 or 3 months induced a significant increase in the number of bronchial mast cells in small-, medium-, and large-sized airways but minimal change in the number of bronchial mast cells in C57BL/6 mice. Both BALB/c and C57BL/6 mice developed significant lung eosinophilia following acute or chronic OVA challenge. Studies of IL-9-deficient mice on a BALB/c background demonstrated a significant increase in the number of bronchial mast cells in IL-9-deficient mice suggesting that IL-9 was not required for the bronchial accumulation of mast cells. Overall, these studies demonstrate that the chronic OVA challenge protocol we have utilized in BALB/c mice provides a model to study the mechanism of bronchial mast cell accumulation and that bronchial mast cell accumulation in chronic OVA challenged mice is independent of IL-9 in this model.
Collapse
|
48
|
Swedin L, Ellis R, Neimert-Andersson T, Ryrfeldt A, Nilsson G, Inman M, Dahlén SE, Adner M. Prostaglandin modulation of airway inflammation and hyperresponsiveness in mice sensitized without adjuvant. Prostaglandins Other Lipid Mediat 2010; 92:44-53. [PMID: 20214998 DOI: 10.1016/j.prostaglandins.2010.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 02/24/2010] [Accepted: 02/27/2010] [Indexed: 12/11/2022]
Abstract
As adjuvant during sensitization may cause unspecific immune reactions, the aim of the present study was to define the role of cyclooxygenase (COX) activity on airway inflammation and airway hyperresponsiveness (AHR) in an adjuvant-free allergic mouse model. Administration of diclofenac and indomethacin (non-selective COX inhibitors), FR122047 (COX-1 inhibitor) and lumiracoxib (selective COX-2 inhibitor) enhanced AHR. Only diclofenac and lumiracoxib reduced the inflammatory cell content of bronchoalveolar lavage (BAL). Moreover, levels of prostaglandins in BAL were reduced by indomethacin and FR122047 but were unaffected by lumiracoxib. However, compared with antigen controls, none of the COX inhibitors displayed major effects on the production of cytokines, smooth muscle mass, number of goblet cells and eosinophils, or collagen deposition in the airways. These data in mice sensitized without adjuvant support the fact that COX products have a general bronchoprotective role in allergic airway inflammation. Furthermore, the data suggest that COX-1 activity predominantly generates prostanoids in BAL, whereas COX-2 activity is associated with the accumulation of inflammatory cells in BAL. This study further supports that AHR on the one hand, and the inflammatory response and generation of prostanoids on the other, are dissociated and, at least in part, uncoupled events.
Collapse
Affiliation(s)
- Linda Swedin
- The National Institute of Environmental Medicine, Division of Physiology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Komai M, Tanaka H, Nagao K, Ishizaki M, Kajiwara D, Miura T, Ohashi H, Haba T, Kawakami K, Sawa E, Yoshie O, Inagaki N, Nagai H. A novel CC-chemokine receptor 3 antagonist, Ki19003, inhibits airway eosinophilia and subepithelial/peribronchial fibrosis induced by repeated antigen challenge in mice. J Pharmacol Sci 2010; 112:203-13. [PMID: 20134116 DOI: 10.1254/jphs.09277fp] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
CC-chemokine receptor 3 (CCR3) is a chemokine receptor for which major ligands, CC-chemokine ligand (CCL) 11, CCL24, and CCL26, are known to be involved in chemotaxis for eosinophils. In the present study, we evaluated the effect of a low molecular weight CCR3-receptor antagonist, Ki19003 (4-[[5-(2,4-dichlorobenzylureido)pentyl][1-(4-chlorophenyl)ethyl]amino]butanoic acid), on airway remodeling in a mouse model of allergic asthma. BALB/c mice were sensitized twice by intraperitoneal injection of ovalbumin (OA) and exposed daily to 1% OA for 3 weeks. Twenty-four hours after the final antigen challenge, bronchoalveolar lavage and histological examinations were carried out. Ki19003 clearly inhibited antigen-induced increase in the number of eosinophils in bronchoalveolar lavage fluid (BALF), but did not affect the number of other cell types examined in this study. Ki19003 also inhibited the increased production of transforming growth factor-beta1 in BALF and the amount of hydroxyproline in the lungs in a dose-dependent manner. Furthermore, Ki19003 significantly attenuated allergen-induced subepithelial and peribronchial fibrosis. These findings indicate that CCR3 antagonism prevents not only the infiltration of eosinophils into the airways but also the development of allergen-induced subepithelial and peribronchial fibrosis. Therefore, a CCR3 antagonist may be useful in the treatment of airway remodeling, especially subepithelial and peribronchial fibrosis, in allergic asthma.
Collapse
Affiliation(s)
- Masato Komai
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Mitahora-higashi, Gifu 502-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Interleukin 33 (IL33) is a recently described member of the IL1 superfamily of cytokines. Originally defined on the basis of T-cell subset differentiation, IL33 is now recognised to mediate a wider role in regulating components of the innate immune response also, particularly via mast cell activation. In this paper the basic biology of IL33 is described together with that of its cognate receptor, ST2L, and the existing knowledge base for its potential role in mediating human pathology across a range of diseases is defined.
Collapse
Affiliation(s)
- G E J Murphy
- Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|