1
|
Tsutsumi N, Kildedal DF, Hansen OK, Kong Q, Schols D, Van Loy T, Rosenkilde MM. Insight into structural properties of viral G protein-coupled receptors and their role in the viral infection: IUPHAR Review 41. Br J Pharmacol 2024. [PMID: 39443818 DOI: 10.1111/bph.17379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in cellular signalling and drug targeting. Herpesviruses encode GPCRs (vGPCRs) to manipulate cellular signalling, thereby regulating various aspects of the virus life cycle, such as viral spreading and immune evasion. vGPCRs mimic host chemokine receptors, often with broader signalling and high constitutive activity. This review focuses on the recent advancements in structural knowledge about vGPCRs, with an emphasis on molecular mechanisms of action and ligand binding. The structures of US27 and US28 from human cytomegalovirus (HCMV) are compared to their closest human homologue, CX3CR1. Contrasting US27 and US28, the homotrimeric UL78 structure (HCMV) reveals more distance to chemokine receptors. Open reading frame 74 (ORF74; Kaposi's sarcoma-associated herpesvirus) is compared to CXCRs, whereas BILF1 (Epstein-Barr virus) is discussed as a putative lipid receptor. Furthermore, the roles of vGPCRs in latency and lytic replication, reactivation, dissemination and immune evasion are reviewed, together with their potential as drug targets for virus infections and virus-related diseases.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dagmar Fæster Kildedal
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Synklino ApS, Copenhagen, Denmark
| | - Olivia Kramer Hansen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qianqian Kong
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
2
|
Liu A, Liu Y, Llinàs del Torrent Masachs C, Zhang W, Pardo L, Ye RD. Structural insights into KSHV-GPCR constitutive activation and CXCL1 chemokine recognition. Proc Natl Acad Sci U S A 2024; 121:e2403217121. [PMID: 39378089 PMCID: PMC11494311 DOI: 10.1073/pnas.2403217121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/21/2024] [Indexed: 10/10/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a viral G protein-coupled receptor, KSHV-GPCR, that contributes to KSHV immune evasion and pathogenesis of Kaposi's sarcoma. KSHV-GPCR shares a high similarity with CXC chemokine receptors CXCR2 and can be activated by selected chemokine ligands. Like other herpesvirus-encoded GPCRs, KSHV-GPCR is characterized by its constitutive activity by coupling to various G proteins. We investigated the structural basis of ligand-dependent and constitutive activation of KSHV-GPCR, obtaining high-resolution cryo-EM structures of KSHV-GPCR-Gi complexes with and without the bound CXCL1 chemokine. Analysis of the apo-KSHV-GPCR-Gi structure (2.81 Å) unraveled the involvement of extracellular loop 2 in constitutive activation of the receptor. In comparison, the CXCL1-bound KSHV-GPCR-Gi structure (3.01 Å) showed a two-site binding mode and provided detailed information of CXCL1 binding to a chemokine receptor. The dual activation mechanism employed by KSHV-GPCR represents an evolutionary adaptation for immune evasion and contributes to the pathogenesis of Kaposi's sarcoma. Together with results from functional assays that confirmed the structural models, these findings may help to develop therapeutic strategies for KSHV infection.
Collapse
Affiliation(s)
- Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
- Dongguan Songshan Lake Central Hospital, Dongguan Third People’s Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong523326, China
| | - Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Clàudia Llinàs del Torrent Masachs
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra08193, Spain
| | - Weijia Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra08193, Spain
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation Research and Development Center, Shenzhen, Guangdong518048, China
| |
Collapse
|
3
|
Co-Infection of the Epstein-Barr Virus and the Kaposi Sarcoma-Associated Herpesvirus. Viruses 2022; 14:v14122709. [PMID: 36560713 PMCID: PMC9782805 DOI: 10.3390/v14122709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The two human tumor viruses, Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been mostly studied in isolation. Recent studies suggest that co-infection with both viruses as observed in one of their associated malignancies, namely primary effusion lymphoma (PEL), might also be required for KSHV persistence. In this review, we discuss how EBV and KSHV might support each other for persistence and lymphomagenesis. Moreover, we summarize what is known about their innate and adaptive immune control which both seem to be required to ensure asymptomatic persistent co-infection with these two human tumor viruses. A better understanding of this immune control might allow us to prepare for vaccination against EBV and KSHV in the future.
Collapse
|
4
|
Choi YB, Cousins E, Nicholas J. Novel Functions and Virus-Host Interactions Implicated in Pathogenesis and Replication of Human Herpesvirus 8. Recent Results Cancer Res 2021; 217:245-301. [PMID: 33200369 DOI: 10.1007/978-3-030-57362-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human herpesvirus 8 (HHV-8) is classified as a γ2-herpesvirus and is related to Epstein-Barr virus (EBV), a γ1-herpesvirus. One important aspect of the γ-herpesviruses is their association with neoplasia, either naturally or in animal model systems. HHV-8 is associated with B-cell-derived primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD), endothelial-derived Kaposi's sarcoma (KS), and KSHV inflammatory cytokine syndrome (KICS). EBV is also associated with a number of B-cell malignancies, such as Burkitt's lymphoma, Hodgkin's lymphoma, and posttransplant lymphoproliferative disease, in addition to epithelial nasopharyngeal and gastric carcinomas. Despite the similarities between these viruses and their associated malignancies, the particular protein functions and activities involved in key aspects of virus biology and neoplastic transformation appear to be quite distinct. Indeed, HHV-8 specifies a number of proteins for which counterparts had not previously been identified in EBV, other herpesviruses, or even viruses in general, and these proteins are believed to play vital functions in virus biology and to be involved centrally in viral pathogenesis. Additionally, a set of microRNAs encoded by HHV-8 appears to modulate the expression of multiple host proteins to provide conditions conductive to virus persistence within the host and possibly contributing to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
Collapse
Affiliation(s)
- Young Bong Choi
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA.
| | - Emily Cousins
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - John Nicholas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| |
Collapse
|
5
|
KSHV G-protein coupled receptor vGPCR oncogenic signaling upregulation of Cyclooxygenase-2 expression mediates angiogenesis and tumorigenesis in Kaposi's sarcoma. PLoS Pathog 2020; 16:e1009006. [PMID: 33057440 PMCID: PMC7591070 DOI: 10.1371/journal.ppat.1009006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/27/2020] [Accepted: 09/27/2020] [Indexed: 11/19/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) vGPCR is a constitutively active G protein-coupled receptor that subverts proliferative and inflammatory signaling pathways to induce cell transformation in Kaposi's sarcoma. Cyclooxygenase-2 (COX-2) is an inflammatory mediator that plays a key regulatory role in the activation of tumor angiogenesis. Using two different transformed mouse models and tumorigenic full KSHV genome-bearing cells, including KSHV-Bac16 based mutant system with a vGPCR deletion, we demostrate that vGPCR upregulates COX-2 expression and activity, signaling through selective MAPK cascades. We show that vGPCR expression triggers signaling pathways that upregulate COX-2 levels due to a dual effect upon both its gene promoter region and, in mature mRNA, the 3'UTR region that control mRNA stability. Both events are mediated by signaling through ERK1/2 MAPK pathway. Inhibition of COX-2 in vGPCR-transformed cells impairs vGPCR-driven angiogenesis and treatment with the COX-2-selective inhibitory drug Celecoxib produces a significant decrease in tumor growth, pointing to COX-2 activity as critical for vGPCR oncogenicity in vivo and indicating that COX-2-mediated angiogenesis could play a role in KS tumorigenesis. These results, along with the overexpression of COX-2 in KS lesions, define COX-2 as a potential target for the prevention and treatment of KSHV-oncogenesis.
Collapse
|
6
|
Zhang Z, Gao X, Zhang Q, Li W. Constitutive activity of a spermine receptor is maintained by a single site in the C-terminal. Biochem Biophys Res Commun 2020; 526:389-395. [PMID: 32222281 DOI: 10.1016/j.bbrc.2020.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/08/2020] [Indexed: 11/28/2022]
Abstract
Olfactory receptors are G-protein coupled receptors (GPCRs) that enable olfactory epithelia to detect odorants. These GPCRs may also show constitutive activity, which play important roles in the development and responses of odorant receptor neurons. However, little is known about the molecular characteristics that support the constitutive activities in olfactory receptors. Here, we characterize a pair of olfactory receptor orthologs that show similar ligand-dependent activity but different levels of constitutive activity, and elucidate the molecular characteristics that maintain the constitutive activity. Previously, PmTAAR348, a sea lamprey (Petromyzon marinus) olfactory receptor that is activated by the male sex pheromone spermine has been reported. In this study, we identified LmTAAR348 of Northeast Chinese lamprey (Lethenteron morii) as an ortholog of PmTAAR348. When expressed in HEK293T cell lines, both receptors showed similar levels of activation when exposed to spermine. However, the constitutive activity of LmTAAR348 was 100-fold higher than that of PmTAAR348. Using site-directed mutagenesis, we screened all 13 amino acid residues (aa) that differed between the two orthologs and found that a switch in position 340 reversed the constitutive activity levels between LmTAAR348 and PmTAAR348. Mutating the remaining 12 aa did not affect the ligand-dependent or constitutive activation. Moreover, both the ligand-dependent and constitutive activation of TAAR348 are Golf (G protein ⍺ subunit olfactory type) independent. We conclude that a single aa in the C-terminal maintains the constitutive activity in a spermine receptor.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiang Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Weming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
van Senten JR, Fan TS, Siderius M, Smit MJ. Viral G protein-coupled receptors as modulators of cancer hallmarks. Pharmacol Res 2020; 156:104804. [PMID: 32278040 DOI: 10.1016/j.phrs.2020.104804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Herpesviruses encode transmembrane G protein-coupled receptors (GPCRs), which share structural homology to human chemokine receptors. These viral GPCRs include KSHV-encoded ORF74, EBV-encoded BILF1, and HCMV-encoded US28, UL33, UL78 and US27. Viral GPCRs hijack various signaling pathways and cellular networks, including pathways involved in the so-called cancer hallmarks as defined by Hanahan and Weinberg. These hallmarks describe cellular characteristics crucial for transformation and tumor progression. The cancer hallmarks involve growth factor-independent proliferation, angiogenesis, avoidance of apoptosis, invasion and metastasis, metabolic reprogramming, genetic instability and immune evasion amongst others. The role of beta herpesviruses modulating these cancer hallmarks is clearly highlighted by the proliferative and pro-angiogenic phenotype associated with KSHV infection which is largely ascribed to the ORF74-mediated modulation of signaling networks in host cells. For HCMV and Epstein-Bar encoded GPCRs, oncomodulatory effects have been described which contribute to the cancer hallmarks, thereby enhancing oncogenic development. In this review, we describe the main signaling pathways controlling the hallmarks of cancer which are affected by the betaherpesvirus encoded GPCRs. Most prominent among these involve the JAK-STAT, PI(3)K-AKT, NFkB and MAPK signaling nodes. These insights are important to effectively target these viral GPCRs and their signaling networks in betaherpesvirus-associated malignancies.
Collapse
Affiliation(s)
- Jeffrey R van Senten
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Tian Shu Fan
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Marco Siderius
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Rivera-Soto R, Damania B. Modulation of Angiogenic Processes by the Human Gammaherpesviruses, Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus. Front Microbiol 2019; 10:1544. [PMID: 31354653 PMCID: PMC6640166 DOI: 10.3389/fmicb.2019.01544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022] Open
Abstract
Angiogenesis is the biological process by which new blood vessels are formed from pre-existing vessels. It is considered one of the classic hallmarks of cancer, as pathological angiogenesis provides oxygen and essential nutrients to growing tumors. Two of the seven known human oncoviruses, Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), belong to the Gammaherpesvirinae subfamily. Both viruses are associated with several malignancies including lymphomas, nasopharyngeal carcinomas, and Kaposi’s sarcoma. The viral genomes code for a plethora of viral factors, including proteins and non-coding RNAs, some of which have been shown to deregulate angiogenic pathways and promote tumor growth. In this review, we discuss the ability of both viruses to modulate the pro-angiogenic process.
Collapse
Affiliation(s)
- Ricardo Rivera-Soto
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Tong X, Bai M, Wang W, Han Q, Tian P, Fan H. IgG4-related disease involving polyserous effusions with elevated serum interleukin-6 levels: a case report and literature review. Immunol Res 2018; 65:944-950. [PMID: 28710703 DOI: 10.1007/s12026-017-8934-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Immunoglobulin G4-related disease (IgG4-RD) is a recently described immune-mediated fibroinflammatory disease with a characteristic histopathologic appearance that can affect various organs. We report a 43-year-old Chinese female patient with IgG4-RD involving polyserous effusions with reports of worsening exertional dyspnea for 3 months. Laboratory blood tests revealed that serum interleukin (IL)-6, carbohydrate antigens (CA-199 and CA-125), and alpha-fetoprotein levels were significantly increased, but serum IgG4 levels were normal. Repeat pleural effusion and ascite analysis showed lymphocyte-predominant exudates. In addition, computed tomography scan showed massive pleural effusion in the right pleural cavity, abdominal effusion, and some pericardial effusion with a partial compression atelectasis. Further, medical thoracoscopy was performed to examine the pleural cavity and found multiple nodules on the pleura and partly thickened pleura with a reddish color. Histopathologic and immunohistochemical examination revealed marked lymphocytes and IgG4-positive plasma cell infiltration. The patient was finally diagnosed with IgG4-RD according to the comprehensive diagnostic criteria, although the patient presented similar serological and pathological manifestations of Castleman disease (CD). Our case suggests that IgG4-RD may be one of the causes of polyserous effusions and shows the difficulties in differentiating between IgG4-RD and CD.
Collapse
Affiliation(s)
- Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan, 610041, China
| | - Min Bai
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan, 610041, China
| | - Weiya Wang
- Department of Pathology, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Qingbing Han
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan, 610041, China
| | - Panwen Tian
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan, 610041, China. .,Lung Cancer Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China.
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
10
|
Hunte R, Alonso P, Thomas R, Bazile CA, Ramos JC, van der Weyden L, Dominguez-Bendala J, Khan WN, Shembade N. CADM1 is essential for KSHV-encoded vGPCR-and vFLIP-mediated chronic NF-κB activation. PLoS Pathog 2018; 14:e1006968. [PMID: 29698475 PMCID: PMC5919438 DOI: 10.1371/journal.ppat.1006968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Approximately 12% of all human cancers worldwide are caused by infections with oncogenic viruses. Kaposi's sarcoma herpesvirus/human herpesvirus 8 (KSHV/HHV8) is one of the oncogenic viruses responsible for human cancers, including Kaposi's sarcoma (KS), Primary Effusion Lymphoma (PEL), and the lymphoproliferative disorder multicentric Castleman's disease (MCD). Chronic inflammation mediated by KSHV infection plays a decisive role in the development and survival of these cancers. NF-κB, a family of transcription factors regulating inflammation, cell survival, and proliferation, is persistently activated in KSHV-infected cells. The KSHV latent and lytic expressing oncogenes involved in NF-κB activation are vFLIP/K13 and vGPCR, respectively. However, the mechanisms by which NF-κB is activated by vFLIP and vGPCR are poorly understood. In this study, we have found that a host molecule, Cell Adhesion Molecule 1 (CADM1), is robustly upregulated in KSHV-infected PBMCs and KSHV-associated PEL cells. Further investigation determined that both vFLIP and vGPCR interacted with CADM1. The PDZ binding motif localized at the carboxyl terminus of CADM1 is essential for both vGPCR and vFLIP to maintain chronic NF-κB activation. Membrane lipid raft associated CADM1 interaction with vFLIP is critical for the initiation of IKK kinase complex and NF-κB activation in the PEL cells. In addition, CADM1 played essential roles in the survival of KSHV-associated PEL cells. These data indicate that CADM1 plays key roles in the activation of NF-κB pathways during latent and lytic phases of the KSHV life cycle and the survival of KSHV-infected cells.
Collapse
MESH Headings
- Cell Adhesion Molecule-1/genetics
- Cell Adhesion Molecule-1/metabolism
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/virology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Richard Hunte
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Patricia Alonso
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Remy Thomas
- Qatar Biomedical Research Institute, Doha, Qatar
| | - Cassandra Alexandria Bazile
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Juan Carlos Ramos
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, and Center for AIDS Research and Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Wasif Noor Khan
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Noula Shembade
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| |
Collapse
|
11
|
Watanabe T, Sugimoto A, Hosokawa K, Fujimuro M. Signal Transduction Pathways Associated with KSHV-Related Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:321-355. [PMID: 29896674 DOI: 10.1007/978-981-10-7230-7_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signal transduction pathways play a key role in the regulation of cell growth, cell differentiation, cell survival, apoptosis, and immune responses. Bacterial and viral pathogens utilize the cell signal pathways by encoding their own proteins or noncoding RNAs to serve their survival and replication in infected cells. Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is classified as a rhadinovirus in the γ-herpesvirus subfamily and was the eighth human herpesvirus to be discovered from Kaposi's sarcoma specimens. KSHV is closely associated with an endothelial cell malignancy, Kaposi's sarcoma, and B-cell malignancies, primary effusion lymphoma, and multicentric Castleman's disease. Recent studies have revealed that KSHV manipulates the cellular signaling pathways to achieve persistent infection, viral replication, cell proliferation, anti-apoptosis, and evasion of immune surveillance in infected cells. This chapter summarizes recent developments in our understanding of the molecular mechanisms used by KSHV to interact with the cell signaling machinery.
Collapse
Affiliation(s)
- Tadashi Watanabe
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Atsuko Sugimoto
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kohei Hosokawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
| |
Collapse
|
12
|
Pontejo SM, Murphy PM. Chemokines encoded by herpesviruses. J Leukoc Biol 2017; 102:1199-1217. [PMID: 28848041 DOI: 10.1189/jlb.4ru0417-145rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses use diverse strategies to elude the immune system, including copying and repurposing host cytokine and cytokine receptor genes. For herpesviruses, the chemokine system of chemotactic cytokines and receptors is a common source of copied genes. Here, we review the current state of knowledge about herpesvirus-encoded chemokines and discuss their possible roles in viral pathogenesis, as well as their clinical potential as novel anti-inflammatory agents or targets for new antiviral strategies.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Zhong C, Xu M, Wang Y, Xu J, Yuan Y. An APE1 inhibitor reveals critical roles of the redox function of APE1 in KSHV replication and pathogenic phenotypes. PLoS Pathog 2017; 13:e1006289. [PMID: 28380040 PMCID: PMC5381946 DOI: 10.1371/journal.ppat.1006289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/11/2017] [Indexed: 01/04/2023] Open
Abstract
APE1 is a multifunctional protein with a DNA base excision repair function in its C-terminal domain and a redox activity in its N-terminal domain. The redox function of APE1 converts certain transcription factors from inactive oxidized to active reduced forms. Given that among the APE1-regulated transcription factors many are critical for KSHV replication and pathogenesis, we investigated whether inhibition of APE1 redox function blocks KSHV replication and Kaposi’s sarcoma (KS) phenotypes. With an shRNA-mediated silencing approach and a known APE-1 redox inhibitor, we demonstrated that APE1 redox function is indeed required for KSHV replication as well as KSHV-induced angiogenesis, validating APE1 as a therapeutic target for KSHV-associated diseases. A ligand-based virtual screening yielded a small molecular compound, C10, which is proven to bind to APE1. C10 exhibits low cytotoxicity but efficiently inhibits KSHV lytic replication (EC50 of 0.16 μM and selective index of 165) and KSHV-mediated pathogenic phenotypes including cytokine production, angiogenesis and cell invasion, demonstrating its potential to become an effective drug for treatment of KS. As a major AIDS-associated malignancy, Kaposi’s sarcoma (KS) is caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). Currently there is no definitive cure for KS. In this study, we identified a cellular protein, namely APE1, as an effective therapeutic target for blocking KSHV replication and inhibiting the development of KS phenotypes. We showed that the redox function of APE1 is absolutely required for KSHV replication, virally induced cytokine secretion and angiogenesis. Blockade of APE1 expression or inhibition of APE1 redox activity led to inhibition of KSHV replication and reduction of cytokine release and angiogenesis. Furthermore, we identified a novel small molecular compound, C10, which exhibited specific inhibitory activity on APE1 redox function and was demonstrated to efficiently inhibit KSHV replication and paracrine-mediated KS phenotypes such as angiogenesis and cell invasion. As a potent inhibitor of APE1 redox, C10 not only has value in development of a novel therapeutics for KS, but also may be used in therapies for other human diseases such as leukemia, pancreatic cancer and macular degeneration.
Collapse
Affiliation(s)
- Canrong Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mengyang Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (YY); (JX)
| | - Yan Yuan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (YY); (JX)
| |
Collapse
|
14
|
Abere B, Schulz TF. KSHV non-structural membrane proteins involved in the activation of intracellular signaling pathways and the pathogenesis of Kaposi's sarcoma. Curr Opin Virol 2016; 20:11-19. [DOI: 10.1016/j.coviro.2016.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/30/2022]
|
15
|
HIV-1 Vpr Inhibits Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication by Inducing MicroRNA miR-942-5p and Activating NF-κB Signaling. J Virol 2016; 90:8739-53. [PMID: 27440900 DOI: 10.1128/jvi.00797-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) infection is required for the development of several AIDS-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). The high incidence of AIDS-KS has been ascribed to the interaction of KSHV and HIV-1. We have previously shown that HIV-1-secreted proteins Tat and Nef regulate the KSHV life cycle and synergize with KSHV oncogenes to promote angiogenesis and tumorigenesis. Here, we examined the regulation of KSHV latency by HIV-1 viral protein R (Vpr). We found that soluble Vpr inhibits the expression of KSHV lytic transcripts and proteins, as well as viral particle production by activating NF-κB signaling following internalization into PEL cells. By analyzing the expression profiles of microRNAs combined with target search by bioinformatics and luciferase reporter analyses, we identified a Vpr-upregulated cellular microRNA (miRNA), miR-942-5p, that directly targeted IκBα. Suppression of miR-942-5p relieved the expression of IκBα and reduced Vpr inhibition of KSHV lytic replication, while overexpression of miR-942-5p enhanced Vpr inhibition of KSHV lytic replication. Our findings collectively illustrate that, by activating NF-κB signaling through upregulating a cellular miRNA to target IκBα, internalized HIV-1 Vpr inhibits KSHV lytic replication. These results have demonstrated an essential role of Vpr in the life cycle of KSHV. IMPORTANCE Coinfection by HIV-1 promotes the aggressive growth of Kaposi's sarcoma-associated herpesvirus (KSHV)-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). In this study, we have shown that soluble HIV-1 Vpr inhibits KSHV lytic replication by activating NF-κB signaling following internalization into PEL cells. Mechanistic studies revealed that a cellular microRNA upregulated by Vpr, miR-942-5p, directly targeted IκBα. Suppression of miR-942-5p relieved IκBα expression and reduced Vpr inhibition of KSHV replication, while overexpression of miR-942-5p enhanced Vpr inhibition of KSHV replication. These results indicate that by activating NF-κB signaling through upregulating a cellular miRNA to target IκBα, internalized Vpr inhibits KSHV lytic replication. This work illustrates a molecular mechanism by which HIV-1-secreted regulatory protein Vpr regulates KSHV latency and the pathogenesis of AIDS-related malignancies.
Collapse
|
16
|
Matteoli B, Broccolo F, Oggioni M, Scaccino A, Formica F, Ciccarese G, Drago F, Fusetti L, Esposito S, Ceccherini-Nelli L. Modulation of gene expression in Kaposi’s sarcoma-associated herpesvirus-infected lymphoid and epithelial cells. Future Virol 2016. [DOI: 10.2217/fvl-2016-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To evaluate the gene expression changes that occur soon after the active infection of two susceptible cell types with human herpesvirus 8 (HHV-8). Materials & methods: The expression profile of 282 human genes involved in the inflammatory process was investigated in HHV-8 A1 or C3 subtype-infected and mock-infected human epithelial cells and lymphoid cells. Results: The HHV-8-induced transcriptional profiles in the epithelial and lymphoid cells were very different. A robust increase in the expression was found in genes belonging to different categories, especially the categories of inflammation response and signal transduction. Conclusion: These results indicate that during early infection, HHV-8 induces a variety of cell type-specific processes, thus providing infection signatures useful as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Barbara Matteoli
- Department of Experimental Pathology, Retrovirus Centre of the Virology Section, B.M.I.E, University of Pisa, Pisa, Italy
| | - Francesco Broccolo
- Laboratory of Molecular Microbiology and Virology, Department of Health Sciences, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Massimo Oggioni
- Laboratory of Molecular Microbiology and Virology, Department of Health Sciences, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Antonio Scaccino
- Department of Experimental Pathology, Retrovirus Centre of the Virology Section, B.M.I.E, University of Pisa, Pisa, Italy
| | - Francesco Formica
- Cardiac Surgery Unit, San Gerardo Hospital, Department of Medicine and Surgery, School of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Giulia Ciccarese
- DISSAL, Department of Dermatology, IRCCS A.O.U. San Martino-IST, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Francesco Drago
- DISSAL, Department of Dermatology, IRCCS A.O.U. San Martino-IST, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Lisa Fusetti
- Department of Experimental Pathology, Retrovirus Centre of the Virology Section, B.M.I.E, University of Pisa, Pisa, Italy
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiologyand Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Ceccherini-Nelli
- Department of Experimental Pathology, Retrovirus Centre of the Virology Section, B.M.I.E, University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Cieniewicz B, Santana AL, Minkah N, Krug LT. Interplay of Murine Gammaherpesvirus 68 with NF-kappaB Signaling of the Host. Front Microbiol 2016; 7:1202. [PMID: 27582728 PMCID: PMC4987367 DOI: 10.3389/fmicb.2016.01202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses establish a chronic infection in the host characterized by intervals of lytic replication, quiescent latency, and reactivation from latency. Murine gammaherpesvirus 68 (MHV68) naturally infects small rodents and has genetic and biologic parallels with the human gammaherpesviruses (gHVs), Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. The murine gammaherpesvirus model pathogen system provides a platform to apply cutting-edge approaches to dissect the interplay of gammaherpesvirus and host determinants that enable colonization of the host, and that shape the latent or lytic fate of an infected cell. This knowledge is critical for the development of novel therapeutic interventions against the oncogenic gHVs. The nuclear factor kappa B (NF-κB) signaling pathway is well-known for its role in the promotion of inflammation and many aspects of B cell biology. Here, we review key aspects of the virus lifecycle in the host, with an emphasis on the route that the virus takes to gain access to the B cell latency reservoir. We highlight how the murine gammaherpesvirus requires components of the NF-κB signaling pathway to promote replication, latency establishment, and maintenance of latency. These studies emphasize the complexity of gammaherpesvirus interactions with NF-κB signaling components that direct innate and adaptive immune responses of the host. Importantly, multiple facets of NF-κB signaling have been identified that might be targeted to reduce the burden of gammaherpesvirus-associated diseases.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Alexis L Santana
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
18
|
Chan KL, Lade S, Prince HM, Harrison SJ. Update and new approaches in the treatment of Castleman disease. J Blood Med 2016; 7:145-58. [PMID: 27536166 PMCID: PMC4976903 DOI: 10.2147/jbm.s60514] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
First described 60 years ago, Castleman disease comprises a rare and heterogeneous cluster of disorders, characterized by lymphadenopathy with unique histological features and associated with cytokine-driven constitutional symptoms and biochemical disturbances. Although unicentric Castleman disease is curable with complete surgical excision, its multicentric counterpart is a considerable therapeutic challenge. The recent development of biological agents, particularly monoclonal antibodies to interleukin-6 and its receptor, allow for more targeted disease-specific intervention that promises improved response rates and more durable disease control; however, further work is required to fill knowledge gaps in terms of underlying pathophysiology and to facilitate alternative treatment options for refractory cases.
Collapse
Affiliation(s)
| | - Stephen Lade
- Department of Anatomical Pathology, Peter MacCallum Cancer Centre
| | - H Miles Prince
- Department of Haematology; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Simon J Harrison
- Department of Haematology; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Guruvayoorappan C, Kuttan G. β-Carotene Inhibits Tumor-Specific Angiogenesis by Altering the Cytokine Profile and Inhibits the Nuclear Translocation of Transcription Factors in B16F-10 Melanoma Cells. Integr Cancer Ther 2016; 6:258-70. [PMID: 17761639 DOI: 10.1177/1534735407305978] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Angiogenesis is the formation of new blood vessels out of the preexisting vascular network and involves a sequence of events that are of key importance in a broad array of physiological and pathological processes. The growth of tumor and metastasis are dependent on the formation of new blood vessels. The present study therefore aims at evaluating the antiangiogenic effect of β-carotene using in vivo and in vitro models. Male C57BL/6 mice as well as B16F-10 cells were used for the experimental study. The in vivo study includes the inhibitory effect of β-carotene on the formation of tumor-directed capillaries. Rat aortic ring assay, human umbilical vein endothelial cell proliferation, migration, and tube formation are used for assessing the in vitro antiangiogenic effect of β-carotene. The differential regulation of proinflammatory cytokines as well as the inhibitory effect of β-carotene on the activation and nuclear translocation of transcription factors are also assessed. β-Carotene treatment significantly reduces the number of tumor-directed capillaries accompanied by altered serum cytokine levels. β-Carotene is able to inhibit proliferation, migration, and tube formation of endothelial cells. β-Carotene treatment downregulates the expression of matrix metalloproteinase (MMP)—2, MMP-9, prolyl hydroxylase, and lysyl oxidase gene expression and upregulates the expression of tissue inhibitor of metalloproteinase (TIMP)—1 and TIMP-2. The study reveals that β-carotene treatment could alter proinflammatory cytokine production and could inhibit the activation and nuclear translocation of p65, p50, c-Rel subunits of nuclear factor-κ B, and other transcription factors such as c-fos, activated transcription factor-2, and cyclic adenosine monophosphate response element—binding protein in B16F-10 melanoma cells. These observations show that β -carotene exerts its antiangiogenic effect by altering the cytokine profile and could inhibit the activation and nuclear translocation of transcription factors.
Collapse
Affiliation(s)
- C Guruvayoorappan
- Department of Immunology, Amala Cancer Research Centre, Amala Nagar, Kerala State, India
| | | |
Collapse
|
20
|
Endolysosomal trafficking of viral G protein-coupled receptor functions in innate immunity and control of viral oncogenesis. Proc Natl Acad Sci U S A 2016; 113:2994-9. [PMID: 26929373 DOI: 10.1073/pnas.1601860113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin-proteasome system degrades viral oncoproteins and other microbial virulence factors; however, the role of endolysosomal degradation pathways in these processes is unclear. Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma, and a constitutively active viral G protein-coupled receptor (vGPCR) contributes to the pathogenesis of KSHV-induced tumors. We report that a recently discovered autophagy-related protein, Beclin 2, interacts with KSHV GPCR, facilitates its endolysosomal degradation, and inhibits vGPCR-driven oncogenic signaling. Furthermore, monoallelic loss of Becn2 in mice accelerates the progression of vGPCR-induced lesions that resemble human Kaposi's sarcoma. Taken together, these findings indicate that Beclin 2 is a host antiviral molecule that protects against the pathogenic effects of KSHV GPCR by facilitating its endolysosomal degradation. More broadly, our data suggest a role for host endolysosomal trafficking pathways in regulating viral pathogenesis and oncogenic signaling.
Collapse
|
21
|
Cornaby C, Tanner A, Stutz EW, Poole BD, Berges BK. Piracy on the molecular level: human herpesviruses manipulate cellular chemotaxis. J Gen Virol 2015; 97:543-560. [PMID: 26669819 DOI: 10.1099/jgv.0.000370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cellular chemotaxis is important to tissue homeostasis and proper development. Human herpesvirus species influence cellular chemotaxis by regulating cellular chemokines and chemokine receptors. Herpesviruses also express various viral chemokines and chemokine receptors during infection. These changes to chemokine concentrations and receptor availability assist in the pathogenesis of herpesviruses and contribute to a variety of diseases and malignancies. By interfering with the positioning of host cells during herpesvirus infection, viral spread is assisted, latency can be established and the immune system is prevented from eradicating viral infection.
Collapse
Affiliation(s)
- Caleb Cornaby
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Anne Tanner
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Eric W Stutz
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Brian D Poole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
22
|
de Munnik SM, Smit MJ, Leurs R, Vischer HF. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors. Front Pharmacol 2015; 6:40. [PMID: 25805993 PMCID: PMC4353375 DOI: 10.3389/fphar.2015.00040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/12/2015] [Indexed: 12/22/2022] Open
Abstract
Human herpesviruses (HHVs) are widespread infectious pathogens that have been associated with proliferative and inflammatory diseases. During viral evolution, HHVs have pirated genes encoding viral G protein-coupled receptors (vGPCRs), which are expressed on infected host cells. These vGPCRs show highest homology to human chemokine receptors, which play a key role in the immune system. Importantly, vGPCRs have acquired unique properties such as constitutive activity and the ability to bind a broad range of human chemokines. This allows vGPCRs to hijack human proteins and modulate cellular signaling for the benefit of the virus, ultimately resulting in immune evasion and viral dissemination to establish a widespread and lifelong infection. Knowledge on the mechanisms by which herpesviruses reprogram cellular signaling might provide insight in the contribution of vGPCRs to viral survival and herpesvirus-associated pathologies.
Collapse
Affiliation(s)
- Sabrina M de Munnik
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| |
Collapse
|
23
|
Gramolelli S, Schulz TF. The role of Kaposi sarcoma-associated herpesvirus in the pathogenesis of Kaposi sarcoma. J Pathol 2015; 235:368-80. [PMID: 25212381 DOI: 10.1002/path.4441] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 01/07/2023]
Abstract
Kaposi sarcoma (KS) is an unusual vascular tumour caused by an oncogenic-herpesvirus, Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV 8). KS lesions are characterized by an abundant inflammatory infiltrate, the presence of KSHV-infected endothelial cells that show signs of aberrant differentiation, as well as faulty angiogenesis/ vascularization. Here we discuss the molecular mechanisms that lead to the development of these histological features of KS, with an emphasis on the viral proteins that are responsible for their development.
Collapse
Affiliation(s)
- Silvia Gramolelli
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany; German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | | |
Collapse
|
24
|
Sun F, Xiao Y, Qu Z. Oncovirus Kaposi sarcoma herpesvirus (KSHV) represses tumor suppressor PDLIM2 to persistently activate nuclear factor κB (NF-κB) and STAT3 transcription factors for tumorigenesis and tumor maintenance. J Biol Chem 2015; 290:7362-8. [PMID: 25681443 DOI: 10.1074/jbc.c115.637918] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV) is the most common cause of malignancies among AIDS patients. However, how KSHV induces tumorigenesis remains largely unknown. Here, we demonstrate that one important mechanism underlying the tumorigenesis of KSHV is through transcriptional repression of the tumor suppressor gene PDZ-LIM domain-containing protein 2 (PDLIM2). PDLIM2 expression is repressed in KSHV-transformed human umbilical vascular endothelial cells as well as in KSHV-associated cancer cell lines and primary tumors. Importantly, PDLIM2 repression is essential for KSHV-induced persistent activation of nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) and subsequent tumorigenesis and tumor maintenance. Our mechanistic studies indicate that PDLIM2 repression by KSHV involves DNA methylation. Notably, the epigenetic repression of PDLIM2 can be reversed by 5-aza-2-deoxycytidine and vitamin D to suppress KSHV-associated cancer cell growth. These studies not only improve our understanding of KSHV pathogenesis but also provide immediate therapeutic strategies for KSHV-mediated cancers, particularly those associated with AIDS.
Collapse
Affiliation(s)
- Fan Sun
- From the University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232, and the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Yadong Xiao
- From the University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232, and
| | - Zhaoxia Qu
- From the University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232, and the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
25
|
Bhutani M, Polizzotto MN, Uldrick TS, Yarchoan R. Kaposi sarcoma-associated herpesvirus-associated malignancies: epidemiology, pathogenesis, and advances in treatment. Semin Oncol 2014; 42:223-46. [PMID: 25843728 DOI: 10.1053/j.seminoncol.2014.12.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kaposi sarcoma associated herpesvirus (KSHV), a γ2-herpesvirus, also known as human herpesvirus-8, is the etiologic agent of three virally associated tumors: Kaposi sarcoma, a plasmablastic form of multicentric Castleman disease (KSHV-MCD), and primary effusion lymphoma. These malignancies are predominantly seen in people with acquired immunodeficiencies, including acquired immunodeficiency syndrome and iatrogenic immunosuppression in the setting of organ transplantation, but can also develop in the elderly. Kaposi sarcoma (KS) is most frequent in regions with high KSHV seroprevalence, such as sub-Saharan Africa and some Mediterranean countries. In the era of combination antiviral therapy, inflammatory manifestations associated with KSHV-infection, including KSHV-MCD, a recently described KSHV-associated inflammatory cytokine syndrome and KS immune reconstitution syndrome also are increasingly appreciated. Our understanding of viral and immune mechanisms of oncogenesis continues to expand and lead to improved molecular diagnostics, as well as novel therapeutic strategies that employ immune modulatory agents, manipulations of the tumor microenvironment, virus-activated cytotoxic therapy, or agents that target interactions between specific virus-host cell signaling pathways. This review focuses on the epidemiology and advances in molecular and clinical research that reflects the current understanding of viral oncogenesis, clinical manifestations, and therapeutics for KSHV-associated tumors.
Collapse
Affiliation(s)
- Manisha Bhutani
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Mark N Polizzotto
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Thomas S Uldrick
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD.
| |
Collapse
|
26
|
Identification and functional comparison of seven-transmembrane G-protein-coupled BILF1 receptors in recently discovered nonhuman primate lymphocryptoviruses. J Virol 2014; 89:2253-67. [PMID: 25505061 DOI: 10.1128/jvi.02716-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Coevolution of herpesviruses with their respective host has resulted in a delicate balance between virus-encoded immune evasion mechanisms and host antiviral immunity. BILF1 encoded by human Epstein-Barr virus (EBV) is a 7-transmembrane (7TM) G-protein-coupled receptor (GPCR) with multiple immunomodulatory functions, including attenuation of PKR phosphorylation, activation of G-protein signaling, and downregulation of major histocompatibility complex (MHC) class I surface expression. In this study, we explored the evolutionary and functional relationships between BILF1 receptor family members from EBV and 12 previously uncharacterized nonhuman primate (NHP) lymphocryptoviruses (LCVs). Phylogenetic analysis defined 3 BILF1 clades, corresponding to LCVs of New World monkeys (clade A) or Old World monkeys and great apes (clades B and C). Common functional properties were suggested by a high degree of sequence conservation in functionally important regions of the BILF1 molecules. A subset of BILF1 receptors from EBV and LCVs from NHPs (chimpanzee, orangutan, marmoset, and siamang) were selected for multifunctional analysis. All receptors exhibited constitutive signaling activity via G protein Gαi and induced activation of the NF-κB transcription factor. In contrast, only 3 of 5 were able to activate NFAT (nuclear factor of activated T cells); chimpanzee and orangutan BILF1 molecules were unable to activate NFAT. Similarly, although all receptors were internalized, BILF1 from the chimpanzee and orangutan displayed an altered cellular localization pattern with predominant cell surface expression. This study shows how biochemical characterization of functionally important orthologous viral proteins can be used to complement phylogenetic analysis to provide further insight into diverse microbial evolutionary relationships and immune evasion function. IMPORTANCE Epstein-Barr virus (EBV), known as an oncovirus, is the only human herpesvirus in the genus Lymphocryptovirus (LCV). EBV uses multiple strategies to hijack infected host cells, establish persistent infection in B cells, and evade antiviral immune responses. As part of EBV's immune evasion strategy, the virus encodes a multifunctional 7-transmembrane (7TM) G-protein-coupled receptor (GPCR), EBV BILF1. In addition to multiple immune evasion-associated functions, EBV BILF1 has transforming properties, which are linked to its high constitutive activity. We identified BILF1 receptor orthologues in 12 previously uncharacterized LCVs from nonhuman primates (NHPs) of Old and New World origin. As 7TM receptors are excellent drug targets, our unique insight into the molecular mechanism of action of the BILF1 family and into the evolution of primate LCVs may enable validation of EBV BILF1 as a drug target for EBV-mediated diseases, as well as facilitating the design of drugs targeting EBV BILF1.
Collapse
|
27
|
Kaposi's Sarcoma-Associated Herpesvirus Subversion of the Anti-Inflammatory Response in Human Skin Cells Reveals Correlates of Latency and Disease Pathogenesis. J Skin Cancer 2014; 2014:246076. [PMID: 24701351 PMCID: PMC3951102 DOI: 10.1155/2014/246076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/14/2013] [Accepted: 12/15/2013] [Indexed: 11/17/2022] Open
Abstract
KSHV is the etiologic agent for Kaposi's sarcoma (KS), a neoplasm that manifests most aggressively as multifocal lesions on parts of human skin with a propensity for inflammatory reactivity. However, mechanisms that control evolution of KS from a benign hyperplasia to the histologically complex cutaneous lesion remain unknown. In this study, we found that KSHV induces proteomic and morphological changes in melanocytes and melanoma-derived cell lines, accompanied by deregulation of the endogenous anti-inflammatory responses anchored by the MC1-R/α-MSH signaling axis. We also identified two skin-derived cell lines that displayed differences in ability to support long-term KSHV infection and mapped this dichotomy to differences in (a) NF-κB activation status, (b) processing and expression of KSHV latency-associated nuclear antigen isoforms putatively associated with the viral lytic cycle, and (c) susceptibility to virus-induced changes in expression of key anti-inflammatory response genes that antagonize NF-κB, including MC1-R, POMC, TRP-1, and xCT. Viral subversion of molecules that control the balance between latency and lytic replication represents a novel correlate of KSHV pathogenesis and tropism in skin and underscores the potential benefit of harnessing the endogenous anti-inflammatory processes as a therapeutic option for attenuating cutaneous KS and other proinflammatory outcomes of KSHV infection in high-risk individuals.
Collapse
|
28
|
Vischer HF, Siderius M, Leurs R, Smit MJ. Herpesvirus-encoded GPCRs: neglected players in inflammatory and proliferative diseases? Nat Rev Drug Discov 2014; 13:123-39. [DOI: 10.1038/nrd4189] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Cool CD, Voelkel NF, Bull T. Viral infection and pulmonary hypertension: is there an association? Expert Rev Respir Med 2014; 5:207-16. [DOI: 10.1586/ers.11.17] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Abstract
Chemokines are low-molecular-weight, secreted proteins that act as leukocyte-specific chemoattractants. The chemokine family has more than 40 members. Based on the position of two conserved cysteines in the N-terminal domain, chemokines can be divided into the CXC, C, CC, and CX3C subfamilies. The interaction of chemokines with their receptors mediates signaling pathways that play critical roles in cell migration, differentiation, and proliferation. The receptors for chemokines are G protein-coupled receptors (GPCRs), and thus far, seven CXC receptors have been cloned and are designated CXCR1-7. Constitutively active GPCRs are present in several human immune-mediated diseases and in tumors, and they have provided valuable information in understanding the molecular mechanism of GPCR activation. Several constitutively active CXC chemokine receptors include the V6.40A and V6.40N mutants of CXCR1; the D3.49V variant of CXCR2; the N3.35A, N3.35S, and T2.56P mutants of CXCR3; the N3.35 mutation of CXCR4; and the naturally occurring KSHV-GPCR. Here, we review the regulation of CXC chemokine receptor signaling, with a particular focus on the constitutive activation of these receptors and the implications in physiological conditions and in pathogenesis. Understanding the mechanisms behind the constitutive activation of CXC chemokine receptors may aid in pharmaceutical design and the screening of inverse agonists and allosteric modulators for the treatment of autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Xinbing Han
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
31
|
Cousins E, Nicholas J. Molecular biology of human herpesvirus 8: novel functions and virus-host interactions implicated in viral pathogenesis and replication. Recent Results Cancer Res 2014; 193:227-68. [PMID: 24008302 PMCID: PMC4124616 DOI: 10.1007/978-3-642-38965-8_13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the second identified human gammaherpesvirus. Like its relative Epstein-Barr virus, HHV-8 is linked to B-cell tumors, specifically primary effusion lymphoma and multicentric Castleman's disease, in addition to endothelial-derived KS. HHV-8 is unusual in its possession of a plethora of "accessory" genes and encoded proteins in addition to the core, conserved herpesvirus and gammaherpesvirus genes that are necessary for basic biological functions of these viruses. The HHV-8 accessory proteins specify not only activities deducible from their cellular protein homologies but also novel, unsuspected activities that have revealed new mechanisms of virus-host interaction that serve virus replication or latency and may contribute to the development and progression of virus-associated neoplasia. These proteins include viral interleukin-6 (vIL-6), viral chemokines (vCCLs), viral G protein-coupled receptor (vGPCR), viral interferon regulatory factors (vIRFs), and viral antiapoptotic proteins homologous to FLICE (FADD-like IL-1β converting enzyme)-inhibitory protein (FLIP) and survivin. Other HHV-8 proteins, such as signaling membrane receptors encoded by open reading frames K1 and K15, also interact with host mechanisms in unique ways and have been implicated in viral pathogenesis. Additionally, a set of micro-RNAs encoded by HHV-8 appear to modulate expression of multiple host proteins to provide conditions conducive to virus persistence within the host and could also contribute to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
Collapse
Affiliation(s)
- Emily Cousins
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Baltimore, MD, 21287, USA,
| | | |
Collapse
|
32
|
Azzi S, Smith SS, Dwyer J, Leclair HM, Alexia C, Hebda JK, Dupin N, Bidère N, Gavard J. YGLF motif in the Kaposi sarcoma herpes virus G-protein-coupled receptor adjusts NF-κB activation and paracrine actions. Oncogene 2013; 33:5609-18. [PMID: 24292677 DOI: 10.1038/onc.2013.503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/25/2013] [Accepted: 10/18/2013] [Indexed: 12/17/2022]
Abstract
Kaposi sarcoma (KS) and primary effusion lymphoma (PEL) are two pathologies associated with KS herpes virus (KSHV/HHV-8) infection. KSHV genome contains several oncogenes, among which, the viral G-protein-coupled receptor (vGPCR open reading frame 74) has emerged as a major factor in KS pathogenicity. Indeed, vGPCR is a constitutively active receptor, whose expression is sufficient to drive cell transformation in vitro and tumour development in mice. However, neither the role of vGPCR in KSHV-infected B-lymphocytes nor the molecular basis for its constitutive activation is well understood. Here, we show that vGPCR expression contributes to nuclear factor-κB (NF-κB)-dependent cellular survival in both PEL cells and primary B cells from HIV-negative KS patients. We further identified within vGPCR an AP2 consensus binding motif, Y326GLF, that directs its localization between the plasma membrane and clathrin-coated vesicles. The introduction of a mutation in this site (Y326A) increased NF-κB activity and proinflammatory cytokines production. This correlated with exacerbated morphological rearrangement, migration and proliferation of non-infected monocytes. Collectively, our work raises the possibility that KSHV-infected B-lymphocytes use vGPCR to impact ultimately the immune response and communication within the tumour microenvironment in KSHV-associated pathologies.
Collapse
Affiliation(s)
- S Azzi
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - S S Smith
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - J Dwyer
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - H M Leclair
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - C Alexia
- 1] INSERM, U1014, Hopital Paul Brousse, Villejuif, France [2] Universite Paris-Sud P11, Orsay, France [3] Equipe Labellisee Ligue contre le Cancer, Villejuif, France
| | - J K Hebda
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - N Dupin
- 1] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France [2] Service de dermatologie, Hopital Cochin-Tarnier, AP-HP, Paris, France
| | - N Bidère
- 1] INSERM, U1014, Hopital Paul Brousse, Villejuif, France [2] Universite Paris-Sud P11, Orsay, France [3] Equipe Labellisee Ligue contre le Cancer, Villejuif, France
| | - J Gavard
- 1] CNRS, UMR8104, Paris, France [2] INSERM, U1016, Paris, France [3] Universite Paris Descartes, Sorbonne Paris Cite, Paris, France
| |
Collapse
|
33
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 653] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kaposi's sarcoma-associated herpesvirus induces rapid release of angiopoietin-2 from endothelial cells. J Virol 2013; 87:6326-35. [PMID: 23536671 DOI: 10.1128/jvi.03303-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) stimulates proliferation, angiogenesis, and inflammation to promote Kaposi sarcoma (KS) tumor growth, which involves various growth factors and cytokines. Previously, we found that KSHV infection of human umbilical vein endothelial cells (HUVECs) induces a transcriptional induction of the proangiogenic and proinflammatory cytokine angiopoietin-2 (Ang-2). Here, we report that KSHV induces rapid release of Ang-2 that is presynthesized and stored in the Weibel-Palade bodies (WPB) of endothelial cells upon binding to its integrin receptors. Blocking viral binding to integrins inhibits Ang-2 release. KSHV binding activates the integrin tyrosine kinase receptor signaling pathways, leading to tyrosine phosphorylation of focal adhesion kinase (FAK), the tyrosine kinase Src, and the Calα2 subunit of the l-type calcium channel to trigger rapid calcium (Ca(2+)) influx. Pretreatment of endothelial cells with specific inhibitors of protein tyrosine kinases inhibits KSHV-induced Ca(2+) influx and Ang-2 release. Inhibition of Ca(2+) mobilization with calcium channel blockers also inhibits Ang-2 release. Thus, the interaction between KSHV and its integrin receptors plays a key role in regulating rapid Ang-2 release from endothelial cells. This finding highlights a novel mechanism of viral induction of angiogenesis and inflammation, which might play important roles in the early event of KS tumor development.
Collapse
|
35
|
Knowlton ER, Lepone LM, Li J, Rappocciolo G, Jenkins FJ, Rinaldo CR. Professional antigen presenting cells in human herpesvirus 8 infection. Front Immunol 2013; 3:427. [PMID: 23346088 PMCID: PMC3549500 DOI: 10.3389/fimmu.2012.00427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/24/2012] [Indexed: 12/18/2022] Open
Abstract
Professional antigen presenting cells (APC), i.e., dendritic cells (DC), monocytes/macrophages, and B lymphocytes, are critically important in the recognition of an invading pathogen and presentation of antigens to the T cell-mediated arm of immunity. Human herpesvirus 8 (HHV-8) is one of the few human viruses that primarily targets these APC for infection, altering their cytokine profiles, manipulating their surface expression of MHC molecules, and altering their ability to activate HHV-8-specific T cells. This could be why T cell responses to HHV-8 antigens are not very robust. Of these APC, only B cells support complete, lytic HHV-8 infection. However, both complete and abortive virus replication cycles in APC could directly affect viral pathogenesis and progression to Kaposi's sarcoma (KS) and HHV-8-associated B cell cancers. In this review, we discuss the effects of HHV-8 infection on professional APC and their relationship to the development of KS and B cell lymphomas.
Collapse
Affiliation(s)
- Emilee R Knowlton
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
36
|
Bhatt AP, Damania B. AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front Immunol 2013; 3:401. [PMID: 23316192 PMCID: PMC3539662 DOI: 10.3389/fimmu.2012.00401] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 12/12/2012] [Indexed: 12/21/2022] Open
Abstract
As an obligate intracellular parasite, Kaposi sarcoma-associated herpesvirus (KSHV) relies on the host cell machinery to meet its needs for survival, viral replication, production, and dissemination of progeny virions. KSHV is a gammaherpesvirus that is associated with three different malignancies: Kaposi sarcoma (KS), and two B cell lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman’s disease. KSHV viral proteins modulate the cellular phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which is a ubiquitous pathway that also controls B lymphocyte proliferation and development. We review the mechanisms by which KSHV manipulates the PI3K/AKT/mTOR pathway, with a specific focus on B cells.
Collapse
Affiliation(s)
- Aadra P Bhatt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill Chapel Hill, NC, USA ; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | | |
Collapse
|
37
|
Kaposi's sarcoma-associated herpesvirus suppression of DUSP1 facilitates cellular pathogenesis following de novo infection. J Virol 2012; 87:621-35. [PMID: 23097457 DOI: 10.1128/jvi.01441-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), and KSHV activation of mitogen-activated protein kinases (MAPKs) initiates a number of key pathogenic determinants of KS. Direct inhibition of signal transduction as a therapeutic approach presents several challenges, and a better understanding of KSHV-induced mechanisms regulating MAPK activation may facilitate the development of new treatment or prevention strategies for KS. MAPK phosphatases, including dual-specificity phosphatase-1 (DUSP1), negatively regulate signal transduction and cytokine activation through MAPK dephosphorylation or interference with effector molecule binding to MAPKs, including the extracellular signal-regulated kinase (ERK). We found that ERK-dependent latent viral gene expression, the induction of promigratory factors, and cell invasiveness following de novo infection of primary human endothelial cells are in part dependent on KSHV suppression of DUSP1 expression during de novo infection. KSHV-encoded miR-K12-11 upregulates the expression of xCT (an amino acid transporter and KSHV fusion/entry receptor), and existing data indicate a role for xCT in the regulation of 14-3-3β, a transcriptional repressor of DUSP1. We found that miR-K12-11 induces endothelial cell secretion of promigratory factors and cell invasiveness through upregulation of xCT-dependent, 14-3-3β-mediated suppression of DUSP1. Finally, proof-of-principle experiments revealed that pharmacologic upregulation of DUSP1 inhibits the induction of promigratory factors and cell invasiveness during de novo KSHV infection. These data reveal an indirect role for miR-K12-11 in the regulation of DUSP1 and downstream pathogenesis.
Collapse
|
38
|
Montaner S, Kufareva I, Abagyan R, Gutkind JS. Molecular mechanisms deployed by virally encoded G protein-coupled receptors in human diseases. Annu Rev Pharmacol Toxicol 2012; 53:331-54. [PMID: 23092247 DOI: 10.1146/annurev-pharmtox-010510-100608] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of cell surface molecules involved in signal transduction. Surprisingly, open reading frames for multiple GPCRs were hijacked in the process of coevolution between Herpesviridae family viruses and their human and mammalian hosts. Virally encoded GPCRs (vGPCRs) evolved as parts of viral genomes, and this evolution allowed the power of host GPCR signaling circuitries to be harnessed in order to ensure viral replicative success. Phylogenetically, vGPCRs are distantly related to human chemokine receptors, although they feature several unique characteristics. Here, we describe the molecular mechanisms underlying vGPCR-mediated viral pathogenesis. These mechanisms include constitutive activity, aberrant coupling to human G proteins and β-arrestins, binding and activation by human chemokines, and dimerization with other GPCRs expressed in infected cells. The likely structural basis for these molecular events is described for the two closest viral homologs of human GPCRs. This information may aid in the development of novel targeted therapeutic strategies against viral diseases.
Collapse
Affiliation(s)
- Silvia Montaner
- Department of Oncology and Diagnostic Sciences, Department of Pathology, and Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
39
|
Structural Diversity in Conserved Regions Like the DRY-Motif among Viral 7TM Receptors-A Consequence of Evolutionary Pressure? Adv Virol 2012; 2012:231813. [PMID: 22899926 PMCID: PMC3414077 DOI: 10.1155/2012/231813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/31/2012] [Indexed: 01/31/2023] Open
Abstract
Several herpes- and poxviruses have captured chemokine receptors from their hosts and modified these to their own benefit. The human and viral chemokine receptors belong to class A 7 transmembrane (TM) receptors which are characterized by several structural motifs like the DRY-motif in TM3 and the C-terminal tail. In the DRY-motif, the arginine residue serves important purposes by being directly involved in G protein coupling. Interestingly, among the viral receptors there is a greater diversity in the DRY-motif compared to their endogenous receptor homologous. The C-terminal receptor tail constitutes another regulatory region that through a number of phosphorylation sites is involved in signaling, desensitization, and internalization. Also this region is more variable among virus-encoded 7TM receptors compared to human class A receptors. In this review we will focus on these two structural motifs and discuss their role in viral 7TM receptor signaling compared to their endogenous counterparts.
Collapse
|
40
|
Dimaio TA, Lagunoff M. KSHV Induction of Angiogenic and Lymphangiogenic Phenotypes. Front Microbiol 2012; 3:102. [PMID: 22479258 PMCID: PMC3315823 DOI: 10.3389/fmicb.2012.00102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/01/2012] [Indexed: 12/19/2022] Open
Abstract
Kaposi’s sarcoma (KS) is a highly vascularized tumor supporting large amounts of neo-angiogenesis. The major cell type in KS tumors is the spindle cell, a cell that expresses markers of lymphatic endothelium. KSHV, the etiologic agent of KS, is found in the spindle cells of all KS tumors. Considering the extreme extent of angiogenesis in KS tumors at all stages it has been proposed that KSHV directly induces angiogenesis in a paracrine fashion. In accordance with this theory, KSHV infection of endothelial cells in culture induces a number of host pathways involved in activation of angiogenesis and a number of KSHV genes themselves can induce pathways involved in angiogenesis. Spindle cells are phenotypically endothelial in nature, and therefore, activation through the induction of angiogenic and/or lymphangiogenic phenotypes by the virus may also be directly involved in spindle cell growth and tumor induction. Accordingly, KSHV infection of endothelial cells induces cell autonomous angiogenic phenotypes to activate host cells. KSHV infection can also reprogram blood endothelial cells to lymphatic endothelium. However, KSHV induces some blood endothelial specific genes upon infection of lymphatic endothelial cells creating a phenotypic intermediate between blood and lymphatic endothelium. Induction of pathways involved in angiogenesis and lymphangiogenesis are likely to be critical for tumor cell growth and spread. Thus, induction of both cell autonomous and non-autonomous changes in angiogenic and lymphangiogenic pathways by KSHV likely plays a key role in the formation of KS tumors.
Collapse
Affiliation(s)
- Terri A Dimaio
- Department of Microbiology, University of Washington Seattle, WA, USA
| | | |
Collapse
|
41
|
Abstract
G protein-coupled receptors (GPCRs) play important roles in inflammation. Inflammatory cells such as polymorphonuclear leukocytes (PMN), monocytes and macrophages express a large number of GPCRs for classic chemoattractants and chemokines. These receptors are critical to the migration of phagocytes and their accumulation at sites of inflammation, where these cells can exacerbate inflammation but also contribute to its resolution. Besides chemoattractant GPCRs, protease activated receptors (PARs) such as PAR1 are involved in the regulation of vascular endothelial permeability. Prostaglandin receptors play different roles in inflammatory cell activation, and can mediate both proinflammatory and anti-inflammatory functions. Many GPCRs present in inflammatory cells also mediate transcription factor activation, resulting in the synthesis and secretion of inflammatory factors and, in some cases, molecules that suppress inflammation. An understanding of the signaling paradigms of GPCRs in inflammatory cells is likely to facilitate translational research and development of improved anti-inflammatory therapies.
Collapse
|
42
|
Kaposi sarcoma: review and medical management update. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113:2-16. [DOI: 10.1016/j.tripleo.2011.05.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/11/2011] [Accepted: 05/15/2011] [Indexed: 12/21/2022]
|
43
|
Tschammer N. Virally Encoded G Protein-Coupled Receptors. ANNUAL REPORTS IN MEDICINAL CHEMISTRY VOLUME 47 2012. [DOI: 10.1016/b978-0-12-396492-2.00025-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Zhu X, Zhou F, Qin D, Zeng Y, Lv Z, Yao S, Lu C. Human immunodeficiency virus type 1 induces lytic cycle replication of Kaposi's-sarcoma-associated herpesvirus: role of Ras/c-Raf/MEK1/2, PI3K/AKT, and NF-κB signaling pathways. J Mol Biol 2011; 410:1035-51. [PMID: 21763505 DOI: 10.1016/j.jmb.2011.03.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 03/20/2011] [Accepted: 03/24/2011] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection significantly increases the risk and development of Kaposi's sarcoma (KS) in individuals infected with KS-associated herpesvirus (KSHV). Previously, we reported that HIV-1 Tat protein induced KSHV replication by modulating the Janus kinase/signal transducers and activators of transcription signaling pathway. Here, we further investigated the possible signaling pathways involved in HIV-1-induced reactivation of KSHV. We showed that HIV-1 infection of primary effusion lymphoma cell lines triggered the reactivation of KSHV, as demonstrated by the expression of KSHV replication and transcription activator, the early viral lytic protein vIL-6 and ORF59 and the production of progeny virions. By utilizing microarray gene expression analyses, transfecting a series of dominant negative mutants, and adding pharmacologic inhibitors, we identified a group of diverse cellular signaling proteins and found that HIV-1 infection of BCBL-1 cells activated phosphatidylinositol 3-kinase/AKT (also called protein kinase B, PKB) pathway and inactivated phosphatase and tensin homolog deleted on chromosome ten and glycogen synthase kinase-3β, which partially modulated HIV-1-induced KSHV reactivation. Furthermore, activation of Ras/c-Raf/MAPK/ERK kinase1/2 pathway contributed to HIV-1-induced KSHV replication. Finally, we discovered that HIV-1 infection activated nuclear factor κB signaling, which exhibits an inhibitory effect on KSHV reactivation in BCBL-1 cells. Collectively, our data demonstrated that HIV-1 infection stimulated these cell signaling pathways that, in turn, contributed to KSHV reactivation, which may be of therapeutic value in acquired immunodeficiency syndrome-related KS patients.
Collapse
Affiliation(s)
- Xiaolei Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
45
|
Boss IW, Renne R. Viral miRNAs and immune evasion. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:708-14. [PMID: 21757042 DOI: 10.1016/j.bbagrm.2011.06.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 11/29/2022]
Abstract
Viral miRNAs, ~22nt RNA molecules which post-transcriptionally regulate gene expression, are emerging as important tools in immune evasion. Viral infection is a complex process that requires immune evasion in order to establish persistent life-long infection of the host. During this process viruses express both protein-coding and non-coding genes, which help to modulate the cellular environment making it more favorable for infection. In the last decade, it was uncovered that DNA viruses express a diverse and abundant pool of small non-coding RNA molecules, called microRNAs (miRNAs). These virally encoded miRNAs are non-immunogenic and therefore are important tools used to evade both innate and adaptive immune responses. This review aims to summarize our current knowledge of herpesvirus- and polyomavirus-encoded miRNAs, and how they contribute to immune evasion by targeting viral and/or host cellular genes. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
Affiliation(s)
- Isaac W Boss
- Department of Molecular Genetics and Microbiology, University of Florida, Gainsville, FL, USA.
| | | |
Collapse
|
46
|
Hu J, Jham BC, Ma T, Friedman ER, Ferreira L, Wright JM, Accurso B, Allen CM, Basile JR, Montaner S. Angiopoietin-like 4: a novel molecular hallmark in oral Kaposi's sarcoma. Oral Oncol 2011; 47:371-5. [PMID: 21421336 DOI: 10.1016/j.oraloncology.2011.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/11/2011] [Accepted: 02/19/2011] [Indexed: 11/17/2022]
Abstract
Kaposi's sarcoma (KS) remains among the most common causes of oral cancer in HIV-infected individuals. Infection with the KS-associated herpesvirus (KSHV/HHV8) is a necessary event for disease development. Emerging evidence suggests that KSHV infects vascular endothelial (or endothelial progenitor) cells promoting the formation of the KS tumor (or spindle) cell. These cells elaborate angiogenic growth factors and cytokines that promote the dysregulated angiogenesis and profuse edema that characterizes this unusual vascular tumor. Central among these secreted factors is the potent endothelial cell mitogen, vascular endothelial growth factor (VEGF). Indeed, VEGF has proven to be a key player in KSHV pathogenesis and is a molecular hallmark of KS lesions. We have recently shown that a second angiogenic factor, Angiopoietin-like 4 (ANGPTL4), may also play a critical role in KS development. Here we demonstrate that ANGPTL4 is upregulated both directly and indirectly by the KSHV oncogene, vGPCR. We further show that ANGPTL4 is a molecular hallmark of oral KS lesions. Indeed, expression of this protein was observed in more tumor cells and in more biopsies specimens than expression of VEGF (23/25 or 92% vs. 19/25 or 76%, respectively) in oral KS. These surprising results support a key role for ANGPTL4 in Kaposi's sarcomagenesis and further suggest that this angiogenic factor may provide a novel diagnostic and therapeutic marker for oral KS patients.
Collapse
Affiliation(s)
- Jiadi Hu
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Atypical chemokine receptors (ACRs) are cell surface receptors with seven transmembrane domains structurally homologous to chemokine G-protein coupled receptors (GPCRs). However, upon ligation by cognate chemokines, ACRs fail to induce classical signaling and downstream cellular responses characteristic for GPCRs. Despite this, by affecting chemokine availability and function, ACRs impact on a multitude of pathophysiological events and have emerged as important molecular players in health and disease. This review discusses individual characteristics of the currently known ACRs, highlights their similarities and differences and attempts to establish their group identity. It summarizes the progress made in mapping ACR expression, understanding their diverse in vitro and in vivo functions of ACRs and uncovering their contributions to disease pathogeneses.
Collapse
Affiliation(s)
| | | | - Antal Rot
- MRC Centre for Immune Regulation, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
48
|
Phosphorylation and polyubiquitination of transforming growth factor beta-activated kinase 1 are necessary for activation of NF-kappaB by the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. J Virol 2010; 85:1980-93. [PMID: 21159881 DOI: 10.1128/jvi.01911-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) G protein-coupled receptor (vGPCR) protein has been shown to induce several signaling pathways leading to the modulation of host gene expression. The hijacking of these pathways facilitates the viral life cycle and leads to tumorigenesis. In the present work, we show that transforming growth factor β (TGF-β)-activated kinase 1 (TAK1) is an important player in NF-κB activation induced by vGPCR. We observed that the expression of an inactive TAK1 kinase mutant (TAK1M) reduces vGPCR-induced NF-κB nuclear translocation and transcriptional activity. Consequently, the expression of several NF-κB target genes normally induced by vGPCR was blocked by TAK1M expression, including interleukin 8 (IL-8), Gro1, IκBα, COX-2, cIAP2, and Bcl2 genes. Similar results were obtained after downregulation of TAK1 by small interfering RNA (siRNA) technology. The expression of vGPCR recruited TAK1 to the plasma membrane, and vGPCR interacts with TAK1. vGPCR expression also induced TAK1 phosphorylation and lysine 63-linked polyubiquitination, the two markers of the kinase's activation. Finally, inhibition of TAK1 by celastrol inhibited vGPCR-induced NF-κB activation, indicating this natural compound could be used as a potential therapeutic drug against KSHV malignancies involving vGPCR.
Collapse
|
49
|
Abstract
Kaposi's sarcoma (KS) is the most common cancer in HIV-infected untreated individuals. Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 (HHV8)) is the infectious cause of this neoplasm. In this Review we describe the epidemiology of KS and KSHV, and the insights into the remarkable mechanisms through which KSHV can induce KS that have been gained in the past 16 years. KSHV latent transcripts, such as latency-associated nuclear antigen (LANA), viral cyclin, viral FLIP and viral-encoded microRNAs, drive cell proliferation and prevent apoptosis, whereas KSHV lytic proteins, such as viral G protein-coupled receptor, K1 and virally encoded cytokines (viral interleukin-6 and viral chemokines) further contribute to the unique angioproliferative and inflammatory KS lesions through a mechanism called paracrine neoplasia.
Collapse
Affiliation(s)
- Enrique A Mesri
- Viral Oncology Program, Developmental Center for AIDS Research, and Department of Microbiology & Immunology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1,550 NW 10th Avenue, 109 Papanicolau Building, Miami, Florida 33136, USA.
| | | | | |
Collapse
|
50
|
Regulation of tumor necrosis factor-like weak inducer of apoptosis receptor protein (TWEAKR) expression by Kaposi's sarcoma-associated herpesvirus microRNA prevents TWEAK-induced apoptosis and inflammatory cytokine expression. J Virol 2010; 84:12139-51. [PMID: 20844036 DOI: 10.1128/jvi.00884-10] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the causative agent of KS, the second most common AIDS-associated malignancy. KSHV expresses at least 18 different mature microRNAs (miRNAs) during latency. To identify cellular targets of KSHV miRNAs, we have analyzed a previously reported series of microarrays examining changes in cellular gene expression in the presence of KSHV miRNAs. Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) receptor (TWEAKR) was among the most consistently and robustly downregulated genes in the presence of KSHV miR-K12-10a (miR-K10a). Results from luciferase assays with reporter plasmids containing the 3' untranslated region (UTR) of TWEAKR suggest a targeting of TWEAKR by miR-K10a. The mutation of two predicted miR-K10a recognition sites within the 3' UTR of TWEAKR completely disrupts inhibition by miR-K10a. The expression of TWEAKR was downregulated in cells transfected with miR-K10a as well as during de novo KSHV infection. In a KS tumor-derived endothelial cell line, the downregulation of TWEAKR by miR-K10a resulted in reduced levels of TWEAK-induced caspase activation. In addition, cells transfected with miR-K10a showed less induction of apoptosis by annexin V staining and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assays. Finally, the downregulation of TWEAKR by miR-K10a in primary human endothelial cells resulted in a decrease in levels of expression of the proinflammatory cytokines interleukin-8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) in response to TWEAK. These results identify and validate an important cellular target of KSHV miRNAs. Furthermore, we demonstrate that a viral miRNA protects cells from apoptosis and suppresses a proinflammatory response, which may have significant implications in the complex context of KS lesions.
Collapse
|