1
|
Adam J, Graf LM, Westermann S, Voehringer D, Krappmann S. Signaling events driving Aspergillus fumigatus-induced eosinophil activation. Int J Med Microbiol 2024; 318:151641. [PMID: 39719796 DOI: 10.1016/j.ijmm.2024.151641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Allergic bronchopulmonary aspergillosis is an incurable disease caused by the environmental mold Aspergillus fumigatus. This hypersensitivity pneumonia is characterized by an inflammatory type 2 immune response, accompanied by influx of eosinophils into the lung. To investigate the mode of action of eosinophils and the signaling events triggered by A. fumigatus, we used an in vitro coculture system of murine bone marrow-derived eosinophils confronted with conidia. Using small-molecule inhibitors, we identified signaling modules of eosinophils in the course of A. fumigatus confrontation. Eosinophils reduced fungal metabolic activity, but inhibition of relevant signaling modules did not affect this phenomenon upon eosinophil confrontation. A. fumigatus-induced secretion of Th2 cytokines and chemokines by eosinophils engaged proto-oncogene tyrosine-protein kinase Src, phosphatidylinositol 3-kinase, p38 mitogen-activated protein kinase as well as calcium cations and to some extent serine/threonine-protein kinase Akt and protein arginine deiminase 4. Src and PI3K kinases were also involved in A. fumigatus-mediated ROS production and regulation of eosinophils surface receptors. Especially Src and PI3K inhibitors prevented A. fumigatus-induced eosinophil activation. Taken together, identification of signaling cascades of eosinophils during their interaction with A. fumigatus provides relevant insights into the host-pathogen interaction in the context of ABPA to yield therapeutic perspectives.
Collapse
Affiliation(s)
- Jasmin Adam
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
| | - Lisa-Marie Graf
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
| | - Stefanie Westermann
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany; FAU Profile Center Immunomedicine (FAU I-MED), Germany
| | - Sven Krappmann
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany; FAU Profile Center Immunomedicine (FAU I-MED), Germany.
| |
Collapse
|
2
|
Antosz K, Batko J, Błażejewska M, Gawor A, Sleziak J, Gomułka K. Insight into IL-5 as a Potential Target for the Treatment of Allergic Diseases. Biomedicines 2024; 12:1531. [PMID: 39062104 PMCID: PMC11275030 DOI: 10.3390/biomedicines12071531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Interleukin-5 functions as a B-cell differentiation factor, but more importantly, in the context of this review, it plays a variety of roles in eosinophil biology, including eosinophil differentiation and maturation in the bone marrow, and facilitates eosinophil migration to tissue sites, usually in the context of an allergic reaction. Given the availability of selective anti-IL-5 drugs such as mepolizumab and reslizumab, as well as the IL-5 receptor antagonist benralizumab, it is worth investigating whether they could be used in some cases of allergic disease. Asthma has a well-documented involvement of IL-5 in its pathophysiology and has clear benefits in the case of anti-IL-5 therapy; therefore, current knowledge is presented to provide a reference point for the study of less-described diseases such as atopic dermatitis, chronic rhinosinusitis, chronic spontaneous urticaria, and its association with both IL-5 and anti-IL-5 treatment options. We then review the current literature on these diseases, explain where appropriate potential reasons why anti-IL-5 treatments are ineffective, and then point out possible future directions for further research.
Collapse
Affiliation(s)
- Katarzyna Antosz
- Student Research Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.A.); (J.B.); (M.B.); (A.G.); (J.S.)
| | - Joanna Batko
- Student Research Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.A.); (J.B.); (M.B.); (A.G.); (J.S.)
| | - Marta Błażejewska
- Student Research Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.A.); (J.B.); (M.B.); (A.G.); (J.S.)
| | - Antoni Gawor
- Student Research Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.A.); (J.B.); (M.B.); (A.G.); (J.S.)
| | - Jakub Sleziak
- Student Research Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.A.); (J.B.); (M.B.); (A.G.); (J.S.)
| | - Krzysztof Gomułka
- Department of Internal Medicine, Pneumology and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
3
|
Hussain M, Liu G. Eosinophilic Asthma: Pathophysiology and Therapeutic Horizons. Cells 2024; 13:384. [PMID: 38474348 PMCID: PMC10931088 DOI: 10.3390/cells13050384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Asthma is a prevalent chronic non-communicable disease, affecting approximately 300 million people worldwide. It is characterized by significant airway inflammation, hyperresponsiveness, obstruction, and remodeling. Eosinophilic asthma, a subtype of asthma, involves the accumulation of eosinophils in the airways. These eosinophils release mediators and cytokines, contributing to severe airway inflammation and tissue damage. Emerging evidence suggests that targeting eosinophils could reduce airway remodeling and slow the progression of asthma. To achieve this, it is essential to understand the immunopathology of asthma, identify specific eosinophil-associated biomarkers, and categorize patients more accurately based on the clinical characteristics (phenotypes) and underlying pathobiological mechanisms (endotypes). This review delves into the role of eosinophils in exacerbating severe asthma, exploring various phenotypes and endotypes, as well as biomarkers. It also examines the current and emerging biological agents that target eosinophils in eosinophilic asthma. By focusing on these aspects, both researchers and clinicians can advance the development of targeted therapies to combat eosinophilic pathology in severe asthma.
Collapse
Affiliation(s)
- Musaddique Hussain
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Vorobjeva NV, Chelombitko MA, Sud’ina GF, Zinovkin RA, Chernyak BV. Role of Mitochondria in the Regulation of Effector Functions of Granulocytes. Cells 2023; 12:2210. [PMID: 37759432 PMCID: PMC10526294 DOI: 10.3390/cells12182210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Granulocytes (neutrophils, eosinophils, and basophils) are the most abundant circulating cells in the innate immune system. Circulating granulocytes, primarily neutrophils, can cross the endothelial barrier and activate various effector mechanisms to combat invasive pathogens. Eosinophils and basophils also play an important role in allergic reactions and antiparasitic defense. Granulocytes also regulate the immune response, wound healing, and tissue repair by releasing of various cytokines and lipid mediators. The effector mechanisms of granulocytes include the production of reactive oxygen species (ROS), degranulation, phagocytosis, and the formation of DNA-containing extracellular traps. Although all granulocytes are primarily glycolytic and have only a small number of mitochondria, a growing body of evidence suggests that mitochondria are involved in all effector functions as well as in the production of cytokines and lipid mediators and in apoptosis. It has been shown that the production of mitochondrial ROS controls signaling pathways that mediate the activation of granulocytes by various stimuli. In this review, we will briefly discuss the data on the role of mitochondria in the regulation of effector and other functions of granulocytes.
Collapse
Affiliation(s)
- Nina V. Vorobjeva
- Department Immunology, Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Maria A. Chelombitko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.A.C.); (R.A.Z.)
- The Russian Clinical Research Center for Gerontology, Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, 129226 Moscow, Russia
| | - Galina F. Sud’ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.A.C.); (R.A.Z.)
| | - Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.A.C.); (R.A.Z.)
- The Russian Clinical Research Center for Gerontology, Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, 129226 Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.A.C.); (R.A.Z.)
| |
Collapse
|
5
|
Targeting the p38α pathway in chronic inflammatory diseases: Could activation, not inhibition, be the appropriate therapeutic strategy? Pharmacol Ther 2022; 235:108153. [DOI: 10.1016/j.pharmthera.2022.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
|
6
|
Salter B, Lacy P, Mukherjee M. Biologics in Asthma: A Molecular Perspective to Precision Medicine. Front Pharmacol 2022; 12:793409. [PMID: 35126131 PMCID: PMC8807637 DOI: 10.3389/fphar.2021.793409] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Recent developments in therapeutic strategies have provided alternatives to corticosteroids as the cornerstone treatment for managing airway inflammation in asthma. The past two decades have witnessed a tremendous boost in the development of anti-cytokine monoclonal antibody (mAb) therapies for the management of severe asthma. Novel biologics that target eosinophilic inflammation (or type 2, T2 inflammation) have been the most successful at treating asthma symptoms, though there are a few in the drug development pipeline for treating non-eosinophilic or T2-low asthma. There has been significant improvement in clinical outcomes for asthmatics treated with currently available monoclonal antibodies (mAbs), including anti-immunoglobulin (Ig) E, anti-interleukin (IL)-4 receptor α subunit, anti-IL-5, anti-IL-5Rα, anti-IL-6, anti-IL-33, and anti-thymic stromal lymphopoietin (TSLP). Despite these initiatives in precision medicine for asthma therapy, a significant disease burden remains, as evident from modest reduction of exacerbation rates, i.e., approximately 40-60%. There are numerous studies that highlight predictors of good responses to these biologics, but few have focused on those who fail to respond adequately despite targeted treatment. Phenotyping asthmatics based on blood eosinophils is proving to be inadequate for choosing the right drug for the right patient. It is therefore pertinent to understand the underlying immunology, and perhaps, carry out immune endotyping of patients before prescribing appropriate drugs. This review summarizes the immunology of asthma, the cytokines or receptors currently targeted, the possible mechanisms of sub-optimal responses, and the importance of determining the immune make-up of individual patients prior to prescribing mAb therapy, in the age of precision medicine for asthma.
Collapse
Affiliation(s)
- Brittany Salter
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, ON, Canada
| | - Paige Lacy
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Manali Mukherjee
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, ON, Canada
| |
Collapse
|
7
|
Alfaro-Arnedo E, López IP, Piñeiro-Hermida S, Ucero ÁC, González-Barcala FJ, Salgado FJ, Pichel JG. IGF1R as a Potential Pharmacological Target in Allergic Asthma. Biomedicines 2021; 9:biomedicines9080912. [PMID: 34440118 PMCID: PMC8389607 DOI: 10.3390/biomedicines9080912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Asthma is a chronic lung disease characterized by reversible airflow obstruction, airway hyperresponsiveness (AHR), mucus overproduction and inflammation. Although Insulin-like growth factor 1 receptor (IGF1R) was found to be involved in asthma, its pharmacological inhibition has not previously been investigated in this pathology. We aimed to determine if therapeutic targeting of IGF1R ameliorates allergic airway inflammation in a murine model of asthma. Methods: C57BL/6J mice were challenged by house dust mite (HDM) extract or PBS for four weeks and therapeutically treated with the IGF1R tyrosine kinase inhibitor (TKI) NVP-ADW742 (NVP) once allergic phenotype was established. Results: Lungs of HDM-challenged mice exhibited a significant increase in phospho-IGF1R levels, incremented AHR, airway remodeling, eosinophilia and allergic inflammation, as well as altered pulmonary surfactant expression, all of being these parameters counteracted by NVP treatment. HDM-challenged lungs also displayed augmented expression of the IGF1R signaling mediator p-ERK1/2, which was greatly reduced upon treatment with NVP. Conclusions: Our results demonstrate that IGF1R could be considered a potential pharmacological target in murine HDM-induced asthma and a candidate biomarker in allergic asthma.
Collapse
Affiliation(s)
- Elvira Alfaro-Arnedo
- Lung Cancer and Respiratory Diseases Unit, Center for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain; (E.A.-A.); (I.P.L.)
| | - Icíar P. López
- Lung Cancer and Respiratory Diseases Unit, Center for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain; (E.A.-A.); (I.P.L.)
| | - Sergio Piñeiro-Hermida
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain;
| | - Álvaro C. Ucero
- Thoracic Oncology, Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Francisco J. González-Barcala
- Department of Respiratory Medicine, University Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
- Spanish Biomedical Research Networking Centre-CIBERES, 15706 Santiago de Compostela, Spain
| | - Francisco J. Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - José G. Pichel
- Lung Cancer and Respiratory Diseases Unit, Center for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain; (E.A.-A.); (I.P.L.)
- Spanish Biomedical Research Networking Centre-CIBERES, 15706 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-638-056-014
| |
Collapse
|
8
|
ATG5 promotes eosinopoiesis but inhibits eosinophil effector functions. Blood 2021; 137:2958-2969. [PMID: 33598715 DOI: 10.1182/blood.2020010208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses.
Collapse
|
9
|
Santana FPR, da Silva RC, Ponci V, Pinheiro AJMCR, Olivo CR, Caperuto LC, Arantes-Costa FM, Claudio SR, Ribeiro DA, Tibério IFLC, Lima-Neto LG, Lago JHG, Prado CM. Dehydrodieugenol improved lung inflammation in an asthma model by inhibiting the STAT3/SOCS3 and MAPK pathways. Biochem Pharmacol 2020; 180:114175. [PMID: 32717226 DOI: 10.1016/j.bcp.2020.114175] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Eugenol, a common phenylpropanoid derivative found in different plant species, has well-described anti-inflammatory effects associated with the development of occupational hypersensitive asthma. Dehydrodieugenol, a dimeric eugenol derivative, exhibits anti-inflammatory and antioxidant activities and can be found in the Brazilian plant species Nectandra leucantha (Lauraceae). The biological effects of dehydrodieugenol on lung inflammation remain unclear. PURPOSE This study aimed to investigate the effects of eugenol and dehydrodieugenol isolated from N. leucantha in an experimental model of asthma. METHODS In the present work, the toxic effects of eugenol and dehydrodieugenol on RAW 264.7 cells and their oxidant and inflammatory effects before lipopolysaccharide (LPS) exposure were tested. Then, male BALB/c mice were sensitized with ovalbumin through a 29-day protocol and treated with vehicle, eugenol, dehydrodieugenol or dexamethasone for eight days beginning on the 22nd day until the end of the protocol. Lung function; the inflammatory profile; and the protein expression of ERK1/2, JNK, p38, VAChT, STAT3, and SOCS3 in the lung were evaluated by immunoblotting. RESULTS Eugenol and dehydrodieugenol were nontoxic to cells. Both compounds inhibited NO release and the gene expression of IL-1β and IL-6 in LPS-stimulated RAW 264.7 cells. In OVA-sensitized animals, dehydrodieugenol reduced lung inflammatory cell numbers and the lung concentrations of IL-4, IL-13, IL-17, and IL-10. These anti-inflammatory effects were associated with inhibition of the JNK, p38 and ERK1/2, VAChT and STAT3/SOCS3 pathways. Moreover, treatment with dehydrodieugenol effectively attenuated airway hyperresponsiveness. CONCLUSION The obtained data demonstrate, for the first time, that dehydrodieugenol was more effective than eugenol in counteracting allergic airway inflammation in mice, especially its inhibition of the JNK, p38 and ERK1/2, components of MAPK pathway. Therefore, dehydrodieugenol can be considered a prototype for the development of new and effective agents for the treatment of asthmatic patients.
Collapse
Affiliation(s)
- Fernanda P R Santana
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil; Department of Medicine, School of Medicine, University of São Paulo, SP, Brazil
| | - Rafael C da Silva
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil
| | - Vitor Ponci
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil
| | - Aruanã J M C R Pinheiro
- Universidade CEUMA, São Luís, MA, Brazil; Programa de Pós-Graduação da Rede BIONORTE, Brazil
| | - Clarice R Olivo
- Department of Medicine, School of Medicine, University of São Paulo, SP, Brazil
| | - Luciana C Caperuto
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil
| | | | - Samuel R Claudio
- Department of Bioscience, Federal University of São Paulo, Santos, Brazil
| | - Daniel A Ribeiro
- Department of Bioscience, Federal University of São Paulo, Santos, Brazil
| | | | - Lídio G Lima-Neto
- Universidade CEUMA, São Luís, MA, Brazil; Programa de Pós-Graduação da Rede BIONORTE, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, SP, Brazil
| | - Carla M Prado
- Department of Bioscience, Federal University of São Paulo, Santos, Brazil.
| |
Collapse
|
10
|
Pelaia C, Vatrella A, Crimi C, Gallelli L, Terracciano R, Pelaia G. Clinical relevance of understanding mitogen-activated protein kinases involved in asthma. Expert Rev Respir Med 2020; 14:501-510. [PMID: 32098546 DOI: 10.1080/17476348.2020.1735365] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Mitogen-activated protein kinases (MAPKs) are a large family of evolutionary conserved intracellular enzymes that play a pivotal role in signaling pathways mediating the biologic actions of a wide array of extracellular stimuli.Areas covered: MAPKs are implicated in most pathogenic events involved in asthma, including both inflammatory and structural changes occurring in the airways. Indeed, MAPKs are located at the level of crucial convergence points within the signal transduction networks activated by many cytokines, chemokines, growth factors, and other inducers of bronchial inflammation and remodeling such as immunoglobulin E (IgE) and oxidative stress.Expert opinion: Therefore, given the growing importance of MAPKs in asthma pathobiology, these signaling enzymes are emerging as key intracellular pathways whose upstream activation can be inhibited by biological drugs such as anti-cytokines and anti-IgE.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Luca Gallelli
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
11
|
Pelaia C, Paoletti G, Puggioni F, Racca F, Pelaia G, Canonica GW, Heffler E. Interleukin-5 in the Pathophysiology of Severe Asthma. Front Physiol 2019; 10:1514. [PMID: 31920718 PMCID: PMC6927944 DOI: 10.3389/fphys.2019.01514] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Interleukin-5 (IL-5) exerts a central pathogenic role in differentiation, recruitment, survival, and degranulation of eosinophils. Indeed, during the last years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the powerful actions of IL-5 finalized to the induction, maintenance, and amplification of eosinophilic inflammation. Therefore, IL-5 is a suitable target for add-on biological therapies based on either IL-5 inhibition (mepolizumab, reslizumab) or blockade of its receptor (benralizumab). These modern treatments can result in being definitely beneficial for patients with severe type 2 (T2)-high eosinophilic asthma, refractory to conventional anti-inflammatory drugs such as inhaled and even systemic corticosteroids.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Giovanni Paoletti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Francesca Puggioni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Francesca Racca
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| |
Collapse
|
12
|
Williams LM, Scott HA, Wood LG. Soluble fibre as a treatment for inflammation in asthma. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
13
|
Jo A, Yoo HJ, Lee M. Robustaflavone Isolated from Nandina domestica Using Bioactivity-Guided Fractionation Downregulates Inflammatory Mediators. Molecules 2019; 24:molecules24091789. [PMID: 31072069 PMCID: PMC6540067 DOI: 10.3390/molecules24091789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Nandina domestica (Berberidaceae) has been used in traditional medicine for the treatment of cough. This plant is distributed in Korea, Japan, China, and India This study aimed to investigate the anti-inflammatory phytochemicals obtained from the N. domestica fruits. We isolated a biflavonoid-type phytochemical, robustaflavone (R), from N. domestica fruits through bioactivity-guided fractionation based on its capacity to inhibit inflammation. The anti-inflammatory mechanism of R isolated from N. domestica has not yet been studied. In the present study, we evaluated the anti-inflammatory activities of R using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We have shown that R reduces the production of nitric oxide (NO), pro-inflammatory cytokine interleukin-1 beta (IL-1β), and IL-6. Western blot analysis showed that R suppresses the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and downregulates the expression of LPS-induced nuclear factor-kappa B (NF-κB) and the phosphorylation of extracellular-regulated kinases (pERK 1/2). Moreover, R inhibited IL-8 release in LPS-induced human colonic epithelial cells (HT-29). These results suggest that R could be a potential therapeutic candidate for inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Ara Jo
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si 57922, Jeonnam, Korea.
| | - Hyun Ji Yoo
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si 57922, Jeonnam, Korea.
| | - Mina Lee
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si 57922, Jeonnam, Korea.
| |
Collapse
|
14
|
Zheng M, Guo X, Pan R, Gao J, Zang B, Jin M. Hydroxysafflor Yellow A Alleviates Ovalbumin-Induced Asthma in a Guinea Pig Model by Attenuateing the Expression of Inflammatory Cytokines and Signal Transduction. Front Pharmacol 2019; 10:328. [PMID: 31024302 PMCID: PMC6459898 DOI: 10.3389/fphar.2019.00328] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 03/19/2019] [Indexed: 12/26/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA) is an effective ingredient of the Chinese herb Carthamus tinctorius L. In this study, we aimed to evaluate the effects of HSYA on ovalbumin (OVA)-induced asthma in guinea pigs, and to elucidate the underlying mechanisms. We established a guinea pig asthma model by intraperitoneal injection and atomized administration OVA. Guinea pigs were injected intraperitoneally with HSYA (50, 75, 112.5 mg/kg) once daily from days 2 to 22 before OVA administration. We examined biomarkers including lung function, pulmonary histopathology, immunoglobulin E (IgE), Th1/Th2 relative inflammatory mediators, and related pathways. Pathological changes in lung tissues were detected by hematoxylin and eosin and periodic acid-Schiff staining. Phosphorylation levels of JNK mitogen-activated protein kinase (MAPK), p38 MAPK, ERK MAPK, and inhibitor of nuclear factor κBα (IκBα) were detected by western blot. plasma levels of total IgE, platelet-activating factor (PAF), and interleukin (IL)-3 were detected by enzyme-linked immunosorbent assay (ELISA). Expression levels of tumor necrosis factor (TNF)-α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-13, and interferon (IFN)-γ were detected by ELISA and real-time quantitative polymerase chain reaction. HSYA significantly reduced airway resistance, improved dynamic lung compliance, and attenuated the pathologic changes. HSYA also inhibited the phosphorylation of JNK MAPK, p38 MAPK, ERK MAPK, and IκBα, and inhibited the OVA-induced elevations of IgE, PAF, IL-1β, IL-6, IL-4, IL-5, and IL-13 and the decreases in TNF-α, IFN-γ, IL-2, and IL-3. These findings suggest that HSYA has a protective effect on OVA-induced asthma through inhibiting the Th1/Th2 cell imbalance and inhibiting activation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xinjing Guo
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ruiyan Pan
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jianwei Gao
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Baoxia Zang
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ming Jin
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
15
|
Pelaia C, Calabrese C, Vatrella A, Busceti MT, Garofalo E, Lombardo N, Terracciano R, Pelaia G. Benralizumab: From the Basic Mechanism of Action to the Potential Use in the Biological Therapy of Severe Eosinophilic Asthma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4839230. [PMID: 29862274 PMCID: PMC5971345 DOI: 10.1155/2018/4839230] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
Asthma is a very frequent chronic airway disease that includes many different clinical phenotypes and inflammatory patterns. In particular, eosinophilic bronchial inflammation is often associated with allergic as well as nonallergic asthma. The most important cytokine involved in the induction, maintenance, and amplification of airway eosinophilia in asthma is interleukin-5 (IL-5), released by both T helper 2 (Th2) lymphocytes and group 2 innate lymphoid cells (ILC2). Hence, IL-5 and its receptor are suitable targets for selective biologic drugs which can play a key role in add-on treatment of severe eosinophilic asthma refractory to corticosteroids. Within such a context, the anti-IL-5 monoclonal antibodies mepolizumab and reslizumab have been developed and approved for biological therapy of uncontrolled eosinophilic asthma. In this regard, on the basis of several successful randomized controlled trials, the anti-IL-5 receptor benralizumab has also recently obtained the approval from US Food and Drug Administration (FDA).
Collapse
Affiliation(s)
- Corrado Pelaia
- Dipartimento di Scienze Mediche e Chirurgiche, Università degli Studi “Magna Græcia”, Catanzaro, Italy
| | - Cecilia Calabrese
- Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Alessandro Vatrella
- Dipartimento di Medicina, Chirurgia ed Odontoiatria, Università degli Studi di Salerno, Salerno, Italy
| | - Maria Teresa Busceti
- Dipartimento di Scienze Mediche e Chirurgiche, Università degli Studi “Magna Græcia”, Catanzaro, Italy
| | - Eugenio Garofalo
- Dipartimento di Scienze Mediche e Chirurgiche, Università degli Studi “Magna Græcia”, Catanzaro, Italy
| | - Nicola Lombardo
- Dipartimento di Scienze Mediche e Chirurgiche, Università degli Studi “Magna Græcia”, Catanzaro, Italy
| | - Rosa Terracciano
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia”, Catanzaro, Italy
| | - Girolamo Pelaia
- Dipartimento di Scienze Mediche e Chirurgiche, Università degli Studi “Magna Græcia”, Catanzaro, Italy
| |
Collapse
|
16
|
Pelaia C, Vatrella A, Bruni A, Terracciano R, Pelaia G. Benralizumab in the treatment of severe asthma: design, development and potential place in therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:619-628. [PMID: 29606855 PMCID: PMC5868576 DOI: 10.2147/dddt.s155307] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Asthma is a widespread and heterogeneous inflammatory disease of the airways, which is characterized by several different phenotypes and endotypes. In particular, eosinophilic airway inflammation is a common pathologic trait of both allergic and nonallergic asthma. The key cytokine responsible for maturation, activation, recruitment, and survival of eosinophils is interleukin (IL)-5, which is mainly produced by T helper 2 (Th2) lymphocytes and group 2 innate lymphoid cells. Therefore, for uncontrolled patients with severe eosinophilic asthma, who are not fully responsive to corticosteroids, IL-5 represents a very important molecular target for add-on biological therapies. Among these new treatments, anti-IL-5 monoclonal antibodies such as mepolizumab and reslizumab have been developed and clinically evaluated. Furthermore, benralizumab is currently the only available biologic drug that specifically binds to the IL-5 receptor, thus preventing the interaction with its ligand and the consequent pro-inflammatory effects. The effectiveness of benralizumab in improving severe eosinophilic asthma has been well-documented by many randomized controlled trials.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, Section of Respiratory Diseases, University of Salerno, Salerno, Italy
| | - Andrea Bruni
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Sciences, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
17
|
Pelaia C, Vatrella A, Busceti MT, Gallelli L, Terracciano R, Savino R, Pelaia G. Severe eosinophilic asthma: from the pathogenic role of interleukin-5 to the therapeutic action of mepolizumab. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3137-3144. [PMID: 29133975 PMCID: PMC5669784 DOI: 10.2147/dddt.s150656] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mepolizumab is an anti-interleukin-5 (IL-5) humanized monoclonal antibody that has been recently approved as an add-on biological treatment for severe eosinophilic asthma, by both the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Moreover, mepolizumab is also currently included within the step 5 of the Global Initiative for Asthma guidelines, as an add-on therapy for severe uncontrolled asthma. The relevant therapeutic benefits detectable in patients with refractory eosinophilic asthma receiving mepolizumab depend on the pivotal pathogenic role played by IL-5 in these subjects. Indeed, IL-5 is the key cytokine responsible for maturation, activation, proliferation, and survival of eosinophils. Therefore, IL-5 represents a strategic molecular target for anti-eosinophilic treatments. By selectively inhibiting the biological actions of IL-5, mepolizumab provides a valuable therapeutic option for patients with severe eosinophilic asthma, refractory to standard treatments including inhaled and even systemic corticosteroids. In particular, the very important advantages linked to the use of mepolizumab in these difficult-to-treat asthmatic individuals have been well documented by several different trials performed worldwide.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Græcia" of Catanzaro, Catanzaro
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, Section of Respiratory Diseases, University of Salerno, Salerno
| | - Maria Teresa Busceti
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Græcia" of Catanzaro, Catanzaro
| | - Luca Gallelli
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rocco Savino
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Græcia" of Catanzaro, Catanzaro
| |
Collapse
|
18
|
Soman KV, Stafford SJ, Pazdrak K, Wu Z, Luo X, White WI, Wiktorowicz JE, Calhoun WJ, Kurosky A. Activation of Human Peripheral Blood Eosinophils by Cytokines in a Comparative Time-Course Proteomic/Phosphoproteomic Study. J Proteome Res 2017; 16:2663-2679. [PMID: 28679203 DOI: 10.1021/acs.jproteome.6b00367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activated eosinophils contribute to airway dysfunction and tissue remodeling in asthma and thus are considered to be important factors in asthma pathology. We report here comparative proteomic and phosphoproteomic changes upon activation of eosinophils using eight cytokines individually and in selected cytokine combinations in time-course reactions. Differential protein and phosphoprotein expressions were determined by mass spectrometry after 2-dimensional gel electrophoresis (2DGE) and by LC-MS/MS. We found that each cytokine-stimulation produced significantly different changes in the eosinophil proteome and phosphoproteome, with phosphoproteomic changes being more pronounced and having an earlier onset. Furthermore, we observed that IL-5, GM-CSF, and IL-3 showed the greatest change in protein expression and phosphorylation, and this expression differed markedly from those of the other five cytokines evaluated. Comprehensive univariate and multivariate statistical analyses were employed to evaluate the comparative results. We also monitored eosinophil activation using flow cytometry (FC) analysis of CD69. In agreement with our proteomic studies, FC indicated that IL-5, GM-CSF, and IL-3 were more effective than the other five cytokines studied in stimulating a cell surface CD69 increase indicative of eosinophil activation. Moreover, selected combinations of cytokines revealed proteomic patterns with many proteins in common with single cytokine expression patterns but also showed a greater effect of the two cytokines employed, indicating a more complex signaling pathway that was reflective of a more typical inflammatory pathology.
Collapse
Affiliation(s)
- Kizhake V Soman
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Susan J Stafford
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Konrad Pazdrak
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Zheng Wu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Xuemei Luo
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Wendy I White
- MedImmune LLC , One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - John E Wiktorowicz
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Human Immunity & Infection, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - William J Calhoun
- Department of Internal Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Alexander Kurosky
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| |
Collapse
|
19
|
Khorasanizadeh M, Eskian M, Gelfand EW, Rezaei N. Mitogen-activated protein kinases as therapeutic targets for asthma. Pharmacol Ther 2017; 174:112-126. [DOI: 10.1016/j.pharmthera.2017.02.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Yamauchi Y, Ueki S, Konno Y, Ito W, Takeda M, Nakamura Y, Nishikawa J, Moritoki Y, Omokawa A, Saga T, Hirokawa M. The effect of hepatocyte growth factor on secretory functions in human eosinophils. Cytokine 2016; 88:45-50. [PMID: 27552115 DOI: 10.1016/j.cyto.2016.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022]
Abstract
Hepatocyte growth factor (HGF), originally identified as a potent mitogen for mature hepatocytes, is now recognized as a humoral mediator in inflammatory and immune responses. Previous studies indicated that HGF negatively regulated allergic airway inflammation. In view of eosinophils playing a role in the pathogenesis of asthma, especially in airway remodeling as a rich source of pro-fibrogenic mediators, the effects of HGF on the different types of eosinophil secretory functions were examined in this study. We found that HGF significantly inhibited IL-5-induced secretion of TGF-β and VEGF from human eosinophils. The inhibitory effect is not associated with TGF-β transcription; rather, it is associated with ultrastructural granule emptying and loss of intracellular TGF-β contents, indicating HGF inhibits the process of piecemeal degranulation. The effect of HGF on extracellular trap cell death (ETosis) that mediates cytolytic degranulation was also investigated; however, immobilized IgG- or phorbol myristate acetate-induced ETosis was only minimally attenuated by HGF. These results reveal the effect of HGF on the distinct pathways of eosinophil secretory functions and also provide novel insights into the role of HGF in the pathogenesis of allergic inflammation.
Collapse
Affiliation(s)
- Yumiko Yamauchi
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | - Yasunori Konno
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Wataru Ito
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan; Nagareyama Tobu Clinic, 909-1 Nazukari, Nagareyama City, Chiba 270-0145, Japan
| | - Masahide Takeda
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yuka Nakamura
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Junko Nishikawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yuki Moritoki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Ayumi Omokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Tomoo Saga
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Makoto Hirokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
21
|
Pelaia G, Vatrella A, Busceti MT, Gallelli L, Preianò M, Lombardo N, Terracciano R, Maselli R. Role of biologics in severe eosinophilic asthma - focus on reslizumab. Ther Clin Risk Manag 2016; 12:1075-82. [PMID: 27445482 PMCID: PMC4936812 DOI: 10.2147/tcrm.s111862] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Within the context of the heterogeneous phenotypic stratification of asthmatic population, many patients are characterized by moderate-to-severe eosinophilic asthma, not adequately controlled by relatively high dosages of inhaled and even oral corticosteroids. Therefore, these subjects can obtain significant therapeutic benefits by additional biologic treatments targeting interleukin-5 (IL-5), given the key pathogenic role played by this cytokine in maturation, activation, proliferation, and survival of eosinophils. In particular, reslizumab is a humanized anti-IL-5 monoclonal antibody that has been found to be an effective and safe add-on therapy, capable of decreasing asthma exacerbations and significantly improving disease control and lung function in patients experiencing persistent allergic or nonallergic eosinophilic asthma, despite the regular use of moderate-to-high doses of inhaled corticosteroids. These important therapeutic effects of reslizumab, demonstrated by several controlled clinical trials, have led to the recent approval by US Food and Drug Administration of its use, together with other antiasthma medications, for the maintenance treatment of patients suffering from severe uncontrolled asthma.
Collapse
Affiliation(s)
- Girolamo Pelaia
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine and Surgery, Section of Respiratory Diseases, University of Salerno, Salerno, Italy
| | - Maria Teresa Busceti
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | | | - Nicola Lombardo
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosario Maselli
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
22
|
Carr TF, Berdnikovs S, Simon HU, Bochner BS, Rosenwasser LJ. Eosinophilic bioactivities in severe asthma. World Allergy Organ J 2016; 9:21. [PMID: 27386041 PMCID: PMC4924237 DOI: 10.1186/s40413-016-0112-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2016] [Indexed: 12/17/2022] Open
Abstract
Asthma is clearly related to airway or blood eosinophilia, and asthmatics with significant eosinophilia are at higher risk for more severe disease. Eosinophils actively contribute to innate and adaptive immune responses and inflammatory cascades through the production and release of diverse chemokines, cytokines, lipid mediators and other growth factors. Eosinophils may persist in the blood and airways despite guidelines-based treatment. This review details eosinophil effector mechanisms, surface markers, and clinical outcomes associated with eosinophilia and asthma severity. There is interest in the potential of eosinophils or their products to predict treatment response with biotherapeutics and their usefulness as biomarkers. This is important as monoclonal antibodies are targeting cytokines and eosinophils in different lung environments for treating severe asthma. Identifying disease state-specific eosinophil biomarkers would help to refine these strategies and choose likely responders to biotherapeutics.
Collapse
Affiliation(s)
| | - Sergejs Berdnikovs
- />Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | - Hans-Uwe Simon
- />Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Bruce S. Bochner
- />Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | | |
Collapse
|
23
|
Xia LX, Hua W, Jin Y, Tian BP, Qiu ZW, Zhang C, Che LQ, Zhou HB, Wu YF, Huang HQ, Lan F, Ke YH, Lee JJ, Li W, Ying SM, Chen ZH, Shen HH. Eosinophil differentiation in the bone marrow is promoted by protein tyrosine phosphatase SHP2. Cell Death Dis 2016; 7:e2175. [PMID: 27054330 PMCID: PMC4855658 DOI: 10.1038/cddis.2016.74] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 02/06/2023]
Abstract
SHP2 participates in multiple signaling events by mediating T-cell development and function, and regulates cytokine-dependent granulopoiesis. To explore whether and how SHP2 can regulate bone-marrow eosinophil differentiation, we investigate the contribution of SHP2 in the bone-marrow eosinophil development in allergic mice. Blockade of SHP2 function by SHP2 inhibitor PHPS-1 or conditional shp2 knockdown by adenovirus-inhibited bone-marrow-derived eosinophil differentiation in vitro, with no detectable effects on the apoptosis of eosinophils. Furthermore, SHP2 induced eosinophil differentiation via regulation of the extracellular signal-regulated kinase pathway. Myeloid shp2 conditional knockout mice (LysMcreshp2flox/flox) failed to induce eosinophilia as well as airway hyper-responsiveness. The SHP2 inhibitor PHPS-1 also alleviated eosinophilic airway inflammation and airway hyper-responsiveness, accompanied by significantly reduced levels of systemic eosinophils and eosinophil lineage-committed progenitors in allergic mice. We demonstrate that inhibition of eosinophil development is SHP2-dependent and SHP2 is sufficient to promote eosinophil formation in vivo. Our data reveal SHP2 as a critical regulator of eosinophil differentiation, and inhibition of SHP2 specifically in myeloid cells alleviates allergic airway inflammation.
Collapse
Affiliation(s)
- L-x Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - W Hua
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Y Jin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - B-p Tian
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Z-w Qiu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - C Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - L-q Che
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - H-b Zhou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Y-f Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - H-q Huang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - F Lan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Y-h Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - J J Lee
- Division of Pulmonary Medicine and Hematology and Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale 85259, Arizona
| | - W Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - S-m Ying
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Z-h Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - H-h Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,The State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong 510120, China
| |
Collapse
|
24
|
Tian BP, Hua W, Xia LX, Jin Y, Lan F, Lee JJ, Lee NA, Li W, Ying SM, Chen ZH, Shen HH. Exogenous interleukin-17A inhibits eosinophil differentiation and alleviates allergic airway inflammation. Am J Respir Cell Mol Biol 2016; 52:459-70. [PMID: 25180833 DOI: 10.1165/rcmb.2014-0097oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IL-17 is known to play important roles in immune and inflammatory disease, such as in asthma, but its functions in allergic airway inflammation are still controversial, and the molecular mechanisms mediating these functions remain unclear. Increased production of eosinophils in bone marrow and their emergence in the airway have been linked to the onset and progression of allergic asthma. In this study, we investigated the effects of exogenous IL-17 on allergic airway inflammation and explored the underlying molecular mechanisms through eosinophil generation. Exogenous IL-17 significantly attenuated the features of allergic inflammation induced by ovalbumin in mice. It inhibited eosinophil differentiation both in vivo and in vitro, accompanied by down-regulated expression of CC chemokine receptor 3, GATA binding protein 1 (GATA-1), and GATA binding protein 2 (GATA-2), as well as reduced formation of common myeloid progenitors and eosinophil progenitors, but without influencing eosinophil apoptosis. IL-17 also significantly decreased the number of eosinophils in IL-5-transgenic mice, although it notably increased the levels of IL-3, IL-5, and granulocyte/macrophage colony-stimulating factor. In addition, IL-17 had little effect on secretion of the inflammatory cytokines by eosinophils. Neutralization of endogenous IL-17 significantly augmented eosinophil recruitment in the airways. Together, these findings suggest that exogenous IL-17 protects against allergic airway inflammation, most likely through inhibition of the eosinophil differentiation in bone marrow.
Collapse
Affiliation(s)
- Bao-ping Tian
- 1 Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Subhashini, Chauhan PS, Dash D, Paul BN, Singh R. Intranasal curcumin ameliorates airway inflammation and obstruction by regulating MAPKinase activation (p38, Erk and JNK) and prostaglandin D2 release in murine model of asthma. Int Immunopharmacol 2016; 31:200-6. [PMID: 26761722 DOI: 10.1016/j.intimp.2015.12.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 11/15/2022]
Abstract
Asthma, a multifactorial, chronic inflammatory disease encompasses multiple complex pathways releasing number of mediators by activated mast cells, eosinophils and T lymphocytes, leading to its severity. Presently available medications are associated with certain limitations, and hence, it is imperative to search for anti-inflammatory drug preferably targeting signaling cascades involved in inflammation thereby suppressing inflammatory mediators without any side effect. Curcumin, an anti-inflammatory molecule with potent anti-asthmatic potential has been found to suppress asthmatic features by inhibiting airway inflammation and bronchoconstriction if administered through nasal route. The present study provides new insight towards anti-asthmatic potential of intranasal curcumin at lower doses (2.5 and 5.0 mg/kg) in Balb/c mice sensitized and challenged with ovalbumin (OVA) which is effective in inhibiting airway inflammation. These investigations suggest that intranasal curcumin (2.5 and 5.0 mg/kg) regulates airway inflammation and airway obstruction mainly by modulating cytokine levels (IL-4, 5, IFN-ƴ and TNF-α) and sPLA2 activity thereby inhibiting PGD2 release and COX-2 expression. Further, the suppression of p38 MAPK, ERK 42/44 and JNK54/56 activation elucidate the mechanism behind the inhibitory role of intranasal curcumin in asthma progression. Thus, curcumin could be better alternative for the development of nasal formulations and inhalers in near future.
Collapse
Affiliation(s)
- Subhashini
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Preeti S Chauhan
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India
| | - D Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University
| | - B N Paul
- Department of Immunobiology, Indian Institute of Toxicology and Research, Lucknow 226001, India
| | - Rashmi Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
26
|
Konno Y, Ueki S, Takeda M, Kobayashi Y, Tamaki M, Moritoki Y, Oyamada H, Itoga M, Kayaba H, Omokawa A, Hirokawa M. Functional analysis of free fatty acid receptor GPR120 in human eosinophils: implications in metabolic homeostasis. PLoS One 2015; 10:e0120386. [PMID: 25790291 PMCID: PMC4366258 DOI: 10.1371/journal.pone.0120386] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/21/2015] [Indexed: 01/21/2023] Open
Abstract
Recent evidence has shown that eosinophils play an important role in metabolic homeostasis through Th2 cytokine production. GPR120 (FFA4) is a G protein-coupled receptor (GPCR) for long-chain fatty acids that functions as a regulator of physiological energy metabolism. In the present study, we aimed to investigate whether human eosinophils express GPR120 and, if present, whether it possesses a functional capacity on eosinophils. Eosinophils isolated from peripheral venous blood expressed GPR120 at both the mRNA and protein levels. Stimulation with a synthetic GPR120 agonist, GW9508, induced rapid down-regulation of cell surface expression of GPR120, suggesting ligand-dependent receptor internalization. Although GPR120 activation did not induce eosinophil chemotactic response and degranulation, we found that GW9508 inhibited eosinophil spontaneous apoptosis and Fas receptor expression. The anti-apoptotic effect was attenuated by phosphoinositide 3-kinase (PI3K) inhibitors and was associated with inhibition of caspase-3 activity. Eosinophil response investigated using ELISpot assay indicated that stimulation with a GPR120 agonist induced IL-4 secretion. These findings demonstrate the novel functional properties of fatty acid sensor GPR120 on human eosinophils and indicate the previously unrecognized link between nutrient metabolism and the immune system.
Collapse
Affiliation(s)
- Yasunori Konno
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
- * E-mail:
| | - Masahide Takeda
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoshiki Kobayashi
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
- Department of Otolaryngology, Kansai Medical University, Shin-machi, Hirakata City, Osaka, Japan
| | - Mami Tamaki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuki Moritoki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Hajime Oyamada
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Masamichi Itoga
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
- Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroyuki Kayaba
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
- Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ayumi Omokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Makoto Hirokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
27
|
Smith SG, Hill M, Oliveria JP, Watson BM, Baatjes AJ, Dua B, Howie K, Campbell H, Watson RM, Sehmi R, Gauvreau GM. Evaluation of peroxisome proliferator-activated receptor agonists on interleukin-5-induced eosinophil differentiation. Immunology 2014; 142:484-91. [PMID: 24628018 DOI: 10.1111/imm.12280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/26/2014] [Accepted: 03/07/2014] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) agonists have been suggested as novel therapeutics for the treatment of inflammatory lung disease, such as allergic asthma. Treatment with PPAR agonists has been shown to inhibit airway eosinophilia in murine models of allergic asthma, which can occur through several mechanisms including attenuated generation of chemoattractants (e.g. eotaxin) and decreased eosinophil migrational responses. In addition, studies report that PPAR agonists can inhibit the differentiation of several cell types. To date, no studies have examined the effects of PPAR agonists on interleukin-5 (IL-5) -induced eosinophil differentiation from haemopoietic progenitor cells. Non-adherent mononuclear cells or CD34(+) cells isolated from the peripheral blood of allergic subjects were grown for 2 weeks in Methocult(®) cultures with IL-5 (10 ng/ml) and IL-3 (25 ng/ml) in the presence of 1-1000 nm PPARα agonist (GW9578), PPARβ/δ agonist (GW501516), PPARγ agonist (rosiglitazone) or diluent. The number of eosinophil/basophil colony-forming units (Eo/B CFU) was quantified by light microscopy. The signalling mechanism involved was assessed by phosphoflow. Blood-extracted CD34(+) cells cultured with IL-5 or IL-5 + IL-3 formed Eo/B CFU, which were significantly inhibited by rosiglitazone (100 nm, P < 0·01) but not GW9578 or GW501516. In addition, rosglitazone significantly inhibited IL-5-induced phosphorylation of extracellular signal-regulated kinase 1/2. We observed an inhibitory effect of rosiglitazone on eosinophil differentiation in vitro, mediated by attenuation of the extracellular signal-regulated kinase 1/2 signalling pathway. These findings indicate that the PPARγ agonist can attenuate tissue eosinophilia by interfering with local differentiative responses.
Collapse
Affiliation(s)
- Steven G Smith
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
IL-4 and IL-13 differentially regulate TLR-induced eosinophil-basophil differentiation of cord blood CD34+ progenitor cells. PLoS One 2014; 9:e100734. [PMID: 24971469 PMCID: PMC4074087 DOI: 10.1371/journal.pone.0100734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/30/2014] [Indexed: 11/20/2022] Open
Abstract
Intrauterine environmental exposures have been shown to influence neonatal immunity and subsequent allergic disease development. We have previously shown that fewer lipopolysaccharide (LPS)-stimulated eosinophil-basophil (Eo/B) colonies grow from cord blood (CB) of high-atopic risk infants, compared to low-atopic risk infants. In the present study, we investigated whether a surrogate ex vivo TH2 milieu (i.e., either IL-4 or IL-13) could represent an underlying mechanism to explain our previous findings. CB CD34+ cells from healthy donors were cultured with IL-4 or IL-13 (in combination with LPS) and assessed for Eo/B differentiation using methylcellulose cultures and flow cytometry for related intracellular signalling pathways. Pharmacological inhibitors were added to the methylcellulose cultures to determine the effect of blocking intracellular signalling in CB CD34+ cells in relation to Eo/B colony forming unit (CFU) formation. Stimulation of CD34+ cells with IL-4, but not IL-13, reduced Eo/B CFU formation in the presence of LPS; this was found to be dependent on IL-4Rα and not IL-13Rα1. Additionally, IL-4 reduced the expression of ERK 1/2 after LPS stimulation, which was recovered by inhibition of IL-4Rα. While IL-13 did not have an inhibitory effect on ERK 1/2 expression, inhibition of ERK 1/2 significantly reduced Eo/B CFU formation. Thus, the responsiveness of CB CD34+ progenitor cells to LPS is differentially regulated by the TH2 cytokines, IL-4 and IL-13. This may have implications for in utero interactions between placental-derived pro-allergic cytokines and neonatal progenitor cells influencing Eo/B-mediated inflammatory responses in early life.
Collapse
|
29
|
Awad A, Yassine H, Barrier M, Vorng H, Marquillies P, Tsicopoulos A, Duez C. Natural killer cells induce eosinophil activation and apoptosis. PLoS One 2014; 9:e94492. [PMID: 24727794 PMCID: PMC3984162 DOI: 10.1371/journal.pone.0094492] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/17/2014] [Indexed: 12/18/2022] Open
Abstract
Eosinophils are potent inflammatory cells with numerous immune functions, including antigen presentation and exacerbation of inflammatory responses through their capacity to release a range of largely preformed cytokines and lipid mediators. Thus, timely regulation of eosinophil activation and apoptosis is crucial to develop beneficial immune response and to avoid tissue damage and induce resolution of inflammation. Natural Killer (NK) cells have been reported to influence innate and adaptive immune responses by multiple mechanisms including cytotoxicity against other immune cells. In this study, we analyzed the effect of the interaction between NK cells and eosinophils. Co-culture experiments revealed that human NK cells could trigger autologous eosinophil activation, as shown by up-regulation of CD69 and down-regulation of CD62L, as well as degranulation, evidenced by increased CD63 surface expression, secretion of eosinophil cationic protein (ECP) and eosinophil derived neurotoxin (EDN). Moreover, NK cells significantly and dose dependently increased eosinophil apoptosis as shown by annexin V and propidium iodide (PI) staining. Direct contact was necessary for eosinophil degranulation and apoptosis. Increased expression of phosphorylated extracellular signal-regulated kinase (ERK) in cocultured eosinophils and inhibition of eosinophil CD63 expression by pharmacologic inhibitors suggest that MAPK and PI3K pathways are involved in NK cell-induced eosinophil degranulation. Finally, we showed that NK cells increased reactive oxygen species (ROS) expression by eosinophils in co-culture and that mitochondrial inhibitors (rotenone and antimycin) partially diminished NK cell-induced eosinophil apoptosis, suggesting the implication of mitochondrial ROS in NK cell-induced eosinophil apoptosis. Pan-caspase inhibitor (ZVAD-FMK) only slightly decreased eosinophil apoptosis in coculture. Altogether, our results suggest that NK cells regulate eosinophil functions by inducing their activation and their apoptosis.
Collapse
Affiliation(s)
- Ali Awad
- Pulmonary Immunity, Institut National de la Santé Et de la Recherche Médicale, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
| | - Hanane Yassine
- Pulmonary Immunity, Institut National de la Santé Et de la Recherche Médicale, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
| | - Mathieu Barrier
- Pulmonary Immunity, Institut National de la Santé Et de la Recherche Médicale, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
| | - Han Vorng
- Pulmonary Immunity, Institut National de la Santé Et de la Recherche Médicale, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
| | - Philippe Marquillies
- Pulmonary Immunity, Institut National de la Santé Et de la Recherche Médicale, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
| | - Anne Tsicopoulos
- Pulmonary Immunity, Institut National de la Santé Et de la Recherche Médicale, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
- Clinique des Maladies Respiratoires et Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Catherine Duez
- Pulmonary Immunity, Institut National de la Santé Et de la Recherche Médicale, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
30
|
Verhein KC, Salituro FG, Ledeboer MW, Fryer AD, Jacoby DB. Dual p38/JNK mitogen activated protein kinase inhibitors prevent ozone-induced airway hyperreactivity in guinea pigs. PLoS One 2013; 8:e75351. [PMID: 24058677 PMCID: PMC3776780 DOI: 10.1371/journal.pone.0075351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 08/16/2013] [Indexed: 12/28/2022] Open
Abstract
Ozone exposure causes airway hyperreactivity and increases hospitalizations resulting from pulmonary complications. Ozone reacts with the epithelial lining fluid and airway epithelium to produce reactive oxygen species and lipid peroxidation products, which then activate cell signaling pathways, including the mitogen activated protein kinase (MAPK) pathway. Both p38 and c-Jun NH2 terminal kinase (JNK) are MAPK family members that are activated by cellular stress and inflammation. To test the contribution of both p38 and JNK MAPK to ozone-induced airway hyperreactivity, guinea pigs were pretreated with dual p38 and JNK MAPK inhibitors (30 mg/kg, ip) 60 minutes before exposure to 2 ppm ozone or filtered air for 4 hours. One day later airway reactivity was measured in anesthetized animals. Ozone caused airway hyperreactivity one day post-exposure, and blocking p38 and JNK MAPK completely prevented ozone-induced airway hyperreactivity. Blocking p38 and JNK MAPK also suppressed parasympathetic nerve activity in air exposed animals, suggesting p38 and JNK MAPK contribute to acetylcholine release by airway parasympathetic nerves. Ozone inhibited neuronal M2 muscarinic receptors and blocking both p38 and JNK prevented M2 receptor dysfunction. Neutrophil influx into bronchoalveolar lavage was not affected by MAPK inhibitors. Thus p38 and JNK MAPK mediate ozone-induced airway hyperreactivity through multiple mechanisms including prevention of neuronal M2 receptor dysfunction.
Collapse
Affiliation(s)
- Kirsten C. Verhein
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| | | | - Mark W. Ledeboer
- Vertex Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Allison D. Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
31
|
Reece P, Baatjes AJ, Cyr MM, Sehmi R, Denburg JA. Toll-like receptor-mediated eosinophil-basophil differentiation: autocrine signalling by granulocyte-macrophage colony-stimulating factor in cord blood haematopoietic progenitors. Immunology 2013; 139:256-64. [PMID: 23347362 DOI: 10.1111/imm.12078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/30/2022] Open
Abstract
Eosinophils are multi-functional leucocytes that play a role in inflammatory processes including allergy and infection. Although bone marrow (BM) inflammatory cells are the main source of eosinophil-basophil (Eo/B) differentiation-inducing cytokines, a recent role has been demonstrated for cytokine induction through Toll-like receptor (TLR)-mediated signalling in BM progenitors. Having previously demonstrated that cord blood (CB) progenitors induce Eo/B colony-forming units (CFU) after lipopolysaccharide (LPS) stimulation, we sought to investigate the intracellular mechanisms by which LPS induces Eo/B differentiation. Freshly isolated CD34-enriched human CB cells were stimulated with LPS (and/or pharmacological inhibitors) and assessed for alterations in haematopoietic cytokine receptor expression and signalling pathways by flow cytometry, Eo/B CFU in methylcellulose cultures, and cytokine secretion using Luminex assays. The LPS stimulation resulted in a significant increase in granulocyte-macrophage colony-stimulating factor (GM-CSF)-responsive, as opposed to interleukin-5-responsive, Eo/B CFU, which also correlated with significant increases in CD34(+) cell GM-CSFRα expression. Functionally, CB CD34(+) cells secrete abundant amounts of GM-CSF following LPS stimulation, via a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism; this secretion was responsible for Eo/B CFU formation ex vivo, as shown by antibody blockade. We show for the first time that LPS stimulation of CB progenitor cells results in autocrine activation of p38 MAPK-dependent GM-CSF secretion facilitating Eo/B differentiation ex vivo. This work provides evidence that early life exposure to products of bacterial agents can modulate Eo/B differentiation, representing a novel mechanism by which progenitor cells can respond to microbial stimuli and so affect immune and inflammatory responses.
Collapse
Affiliation(s)
- Pia Reece
- Division of Clinical Immunology and Allergy, McMaster University, Hamilton, ON, Canada
| | | | | | | | | |
Collapse
|
32
|
Expression of IL-32 modulates NF-κB and p38 MAP kinase pathways in human esophageal cancer. Cytokine 2013; 61:223-7. [PMID: 23107826 DOI: 10.1016/j.cyto.2012.09.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 07/14/2012] [Accepted: 09/25/2012] [Indexed: 12/31/2022]
|
33
|
Luo Y, Pang Z, Zhu Q, Cai X, Yin Y, Wang M, Zhu J, Chen J, Zeng K, Zhang C, Zhang J. Locally instilled tumor necrosis factor-α antisense oligonucleotide inhibits allergic inflammation via the induction of Tregs. J Gene Med 2012; 14:374-83. [PMID: 22576979 DOI: 10.1002/jgm.2631] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Anti-tumor necrosis factor (TNF)-α therapeutics has the potential to alleviate allergic inflammation. However, in previous studies, the systemic administration of anti-TNF-α agents was frequently accompanied by many adverse effects, such as infection, immunogenicity and malignancy. Efforts are made in the present study to evaluate whether or not local administration of TNF-α antisense oligonucleotide would inhibit allergic airway inflammation and influence systemic immune responses in an ovalbumin-induced asthmatic murine model. METHODS The treatment effects of TNF-α antisense oligonucleotide on mice, as well as the alternative proportion of regulatory T cells and T(H) 2 cells, were examined and compared with untreated mice. RESULTS Local administration of TNF-α antisense oligonucleotide resulted in significantly inhibited TNF-α expression, remarkably decreased inflammatory cell infiltration and dramatically reduced mucus hypersecretion. These treatment effects were associated with induced CD4(+) CD25(+) Foxp3(+) regulatory T cells, reduced T(H) 2 cells and generally decreased T(H) 2-type cytokines expression in bronchoalveolar lavage fluid. Systemic immunosuppression was not triggered by local antisense oligonucleotide administration because the proportion of CD4(+) CD25(+) Foxp3(+) regulatory T cells in the blood, thymus or spleen was not affected. Attenuated 4-1BBL expression was likely involved in the alternative proportion of T cells. CONCLUSIONS These findings demonstrate that local administration of TNF-α antisense oligonucleotide contributes to anti-inflammatory action via the enhancement of regulatory T cells-mediated immune tolerance, which is not accompanied by systemic immunosuppression associated with systemically-induced regulatory T cells.
Collapse
Affiliation(s)
- Yi Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hosoki K, Nakamura A, Nagao M, Hiraguchi Y, Tanida H, Tokuda R, Wada H, Nobori T, Suga S, Fujisawa T. Staphylococcus aureus directly activates eosinophils via platelet-activating factor receptor. J Leukoc Biol 2012; 92:333-41. [PMID: 22595142 DOI: 10.1189/jlb.0112009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Colonization by SA is associated with exacerbation of AD. Eosinophilic inflammation is a cardinal pathological feature of AD, but little is known about possible direct interaction between SA and eosinophils. PAFR appears to be involved in phagocytosis of Gram-positive bacteria by leukocytes. The objective of this study was to investigate whether SA directly induces eosinophil effector functions via PAFR in the context of AD pathogenesis. Peripheral blood eosinophils were cultured with heat-killed SA, and EDN release, superoxide generation, and adhesion to fibronectin-coated plates were measured. Cytokines, released in the supernatants, were quantified by multiplex bead immunoassays. FISH-labeled SA was incubated with eosinophils and visualized by confocal laser-scanning microscopy. PAFR-blocking peptide and PAFR antagonists were tested for inhibitory effects on SA-induced reactions. SA induced EDN release and superoxide generation by eosinophils in a dose-dependent manner. IL-5 significantly enhanced SA-induced EDN release. IL-5 and IL-17A significantly enhanced SA-induced superoxide generation. SA enhanced eosinophil adhesion to fibronectin, which was blocked by anti-CD49d, and induced eosinophil secretion of various cytokines/chemokines (IL-2R, IL-9, TNFR, IL-1 β, IL-17A, IP-10, TNF-α, PDGF-bb, VEGF, and FGF-basic). After incubation of eosinophils with SA, FISH-labeled SA was visualized in the eosinophils' cytoplasm, indicating phagocytosis. A PAFR-blocking peptide and two PAFR antagonists completely inhibited those reactions. In conclusion, SA directly induced eosinophil activation via PAFR. Blockade of PAFR may be a novel, therapeutic approach for AD colonized by SA.
Collapse
Affiliation(s)
- Koa Hosoki
- Institute for Clinical Research, Mie National Hospital, Mie, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dellon ES, Bower JJ, Keku TO, Chen X, Miller CR, Woosley JT, Orlando RC, Shaheen NJ. Markers of tyrosine kinase activity in eosinophilic esophagitis: a pilot study of the FIP1L1-PDGFRα fusion gene, pERK 1/2, and pSTAT5. Dis Esophagus 2012; 25:166-74. [PMID: 21819482 PMCID: PMC3213309 DOI: 10.1111/j.1442-2050.2011.01230.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathogenesis of eosinophilic esophagitis (EoE) is incompletely understood. In certain eosinophilic diseases, activation of tyrosine kinase after fusion of the Fip1-like-1 and platelet-derived growth factor receptor-α genes (F-P fusion gene) mediates eosinophilia via downstream effectors such as extracellular-regulated kinase (ERK1/2) and signal transducers and activators of transcription (STAT5). This mechanism has not been examined in EoE. Our aim was to detect the F-P fusion gene, pERK1/2, and pSTAT5 in esophageal tissue from patients with EoE, gastroesophageal reflux disease (GERD), and normal controls. We performed a cross-sectional pilot study comparing patients with steroid-responsive and steroid-refractory EoE, to GERD patients and normal controls. EoE cases were defined by consensus guidelines. Fluorescence in situ hybridization (FISH) was performed to detect the F-P fusion gene and immunohistochemistry (IHC) was performed to detect pERK1/2 and pSTAT5 in esophageal biopsies. Twenty-nine subjects (median age 30 years [range 1-59]; 16 males; 24 Caucasians) were included: eight normal, six GERD, and 15 EoE (five steroid-refractory). On FISH, 98%, 99%, and 99% of the nuclei in the normal, GERD, and EoE groups, respectively, were normal (P= 0.42). On IHC, a median of 250, 277, and 479 nuclei/mm(2) stained for pERK 1/2 in the normal, GERD, and EoE groups, respectively (P= 0.07); the refractory EoE patients had the highest degree pERK 1/2 staining (846 nuclei/mm(2); P= 0.07). No trend was seen for pSTAT5. In conclusion, the F-P fusion gene was not detected with increased frequency in EoE. Patients with EoE had a trend toward higher levels of pERK 1/2, but not STAT5, in the esophageal epithelium, with highest levels in steroid-refractory EoE patients.
Collapse
Affiliation(s)
- Evan S. Dellon
- Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC,Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Jacquelyn J. Bower
- Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Temitope O. Keku
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Xiaoxin Chen
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC,Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC
| | - C. Ryan Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - John T. Woosley
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Roy C. Orlando
- Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC,Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Nicholas J. Shaheen
- Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC,Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
36
|
Goplen N, Karim Z, Guo L, Zhuang Y, Huang H, Gorska MM, Gelfand E, Pagés G, Pouysségur J, Alam R. ERK1 is important for Th2 differentiation and development of experimental asthma. FASEB J 2012; 26:1934-45. [PMID: 22262639 DOI: 10.1096/fj.11-196477] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ERK1/2 signaling pathway regulates a variety of T-cell functions. We observed dynamic changes in the expression of ERK1/2 during T-helper cell differentiation. Specifically, the expression of ERK1/2 was decreased and increased by IL-12 and IL-4, respectively. To address this subject further, we examined the specific role of ERK1 in Th2 differentiation and development of experimental asthma using ERK1(-/-) mice. ERK1(-/-) mice were unable to mount airway inflammation and hyperreactivity in two different models of asthma, acute and chronic. ERK1(-/-) mice had reduced expression of Th2 cytokines IL-4 and IL-5 but not IL-17A or IFN-γ. They had reduced levels of allergen-specific IgE and blood eosinophils. T cells from immunized ERK1(-/-) mice manifested reduced proliferation in response to the sensitizing allergen. ERK1(-/-) T cells had reduced and short-lived expression of JunB following TCR stimulation, which likely contributed to their impaired Th2 differentiation. Immunized ERK1(-/-) mice showed reduced numbers of CD44(high) CD4 T cells in the spleen. In vitro studies demonstrated that Th2 but not Th1 cells from ERK1(-/-) mice had reduced numbers of CD44(high) cells. Finally, CD4 T cells form ERK1(-/-) mice expressed higher levels of BIM under growth factor-deprived conditions and reduced Mcl-1 on stimulation. As a result, the survival of CD4 T cells, especially CD44(high) Th2 cells, was much reduced in ERK1(-/-) mice. We conclude that ERK1 plays a nonredundant role in Th2 differentiation and development of experimental asthma. ERK1 controls Th2 differentiation and survival through its effect on JunB and BIM, respectively.
Collapse
Affiliation(s)
- Nicholas Goplen
- Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Molfino NA, Gossage D, Kolbeck R, Parker JM, Geba GP. Molecular and clinical rationale for therapeutic targeting of interleukin-5 and its receptor. Clin Exp Allergy 2011; 42:712-37. [PMID: 22092535 DOI: 10.1111/j.1365-2222.2011.03854.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 12/17/2022]
Abstract
Interleukin-5 is a Th2 homodimeric cytokine involved in the differentiation, maturation, migration, development, survival, trafficking and effector function of blood and local tissue eosinophils, in addition to basophils and mast cells. The IL-5 receptor (IL-5R) consists of an IL-5-specific α subunit that interacts in conformationally dynamic ways with the receptor's βc subunit, an aggregate of domains it shares with binding sites of IL-3 and granulocyte-macrophage colony-stimulating factor. IL-5 and IL-5R drive allergic and inflammatory immune responses characterizing numerous diseases, such as asthma, atopic dermatitis, chronic obstructive pulmonary disease, eosinophilic gastrointestinal diseases, hyper-eosinophilic syndrome, Churg-Strauss syndrome and eosinophilic nasal polyposis. Although corticosteroid therapy is the primary treatment for these diseases, a substantial number of patients exhibit incomplete responses and suffer side-effects. Two monoclonal antibodies have been designed to neutralize IL-5 (mepolizumab and reslizumab). Both antibodies have demonstrated the ability to reduce blood and tissue eosinophil counts. One additional monoclonal antibody, benralizumab (MEDI-563), has been developed to target IL-5R and attenuate eosinophilia through antibody-dependent cellular cytotoxicity. All three monoclonal antibodies are being clinically evaluated. Antisense oligonucleotide technology targeting the common βc IL-5R subunit is also being used therapeutically to inhibit IL-5-mediated effects (TPI ASM8). Small interfering RNA technology has also been used therapeutically to inhibit the expression of IL-5 in animal models. This review summarizes the structural interactions between IL-5 and IL-5R and the functional consequences of such interactions, and describes the pre-clinical and clinical evidence supporting IL-5R as a therapeutic target.
Collapse
Affiliation(s)
- N A Molfino
- MedImmune, LLC, Gaithersburg, MD 20878, USA.
| | | | | | | | | |
Collapse
|
38
|
Abstract
The mitogen-activated protein kinase (MAPK) family includes the p38 kinases, which consist of highly conserved proline-directed serine-threonine protein kinases that are activated in response to inflammatory signals. Of the four isoforms, p38α is the most abundant in inflammatory cells and has been the most studied through mainly the availability of small molecule inhibitors. The p38 substrates include transcription factors; other protein kinases, which in turn phosphorylate transcription factors; cytoskeletal proteins and translational components; and other enzymes. Both asthma and COPD are characterized by chronic airflow obstruction, airway and lung remodeling, and chronic inflammation. p38 is involved in the inflammatory responses induced by cigarette smoke exposure, endotoxin, and oxidative stress through activation and release of proinflammatory cytokines/chemokines, posttranslational regulation of these genes, and activation of inflammatory cell migration. Inhibition of p38 MAPK prevented allergen-induced pulmonary eosinophilia, mucus hypersecretion, and airway hyperresponsiveness, effects that may partly result from p38 activation on eosinophil apoptosis and on airway smooth muscle cell production of cytokines/chemokines. In addition, p38 regulates the augmented contractile response induced by oxidative stress. The activation of p38 observed in epithelial cells and macrophages also may underlie corticosteroid insensitivity of severe asthma and COPD. Therefore, p38 inhibitors present a potential attractive treatment of these conditions. Second-generation p38 inhibitors have been disappointing in the treatment of rheumatoid arthritis. In two 6-week studies in patients with COPD, the results were encouraging. Side effects such as liver toxicity remain a possibility, and whether the beneficial effects of p38 inhibitors are clinically significant and sustained need to be determined.
Collapse
Affiliation(s)
- Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton Hospital, London, England.
| |
Collapse
|
39
|
Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:175-86. [PMID: 21224055 DOI: 10.1016/j.ajpath.2010.11.026] [Citation(s) in RCA: 376] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/16/2010] [Accepted: 09/02/2010] [Indexed: 02/06/2023]
Abstract
Inflammation contributes to liver injury during cholestasis. The mechanism by which cholestasis initiates an inflammatory response in the liver, however, is not known. Two hypotheses were investigated in the present studies. First, activation of Toll-like receptor 4 (TLR4), either by bacterial lipopolysaccharide or by damage-associated molecular pattern molecules released from dead hepatocytes, triggers an inflammatory response. Second, bile acids act as inflammagens, and directly activate signaling pathways in hepatocytes that stimulate production of proinflammatory mediators. Liver inflammation was not affected in lipopolysaccharide-resistant C3H/HeJ mice after bile duct ligation, indicating that Toll-like receptor 4 is not required for initiation of inflammation. Treatment of hepatocytes with bile acids did not directly cause cell toxicity but increased the expression of numerous proinflammatory mediators, including cytokines, chemokines, adhesion molecules, and other proteins that influence immune cell levels and function. Up-regulation of several of these genes in hepatocytes and in the liver after bile duct ligation required early growth response factor-1, but not farnesoid X receptor. In addition, early growth response factor-1 was up-regulated in the livers of patients with cholestasis and correlated with levels of inflammatory mediators. These data demonstrate that Toll-like receptor 4 is not required for the initiation of acute inflammation during cholestasis. In contrast, bile acids directly activate a signaling network in hepatocytes that promotes hepatic inflammation during cholestasis.
Collapse
|
40
|
Alam R, Gorska MM. Mitogen-activated protein kinase signalling and ERK1/2 bistability in asthma. Clin Exp Allergy 2010; 41:149-59. [PMID: 21121982 DOI: 10.1111/j.1365-2222.2010.03658.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) integrate signals from numerous receptors and translate these signals into cell functions. MAPKs are critical for immune cell metabolism, migration, production of pro-inflammatory mediators, survival and differentiation. We provide a concise review of the involvement of MAPK in important cells of the immune system. Certain cell functions, e.g. production of pro-inflammatory mediators resolve quickly and may require a transient MAPK activation, other processes such as cell differentiation and long-term survival may require persistent MAPK signal. The persistent MAPK signal is frequently a consequence of positive feedback loops or double negative feedback loops which perpetuate the signal after removal of an external cell stimulus. This self-perpetuated activation of a signalling circuit is a manifestation of its bistability. Bistable systems can exist in 'on' and 'off' states and both states are stable. We have demonstrated the existence of self-perpetuated activation mechanism for ERK1/2 in bronchial epithelial cells. This sustained activation of ERK1/2 supports long-term survival of these cells and primes them for cytokine transcription. ERK1/2 bistability arises from repetitive stimulation of the cell. The repeated stimulation (e.g. repeated viral infection or repeated allergen exposure) seems to be a common theme in asthma and other chronic illnesses. We thus hypothesize that the self-perpetuated ERK1/2 signal plays an important role in the pathogenesis of asthma.
Collapse
Affiliation(s)
- R Alam
- Department of Medicine, Division of Allergy & Immunology, National Jewish Health, Denver, CO 80206, USA.
| | | |
Collapse
|
41
|
Kim BS, Uhm TG, Lee SK, Lee SH, Kang JH, Park CS, Chung IY. The crucial role of GATA-1 in CCR3 gene transcription: modulated balance by multiple GATA elements in the CCR3 regulatory region. THE JOURNAL OF IMMUNOLOGY 2010; 185:6866-75. [PMID: 21041734 DOI: 10.4049/jimmunol.1001037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GATA-1, a zinc finger-containing transcription factor, regulates not only the differentiation of eosinophils but also the expression of many eosinophil-specific genes. In the current study, we dissected CCR3 gene expression at the molecular level using several cell types that express varying levels of GATA-1 and CCR3. Chromatin immunoprecipitation analysis revealed that GATA-1 preferentially bound to sequences in both exon 1 and its proximal intron 1. A reporter plasmid assay showed that constructs harboring exon 1 and/or intron 1 sequences retained transactivation activity, which was essentially proportional to cellular levels of endogenous GATA-1. Introduction of a dominant-negative GATA-1 or small interfering RNA of GATA-1 resulted in a decrease in transcription activity of the CCR3 reporter. Both point mutation and EMSA analyses demonstrated that although GATA-1 bound to virtually all seven putative GATA elements present in exon 1-intron 1, the first GATA site in exon 1 exhibited the highest binding affinity for GATA-1 and was solely responsible for GATA-1-mediated transactivation. The fourth and fifth GATA sites in exon 1, which were postulated previously to be a canonical double-GATA site for GATA-1-mediated transcription of eosinophil-specific genes, appeared to play an inhibitory role in transactivation, albeit with a high affinity for GATA-1. Furthermore, mutation of the seventh GATA site (present in intron 1) increased transcription, suggesting an inhibitory role. These data suggest that GATA-1 controls CCR3 transcription by interacting dynamically with the multiple GATA sites in the regulatory region of the CCR3 gene.
Collapse
Affiliation(s)
- Byung Soo Kim
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, South Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Nissim Ben Efraim AH, Eliashar R, Levi-Schaffer F. Hypoxia modulates human eosinophil function. Clin Mol Allergy 2010; 8:10. [PMID: 20642833 PMCID: PMC2923626 DOI: 10.1186/1476-7961-8-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/19/2010] [Indexed: 01/21/2023] Open
Abstract
Background Eosinophils are involved in various inflammatory processes including allergic inflammation during which angiogenesis has been documented. Angiogenesis is most likely connected to the hypoxia which characterizes inflamed tissues. Eosinophils produce VEGF and are pro-angiogenic. However, to the best of our knowledge no study has been performed to verify the existence of a direct link between eosinophils, hypoxia and angiogenesis in allergic inflammation. Objective To characterize eosinophil function and angiogenic potential under hypoxic conditions. Methods Human peripheral blood eosinophils were cultured in normoxic or hypoxic conditions with or without cytokines. Viability and apoptosis were assessed by Annexin V/PI staining. Anti- or pro-apoptotic protein levels, HIF-1α levels and MAPK phosphorylation were analyzed by immunoblot analysis. Angiogenic mediator release was evaluated by ELISA. Results Hypoxic eosinophils were more viable than normoxic ones after up to three days. In addition in hypoxia, anti-apoptotic Bcl-XL protein levels increased more than pro-apoptotic Bax levels. Hypoxia increased VEGF and IL-8 release. In hypoxic eosinophils high levels of HIF-1α were observed, particularly in the presence of GM-CSF. MAPK, particularly ERK1/2 inhibitors, decreased hypoxia-mediated VEGF release and HIF-1α expression. Conclusion Eosinophils respond to hypoxia by up-regulation of survival and of some of their pro-angiogenic functions indicating a correlation between eosinophilic inflammation and angiogenesis.
Collapse
Affiliation(s)
- Alon H Nissim Ben Efraim
- Department of Pharmacology and Experimental Therapeutics, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | |
Collapse
|
43
|
Gorska MM, Alam R. The signaling mechanism of eosinophil activation. Expert Rev Clin Immunol 2010; 1:247-56. [PMID: 20476938 DOI: 10.1586/1744666x.1.2.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Eosinophils play an important role in certain aspects of asthma pathogenesis. This review focuses on the mechanism of activation of eosinophils by the growth factor interleukin-5 and the CC chemokine receptor-3. Interleukin-5 activates members of the Janus and Src family of kinases. The latter kinases are largely responsible for the generation of initial signaling events. CC chemokine receptor-3, in contrast, signals through heterotrimeric G-proteins. Subsequently, various signaling pathways are activated, which converge on four major pathways - the mitogen-activated protein kinase pathway, the phosphoinositide-3 kinase pathway, the calcium signaling pathway and the Janus-signal transducer and activator of transcription signaling pathway. The biologic consequences of many of these signaling pathways are also discussed.
Collapse
Affiliation(s)
- Magdalena M Gorska
- Division of Allergy & Immunology, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.
| | | |
Collapse
|
44
|
Fanat AI, Thomson JV, Radford K, Nair P, Sehmi R. Human airway smooth muscle promotes eosinophil differentiation. Clin Exp Allergy 2009; 39:1009-17. [PMID: 19438586 DOI: 10.1111/j.1365-2222.2009.03246.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Human airway smooth muscle (HASM) cells in culture synthesize cytokines and chemokines that may orchestrate the tissue homing and in situ differentiation of haemopoietic progenitor cells from the peripheral circulation. OBJECTIVE To study the effect of a supernatant from cultured HASM cells on the differentiative and transmigrational responses of haemopoietic progenitor cells. METHODS HASM cells were grown to confluence and stimulated with a cytomix of TNF-alpha, IL-1beta and IFN-gamma. Peripheral blood-derived progenitors from atopic asthmatics (n=12) and non-atopic controls (n=11) were grown in a methylcellulose culture with a supernatant from stimulated HASM cells to assess clonogenic potential. The ability of HASM cells to stimulate directional migration and adhesion to fibronectin of blood progenitors was also investigated. RESULTS HASM cells stimulated significant growth of eosinophil/basophil colony forming units (Eo/B CFUs) from blood progenitor cells from both groups of subjects. This activity was significantly attenuated in the presence of anti-IL-5 and anti-granulocyte macrophage-colony forming factor blocking antibodies and by pre-treatment with SB202190 [p38 mitogen-activated protein kinase (MAPK) inhibitor]. An src kinase (srcK) inhibitor (Pyrazolopyrimidine 1) was less effective at attenuating IL-5- and HASM-stimulated Eo/B CFU growth from both groups of subjects. Examination of the phosphorylation of these kinases in CD34(+) cells following co-incubation with the major constituents of HASM showed activation of p38 MAPK but not that of the srcK pathway. The HASM supernatant had no significant effect on the migrational and adhesive responses of haemopoietic progenitor cells in vitro. CONCLUSION We have shown that HASM cell-derived cytokines promote eosinophil differentiation that is dependent on p38 MAPK but not on the srcK pathway. This study shows that a major structural cell of the lungs, airway smooth muscle, has the capability to direct eosinophil differentiation and maturation from progenitor cells, which in turn may perpetuate an eosinophilic inflammation and consequently tissue remodelling in patients with chronic asthma.
Collapse
Affiliation(s)
- A I Fanat
- Asthma Research Group, Firestone Institute for Respiratory Health, St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | |
Collapse
|
45
|
Chopra P, Kanoje V, Semwal A, Ray A. Therapeutic potential of inhaled p38 mitogen-activated protein kinase inhibitors for inflammatory pulmonary diseases. Expert Opin Investig Drugs 2008; 17:1411-25. [PMID: 18808304 DOI: 10.1517/13543784.17.10.1411] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Over the past two decades, p38 MAPK (mitogen-activated protein kinase) has been the subject of intense multidisciplinary research. p38 MAPK inhibitors have been shown to be efficacious in several disease models, including rheumatoid arthritis, psoriasis, Crohn's disease, and stroke. Recent studies support a role for p38 MAPK in the development, maintenance, and/or exacerbation of a number of pulmonary diseases, such as asthma, cystic fibrosis, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD). OBJECTIVE Many previous attempts to develop p38 MAPK inhibitors have failed as a result of unacceptable safety profiles. These toxicities have been varied and are believed to derive from different off-target effects. METHOD The above concerns can be overcome by delivering the compound locally to minimize whole-body burden, resulting in low exposure to the gastrointestinal, liver, and CNS. This review discusses the role of p38 MAPK in various inflammatory diseases, followed by the toxicity concerns associated with p38 MAPK inhibition. It also highlights the possible beneficial effect of delivering drugs via the inhalation route. CONCLUSION We present proof-of-principle confirming the therapeutic potential of inhaled p38 inhibitors for asthma and other inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Puneet Chopra
- Ranbaxy Research Laboratories, Department of Pharmacology, New Drug Discovery Research, Plot No-20, Sector-18, Gurgaon-122001-Haryana, India.
| | | | | | | |
Collapse
|
46
|
Tan Y, Lim LHK. trans-Resveratrol, an extract of red wine, inhibits human eosinophil activation and degranulation. Br J Pharmacol 2008; 155:995-1004. [PMID: 18776917 DOI: 10.1038/bjp.2008.330] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE trans-Resveratrol, a non-flavonoid polyphenol found abundantly in red wine possesses antiproliferative and anti-inflammatory activity in various inflammatory disease conditions. However, the effect of trans-resveratrol on eosinophil activation in relation to allergy has not been investigated. EXPERIMENTAL APPROACH Human eosinophils were isolated and purified from whole blood and incubated for 16 h with trans-resveratrol. Eosinophil chemotaxis, activation and degranulation, and apoptosis were investigated. The effect of trans-resveratrol on the inhibition of p38 and ERK1/2 activation was examined. KEY RESULTS Treatment of human eosinophils with trans-resveratrol at concentrations <100 microM for 16 h did not induce eosinophil apoptosis. Similar results were seen after 24 h and 48 h incubations. trans-Resveratrol (<100 microM) significantly inhibited eosinophil peroxidase release after activation with IL-5 (IC(50)=2.9+/-0.9 microM) or C5a (IC(50)=3.9+/-0.5 microM) after 5 min priming with cytochalasin B (CB). Similarly, the production of leukotriene C4 after stimulation with calcium ionophore, and eosinophil chemotaxis in response to eotaxin, as well as CD11b upregulation and CD62 L shedding was also significantly reduced by trans-resveratrol, at concentrations above 5 microM. All the activators induced p38 and ERK1/2 phosphorylation maximal at 2 min of activation. trans-Resveratrol potently inhibited p38 and ERK1/2 activation after calcium ionophore and CB and C5a activation. CONCLUSIONS AND IMPLICATIONS trans-Resveratrol is effective at inhibiting human eosinophil activation and degranulation at concentrations <100 microM, while not inducing apoptosis. This potent anti-inflammatory activity of trans-resveratrol and possibly its metabolites on eosinophils may be worth investigating for the treatment of eosinophil-related allergic diseases.
Collapse
Affiliation(s)
- Y Tan
- Inflammation and Cancer Laboratory, Department of Physiology and NUS Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
47
|
Interferon-gamma enhances human eosinophil effector functions induced by granulocyte-macrophage colony-stimulating factor or interleukin-5. Immunol Lett 2008; 118:88-95. [PMID: 18440651 DOI: 10.1016/j.imlet.2008.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 11/21/2022]
Abstract
T helper (Th) 2-type cytokines play a dominant role in allergic inflammation. Accumulating evidence suggests that Th1-type cytokines antagonize Th2-type cytokine responses; however, recent studies demonstrate that Th1 cytokines might enhance Th2 immune responses. We examined whether interferon (IFN)-gamma, a representative Th1 cytokine, modifies the effector functions of human eosinophils stimulated by granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-5. GM-CSF and IL-5 have significant functional homology, and contribute to the regulation of Th2 immunity. After the pretreatment of eosinophils with IFN-gamma, GM-CSF- or IL-5-induced eosinophil functions were examined, including superoxide anion generation, degranulation, adhesion, expression of GM-CSF receptor (R), IL-5R, or CD11b, and phosphorylation of intracellular signaling molecules. Superoxide anion generation was measured using the cytochrome c reduction method. Degranulation and cell adhesion were evaluated based on eosinophil-derived neurotoxin (EDN) contents in supernatants or adherent cells. Phosphorylation of signaling molecules was analyzed using a multiplex beads array system. Preincubation with IFN-gamma resulted in enhanced GM-CSF- or IL-5-induced superoxide anion generation and degranulation of human eosinophils, whereas stimulus-induced eosinophil adhesion was unaffected. In addition, IFN-gamma did not influence the expression of GM-CSFR, IL-5R, and CD11b. Furthermore, IFN-gamma upregulated GM-CSF- or IL-5-induced phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and activating transcription factor (ATF)-2. Finally, we confirmed that MAPK inhibitors blocked the enhancement of stimuli-induced superoxide anion generation of IFN-gamma treated eosinophils. In conclusion, IFN-gamma might upregulate ERK, p38, or JNK/ATF-2 phosphorylation induced by GM-CSF or IL-5, leading to enhanced cytokine-induced eosinophil superoxide generation and degranulation.
Collapse
|
48
|
Serotonin decreases HIV-1 replication in primary cultures of human macrophages through 5-HT(1A) receptors. Br J Pharmacol 2008; 154:174-82. [PMID: 18332855 DOI: 10.1038/bjp.2008.80] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-HT (serotonin) is known to be involved in neuroinflammation and immunoregulation. The human immunodeficiency virus (HIV) targets cells such as monocytes/macrophages, which colocalize with 5-HT-releasing cell types, mostly platelets. In this study, we investigated the effects of 5-HT on HIV-1-infected macrophages in vitro. EXPERIMENTAL APPROACH Human macrophages cultured in serum-free medium were treated over 7 days with 5-HT at three concentrations (0.01, 1 and 100 microM) with or without agonists and antagonists of 5-HT(1A) and 5-HT(2) receptors. After 7 days of treatment, macrophages were infected with HIV-1/Ba-L and virus replication was monitored over 16 days and expression of proviral HIV DNA was investigated by PCR after 24 h of infection. Cell surface expression of HIV-1/Ba-L receptor (CD4) and coreceptor (CCR5) was investigated by flow cytometry. The CCR5 ligand, macrophage inflammatory protein-1alpha (MIP-1alpha), was quantified by ELISA in cell culture supernatants and MIP-1alpha mRNA expression was assessed by reverse transcriptase-PCR. KEY RESULTS In vitro, 5-HT downregulated the membranous expression of CCR5 and led to a decrease of HIV-1 infection, probably through its action on 5-HT(1A) receptors. 5-HT (100 microM) was also able to induce overexpression of MIP-1alpha mRNA leading to an increase of MIP-1alpha secretion by human macrophages. CONCLUSIONS AND IMPLICATIONS The effects of 5-HT on HIV infection could be a consequence of the increase in MIP-1alpha concentrations and/or CCR5 receptor downregulation. These results suggest that 5-HT can inhibit the replication of HIV-1 in primary culture of human macrophages through its action on 5-HT(1A) receptors.
Collapse
|
49
|
Adachi T, Hanaka S, Masuda T, Yoshihara H, Nagase H, Ohta K. Transduction of Phosphatase and Tensin Homolog Deleted on Chromosome 10 into Eosinophils Attenuates Survival, Chemotaxis, and Airway Inflammation. THE JOURNAL OF IMMUNOLOGY 2007; 179:8105-11. [DOI: 10.4049/jimmunol.179.12.8105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Contribution of extracellular signal-regulated kinases to the IL-1-induced growth inhibition of human melanoma cells A375. Int Immunopharmacol 2007; 8:80-9. [PMID: 18068103 DOI: 10.1016/j.intimp.2007.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 11/21/2022]
Abstract
The role of ERK1/2 in the IL-1-induced growth inhibition was investigated using human melanoma A375-6 cells. A selective inhibitor of ERK1/2 pathway, PD98059 and a selective inhibitor of p38MAPK, SB203580 each alone significantly reversed the IL-1-induced growth inhibition of A375-6 cells. Co-treatment with PD98059 and SB203580 completely reversed the IL-1-induced growth inhibition. ERK1/2 was constitutively activated in A375-6 cells, and IL-1 further augmented ERK activation. Antiproliferative effect of IL-1 was attenuated by the expression of dominant negative form of ERK2. IL-1 induced cell cycle arrest in G(0)/G(1) phase, expression of p21 and p27 proteins, and down-regulation of cyclin D/cyclin-dependent kinase (CDK) 2 and CDK4 activities. These effects of IL-1 were reversed by PD98059. PD98059 also reversed the IL-1-induced hypophosphorylation of RB protein (pRB) and down-regulation of E2F activity. These findings demonstrate that ERK1/2 contribute to the IL-1-induced growth inhibition through induction of CDK inhibitors, down-regulation of CDK activity, pRB phosphorylation and E2F activity.
Collapse
|