1
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
2
|
Izadi A, Nordenfelt P. Protective non-neutralizing SARS-CoV-2 monoclonal antibodies. Trends Immunol 2024; 45:609-624. [PMID: 39034185 DOI: 10.1016/j.it.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Recent studies show an important role for non-neutralizing anti-spike antibodies, including monoclonal antibodies (mAbs), in robustly protecting against SARS-CoV-2 infection. These mAbs use Fc-mediated functions such as complement activation, phagocytosis, and cellular cytotoxicity. There is an untapped potential for using non-neutralizing mAbs in durable antibody treatments; because of their available conserved epitopes, they may not be as sensitive to virus mutations as neutralizing mAbs. Here, we discuss evidence of non-neutralizing mAb-mediated protection against SARS-CoV-2 infection. We explore how non-neutralizing mAb Fc-mediated functions can be enhanced via novel antibody-engineering techniques. Important questions remain to be answered regarding the characteristics of protective non-neutralizing mAbs, including the models and assays used for study, the risks of ensuing detrimental inflammation, as well as the durability and mechanisms of protection.
Collapse
Affiliation(s)
- Arman Izadi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden; Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Qadri H, Shah AH, Alkhanani M, Almilaibary A, Mir MA. Immunotherapies against human bacterial and fungal infectious diseases: A review. Front Med (Lausanne) 2023; 10:1135541. [PMID: 37122338 PMCID: PMC10140573 DOI: 10.3389/fmed.2023.1135541] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
Nations' ongoing struggles with a number of novel and reemerging infectious diseases, including the ongoing global health issue, the SARS-Co-V2 (severe acute respiratory syndrome coronavirus 2) outbreak, serve as proof that infectious diseases constitute a serious threat to the global public health. Moreover, the fatality rate in humans is rising as a result of the development of severe infectious diseases brought about by multiple drug-tolerant pathogenic microorganisms. The widespread use of traditional antimicrobial drugs, immunosuppressive medications, and other related factors led to the establishment of such drug resistant pathogenic microbial species. To overcome the difficulties commonly encountered by current infectious disease management and control processes, like inadequate effectiveness, toxicities, and the evolution of drug tolerance, new treatment solutions are required. Fortunately, immunotherapies already hold great potential for reducing these restrictions while simultaneously expanding the boundaries of healthcare and medicine, as shown by the latest discoveries and the success of drugs including monoclonal antibodies (MAbs), vaccinations, etc. Immunotherapies comprise methods for treating diseases that specifically target or affect the body's immune system and such immunological procedures/therapies strengthen the host's defenses to fight those infections. The immunotherapy-based treatments control the host's innate and adaptive immune responses, which are effective in treating different pathogenic microbial infections. As a result, diverse immunotherapeutic strategies are being researched more and more as alternative treatments for infectious diseases, leading to substantial improvements in our comprehension of the associations between pathogens and host immune system. In this review we will explore different immunotherapies and their usage for the assistance of a broad spectrum of infectious ailments caused by various human bacterial and fungal pathogenic microbes. We will discuss about the recent developments in the therapeutics against the growing human pathogenic microbial diseases and focus on the present and future of using immunotherapies to overcome these diseases. Graphical AbstractThe graphical abstract shows the therapeutic potential of different types of immunotherapies like vaccines, monoclonal antibodies-based therapies, etc., against different kinds of human Bacterial and Fungal microbial infections.
Collapse
Affiliation(s)
- Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mustfa Alkhanani
- Department of Biology, College of Sciences, University of Hafr Al Batin, Hafar Al Batin, Saudi Arabia
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
4
|
Rathore SS, Sathiyamoorthy J, Lalitha C, Ramakrishnan J. A holistic review on Cryptococcus neoformans. Microb Pathog 2022; 166:105521. [DOI: 10.1016/j.micpath.2022.105521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022]
|
5
|
Bahnan W, Wrighton S, Sundwall M, Bläckberg A, Larsson O, Höglund U, Khakzad H, Godzwon M, Walle M, Elder E, Strand AS, Happonen L, André O, Ahnlide JK, Hellmark T, Wendel-Hansen V, Wallin RPA, Malmstöm J, Malmström L, Ohlin M, Rasmussen M, Nordenfelt P. Spike-Dependent Opsonization Indicates Both Dose-Dependent Inhibition of Phagocytosis and That Non-Neutralizing Antibodies Can Confer Protection to SARS-CoV-2. Front Immunol 2022; 12:808932. [PMID: 35095897 PMCID: PMC8796240 DOI: 10.3389/fimmu.2021.808932] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Spike-specific antibodies are central to effective COVID19 immunity. Research efforts have focused on antibodies that neutralize the ACE2-Spike interaction but not on non-neutralizing antibodies. Antibody-dependent phagocytosis is an immune mechanism enhanced by opsonization, where typically, more bound antibodies trigger a stronger phagocyte response. Here, we show that Spike-specific antibodies, dependent on concentration, can either enhance or reduce Spike-bead phagocytosis by monocytes independently of the antibody neutralization potential. Surprisingly, we find that both convalescent patient plasma and patient-derived monoclonal antibodies lead to maximum opsonization already at low levels of bound antibodies and is reduced as antibody binding to Spike protein increases. Moreover, we show that this Spike-dependent modulation of opsonization correlate with the outcome in an experimental SARS-CoV-2 infection model. These results suggest that the levels of anti-Spike antibodies could influence monocyte-mediated immune functions and propose that non-neutralizing antibodies could confer protection to SARS-CoV-2 infection by mediating phagocytosis.
Collapse
Affiliation(s)
- Wael Bahnan
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sebastian Wrighton
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Martin Sundwall
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Anna Bläckberg
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Infectious Disease Clinic, Skåne University Hospital, Lund, Sweden
| | | | | | - Hamed Khakzad
- Equipe Signalisation Calcique et Infections Microbiennes, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1282, Gif-sur-Yvette, France
| | | | - Maria Walle
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | - Anna Söderlund Strand
- Department of Laboratory Medicine, Clinical Microbiology, Skane University Hospital Lund, Lund University, Lund, Sweden
| | - Lotta Happonen
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oscar André
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johannes Kumra Ahnlide
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Thomas Hellmark
- Department of Clinical Sciences Lund, Nephrology, Skane University Hospital Lund, Lund University, Lund, Sweden
| | | | | | - Johan Malmstöm
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars Malmström
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Institute for Computational Science, Zurich, Switzerland
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
- SciLifeLab Drug Discovery and Development, Lund University, Lund, Sweden
| | - Magnus Rasmussen
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Infectious Disease Clinic, Skåne University Hospital, Lund, Sweden
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Casadevall A, Pirofski LA, Joyner MJ. The Principles of Antibody Therapy for Infectious Diseases with Relevance for COVID-19. mBio 2021; 12:e03372-20. [PMID: 33653885 PMCID: PMC8092292 DOI: 10.1128/mbio.03372-20] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antibody therapies such as convalescent plasma and monoclonal antibodies have emerged as major potential therapeutics for coronavirus disease 2019 (COVID-19). Immunoglobulins differ from conventional antimicrobial agents in that they mediate direct and indirect antimicrobial effects that work in concert with other components of the immune system. The field of infectious diseases pioneered antibody therapies in the first half of the 20th century but largely abandoned them with the arrival of conventional antimicrobial therapy. Consequently, much of the knowledge gained from the historical development and use of immunoglobulins such as serum and convalescent antibody therapies was forgotten; principles and practice governing their use were not taught to new generations of medical practitioners, and further development of this modality stalled. This became apparent during the COVID-19 pandemic in the spring of 2020 when convalescent plasma was initially deployed as salvage therapy in patients with severe disease. In retrospect, this was a stage of disease when it was less likely to be effective. Lessons of the past tell us that antibody therapy is most likely to be effective when used early in respiratory diseases. This article puts forth three principles of antibody therapy, namely, specificity, temporal, and quantitative principles, connoting that antibody efficacy requires the administration of specific antibody, given early in course of disease in sufficient amount. These principles are traced to the history of serum therapy for infectious diseases. The application of the specificity, temporal, and quantitative principles to COVID-19 is discussed in the context of current use of antibody therapy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Liise-Anne Pirofski
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York, USA
- Montefiore Medical Center, Bronx, New York, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
|
8
|
Advances in Fungal Peptide Vaccines. J Fungi (Basel) 2020; 6:jof6030119. [PMID: 32722452 PMCID: PMC7558412 DOI: 10.3390/jof6030119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Vaccination is one of the greatest public health achievements in the past century, protecting and improving the quality of life of the population worldwide. However, a safe and effective vaccine for therapeutic or prophylactic treatment of fungal infections is not yet available. The lack of a vaccine for fungi is a problem of increasing importance as the incidence of diverse species, including Paracoccidioides, Aspergillus, Candida, Sporothrix, and Coccidioides, has increased in recent decades and new drug-resistant pathogenic fungi are emerging. In fact, our antifungal armamentarium too frequently fails to effectively control or cure mycoses, leading to high rates of mortality and morbidity. With this in mind, many groups are working towards identifying effective and safe vaccines for fungal pathogens, with a particular focus of generating vaccines that will work in individuals with compromised immunity who bear the major burden of infections from these microbes. In this review, we detail advances in the development of vaccines for pathogenic fungi, and highlight new methodologies using immunoproteomic techniques and bioinformatic tools that have led to new vaccine formulations, like peptide-based vaccines.
Collapse
|
9
|
Boniche C, Rossi SA, Kischkel B, Vieira Barbalho F, Nogueira D’Aurea Moura Á, Nosanchuk JD, Travassos LR, Pelleschi Taborda C. Immunotherapy against Systemic Fungal Infections Based on Monoclonal Antibodies. J Fungi (Basel) 2020; 6:jof6010031. [PMID: 32121415 PMCID: PMC7151209 DOI: 10.3390/jof6010031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing incidence in systemic fungal infections in humans has increased focus for the development of fungal vaccines and use of monoclonal antibodies. Invasive mycoses are generally difficult to treat, as most occur in vulnerable individuals, with compromised innate and adaptive immune responses. Mortality rates in the setting of our current antifungal drugs remain excessively high. Moreover, systemic mycoses require prolonged durations of antifungal treatment and side effects frequently occur, particularly drug-induced liver and/or kidney injury. The use of monoclonal antibodies with or without concomitant administration of antifungal drugs emerges as a potentially efficient treatment modality to improve outcomes and reduce chemotherapy toxicities. In this review, we focus on the use of monoclonal antibodies with experimental evidence on the reduction of fungal burden and prolongation of survival in in vivo disease models. Presently, there are no licensed monoclonal antibodies for use in the treatment of systemic mycoses, although the potential of such a vaccine is very high as indicated by the substantial promising results from several experimental models.
Collapse
Affiliation(s)
- Camila Boniche
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Suélen Andreia Rossi
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Brenda Kischkel
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Filipe Vieira Barbalho
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Ágata Nogueira D’Aurea Moura
- Tropical Medicine Institute, Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil;
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Luiz R. Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Sao Paulo 04021-001, Brazil;
| | - Carlos Pelleschi Taborda
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
- Tropical Medicine Institute, Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil;
- Correspondence:
| |
Collapse
|
10
|
Ulrich S, Ebel F. Monoclonal Antibodies as Tools to Combat Fungal Infections. J Fungi (Basel) 2020; 6:jof6010022. [PMID: 32033168 PMCID: PMC7151206 DOI: 10.3390/jof6010022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Antibodies represent an important element in the adaptive immune response and a major tool to eliminate microbial pathogens. For many bacterial and viral infections, efficient vaccines exist, but not for fungal pathogens. For a long time, antibodies have been assumed to be of minor importance for a successful clearance of fungal infections; however this perception has been challenged by a large number of studies over the last three decades. In this review, we focus on the potential therapeutic and prophylactic use of monoclonal antibodies. Since systemic mycoses normally occur in severely immunocompromised patients, a passive immunization using monoclonal antibodies is a promising approach to directly attack the fungal pathogen and/or to activate and strengthen the residual antifungal immune response in these patients.
Collapse
|
11
|
Ohyagi M, Irioka T, Ohkubo T, Ishibashi S, Takahashi YK, Amano E, Machida A, Kuwahara H, Yokota T. Intrathecal IgG Synthesis and Persistent Inflammation Are Associated with White Matter Lesions in HIV-negative Patients with Cryptococcal Meningoencephalitis. Intern Med 2019; 58:3077-3082. [PMID: 31243232 PMCID: PMC6875458 DOI: 10.2169/internalmedicine.2338-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective Cryptococcal meningoencephalitis (CM) causes significant morbidity and mortality in human immunodeficiency virus (HIV)-negative and HIV-positive populations. White matter lesions (WMLs) have been reported in both populations of CM patients; however, the mechanisms underlying WML formation remain unknown. We herein report the relationship between the intrathecal immune response and the development of WMLs in HIV-negative patients with CM. Methods Eleven consecutive HIV-negative patients with CM who presented at one of three emergency hospitals in Japan from April 2001 to March 2018 were enrolled. For all patients, we retrospectively assessed the relationships between clinical and laboratory information and the presence of WMLs. Results At presentation, 6 patients had WMLs on magnetic resonance imaging (MRI). The cerebrospinal fluid immunoglobulin G (CSF IgG) index was significantly higher in the patients with WMLs than in those without WMLs (mean, 1.34 vs. 0.70, p=0.017). The time from the symptom onset to initial neuroimaging was also significantly longer in the patients with WMLs than in those without WMLs (median, 31.5 vs. 7.0 days; p=0.008). The clinical outcome was comparable among the patients with and without WMLs. Conclusion In HIV-negative patients with CM, a persistent, aberrant immune response to Cryptococcus, such as intrathecal IgG synthesis, may induce WML formation.
Collapse
Affiliation(s)
- Masaki Ohyagi
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Japan
| | - Takashi Irioka
- Department of Neurology, Yokosuka Kyosai Hospital, Japan
| | - Takuya Ohkubo
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Japan
| | - Satoru Ishibashi
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Japan
| | | | - Eiichiro Amano
- Department of Neurology, Tsuchiura Kyodo General Hospital, Japan
| | - Akira Machida
- Department of Neurology, Tsuchiura Kyodo General Hospital, Japan
| | - Hiroya Kuwahara
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Japan
| |
Collapse
|
12
|
Abstract
The chapter reviews methods utilized for the isolation and characterization of a promising immunogen candidate, aiming at a human vaccine against paracoccidioidomycosis. Peptide P10 carries a T-CD4+ epitope and was identified as an internal sequence of the major diagnostic antigen known as gp43 glycoprotein. It successfully treated massive intratracheal infections by virulent Paracoccidioides brasiliensis in combination with chemotherapy.An introduction about the systemic mycosis was found essential to understand the various options that were considered to design prophylactic and therapeutic vaccine protocols using peptide P10.
Collapse
Affiliation(s)
- Carlos P Taborda
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
- Laboratory of Medical Mycology IMTSP/LIM53/HCFMUSP, University of São Paulo, São Paulo, Brazil
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Rua Botucatu 862, 8th floor, São Paulo, 04021-001, Brazil.
| |
Collapse
|
13
|
Bueno RA, Thomaz L, Muñoz JE, da Silva CJ, Nosanchuk JD, Pinto MR, Travassos LR, Taborda CP. Antibodies Against Glycolipids Enhance Antifungal Activity of Macrophages and Reduce Fungal Burden After Infection with Paracoccidioides brasiliensis. Front Microbiol 2016; 7:74. [PMID: 26870028 PMCID: PMC4737878 DOI: 10.3389/fmicb.2016.00074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/15/2016] [Indexed: 11/29/2022] Open
Abstract
Paracoccidioidomycosis is a fungal disease endemic in Latin America. Polyclonal antibodies to acidic glycosphingolipids (GSLs) from Paracoccidioides brasiliensis opsonized yeast forms in vitro increasing phagocytosis and reduced the fungal burden of infected animals. Antibodies to GSL were active in both prophylactic and therapeutic protocols using a murine intratracheal infection model. Pathological examination of the lungs of animals treated with antibodies to GSL showed well-organized granulomas and minimally damaged parenchyma compared to the untreated control. Murine peritoneal macrophages activated by IFN-γ and incubated with antibodies against acidic GSLs more effectively phagocytosed and killed P. brasiliensis yeast cells as well as produced more nitric oxide compared to controls. The present work discloses a novel target of protective antibodies against P. brasiliensis adding to other well-studied mediators of the immune response to this fungus.
Collapse
Affiliation(s)
- Renata A Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil; Laboratory of Medical Mycology IMTSP- LIM53, University of São PauloSão Paulo, Brazil
| | - Luciana Thomaz
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Julian E Muñoz
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Cássia J da Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Joshua D Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, New YorkNY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, New YorkNY, USA
| | | | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil; Laboratory of Medical Mycology IMTSP- LIM53, University of São PauloSão Paulo, Brazil
| |
Collapse
|
14
|
Pontes B, Frases S. The Cryptococcus neoformans capsule: lessons from the use of optical tweezers and other biophysical tools. Front Microbiol 2015; 6:640. [PMID: 26157436 PMCID: PMC4478440 DOI: 10.3389/fmicb.2015.00640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/12/2015] [Indexed: 01/19/2023] Open
Abstract
The fungal pathogen Cryptococcus neoformans causes life-threatening infections in immunocompromised individuals, representing one of the leading causes of morbidity and mortality in AIDS patients. The main virulence factor of C. neoformans is the polysaccharide capsule; however, many fundamental aspects of capsule structure and function remain poorly understood. Recently, important capsule properties were uncovered using optical tweezers and other biophysical techniques, including dynamic and static light scattering, zeta potential and viscosity analysis. This review provides an overview of the latest findings in this emerging field, explaining the impact of these findings on our understanding of C. neoformans biology and resistance to host immune defenses.
Collapse
Affiliation(s)
- Bruno Pontes
- Laboratório de Pinças Óticas da Coordenação de Programas de Estudos Avançados, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Datta K, Subramaniam KS. Host Defense Against Cryptococcal Disease: Is There a Role for B Cells and Antibody-Mediated Immunity? CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-014-0208-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Abstract
Life-threatening fungal infections have risen sharply in recent years, owing to the advances and intensity of medical care that may blunt immunity in patients. This emerging crisis has created the growing need to clarify immune defense mechanisms against fungi with the ultimate goal of therapeutic intervention. We describe recent insights in understanding the mammalian immune defenses that are deployed against pathogenic fungi. We focus on adaptive immunity to the major medically important fungi and emphasize three elements that coordinate the response: (1) dendritic cells and subsets that are mobilized against fungi in various anatomical compartments; (2) fungal molecular patterns and their corresponding receptors that signal responses and shape the differentiation of T-cell subsets and B cells; and, ultimately (3) the effector and regulatory mechanisms that eliminate these invaders while constraining collateral damage to vital tissue. These insights create a foundation for the development of new, immune-based strategies for prevention or enhanced clearance of systemic fungal diseases.
Collapse
Affiliation(s)
- Akash Verma
- Veterans Affairs Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio 45220 Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| | - George Deepe
- Veterans Affairs Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio 45220 Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Bruce Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| |
Collapse
|
17
|
Chaturvedi AK, Wormley FL. Cryptococcus antigens and immune responses: implications for a vaccine. Expert Rev Vaccines 2014; 12:1261-72. [PMID: 24156284 DOI: 10.1586/14760584.2013.840094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cryptococcosis is a fungal disease primarily occurring in immunocompromised individuals, such as AIDS patients, and is associated with high morbidity and mortality. However, cryptococcosis can occur within immunocompetent populations as observed during an outbreak in Vancouver Island, British Columbia, Canada, the Pacific Northwest and other regions of the USA and in Mediterranean Europe. Mortality rates due to cryptococcosis have significantly declined in economically developed countries since the widespread implementation of highly active antiretroviral therapy. However, the incidence and mortality of this disease remains high in economically undeveloped areas in Africa and Asia where HIV infections are high and availability of HAART is limited. The continuing AIDS epidemic coupled with the increased usage of immunosuppressive drugs to prevent organ transplant rejection or to treat autoimmune diseases has resulted in an increase in individuals at risk for developing cryptococcosis. The purpose of this review is to discuss the need, challenges and potential for developing vaccines against cryptococcosis.
Collapse
Affiliation(s)
- Ashok K Chaturvedi
- Department of Biology and The South Texas Center for Emerging Infectious Diseases, The University of Texas, San Antonio, TX, USA
| | | |
Collapse
|
18
|
Gullo FP, Rossi SA, Sardi JDCO, Teodoro VLI, Mendes-Giannini MJS, Fusco-Almeida AM. Cryptococcosis: epidemiology, fungal resistance, and new alternatives for treatment. Eur J Clin Microbiol Infect Dis 2013; 32:1377-91. [PMID: 24141976 DOI: 10.1007/s10096-013-1915-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
Cryptococcosis is an important systemic mycosis and the third most prevalent disease in human immunodeficiency virus (HIV)-positive individuals. The incidence of cryptococcosis is high among the 25 million people with HIV/acquired immunodeficiency syndrome (AIDS), with recent estimates indicating that there are one million cases of cryptococcal meningitis globally per year in AIDS patients. In Cryptococcus neoformans, resistance to azoles may be associated with alterations in the target enzyme encoded by the gene ERG11, lanosterol 14α-demethylase. These alterations are obtained through mutations, or by overexpressing the gene encoding. In addition, C. gattii and C. neoformans present a heteroresistance phenotype, which may be related to increased virulence. Other species beyond C. neoformans and C. gattii, such as C. laurentii, have been diagnosed mainly in patients with immunosuppression. Infections of C. albidus have been isolated in cats and marine mammals. Recent evidence suggests that the majority of infections produced by this pathogen are associated with biofilm growth, which is also related with increased resistance to antifungal agents. Therefore, there is a great need to search for alternative antifungal agents for these fungi. The search for new molecules is currently occurring from nanoparticle drugs of plant peptide origin. This article presents a brief review of the literature regarding the epidemiology of cryptococcosis, as well as fungal resistance and new alternatives for treatment.
Collapse
Affiliation(s)
- F P Gullo
- Faculty of Pharmaceutical Sciences of Araraquara, Department of Clinical Analysis, Laboratory of Clinical Mycology, Universidade Estadual Paulista (UNESP), R. Expedicionários do Brasil, 1621, 14801-902, Araraquara, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans Infection. mBio 2013; 4:mBio.00265-13. [PMID: 23820392 PMCID: PMC3705448 DOI: 10.1128/mbio.00265-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bruton’s tyrosine kinase (Btk) is a signaling molecule that plays important roles in B-1 B cell development and innate myeloid cell functions and has recently been identified as a target for therapy of B cell lymphomas. We examined the contribution of B-1 B cells to resistance to Cryptococcus neoformans infection by utilizing X-linked immunodeficient (XID) mice (CBA-CaHN-XID), which possess a mutation in Btk. XID mice had significantly higher brain fungal burdens than the controls 6 weeks after infection with C. neoformans strain 52D (CN52D); however, consistent with the propensity for greater virulence of C. neoformans strain H99 (CNH99), CNH99-infected XID mice had higher lung and brain fungal burdens than the controls 3 weeks after infection. Further studies in a chronic CN52D model revealed markedly lower levels of total and C. neoformans-specific serum IgM in XID mice than in the control mice 1 and 6 weeks after infection. Alveolar macrophage phagocytosis was markedly impaired in CN52D-infected XID mice compared to the controls, with XID mice exhibiting a disorganized lung inflammatory pattern in which Gomori silver staining revealed significantly more enlarged, extracellular C. neoformans cells than the controls. Adoptive transfer of B-1 B cells to XID mice restored peritoneal B-1 B cells but did not restore IgM levels to those of the controls and had no effect on the brain fungal burden at 6 weeks. Taken together, our data support the hypothesis that IgM promotes fungal containment in the lungs by enhancing C. neoformans phagocytosis and restricting C. neoformans enlargement. However, peritoneal B-1 B cells are insufficient to reconstitute a protective effect in the lungs. Cryptococcus neoformans is a fungal pathogen that causes an estimated 600,000 deaths per year. Most infections occur in individuals who are immunocompromised, with the majority of cases occurring in those with HIV/AIDS, but healthy individuals also develop disease. Immunoglobulin M (IgM) has been linked to resistance to disease in humans and mice. In this article, we found that X-linked immunodeficient (XID) mice, which have markedly reduced levels of IgM, were unable to contain Cryptococcus in the lungs. This was associated with reduced yeast uptake by macrophages, an aberrant tissue inflammatory response, an enlargement of the yeast cells in the lungs, and fungal dissemination to the brain. Since XID mice have a mutation in the Bruton’s tyrosine kinase (Btk) gene, our data suggest that treatments aimed at blocking the function of Btk could pose a higher risk for cryptococcosis.
Collapse
|
20
|
McClelland EE, Hobbs LM, Rivera J, Casadevall A, Potts WK, Smith JM, Ory JJ. The role of host gender in the pathogenesis of Cryptococcus neoformans infections. PLoS One 2013; 8:e63632. [PMID: 23741297 PMCID: PMC3669355 DOI: 10.1371/journal.pone.0063632] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 04/09/2013] [Indexed: 01/18/2023] Open
Abstract
Cryptococcus neoformans (Cn) is a pathogenic yeast and the cause of cryptococcal meningitis. Prevalence of disease between males and females is skewed, with males having an increased incidence of disease. Based on the reported gender susceptibility differences to Cn in the literature, we used clinical isolates from Botswanan HIV-infected patients to test the hypothesis that different gender environments exerted different selective pressures on Cn. When we examined this data set, we found that men had significantly higher risk of death despite having significantly higher CD4+ T lymphocyte counts upon admittance to the hospital. These observations suggested that Cn strains are uniquely adapted to different host gender environments and that the male immune response may be less efficient in controlling Cn infection. To discriminate between these possibilities, we tested whether there were phenotypic differences between strains isolated from males and females and whether there was an interaction between Cn and the host immune response. Virulence phenotypes showed that Cn isolates from females had longer doubling times and released more capsular glucoronoxylomannan (GXM). The presence of testosterone but not 17-β estradiol was associated with higher levels of GXM release for a laboratory strain and 28 clinical isolates. We also measured phagocytic efficiency, survival of Cn, and amount of killing of human macrophages by Cn after incubation with four isolates. While macrophages from females phagocytosed more Cn than macrophages from males, male macrophages had a higher fungal burden and showed increased killing by Cn. These data are consistent with the hypothesis that differential interaction between Cn and macrophages within different gender environments contribute to the increased prevalence of cryptococcosis in males. This could be related to differential expression of cryptococcal virulence genes and capsule metabolism, changes in Cn phagocytosis and increased death of Cn-infected macrophages.
Collapse
Affiliation(s)
- Erin E McClelland
- The Commonwealth Medical College, Department of Basic Sciences, Scranton, Pennsylvania, United States of America.
| | | | | | | | | | | | | |
Collapse
|
21
|
Cordero RJB, Pontes B, Frases S, Nakouzi AS, Nimrichter L, Rodrigues ML, Viana NB, Casadevall A. Antibody binding to Cryptococcus neoformans impairs budding by altering capsular mechanical properties. THE JOURNAL OF IMMUNOLOGY 2012; 190:317-23. [PMID: 23233725 DOI: 10.4049/jimmunol.1202324] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abs to microbial capsules are critical for host defense against encapsulated pathogens, but very little is known about the effects of Ab binding on the capsule, apart from producing qualitative capsular reactions ("quellung" effects). A problem in studying Ab-capsule interactions is the lack of experimental methodology, given that capsules are fragile, highly hydrated structures. In this study, we pioneered the use of optical tweezers microscopy to study Ab-capsule interactions. Binding of protective mAbs to the capsule of the fungal pathogen Cryptococcus neoformans impaired yeast budding by trapping newly emerging buds inside the parental capsule. This effect is due to profound mAb-mediated changes in capsular mechanical properties, demonstrated by a concentration-dependent increase in capsule stiffness. This increase involved mAb-mediated cross-linking of capsular polysaccharide molecules. These results provide new insights into Ab-mediated immunity, while suggesting a new nonclassical mechanism of Ab function, which may apply to other encapsulated pathogens. Our findings add to the growing body of evidence that Abs have direct antimicrobial functions independent of other components of the immune system.
Collapse
Affiliation(s)
- Radames J B Cordero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hole CR, Wormley FL. Vaccine and immunotherapeutic approaches for the prevention of cryptococcosis: lessons learned from animal models. Front Microbiol 2012; 3:291. [PMID: 22973262 PMCID: PMC3428735 DOI: 10.3389/fmicb.2012.00291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/24/2012] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus neoformans and C. gattii, the predominant etiological agents of cryptococcosis, can cause life-threatening infections of the central nervous system in immunocompromised and immunocompetent individuals. Cryptococcal meningoencephalitis is the most common disseminated fungal infection in AIDS patients, and C. neoformans remains the third most common invasive fungal infection among organ transplant recipients. Current anti-fungal drug therapies are oftentimes rendered ineffective due to drug toxicity, the emergence of drug resistant organisms, and/or the inability of the host's immune defenses to assist in eradication of the yeast. Therefore, there remains an urgent need for the development of immune-based therapies and/or vaccines to combat cryptococcosis. Studies in animal models have demonstrated the efficacy of various vaccination strategies and immune therapies to induce protection against cryptococcosis. This review will summarize the lessons learned from animal models supporting the feasibility of developing immunotherapeutics and vaccines to prevent cryptococcosis.
Collapse
Affiliation(s)
- Camaron R Hole
- Department of Biology, The University of Texas at San Antonio San Antonio, TX, USA
| | | |
Collapse
|
23
|
Kin NW, Stefanov EK, Dizon BLP, Kearney JF. Antibodies generated against conserved antigens expressed by bacteria and allergen-bearing fungi suppress airway disease. THE JOURNAL OF IMMUNOLOGY 2012; 189:2246-56. [PMID: 22837487 DOI: 10.4049/jimmunol.1200702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There has been a sharp rise in allergic asthma and asthma-related deaths in the developed world, in contrast to many childhood illnesses that have been reduced or eliminated. The hygiene hypothesis proposes that excessively sanitary conditions early in life result in autoimmune and allergic phenomena because of a failure of the immune system to receive proper microbial stimulation during development. We demonstrate that Abs generated against conserved bacterial polysaccharides are reactive with and dampen the immune response against chitin and Aspergillus fumigatus. A reduction in Ag uptake, cell influx, cell activation, and cytokine production occurred in the presence of anti-polysaccharide Abs, resulting in a striking decrease in the severity of allergic airway disease in mice. Overall, our results suggest that Ag exposure--derived from environmental sources, self-antigens, or vaccination--during the neonatal period has dramatic effects on the adult Ab response and modifies the development of allergic airway disease.
Collapse
Affiliation(s)
- Nicholas W Kin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Despite appropriate antifungal treatment, the management of cryptococcal disease remains challenging, especially in immunocompromised patients, such as human immunodeficiency virus-infected individuals and solid organ transplant recipients. During the past two decades, our knowledge of host immune responses against Cryptococcus spp. has been greatly advanced, and the role of immunomodulation in augmenting the response to infection has been investigated. In particular, the role of 'protective' Th1 (tumour necrosis factor-α, interferon (IFN)-γ, interleukin (IL)-12, and IL-18) and Th17 (IL-23 and IL-17) and 'non-protective' Th2 (IL-4, IL-10, and IL-13) cytokines has been extensively studied in vitro and in animal models of cryptococcal infection. Immunomodulation with monoclonal antibodies against the capsular polysaccharide glucuronoxylomannan, glucosylceramides, melanin and β-glucan and, lately, with radioimmunotherapy has also yielded promising results in animal models. As a balance between sufficiently protective Th1 responses and excessive inflammation is important for optimal outcome, the effect of immunotherapy may range from beneficial to deleterious, depending on factors related to the host, the infecting organism, and the immunomodulatory regimen. Clinical evidence supporting immunomodulation in patients with cryptococcal infection remains too limited to allow firm recommendations. Limited human data suggest a role for IFN-γ. Identification of surrogate markers characterizing patients' immunological status could possibly suggest candidate patients for immunotherapy and the type of immunomodulation to be administered.
Collapse
Affiliation(s)
- C Antachopoulos
- 3rd Department of Paediatrics, Hippokration Hospital, Aristotle University, Thessaloniki, Greece
| | | |
Collapse
|
25
|
AuCoin DP, Reed DE, Marlenee NL, Bowen RA, Thorkildson P, Judy BM, Torres AG, Kozel TR. Polysaccharide specific monoclonal antibodies provide passive protection against intranasal challenge with Burkholderia pseudomallei. PLoS One 2012; 7:e35386. [PMID: 22530013 PMCID: PMC3328442 DOI: 10.1371/journal.pone.0035386] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 03/16/2012] [Indexed: 01/22/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacillus that is the causative agent of melioidosis. The bacterium is inherently resistant to many antibiotics and mortality rates remain high in endemic areas. The lipopolysaccharide (LPS) and capsular polysaccharide (CPS) are two surface-associated antigens that contribute to pathogenesis. We previously developed two monoclonal antibodies (mAbs) specific to the CPS and LPS; the CPS mAb was shown to identify antigen in serum and urine from melioidosis patients. The goal of this study was to determine if passive immunization with CPS and LPS mAbs alone and in combination would protect mice from a lethal challenge with B. pseudomallei. Intranasal (i.n.) challenge experiments were performed with B. pseudomallei strains 1026b and K96423. Both mAbs provided significant protection when administered alone. A combination of mAbs was protective when low doses were administered. In addition, combination therapy provided a significant reduction in spleen colony forming units (cfu) compared to results when either the CPS or LPS mAbs were administered alone.
Collapse
Affiliation(s)
- David P AuCoin
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, Nevada, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Nosanchuk JD, Zancopé-Oliveira RM, Hamilton AJ, Guimarães AJ. Antibody therapy for histoplasmosis. Front Microbiol 2012; 3:21. [PMID: 22347215 PMCID: PMC3270318 DOI: 10.3389/fmicb.2012.00021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/12/2012] [Indexed: 11/13/2022] Open
Abstract
The endemic human pathogenic fungus Histoplasma capsulatum is a major fungal pathogen with a broad variety of clinical presentations, ranging from mild, focal pulmonary disease to life-threatening systemic infections. Although azoles, such as itraconazole and voriconazole, and amphotericin B have significant activity against H. capsulatum, about 1 in 10 patients hospitalized due to histoplasmosis die. Hence, new approaches for managing disease are being sought. Over the past 10 years, studies have demonstrated that monoclonal antibodies (mAbs) can modify the pathogenesis of histoplasmosis. Disease has been shown to be impacted by mAbs targeting either fungal cell surface proteins or host co-stimulatory molecules. This review will detail our current knowledge regarding the impact of antibody therapy on histoplasmosis.
Collapse
Affiliation(s)
- Joshua D Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine Bronx, NY, USA
| | | | | | | |
Collapse
|
27
|
Abstract
The view that immunoglobulins function largely by potentiating neutralization, cytotoxicity or phagocytosis is being replaced by a new synthesis whereby antibodies participate in all aspects of the immune response, from protecting the host at the earliest time of encounter with a microbe to later challenges. Perhaps the most transformative concept is that immunoglobulins manifest emergent properties, from their structure and function as individual molecules to their interactions with microbial targets and the host immune system. Given that emergent properties are neither reducible to first principles nor predictable, there is a need for new conceptual approaches for understanding antibody function and mechanisms of antibody immunity.
Collapse
|
28
|
Comparative evaluation of profiles of antibodies to mycobacterial capsular polysaccharides in tuberculosis patients and controls stratified by HIV status. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:198-208. [PMID: 22169090 DOI: 10.1128/cvi.05550-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the complexity of tuberculosis (TB) serology, antibodies (Abs) remain attractive biomarkers for TB. Recent evidence of a mycobacterial capsule that consists mainly of the polysaccharides arabinomannan (AM) and glucan provides new options for serologic targets. For this study, Ab responses to AM and glucan for 47 U.S. TB patients (33 HIV negative [HIV(-)], 14 HIV positive [HIV(+)]), 42 healthy controls, and 38 asymptomatic HIV(+) controls were evaluated by enzyme-linked immunosorbent assays (ELISAs). The results were compared with Ab responses to the mycobacterial glycolipid cell wall antigen lipoarabinomannan (LAM) and to the proteins malate synthase (MS) and MPT51. We found that the main immunoglobulin (Ig) isotype response to polysaccharides was IgG, predominantly of subclass IgG2. IgG responses to AM were significantly higher for HIV(-) and HIV(+) TB cases than for controls (P, <0.0001 and <0.01, respectively); significantly higher for HIV(-) than for HIV(+) TB cases (P, <0.01); and significantly higher in sputum smear-positive than smear-negative patients in both HIV(-) and HIV(+) cases (P, 0.01 and 0.02, respectively). In both TB groups, titers of Ab to glucan were significantly lower than titers of Ab to AM (P, <0.0001). IgG responses to AM and MS or to AM and MPT51 did not correlate with each other in HIV(-) TB patients, while they correlated significantly in HIV(+) TB patients (P, 0.01 and 0.05, respectively). We conclude that Ab responses to AM could contribute to the serodiagnosis of TB, especially for HIV(-) TB patients. This study also provides new and important insights into the differences in the profiles of Abs to mycobacterial antigens between HIV(-) and HIV(+) TB patients.
Collapse
|
29
|
Sun HY, Singh N. Opportunistic infection-associated immune reconstitution syndrome in transplant recipients. Clin Infect Dis 2011; 53:168-76. [PMID: 21690625 DOI: 10.1093/cid/cir276] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reversal of pathogen-induced immunosuppression upon employment of effective antimicrobial therapy and withdrawal of iatrogenic immunosuppression has the potential to shift the host immune repertoire towards pathologic inflammatory responses conducive to immune reconstitution syndrome (IRS). Posttransplant IRS has been observed with fungi, M. tuberculosis, cytomegalovirus, and polyoma virus nephropathy. This review discusses the existing state of knowledge regarding IRS and the immune mechanisms that underlie its pathogenesis, with significant implications for developing reliable diagnostic biomarkers and optimal management strategies for post-transplant opportunistic infection-associated IRS.
Collapse
Affiliation(s)
- Hsin-Yun Sun
- Infectious Diseases Section, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240, USA
| | | |
Collapse
|
30
|
Older adults have a low capacity to opsonize pneumococci due to low IgM antibody response to pneumococcal vaccinations. Infect Immun 2010; 79:314-20. [PMID: 21041499 DOI: 10.1128/iai.00768-10] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the 23-valent pneumococcal polysaccharide vaccine (PPV23) is less effective for older adults than for young adults, it is important to investigate the immunologic basis for the reduced efficacy of PPV23 among older adults. We determined the effectiveness of PPV23 among young (n = 55) and older (n = 44) adults by measuring the serum IgG, IgM, and IgA concentrations and opsonic capacities against serotypes 14, 18C, and 23F. While young and older adults showed no difference in levels of IgG antibodies against pneumococcal polysaccharide (PPS), older adults had lower IgA and IgM antibody levels than young adults for all three serotypes. In both age groups, anti-PPS IgA or IgM antibody levels were much lower than anti-PPS IgG antibody levels. Young adults showed higher opsonic capacities than older adults for serotypes 14 and 23F. In order to determine the effects of anti-PPS IgA or IgM antibodies on the functional difference between young and older adults, anti-PPS IgA or IgM antibodies were removed from immune sera by affinity chromatography. The difference in opsonic capacity between young and older adults disappeared for serotypes 14 and 23F (but not for serotype 18C) when IgM antibody was removed. However, there was no significant difference between the two age groups when IgA antibody was removed. In conclusion, even though anti-PPS IgG antibody levels are high compared with anti-PPS IgM antibody levels, the low levels of anti-PPS IgM antibody alone can explain the functional difference observed between young and older adults immunized with PPV23 with regard to some pneumococcal serotypes.
Collapse
|
31
|
Lopes LCL, Rollin-Pinheiro R, Guimarães AJ, Bittencourt VCB, Martinez LR, Koba W, Farias SE, Nosanchuk JD, Barreto-Bergter E. Monoclonal antibodies against peptidorhamnomannans of Scedosporium apiospermum enhance the pathogenicity of the fungus. PLoS Negl Trop Dis 2010; 4:e853. [PMID: 20976055 PMCID: PMC2957425 DOI: 10.1371/journal.pntd.0000853] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/22/2010] [Indexed: 11/19/2022] Open
Abstract
Scedosporium apiospermum is part of the Pseudallescheria-Scedosporium complex. Peptidorhamnomannans (PRMs) are cell wall glycopeptides present in some fungi, and their structures have been characterized in S. apiospermum, S. prolificans and Sporothrix schenckii. Prior work shows that PRMs can interact with host cells and that the glycopeptides are antigenic. In the present study, three monoclonal antibodies (mAbs, IgG1) to S. apiospermum derived PRM were generated and their effects on S. apiospermum were examined in vitro and in vivo. The mAbs recognized a carbohydrate epitope on PRM. In culture, addition of the PRM mAbs increased S. apiospermum conidia germination and reduced conidial phagocytosis by J774.16 macrophages. In a murine infection model, mice treated with antibodies to PRM died prior to control animals. Thus, PRM is involved in morphogenesis and the binding of this glycopeptide by mAbs enhanced the virulence of the fungus. Further insights into the effects of these glycopeptides on the pathobiology of S. apiospermum may lead to new avenues for preventing and treating scedosporiosis. The incidence of fungal infections has increased dramatically over the last 50 years, largely because of the increasing size of the population at risk, which especially includes immunocompromised hosts. Scedosporium apiospermum is a filamentous fungus that causes a variety of infections, ranging from localized disease to life-threatening disseminated infections. Glycoproteins are molecules present in the fungal surface and are comprised of carbohydrate and protein components. They are involved in different important functions in the fungal cell. Monoclonal antibodies can be used as therapeutic agents for infectious disease, but some factors involved in their efficacy are often not well understood. We found that monoclonal antibodies to glycoproteins present in fungal surface can be nonprotective and can even enhance the disease. The administration of these antibodies can affect functions of the fungal cell and the immune cells, resulting in a survival advantage for the fungus during interactions with the host.
Collapse
Affiliation(s)
- Livia C. L. Lopes
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Rollin-Pinheiro
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan J. Guimarães
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Vera C. B. Bittencourt
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis R. Martinez
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Wade Koba
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sandra E. Farias
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Joshua D. Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Eliana Barreto-Bergter
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
32
|
Abstract
Opportunistic pathogens have become of increasing medical importance over the last decade due to the AIDS pandemic. Not only is cryptococcosis the fourth-most-common fatal infectious disease in sub-Saharan Africa, but also Cryptococcus is an emerging pathogen of immunocompetent individuals. The interaction between Cryptococcus and the host's immune system is a major determinant for the outcome of disease. Despite initial infection in early childhood with Cryptococcus neoformans and frequent exposure to C. neoformans within the environment, immunocompetent individuals are generally able to contain the fungus or maintain the yeast in a latent state. However, immune deficiencies lead to disseminating infections that are uniformly fatal without rapid clinical intervention. This review will discuss the innate and adaptive immune responses to Cryptococcus and cryptococcal strategies to evade the host's defense mechanisms. It will also address the importance of these strategies in pathogenesis and the potential of immunotherapy in cryptococcosis treatment.
Collapse
|
33
|
Improved survival of mice deficient in secretory immunoglobulin M following systemic infection with Cryptococcus neoformans. Infect Immun 2009; 78:441-52. [PMID: 19901068 DOI: 10.1128/iai.00506-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cryptococcus neoformans causes severe, and often fatal, disease (cryptococcosis) in immunocompromised patients, particularly in those with HIV/AIDS. Although resistance to cryptococcosis requires intact T-cell immunity, a possible role for antibody/B cells in protection against natural disease has not been definitively established. Previous studies of the antibody response to the C. neoformans capsular polysaccharide glucuronoxylomannan (GXM) have demonstrated that patients who are at increased risk for cryptococcosis have lower serum levels of GXM-reactive IgM than those who are not at risk, leading to the hypothesis that IgM might contribute to resistance to cryptococcosis. To determine the influence of IgM on susceptibility to systemic cryptococcosis in a murine model, we compared the survival of mice deficient in serum IgM (secretory IgM deficient [sIgM(-/-)]) and C57BL/6 x 129Sv (control) mice after intraperitoneal infection with C. neoformans strain 24067 and analyzed the splenic B- and T-cell subsets by flow cytometry and the serum and splenic cytokine/chemokine and serum antibody profiles of each mouse strain. The results showed that sIgM(-/-) mice survived significantly longer than control mice when challenged with 10(5) CFU of C. neoformans 24067. Naïve sIgM(-/-) mice had higher levels of B-1 (CD5(+)) B cells, proinflammatory mediators (interleukin-6 [IL-6], IL-1beta, MIP-1beta, tumor necrosis factor alpha [TNF-alpha], and gamma interferon [IFN-gamma]), and anti-inflammatory mediators (IL-10 and IL-13) and significantly higher titers of GXM-specific IgG2a 3 weeks postinfection. In addition, CD5(+) splenocytes from both mouse strains had fungicidal activity against C. neoformans. Taken together, these results suggest that the inflammatory milieu in sIgM(-/-) mice might confer enhanced resistance to systemic cryptococcosis, stemming in part from the antifungal activity of B-1 B cells.
Collapse
|
34
|
The capsule of the fungal pathogen Cryptococcus neoformans. ADVANCES IN APPLIED MICROBIOLOGY 2009; 68:133-216. [PMID: 19426855 DOI: 10.1016/s0065-2164(09)01204-0] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The capsule of the fungal pathogen Cryptococcus neoformans has been studied extensively in recent decades and a large body of information is now available to the scientific community. Well-known aspects of the capsule include its structure, antigenic properties and its function as a virulence factor. The capsule is composed primarily of two polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), in addition to a smaller proportion of mannoproteins (MPs). Most of the studies on the composition of the capsule have focused on GXM, which comprises more than 90% of the capsule's polysaccharide mass. It is GalXM, however, that is of particular scientific interest because of its immunological properties. The molecular structure of these polysaccharides is very complex and has not yet been fully elucidated. Both GXM and GalXM are high molecular mass polymers with the mass of GXM equaling roughly 10 times that of GalXM. Recent findings suggest, however, that the actual molecular weight might be different to what it has traditionally been thought to be. In addition to their structural roles in the polysaccharide capsule, these molecules have been associated with many deleterious effects on the immune response. Capsular components are therefore considered key virulence determinants in C. neoformans, which has motivated their use in vaccines and made them targets for monoclonal antibody treatments. In this review, we will provide an update on the current knowledge of the C. neoformans capsule, covering aspects related to its structure, synthesis and particularly, its role as a virulence factor.
Collapse
|
35
|
Racine R, Winslow GM. IgM in microbial infections: taken for granted? Immunol Lett 2009; 125:79-85. [PMID: 19539648 DOI: 10.1016/j.imlet.2009.06.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 12/20/2022]
Abstract
Much has been learned about the structure, function, and production of IgM, since the antibody's initial characterization. It is widely accepted that IgM provides a first line of defense during microbial infections, prior to the generation of adaptive, high-affinity IgG responses that are important for long-lived immunity and immunological memory. Although IgM responses are commonly used as a measure of exposure to infectious diseases, it is perhaps surprising that the role of and requirement for IgM in many microbial infections has not been well explored in vivo. This is in part due to the lack of capabilities, until relatively recently, to evaluate the requirement for IgM in the absence of coincident IgG responses. Such evaluations are now possible, using gene-targeted mouse strains that produce only IgM, or isotype-switched IgG. A number of studies have revealed that IgM, produced either innately, or in response to antigen challenge, plays an important and perhaps under appreciated role in many microbial infections. Moreover, the characterization of the roles of various B cell subsets, in the production of IgM, and in host defense, has revealed important and divergent roles for B-1a and B-1b cells. This review will highlight studies in which IgM, in its own right, has been found to play an important role, not only in early immunity, but also in long-term protection, against a variety of microbial pathogens. Observations that long-lived IgM responses can be generated in vivo suggest that it may be feasible to target IgM production as part of vaccination strategies.
Collapse
Affiliation(s)
- Rachael Racine
- The Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12201-0509, United States
| | | |
Collapse
|
36
|
The monoclonal antibody against the major diagnostic antigen of Paracoccidioides brasiliensis mediates immune protection in infected BALB/c mice challenged intratracheally with the fungus. Infect Immun 2008; 76:3321-8. [PMID: 18458072 DOI: 10.1128/iai.00349-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protective role of specific antibodies against Paracoccidioides brasiliensis is controversial. In the present study, we analyzed the effects of monoclonal antibodies on the major diagnostic antigen (gp43) using in vitro and in vivo P. brasiliensis infection models. The passive administration of some monoclonal antibodies (MAbs) before and after intratracheal or intravenous infections led to a reduced fungal burden and decreased pulmonary inflammation. The protection mediated by MAb 3E, the most efficient MAb in the reduction of fungal burden, was associated with the enhanced phagocytosis of P. brasiliensis yeast cells by J774.16, MH-S, or primary macrophages. The ingestion of opsonized yeast cells led to an increase in NO production by macrophages. Passive immunization with MAb 3E induced enhanced levels of gamma interferon in the lungs of infected mice. The reactivity of MAb 3E against a panel of gp43-derived peptides suggested that the sequence NHVRIPIGWAV contains the binding epitope. The present work shows that some but not all MAbs against gp43 can reduce the fungal burden and identifies a new peptide candidate for vaccine development.
Collapse
|
37
|
Comparison of cellular and humoral immunoassays for the assessment of summer eczema in horses. Vet Immunol Immunopathol 2008; 122:126-37. [DOI: 10.1016/j.vetimm.2007.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/30/2007] [Accepted: 11/01/2007] [Indexed: 11/15/2022]
|
38
|
Rodrigues ML, Shi L, Barreto-Bergter E, Nimrichter L, Farias SE, Rodrigues EG, Travassos LR, Nosanchuk JD. Monoclonal antibody to fungal glucosylceramide protects mice against lethal Cryptococcus neoformans infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1372-6. [PMID: 17715331 PMCID: PMC2168121 DOI: 10.1128/cvi.00202-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glucosylceramides (GlcCer) are involved in the regulation of Cryptococcus neoformans virulence. In the present study, we demonstrate that passive immunization with a monoclonal antibody to GlcCer significantly reduces host inflammation and prolongs the survival of mice lethally infected with C. neoformans, revealing a potential therapeutic strategy to control cryptococcosis.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Singh N, Perfect JR. Immune reconstitution syndrome associated with opportunistic mycoses. THE LANCET. INFECTIOUS DISEASES 2007; 7:395-401. [PMID: 17521592 DOI: 10.1016/s1473-3099(07)70085-3] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Host immunity is essential in facilitating the eradication of infection. However, immunological recovery and an imbalance characterised by either suboptimum or excessive expression of immune responses can also be harmful to the host. Inflammatory responses triggered by rapid resolution of immunosuppression can lead to a series of localised and systemic reactions, termed immune reconstitution syndrome (IRS), that are often misconstrued as failure of specific antifungal therapy to eliminate the offending fungal pathogen. Recognition of IRS has become increasingly relevant in the context of our current use of potent immunosuppressive agents and immunostimulators that allow rapid manipulation of the immune system. Whereas the conceptual principles of IRS underscore the adverse effects of an overzealous and dysregulated immune response, they also support a role of immunotherapies to augment immunity if induction of endogenous responses is inadequate for the control of infection.
Collapse
Affiliation(s)
- Nina Singh
- Infectious Disease Section, VA Medical Center, University of Pittsburgh, Pittsburgh, PA 15240, USA.
| | | |
Collapse
|
40
|
Zaragoza O, Alvarez M, Telzak A, Rivera J, Casadevall A. The relative susceptibility of mouse strains to pulmonary Cryptococcus neoformans infection is associated with pleiotropic differences in the immune response. Infect Immun 2007; 75:2729-39. [PMID: 17371865 PMCID: PMC1932903 DOI: 10.1128/iai.00094-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CBA/J mice were highly susceptible to intratracheal (i.t.) Cryptococcus neoformans infection relative to BALB/c mice, while both strains were equally susceptible to intravenous (i.v.) infection. Increased susceptibility in i.t. infection was associated with higher brain CFU, lower serum immunoglobulin M (IgM) and IgG responses to glucuronoxylomannan (GXM), lack of IgE regulation during infection, and alveolar macrophage permissiveness to intracellular replication in vitro. In contrast, for BALB/c mice, relative resistance was associated with increased interleukin-12 (IL-12) and decreased IL-10 pulmonary levels. In CBA/J mice, relative susceptibility was associated with a decreased proportion of CD4+ and CD8+ T cells and an increase in macrophage percentage in pulmonary infiltrates. In contrast, no significant differences in these cytokines or cell recruitment were observed in the i.v. model, consistent with no differences in the survival rate. Passive antibody (Ab) protection experiments revealed a prozone effect in the BALB/c mice with i.v. infection, such that Ab efficacy decreased at higher doses. In the i.t. model using CBA/J mice, low Ab doses were disease enhancing and protection was observed only at high doses. Our results show (i) that differences in mouse strain susceptibility are a function of the infection model, (ii) that susceptibility to pulmonary infection was associated with macrophage permissiveness for intracellular replication, and (iii) that the efficacy of passive Ab in pulmonary infection is a function of dose and mouse strain. The results highlight significant differences in the pathogenesis of cryptococcal infection among inbred mice and associate their relative susceptibility with differences in numerous components of the innate and adaptive immune responses.
Collapse
Affiliation(s)
- Oscar Zaragoza
- Departments of Microbiology and Immunology and Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
41
|
Macura N, Zhang T, Casadevall A. Dependence of macrophage phagocytic efficacy on antibody concentration. Infect Immun 2007; 75:1904-15. [PMID: 17283107 PMCID: PMC1865677 DOI: 10.1128/iai.01258-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macrophages ingest the fungus Cryptococcus neoformans only in the presence of opsonins, and this provides a remarkably clean system for the detailed analysis of phagocytosis. This system is also unusual in that antibody-mediated phagocytosis involves ingestion through both Fc and complement receptors in the absence of complement. Mathematical modeling was used to analyze and explain the experimental data that the macrophage phagocytic index increased with increasing doses of antibody despite saturating concentrations and declined at high concentrations. A model was developed that explains the increase in phagocytic index with increasing antibody doses, differentiates among the contributions from Fc and complement receptors, and provides a tool for estimating antibody concentrations that optimize efficacy of phagocytosis. Experimental results and model calculations revealed that blocking of Fc receptors by excess antibody caused a reduction in phagocytic index but increased phagocytosis through complement receptors rapidly compensated for this effect. At high antibody concentrations, a further reduction in phagocytic index was caused by interference with complement receptor ingestion as a consequence of saturation of the fungal capsule. The ability of our model to predict the antibody dose dependence of the macrophage phagocytic efficacy for C. neoformans strongly suggest that the major variables that determine the efficacy of this process have been identified. The model predicts that the affinity constant of the opsonic antibody for the Fc receptor and the association-dissociation constant of antibody from the microbial antigen are critical parameters determining the efficacy of phagocytosis.
Collapse
Affiliation(s)
- Natasa Macura
- Department of Mathematics, Trinity University, One Trinity Place, San Antonio, TX 78212, USA
| | | | | |
Collapse
|
42
|
Mulgrew K, Kinneer K, Yao XT, Ward BK, Damschroder MM, Walsh B, Mao SY, Gao C, Kiener PA, Coats S, Kinch MS, Tice DA. Direct targeting of αvβ3integrin on tumor cells with a monoclonal antibody, Abegrin™. Mol Cancer Ther 2006; 5:3122-9. [PMID: 17172415 DOI: 10.1158/1535-7163.mct-06-0356] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The humanized monoclonal antibody Abegrin, currently in phase II trials for treatment of solid tumors, specifically recognizes the integrin alphavbeta3. Due to its high expression on mature osteoclasts, angiogenic endothelial cells, and tumor cells, integrin alphavbeta3 functions in several pathologic processes important to tumor growth and metastasis. Targeting of this integrin with Abegrin results in antitumor, antiangiogenic, and antiosteolytic activities. Here, we exploit the species specificity of Abegrin to evaluate the effects of direct targeting of tumor cells (independent of targeting of endothelia or osteoclasts). Flow cytometry analysis of human tumor cell lines shows high levels of alphavbeta3 on many solid tumors, including cancers of the prostate, skin, ovary, kidney, lung, and breast. We also show that tumor growth of alphavbeta3-expressing tumor cells is inhibited by Abegrin in a dose-dependent manner. We present a novel finding that high-dose administration can actively impair the antitumor activity of Abegrin. We also provide evidence that antibody-dependent cellular cytotoxicity contributes to in vitro and in vivo antitumor activity. Finally, it was observed that peak biological activity of Abegrin arises at serum levels that are consistent with those achieved in clinical trials. These results support a concept that Abegrin can be used to achieve selective targeting of the many tumor cells that express alphavbeta3 integrin. In combination with the well-established concept that alphavbeta3 plays a key role in cancer-associated angiogenesis and osteolytic activities, this triad of activity could provide new opportunities for therapeutic targeting of cancer.
Collapse
Affiliation(s)
- Kathy Mulgrew
- MedImmune, Inc., One Medimmune Way, Gaithersburg, MD 20878, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kozel TR, Thorkildson P, Brandt S, Welch WH, Lovchik JA, AuCoin DP, Vilai J, Lyons CR. Protective and immunochemical activities of monoclonal antibodies reactive with the Bacillus anthracis polypeptide capsule. Infect Immun 2006; 75:152-63. [PMID: 17060470 PMCID: PMC1828423 DOI: 10.1128/iai.01133-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis is surrounded by a polypeptide capsule composed of poly-gamma-d-glutamic acid (gammaDPGA). In a previous study, we reported that a monoclonal antibody (MAb F26G3) reactive with the capsular polypeptide is protective in a murine model of pulmonary anthrax. The present study examined a library of six MAbs generated from mice immunized with gammaDPGA. Evaluation of MAb binding to the capsule by a capsular "quellung" type reaction showed a striking diversity in capsular effects. Most MAbs produced a rim type reaction that was characterized by a sharp increase followed directly by a decrease in refractive index at the capsular edge. Some MAbs produced a second capsular reaction well beneath the capsular edge, suggesting complexity in capsular architecture. Binding of MAbs to soluble gammaDPGA was assessed by a fluorescence perturbation assay in which a change in the MAb intrinsic fluorescence produced by ligand binding was used as a reporter for antigen-antibody interaction. The MAbs differed considerably in the complexity of the binding curves. MAbs producing rim type capsule reactions typically produced the more complex binding isotherms. Finally, the protective activity of the MAbs was compared in a murine model of pulmonary anthrax. One MAb was markedly less protective than the remaining five MAbs. Characteristics of the more protective MAbs included a relatively high affinity, an immunoglobulin G3 isotype, and a complex binding isotherm in the fluorescence perturbation assay. Given the relatively monotonous structure of gammaDPGA, the results demonstrate a striking diversity in the antigen binding behavior of gammaDPGA antibodies.
Collapse
Affiliation(s)
- Thomas R Kozel
- Department of Microbiology and Immunology/320, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Dadachova E, Casadevall A. Antibodies as delivery vehicles for radioimmunotherapy of infectious diseases. Expert Opin Drug Deliv 2006; 2:1075-84. [PMID: 16296810 DOI: 10.1517/17425247.2.6.1075] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The field of infectious diseases is in crisis and there is a need for strategies that can facilitate the rapid development of new antimicrobial agents. Radioimmunotherapy (RIT), a therapeutic modality originally developed for cancer treatment, has recently been suggested as a novel therapy for the treatment of a variety of infectious diseases. Because specific antibodies are used in RIT as delivery vehicles of cytocidal radiation, their molecular weight influences the nonspecific accumulation in infectious foci and blood clearance, and their affinity-specific accumulation of antibodies in infectious foci. Like the problems encountered in oncology, relevant variables in the development of RIT of infectious diseases include target antigen-shedding; delivering radionuclides to infectious foci in organs, abscesses, granulomas, heart and brain, and potential safety concerns. Dadachova and Casadevall anticipate that RIT can be developed for many types of infectious diseases, including microbes resistant to conventional antimicrobial therapy and agents of biological warfare.
Collapse
Affiliation(s)
- Ekaterina Dadachova
- Department of Nuclear Medicine, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
| | | |
Collapse
|
45
|
Zaragoza O, Casadevall A. Monoclonal antibodies can affect complement deposition on the capsule of the pathogenic fungus Cryptococcus neoformans by both classical pathway activation and steric hindrance. Cell Microbiol 2006; 8:1862-76. [PMID: 16824038 DOI: 10.1111/j.1462-5822.2006.00753.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The capsule of the human pathogenic fungus Cryptococcus neoformans presents the immune system with a formidable problem for phagocytosis. Capsule-mediated activation of the alternative complement (C) pathway results in component 3 (particularly, C3) binding to the capsule near the cell wall surface. Hence, for cells with large capsule, C3 cannot interact with the complement receptor (CR) and is not opsonic. However, C activation in either immune serum or in the presence of monoclonal antibody (mAb) to capsular polysaccharide localizes C3 to the capsular edge. When C. neoformans cells were coated with both C and antibody (Ab) opsonins, Ab bound first and promoted C3 deposition at the edge of the capsule. The mechanism for the Ab-mediated change in C3 localization to the capsule edge involved both classical C pathway activation and steric hindrance preventing C3 penetration into the capsule. The change in C3 localization changed the mode of phagocytosis in macrophages, such that localizing C3 at the edge of the capsule allowed phagocytosis through C3-CR3 and C3-CR4 interactions, which did not occur in serum without Ab. These findings reveal a new mechanism of Ab action whereby Abs affect the location of C3 and its interaction with its receptor in macrophages depending on the immunoglobulin concentration.
Collapse
Affiliation(s)
- Oscar Zaragoza
- Albert Einstein College of Medicine, Departments of Microbiology and Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
46
|
Sevilla MJ, Robledo B, Rementeria A, Moragues MD, Pontón J. A fungicidal monoclonal antibody protects against murine invasive candidiasis. Infect Immun 2006; 74:3042-5. [PMID: 16622248 PMCID: PMC1459740 DOI: 10.1128/iai.74.5.3042-3045.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mice infected by Candida albicans and treated with monoclonal antibody C7 survived longer than saline-treated animals. A prozone-like effect was observed. The in vitro candidacidal activity of macrophages was strongly enhanced when C. albicans was opsonized by C7 and complete murine serum was present.
Collapse
Affiliation(s)
- María J Sevilla
- Departamento de Inmunología, Microbiología y Parasitología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, E-48080 Bilbao, Vizcaya, Spain.
| | | | | | | | | |
Collapse
|
47
|
Glatman-Freedman A. The role of antibody-mediated immunity in defense against Mycobacterium tuberculosis: advances toward a novel vaccine strategy. Tuberculosis (Edinb) 2006; 86:191-7. [PMID: 16584923 DOI: 10.1016/j.tube.2006.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 01/23/2006] [Indexed: 10/24/2022]
Abstract
Antibody-mediated immunity has been historically considered to have no role in host-defense against Mycobacterium tuberculosis. In recent years, studies from our group as well as others have challenged this traditional thinking. Using monoclonal antibodies, researchers demonstrated that antibodies can modify various aspects of mycobacterial infection to the benefit of the host. A review of recent experimental evidence in support of a role for antibodies in host-defense against mycobacterial infections is presented. Challenges to the field and an outline of future directions with particular attention to research leading to the development of a novel vaccine strategy, are emphasized.
Collapse
Affiliation(s)
- Aharona Glatman-Freedman
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
48
|
Abstract
Cryptococcosis is a relatively common fungal disease caused by Cryptococcus neoformans that has high morbidity and mortality. Numerous studies have established the feasibility of enhancing host immunity to C neoformans in naive immunocompetent animal models by vaccination. Several antigens have been identified that appear to be suitable vaccine candidates. Induced immune responses can mediate protection through both humoral and cellular immunity. Hence, a vaccine against cryptococcosis in humans is probably feasible but there are significant obstacles to vaccine development that range from uncertainties about the pathogenesis of infection to economic considerations.
Collapse
Affiliation(s)
- Arturo Casadevall
- Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
49
|
da Silva MB, Marques AF, Nosanchuk JD, Casadevall A, Travassos LR, Taborda CP. Melanin in the dimorphic fungal pathogen Paracoccidioides brasiliensis: effects on phagocytosis, intracellular resistance and drug susceptibility. Microbes Infect 2006; 8:197-205. [PMID: 16213179 DOI: 10.1016/j.micinf.2005.06.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 06/13/2005] [Accepted: 06/16/2005] [Indexed: 10/25/2022]
Abstract
The fungal pathogen Paracoccidioides brasiliensis produces a melanin-like pigment in the presence of l-DOPA in vitro. We investigated whether melanization affected yeast uptake by alveolar and peritoneal macrophages, the intracellular resistance of fungal cells and their susceptibility to antifungal drugs. The interactions of melanized and nonmelanized P. brasiliensis with murine primary macrophages and J774.16 and MH-S macrophage-like cell lines were investigated. Melanized yeast cells were poorly phagocytosed by the cells even in the presence of complement. Melanization caused significant interference with the binding of cell wall components to lectin receptors on macrophages. Melanized cells were also more resistant than nonmelanized cells to the antifungal activity of murine macrophages. No difference in the susceptibilities of melanized and nonmelanized P. brasiliensis to antifungal drugs was observed using the minimum inhibitory concentration (MIC) method. However killing assays showed that melanization significantly reduced fungal susceptibility to amphotericin B and also protected against ketoconazole, fluconazole, itraconazole and sulfamethoxazole. The present results indicate that fungal melanin protects P. brasiliensis from phagocytosis and increases its resistance to antifungal drugs.
Collapse
Affiliation(s)
- Marcelo B da Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, 2 andar, São Paulo, SP 05508-900, Brazil
| | | | | | | | | | | |
Collapse
|
50
|
Casadevall A, Pirofski LA. A Reappraisal of Humoral Immunity Based on Mechanisms of Antibody‐Mediated Protection Against Intracellular Pathogens. Adv Immunol 2006; 91:1-44. [PMID: 16938537 DOI: 10.1016/s0065-2776(06)91001-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sometime in the mid to late twentieth century the study of antibody-mediated immunity (AMI) entered the doldrums, as many immunologists believed that the function of AMI was well understood, and was no longer deserving of intensive investigation. However, beginning in the 1990s studies using monoclonal antibodies (mAbs) revealed new functions for antibodies, including direct antimicrobial effects and their ability to modify host inflammatory and cellular responses. Furthermore, the demonstration that mAbs to several intracellular bacterial and fungal pathogens were protective issued a serious challenge to the paradigm that host defense against such microbes was strictly governed by cell-mediated immunity (CMI). Hence, a new view of AMI is emerging. This view is based on the concept that a major function of antibody (Ab) is to amplify or subdue the inflammatory response to a microbe. In this regard, the "damage-response framework" of microbial pathogenesis provides a new conceptual viewpoint for understanding mechanisms of AMI. According to this view, the ability of an Ab to affect the outcome of a host-microbe interaction is a function of its capacity to modify the damage ensuing from such an interaction. In fact, it is increasingly apparent that the efficacy of an Ab cannot be defined either by immunoglobulin or epitope characteristics alone, but rather by a complex function of Ab variables, such as specificity, isotype, and amount, host variables, such as genetic background and immune status, and microbial variables, such as inoculum, mechanisms of avoiding host immune surveillance and pathogenic strategy. Consequently, far from being understood, recent findings in AMI imply a system with unfathomable complexity and the field is poised for a long overdue renaissance.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine and Montefoire Medical Center, Bronx, New York, USA
| | | |
Collapse
|