1
|
Wang J, Ge S, Wang Y, Liu Y, Qiu L, Li J, Huang X, Sun L. Puerarin Alleviates UUO-Induced Inflammation and Fibrosis by Regulating the NF-κB P65/STAT3 and TGFβ1/Smads Signaling Pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3697-3708. [PMID: 34465981 PMCID: PMC8402986 DOI: 10.2147/dddt.s321879] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
Purpose Puerarin (PR), a Chinese medicine rich in natural components, has been reported to display anti-fibrotic, antioxidant, anti-inflammatory and immunomodulatory properties. However, the protective mechanism of PR against unilateral ureteral obstruction (UUO)-mediated renal injury is not fully clarified. Therefore, the aim of this study was to investigate the effects of PR on UUO mice and its possible mechanisms. Methods A total of 32 C57BL/6 mice were divided randomly into four groups (n=8): i) sham-operated group (Sham); ii) UUO group (UUO); iii) UUO + PR 50 mg/kg/day (UUO + PRL); and iv) UUO + PR 100 mg/kg/day (UUO + PRH). Continuous gavage administration for 14 days starting one week postoperatively, while the mice in Sham and UUO groups were given equal amounts of vehicle by the same means. All mice were then sacrificed and serum, 24-hour urine and tissue specimens were collected for renal function, histopathology, Western blot, immunohistochemistry. Results Renal function and histopathology revealed that PR improved UUO-mediated renal dysfunction and partially reversed tubular injury and tubulointerstitial fibrosis. Additionally, according to the results of Western blot and immunohistochemistry, PR inhibited the expression of inflammatory factors including IL-1β, IL-6, MCP-1 and ECM-related proteins including α-SMA, COL I and VIM. More importantly, the expression of fibrotic pathways TGF-β1, Smad3, p-Smad3 and inflammatory pathways NF-κB p65, NF-κB p-p65, STAT3, p-STAT3 were inhibited to various extents under the PR treatment, while Smad7 was upregulated. Conclusion These findings indicate that PR may inhibit the recruitment of inflammatory factors and extracellular matrix (ECM) deposition through the regulation of the NF-κB p65/STAT3 and TGFβ1/Smads pathways, which alleviates the UUO-induced inflammatory and fibrotic response, thereby reversing renal injury.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Shuke Ge
- Department of Emergency management, Liaoning Center for Disease Control and Prevention, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Yaqing Wang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Yi Liu
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, People's Republic of China
| | - Lihua Qiu
- Department of epigenetics, China Medical University, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Junying Li
- Department of epigenetics, China Medical University, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Xin Huang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Li Sun
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning Province, People's Republic of China
| |
Collapse
|
2
|
Ehlting C, Wolf SD, Bode JG. Acute-phase protein synthesis: a key feature of innate immune functions of the liver. Biol Chem 2021; 402:1129-1145. [PMID: 34323429 DOI: 10.1515/hsz-2021-0209] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023]
Abstract
The expression of acute-phase proteins (APP's) maintains homeostasis and tissue repair, but also represents a central component of the organism's defense strategy, especially in the context of innate immunity. Accordingly, an inflammatory response is accompanied by significant changes in the serum protein composition, an aspect that is also used diagnostically. As the main site of APP synthesis the liver is constantly exposed to antigens or pathogens via blood flow, but also to systemic inflammatory signals originating either from the splanchnic area or from the circulation. Under both homeostatic and acute-phase response (APR) conditions the composition of APP's is determined by the pattern of regulatory mediators derived from the systemic circulation or from local cell populations, especially liver macrophages. The key regulators mentioned here most frequently are IL-1β, IL-6 and TNF-α. In addition to a variety of molecular mediators described mainly on the basis of in vitro studies, recent data emphasize the in vivo relevance of cellular key effectors as well as molecular key mediators and protein modifications for the regulation and function of APP's. These are aspects, on which the present review is primarily focused.
Collapse
Affiliation(s)
- Christian Ehlting
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Hospital of the Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Stephanie D Wolf
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Hospital of the Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Johannes G Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Hospital of the Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Małkiewicz MA, Małecki A, Toborek M, Szarmach A, Winklewski PJ. Substances of abuse and the blood brain barrier: Interactions with physical exercise. Neurosci Biobehav Rev 2020; 119:204-216. [PMID: 33038347 DOI: 10.1016/j.neubiorev.2020.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/22/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022]
Abstract
Substance use disorders pose a common medical, social and financial problem. Among the pathomechanisms of substance use disorders, the disruption and increased permeability of the blood-brain barrier has been recently revealed. Physical exercise appears to be a relatively inexpensive and feasible way to implement behavioral therapy counteracting the blood-brain barrier impairment. Concomitantly, there are also studies supporting a potential protective role of selected substances of abuse in maintaining the blood-brain barrier integrity. In this review, we aim to provide a summary on the modulatory influence of physical exercise, a non-pharmacological intervention, on the blood-brain barrier alterations caused by substances of abuse. Further studies are needed to understand the precise mechanisms that underlie various effects of physical exercise in substance use disorders.
Collapse
Affiliation(s)
- Marta A Małkiewicz
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdansk, Gdansk, Poland; Department of Psychiatry, Medical University of Gdansk, Gdansk, Poland.
| | - Andrzej Małecki
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Michal Toborek
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland; Department of Biochemistry and Molecular Biology, University of Miami, Miami, USA
| | - Arkadiusz Szarmach
- 2-nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
| | - Paweł J Winklewski
- 2-nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland; Department of Human Physiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Pan Y, Sun X, Jiang L, Hu L, Kong H, Han Y, Qian C, Song C, Qian Y, Liu W. Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation. J Neuroinflammation 2016; 13:294. [PMID: 27855689 PMCID: PMC5114746 DOI: 10.1186/s12974-016-0754-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/31/2016] [Indexed: 12/23/2022] Open
Abstract
Background Tolerance seriously impedes the application of morphine in clinical medicine. Thus, it is necessary to investigate the exact mechanisms and efficient treatment. Microglial activation and neuroinflammation in the spinal cord are thought to play pivotal roles on the genesis and maintaining of morphine tolerance. Activation of adenosine monophosphate-activated kinase (AMPK) has been associated with the inhibition of inflammatory nociception. Metformin, a biguanide class of antidiabetic drugs and activator of AMPK, has a potential anti-inflammatory effect. The present study evaluated the effects and potential mechanisms of metformin in inhibiting microglial activation and alleviating the antinociceptive tolerance of morphine. Methods The microglial cell line BV-2 cells and mouse brain-derived endothelial cell line bEnd3 cells were used. Cytokine expression was measured using quantitative polymerase chain reaction. Cell signaling was assayed by western blot and immunohistochemistry. The antinociception and morphine tolerance were assessed in CD-1 mice using tail-flick tests. Results We found that morphine-activated BV-2 cells, including the upregulation of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation, pro-inflammatory cytokines, and Toll-like receptor-4 (TLR-4) mRNA expression, which was inhibited by metformin. Metformin suppressed morphine-induced BV-2 cells activation through increasing AMPK phosphorylation, which was reversed by the AMPK inhibitor compound C. Additionally, in BV-2 cells, morphine did not affect the cell viability and the mRNA expression of anti-inflammatory cytokines. In bEnd3 cells, morphine did not affect the mRNA expression of interleukin-1β (IL-1β), but increased IL-6 and tumor necrosis factor-α (TNF-α) mRNA expression; the effect was inhibited by metformin. Morphine also did not affect the mRNA expression of TLR-4 and chemokine ligand 2 (CCL2). Furthermore, systemic administration of metformin significantly blocked morphine-induced microglial activation in the spinal cord and then attenuated the development of chronic morphine tolerance in mice. Conclusions Metformin significantly attenuated morphine antinociceptive tolerance by suppressing morphine-induced microglial activation through increasing AMPK phosphorylation. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0754-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinbing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiaodi Sun
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Lai Jiang
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Liang Hu
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Hong Kong
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yuan Han
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Cheng Qian
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Chao Song
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Wentao Liu
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
5
|
Inflammatory transcription factors as activation markers and functional readouts in immune-to-brain communication. Brain Behav Immun 2016; 54:1-14. [PMID: 26348582 DOI: 10.1016/j.bbi.2015.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023] Open
Abstract
Immune-to-brain communication pathways involve humoral mediators, including cytokines, central modulation by neuronal afferents and immune cell trafficking to the brain. During systemic inflammation these pathways contribute to mediating brain-controlled sickness symptoms including fever. Experimentally, activation of these signaling pathways can be mimicked and studied when injecting animals with pathogen associated molecular patterns (PAMPS). One central component of the brain inflammatory response, which leads, for example, to fever induction, is transcriptional activation of brain cells via cytokines and PAMPS. We and others have studied the spatiotemporal activation and the physiological significance of transcription factors for the induction of inflammation within the brain and the manifestation of fever. Evidence has revealed a role of nuclear factor (NF)κB in the initiation, signal transducer and activator of transcription (STAT)3 in the maintenance and NF-interleukin (IL)6 in the maintenance or even termination of brain-inflammation and fever. Moreover, psychological stressors, such as exposure to a novel environment, leads to increased body core temperature and genomic NF-IL6-activation, suggesting a potential use of NF-IL6-immunohistochemistry as a multimodal brain cell activation marker and a role for NF-IL6 for differential brain activity. In addition, the nutritional status, as reflected by circulating levels of the cytokine-like hormone leptin, influence immune-to-brain communication and age-dependent changes in LPS-induced fever. Overall, transcription factors remain therapeutically important targets for the treatment of brain-inflammation and fever induction during infectious/non-infectious inflammatory and psychological stress. However, the exact physiological role and significance of these transcription factors requires to be further investigated.
Collapse
|
6
|
Hu T, Yeh JE, Pinello L, Jacob J, Chakravarthy S, Yuan GC, Chopra R, Frank DA. Impact of the N-Terminal Domain of STAT3 in STAT3-Dependent Transcriptional Activity. Mol Cell Biol 2015; 35:3284-300. [PMID: 26169829 PMCID: PMC4561728 DOI: 10.1128/mcb.00060-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/09/2015] [Accepted: 07/02/2015] [Indexed: 01/25/2023] Open
Abstract
The transcription factor STAT3 is constitutively active in many cancers, where it mediates important biological effects, including cell proliferation, differentiation, survival, and angiogenesis. The N-terminal domain (NTD) of STAT3 performs multiple functions, such as cooperative DNA binding, nuclear translocation, and protein-protein interactions. However, it is unclear which subsets of STAT3 target genes depend on the NTD for transcriptional regulation. To identify such genes, we compared gene expression in STAT3-null mouse embryonic fibroblasts (MEFs) stably expressing wild-type STAT3 or STAT3 from which NTD was deleted. NTD deletion reduced the cytokine-induced expression of specific STAT3 target genes by decreasing STAT3 binding to their regulatory regions. To better understand the potential mechanisms of this effect, we determined the crystal structure of the STAT3 NTD and identified a dimer interface responsible for cooperative DNA binding in vitro. We also observed an Ni(2+)-mediated oligomer with an as yet unknown biological function. Mutations on both dimer and Ni(2+)-mediated interfaces affected the cytokine induction of STAT3 target genes. These studies shed light on the role of the NTD in transcriptional regulation by STAT3 and provide a structural template with which to design STAT3 NTD inhibitors with potential therapeutic value.
Collapse
Affiliation(s)
- Tiancen Hu
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA Postdoctoral Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Jennifer E Yeh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Jaison Jacob
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Srinivas Chakravarthy
- Biophysical Collaborative Access Team/Illinois Institute of Technology, Sector 18ID (Advanced Photon Source, Argonne National Laboratory), Lemont, Illinois, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Rajiv Chopra
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA Biophysical Collaborative Access Team/Illinois Institute of Technology, Sector 18ID (Advanced Photon Source, Argonne National Laboratory), Lemont, Illinois, USA Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Lv Y, Zhang X, Sun Y, Zhang S. Activation of NF-κB contributes to production of pig-major acute protein and serum amyloid A in pigs experimentally infected with porcine circovirus type 2. Res Vet Sci 2013; 95:1235-40. [PMID: 24011594 DOI: 10.1016/j.rvsc.2013.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/01/2013] [Accepted: 08/12/2013] [Indexed: 11/19/2022]
Abstract
Acute phase proteins (APPs) have protective and regulatory roles in the inflammatory response. Previous studies indicate that APPs in serum change after pigs are infected with porcine circovirus type 2 (PCV2), but the mechanisms underlying APP production have remained unclear. In this present study, 35-day-old pigs were challenged with PCV2 and responses compared to an uninfected control group. To investigate the concentrations of APPs in serum and the activity of NF-κB in the liver, five pigs in the PCV2-infected group were euthanized at 14, 21 and 35days post inoculation (dpi) while four pigs were sacrificed in the control group at 0, 14, 21 and 35 days, respectively. The concentrations of pig-major acute protein (Pig-MAP), C-reactive protein (CRP) and serum amyloid A (SAA) in infected animals were increased at 14 and 21 dpi, while the concentration of alpha-1 acid glycoprotein (AGP) was lower at 35 dpi, indicating that PCV2 induced the production of APPs. Moreover, the DNA binding activity of NF-κB and expression levels of NF-κB p65 subunit (NF-κB p65) from the cytoplasm to nucleus were increased at 14 and 21 dpi in the liver of infected pigs, while the phosphorylation of IκBα (p-IκBα) in the liver was also increased at 21dpi. This demonstrated that PCV2 infection induced the activation of NF-κB. Both SAA and Pig-MAP concentrations correlated significantly with expression levels of NF-κB p65, indicating that activation of NF-κB contributes to the production of SAA and Pig-MAP.
Collapse
Affiliation(s)
- Yingjun Lv
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | | | | | | |
Collapse
|
8
|
Tiwari P, Tripathi LP, Nishikawa-Matsumura T, Ahmad S, Song SNJ, Isobe T, Mizuguchi K, Yoshizaki K. Prediction and experimental validation of a putative non-consensus binding site for transcription factor STAT3 in serum amyloid A gene promoter. Biochim Biophys Acta Gen Subj 2013; 1830:3650-5. [PMID: 23391827 DOI: 10.1016/j.bbagen.2013.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/04/2013] [Accepted: 01/28/2013] [Indexed: 01/19/2023]
Abstract
We previously demonstrated that though the human SAA1 gene shows no typical STAT3 response element (STAT3-RE) in its promoter region, STAT3 and the nuclear factor (NF-κB) p65 first form a complex following interleukin IL-1 and IL-6 (IL-1+6) stimulation, after which STAT3 interacts with a region downstream of the NF-κB RE in the SAA1 promoter. In this study, we employed a computational approach based on indirect read outs of protein-DNA contacts to identify a set of candidates for non-consensus STAT3 transcription factor binding sites (TFBSs). The binding of STAT3 to one of the predicted non-consensus TFBSs was experimentally confirmed through a dual luciferase assay and DNA affinity chromatography. The present study defines a novel STAT3 non-consensus TFBS at nt -75/-66 downstream of the NF-κB RE in the SAA1 promoter region that is required for NF-κB p65 and STAT3 to activate SAA1 transcription in human HepG2 liver cells. Our analysis builds upon the current understanding of STAT3 function, suggesting a wider array of mechanisms of STAT3 function in inflammatory response, and provides a useful framework for investigating novel TF-target associations with potential therapeutic implications.
Collapse
Affiliation(s)
- Prabha Tiwari
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
This review will focus on the systematization of knowledge about structure of macroglobulin signaling system, which includes macroglobulin family proteins (alpha-2-macroglobulin, alpha-2-glycoprotein, pregnancy associated plasma protein A), their receptors (LRP, grp78), ligands (proteinases, cytokines, hormones, lipids, et al.) transforming and transcriptional factors for regulation of macroglobulins synthesis. After reviewing the functions of macroglobulin signaling system, and mechanisms of their realization, we discuss the complex and significant role of this system in different physiological and pathological processes.
Collapse
|
10
|
Garbers C, Hermanns HM, Schaper F, Müller-Newen G, Grötzinger J, Rose-John S, Scheller J. Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev 2012; 23:85-97. [PMID: 22595692 DOI: 10.1016/j.cytogfr.2012.04.001] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-6-type cytokines are critically involved in health and disease. The duration and strength of IL-6-type cytokine-mediated signaling is tightly regulated to avoid overshooting activities. Here, molecular mechanisms of inter-familiar cytokine cross-talk are reviewed which regulate dynamics and strength of IL-6 signal transduction. Both plasticity and cytokine cross-talk are significantly involved in pro- and anti-inflammatory/regenerative properties of IL-6-type cytokines. Furthermore, we focus on IL-6-type cytokine/cytokine receptor plasticity and cross-talk exemplified by the recently identified composite cytokines IL-30/IL-6R and IL-35, the first inter-familiar IL-6/IL-12 family member. The complete understanding of the intra- and extracellular cytokine networks will aid to develop novel tailor-made therapeutic strategies with reduced side effects.
Collapse
Affiliation(s)
- Christoph Garbers
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Khouri C, Dittrich A, Sackett SD, Denecke B, Trautwein C, Schaper F. Glucagon counteracts interleukin-6-dependent gene expression by redundant action of Epac and PKA. Biol Chem 2011; 392:1123-34. [DOI: 10.1515/bc.2011.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AbstractInflammation is the biological response to injurious stimuli. In the initial phase of the inflammatory process, interleukin-6 (IL-6) is the main inducer of acute phase protein expression in the liver. A prolonged acute phase response is characterised by a disturbed glucose homeostasis and elevated levels of IL-6, insulin, and counterregulatory hormones such as glucagon. Several studies deal with the impact of IL-6 on glucagon-dependent gene expression. In contrast, only very little is known about the influence of G-protein-coupled receptors on IL-6 signalling. Therefore, the aim of this study is to elucidate the regulation of IL-6-induced gene expression by glucagon. We could reveal a novel mechanism of negative regulation of IL-6-induced MAP kinase activation by glucagon in primary murine hepatocytes. IL-6-dependent induction of the ERK-dependent target geneTfpi2, coding for a Kunitz-type serine protease inhibitor, was strongly down-regulated by glucagon treatment. Studying the underlying mechanism revealed a redundant action of the signalling molecules exchange protein activated by cyclic AMP (Epac) and protein kinase A. The metabolic hormone glucagon interferes in IL-6-induced gene expression. This observation is indicative for a regulatory role of G-protein-coupled receptors in the IL-6-dependent inflammatory response.
Collapse
|
12
|
Bode JG, Albrecht U, Häussinger D, Heinrich PC, Schaper F. Hepatic acute phase proteins--regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling. Eur J Cell Biol 2011; 91:496-505. [PMID: 22093287 DOI: 10.1016/j.ejcb.2011.09.008] [Citation(s) in RCA: 284] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 12/16/2022] Open
Abstract
The function of the liver as an important constituent of the immune system involved in innate as well as adaptive immunity is warranted by different highly specialized cell populations. As the major source of acute phase proteins, including secreted pathogen recognition receptors (PRRs), short pentraxins, components of the complement system or regulators of iron metabolism, hepatocytes are essential constituents of innate immunity and largely contribute to the control of a systemic inflammatory response. The production of acute phase proteins in hepatocytes is controlled by a variety of different cytokines released during the inflammatory process with IL-1- and IL-6-type cytokines as the leading regulators operating both as a cascade and as a network having additive, inhibitory, or synergistic regulatory effects on acute phase protein expression. Hence, IL-1β substantially modifies IL-6-induced acute phase protein production as it almost completely abrogates production of acute phase proteins such as γ-fibrinogen, α(2)-macroglobulin or α(1)-antichymotrypsin, whereas production of for example hepcidin, C-reactive protein and serum amyloid A is strongly up-regulated. This switch-like regulation of IL-6-induced acute phase protein production by IL-1β is due to a complex processing of the intracellular signaling events activated in response to IL-6 and/or IL-1β, with the crosstalk between STAT3- and NF-κB-mediated signal transduction being of particular importance. Recent data suggest that in this context complex formation between STAT3 and the p65 subunit of NF-κB might be of key importance. The present review summarizes the regulation of acute phase protein production focusing on the role of the crosstalk of STAT3- and NF-κB-driven pathways for transcriptional control of acute phase gene expression.
Collapse
Affiliation(s)
- Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Medical Faculty, Heinrich-Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
13
|
Khouri, C, Dittrich, A, Sackett, SD, Denecke, B, Trautwein, C, Schaper, F. Glucagon counteracts interleukin-6 dependent gene expression by redundant action of Epac and PKA. Biol Chem 2011. [DOI: 10.1515/bc-2011-171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Roet KCD, Bossers K, Franssen EHP, Ruitenberg MJ, Verhaagen J. A meta-analysis of microarray-based gene expression studies of olfactory bulb-derived olfactory ensheathing cells. Exp Neurol 2011; 229:10-45. [PMID: 21396936 DOI: 10.1016/j.expneurol.2011.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/28/2010] [Accepted: 03/02/2011] [Indexed: 12/23/2022]
Abstract
Genome wide transcriptional profiling and large scale proteomics have emerged as two powerful methods to dissect the molecular properties of specific neural tissues or cell types on a global scale. Several genome-wide transcriptional profiling and proteomics studies have been published on cultured olfactory ensheathing cells (OEC). In this article we present a meta-analysis of all five published and publicly available micro-array gene expression datasets of cultured early-passage-OB-OEC with other cell types (Schwann cells, late-passage-OB-OEC, mucosa-OEC, an OEC cell line, and acutely dissected OEC). The aim of this meta-analysis is to identify genes and molecular pathways that are found in multiple instead of one isolated study. 454 Genes were detected in at least three out of five microarray datasets. In this "Top-list", genes involved in the biological processes "growth of neurites", "blood vessel development", "migration of cells" and "immune response" were strongly overrepresented. By applying network analysis tools, molecular networks were constructed and Hub-genes were identified that may function as key genes in the above mentioned interrelated processes. We also identified 7 genes (ENTPD2, MATN2, CTSC, PTHLH, GLRX1, COL27A1 and ID2) with uniformly higher or lower expression in early-passage-OB-OEC in all five microarray comparisons. These genes have diverse but intriguing roles in neuroprotection, neurite extension and/or tissue repair. Our meta-analysis provides novel insights into the molecular basis of OB-OEC-mediated neural repair and can serve as a repository for investigators interested in the molecular biology of OEC. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Kasper C D Roet
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Goodman WA, Young AB, McCormick TS, Cooper KD, Levine AD. Stat3 phosphorylation mediates resistance of primary human T cells to regulatory T cell suppression. THE JOURNAL OF IMMUNOLOGY 2011; 186:3336-45. [PMID: 21307288 DOI: 10.4049/jimmunol.1001455] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human autoimmune diseases are characterized by systemic T cell dysfunction, resulting in chronically activated Th1 and Th17 cells that are inadequately suppressed by regulatory T cells (Tregs). IL-6, which is overexpressed in tissue and serum of patients with autoimmune diseases, inhibits human Treg function. We sought to determine the mechanism for the antitolerogenic properties of IL-6 by examining the signaling pathways downstream of IL-6R in primary human T cells. Inhibition of Stat3 signaling in MLCs containing IL-6 restores Treg-mediated suppression, demonstrating that IL-6-mediated loss of Treg suppression requires phosphorylation of Stat3. Cultures in which either effector T cells (Teffs) or Tregs were pretreated with Stat3 inhibitors indicate that phosphorylated (p)Stat3 is required in both T cell populations for IL-6-mediated reversal of Treg function. IL-21, which signals preferentially through pStat3, also reverses Treg suppression, in contrast to IL-27 and IFN-γ, which signal preferentially through Stat1 and do not inhibit Treg function. Interestingly, both Teffs and Tregs respond to IL-6 stimulation through strong Stat3 phosphorylation with minimal MAPK/Erk activation and moderate Stat1 phosphorylation. Finally, Teffs stimulated strongly through the TCR are also resistant to suppression by Tregs and show concurrent Stat3 phosphorylation. In these cultures, inhibition of pStat3 restores functional suppression by Tregs. Taken together, our findings suggest that an early dominance of Stat3 signaling, prior to subsequent T cell activation, is required for the loss of functional Treg suppression and that kinase-specific inhibitors may hold therapeutic promise in the treatment of autoimmune and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Wendy A Goodman
- Department of Dermatology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
16
|
Ait-Goughoulte M, Banerjee A, Meyer K, Mazumdar B, Saito K, Ray RB, Ray R. Hepatitis C virus core protein interacts with fibrinogen-beta and attenuates cytokine stimulated acute-phase response. Hepatology 2010; 51:1505-13. [PMID: 20162731 PMCID: PMC5837823 DOI: 10.1002/hep.23502] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Fibrinogen-beta (FBG-beta), an important acute-phase protein (APP), is generated by the liver as a target for inflammatory mediators. Here we identified FBG-beta as a hepatitis C virus (HCV) core interacting protein by screening a human liver complementary DNA (cDNA) library using mammalian two-hybrid analysis. An association between FBG-beta and HCV core protein was verified by confocal microscopy and coimmunoprecipitation from the transfected human hepatocyte (Huh-7) cell line. HCV core or genomic RNA transfected Huh-7 cells modestly increased FBG-beta protein expression when compared to the basal level in control hepatocytes. Transfection of HCV core or full-length (FL) gene into Huh-7 cells up-regulated basal FBG-beta promoter activity. Exogenous addition of IL-6 stimulates FBG-beta promoter activity in hepatocytes. However, ectopic expression of HCV core or FL in hepatocytes inhibited IL-6-stimulated FBG-beta promoter activation. Inhibition of endogenous FBG-beta expression following introduction of small interfering RNA (siRNA) into cells displayed a gain of function of promoter regulation by HCV core protein. Further studies suggested that HCV core gene expression in stable transfectants of Huh-7 cells resulted in a basal up-regulation of FBG-beta and other APPs. However, treatment with cytokines, interleukin-6 (IL-6), or tumor necrosis factor-alpha repressed FBG-beta and other acute-phase response (APR) genes. CONCLUSION Our results reveal that the core/FBG-beta interaction may act as a regulatory feedback, allowing repression of IL-6-stimulated APR genes. Together, these data suggested a network of interactions between HCV core and the hepatic APR genes, and may contribute to impaired innate immunity for viral persistence.
Collapse
Affiliation(s)
| | - Arup Banerjee
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri
| | - Keith Meyer
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri
| | - Budhaditya Mazumdar
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri
| | - Kousuke Saito
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri
| | - Ratna B. Ray
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri,Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, Missouri,Contact Information: Ranjit Ray, Division of Infectious Diseases & Immunology, Department of Internal Medicine, Saint Louis University, 1100 S. Grand Blvd., Louis, MO 63104. Fax (314) 771-3816;
| |
Collapse
|
17
|
Radtke S, Wüller S, Yang XP, Lippok BE, Mütze B, Mais C, de Leur HSV, Bode JG, Gaestel M, Heinrich PC, Behrmann I, Schaper F, Hermanns HM. Cross-regulation of cytokine signalling: pro-inflammatory cytokines restrict IL-6 signalling through receptor internalisation and degradation. J Cell Sci 2010; 123:947-59. [DOI: 10.1242/jcs.065326] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The inflammatory response involves a complex interplay of different cytokines which act in an auto- or paracrine manner to induce the so-called acute phase response. Cytokines are known to crosstalk on multiple levels, for instance by regulating the mRNA stability of targeted cytokines through activation of the p38-MAPK pathway. In our study we discovered a new mechanism that answers the long-standing question how pro-inflammatory cytokines and environmental stress restrict immediate signalling of interleukin (IL)-6-type cytokines. We show that p38, activated by IL-1β, TNFα or environmental stress, impairs IL-6-induced JAK/STAT signalling through phosphorylation of the common cytokine receptor subunit gp130 and its subsequent internalisation and degradation. We identify MK2 as the kinase that phosphorylates serine 782 in the cytoplasmic part of gp130. Consequently, inhibition of p38 or MK2, deletion of MK2 or mutation of crucial amino acids within the MK2 target site or the di-leucine internalisation motif blocks receptor depletion and restores IL-6-dependent STAT activation as well as gene induction. Hence, a novel negative crosstalk mechanism for cytokine signalling is described, where cytokine receptor turnover is regulated in trans by pro-inflammatory cytokines and stress stimuli to coordinate the inflammatory response.
Collapse
Affiliation(s)
- Simone Radtke
- Department of Biochemistry and Molecular Biology, Medical School RWTH Aachen, 52074 Aachen, Germany
| | - Stefan Wüller
- Department of Biochemistry and Molecular Biology, Medical School RWTH Aachen, 52074 Aachen, Germany
- Department of Paediatrics, Medical School RWTH Aachen, 52074 Aachen, Germany
| | - Xiang-ping Yang
- Department of Biochemistry and Molecular Biology, Medical School RWTH Aachen, 52074 Aachen, Germany
| | - Barbara E. Lippok
- Department of Biochemistry and Molecular Biology, Medical School RWTH Aachen, 52074 Aachen, Germany
| | - Barbara Mütze
- Department of Biochemistry and Molecular Biology, Medical School RWTH Aachen, 52074 Aachen, Germany
| | - Christine Mais
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, 97080 Würzburg, Germany
| | | | - Johannes G. Bode
- Department of Gastroenterology, Hepatology and Infectiology, Medical School Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Matthias Gaestel
- Department of Biochemistry, Medical School Hannover, 30625 Hannover, Germany
| | - Peter C. Heinrich
- Department of Biochemistry and Molecular Biology, Medical School RWTH Aachen, 52074 Aachen, Germany
| | - Iris Behrmann
- Department of Biochemistry and Molecular Biology, Medical School RWTH Aachen, 52074 Aachen, Germany
| | - Fred Schaper
- Department of Biochemistry and Molecular Biology, Medical School RWTH Aachen, 52074 Aachen, Germany
| | - Heike M. Hermanns
- Department of Biochemistry and Molecular Biology, Medical School RWTH Aachen, 52074 Aachen, Germany
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, 97080 Würzburg, Germany
| |
Collapse
|
18
|
Prostaglandin E1 inhibits IL-6-induced MCP-1 expression by interfering specifically in IL-6-dependent ERK1/2, but not STAT3, activation. Biochem J 2008; 412:65-72. [PMID: 18271757 DOI: 10.1042/bj20071572] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
IL (interleukin)-6 exerts pro- as well as anti-inflammatory activities. Beside many other activities, IL-6 is the major inducer of acute phase proteins in the liver, acts as a differentiation factor for blood cells, as migration factor for T-cells and is a potent inducer of the chemokine MCP-1 (monocyte chemoattractant protein-1). Recent studies have focused on the negative regulation of IL-6 signal transduction through the IL-6-induced feedback inhibitors SOCS (suppressor of cytokine signalling) 1 and SOCS3 or the protein tyrosine phosphatases SHP-2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) and TcPTP (T-cell protein tyrosine phosphatase). Studies on the cross-talk between pro-inflammatory mediators (IL-1, tumour necrosis factor, lipopolysaccharide) and IL-6 elucidated further regulatory mechanisms. Less is known about the regulation of IL-6 signal transduction by hormone/cytokine signalling through G-protein-coupled receptors. This is particularly surprising since many of these hormones (such as prostaglandins and chemokines) play an important role in inflammatory processes. In the present study, we have investigated the inhibitory activity of PGE(1) (prostaglandin E(1)) on IL-6-induced MCP-1 expression and have elucidated the underlying molecular mechanism. Surprisingly, PGE(1) does not affect IL-6-induced STAT (signal transducer and activator of transcription) 3 activation, but does affect ERK (extracellular-signal-regulated kinase) 1/2 activation which is crucial for IL-6-dependent expression of MCP-1. In summary, we have discovered a specific cross-talk between the adenylate cyclase cascade and the IL-6-induced MAPK (mitogen-activated protein kinase) cascade and have investigated its impact on IL-6-dependent gene expression.
Collapse
|
19
|
Wijayanti N, Naidu S, Kietzmann T, Immenschuh S. Inhibition of phorbol ester-dependent peroxiredoxin I gene activation by lipopolysaccharide via phosphorylation of RelA/p65 at serine 276 in monocytes. Free Radic Biol Med 2008; 44:699-710. [PMID: 18070609 DOI: 10.1016/j.freeradbiomed.2007.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/15/2007] [Accepted: 11/02/2007] [Indexed: 11/29/2022]
Abstract
Peroxiredoxin I (Prx I) is an antioxidant enzyme with thioredoxin-dependent peroxidase activity which is involved in various cellular processes such as regulation of cell proliferation. Here, it is shown that the proinflammatory mediator lipopolysaccharide (LPS) inhibits the induction of Prx I expression and promoter activity by the phorbol ester 12-O-tetradecanoylphorbol- 13-acetate (TPA) in RAW264.7 monocytes, but not that of cyclooxygenase-2. LPS-dependent repression of Prx I induction by TPA was mediated via a newly identified kappaB site in the Prx I promoter, but the "classical" NF-kappaB cascade was not involved in this regulatory pathway, because IkappaB did not affect LPS-mediated Prx I repression. By contrast, phosphorylation of p65 at serine 276, which enhances the transcriptional activity of NF-kappaB, was up-regulated by TPA and was reduced by simultaneous exposure to LPS. Functional studies with Gal4-p65 constructs revealed that serine 276 is crucial to confer LPS-dependent repression of TPA-mediated induction of p65 transactivation. Finally, repression of TPA-dependent Prx I induction by LPS was mediated via Bruton's tyrosine kinase as indicated by studies with the pharmacological inhibitor LFM-A13. In summary, LPS-dependent inhibition of Prx I gene activation by TPA in monocytes is regulated via a pathway that involves phosphorylation of the NF-kappaB subunit p65 at serine 276.
Collapse
Affiliation(s)
- Nastiti Wijayanti
- Institut für Klinische Immunologie und Transfusionsmedizin, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
20
|
Albrecht U, Yang X, Asselta R, Keitel V, Tenchini ML, Ludwig S, Heinrich PC, Häussinger D, Schaper F, Bode JG. Activation of NF-κB by IL-1β blocks IL-6-induced sustained STAT3 activation and STAT3-dependent gene expression of the human γ-fibrinogen gene. Cell Signal 2007; 19:1866-78. [PMID: 17543500 DOI: 10.1016/j.cellsig.2007.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Accepted: 04/23/2007] [Indexed: 01/10/2023]
Abstract
Despite the essential role of the fibrinogen gamma-chain as a blood clotting factor, the fibrinogen gamma-chain contains a number of interaction sites to recruit other factors such as leukocytes important for prevention of pathogen entry and propagation of the repair process. Interleukin-6 (IL-6) is known as the major inducer of gamma-fibrinogen synthesis in hepatocytes, whereas IL-1beta has been shown to act as a potent inhibitor of gamma-fibrinogen expression. Studies on the rat fibrinogen gamma-chain promoter suggest that nuclear factor (NF)-kappaB replaces the signal transducer and activator of transcription (STAT) 3 from binding to overlapping NF-kappaB/STAT3 binding sites within the 5' regulatory region of the rat gamma-chain gene promoter. However, despite its physiological relevance, the underlying mechanism responsible for the inhibitory effect of IL-1beta in humans is still not understood and apparently more complex. In contrast to the mechanism described for the rat gene our results indicate that IL-1beta suppresses the IL-6-induced activation of the human gamma-fibrinogen gene particularly by blocking the late phase STAT3-tyrosine phosphorylation NF-kappaB-dependently but independent from de novo protein synthesis. Consequently, blocking NF-kappaB activation restores specifically late phase STAT3 activation as well as the induction of the human gamma-fibrinogen gene. In contrast, specifically early STAT3 activation could be restored by a block of the p38 mitogen-activated protein kinase (p38(MAPK)) pathway. In summary, our results indicate that expression of the gamma-fibrinogen gene is mainly controlled by the strength of late phase STAT3 activation, which in turn is negatively regulated by the extent of IL-1beta-mediated NF-kappaB activity.
Collapse
Affiliation(s)
- Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, 40255 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Graf D, Kohlmann C, Haselow K, Gehrmann T, Bode JG, Häussinger D. Bile acids inhibit interleukin-6 signaling via gp130 receptor-dependent and -independent pathways in rat liver. Hepatology 2006; 44:1206-17. [PMID: 17058237 DOI: 10.1002/hep.21368] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interleukin-6 (IL-6) is a major regulator of the acute phase reaction in the liver and is thought to mediate protective effects in response to hepatotoxins. In this study, the influence of bile acids on IL-6 signal transduction was analyzed. It was shown that hydrophobic bile acids such as glycochenodeoxycholate (GCDC) inhibited IL-6-induced tyrosine phosphorylation of signal transducer and activator of transcription (STAT) 3 in hepatocytes and in perfused rat liver. This inhibition was accompanied by GCDC-mediated downregulation of glycoprotein (gp) 130 expression, whereas gp130 and suppressor of cytokine signaling 3 messenger RNA and gp80 protein levels remained unaffected. The GCDC-induced downregulation of gp130 protein expression was insensitive to inhibition of proteasomal or lysosomal protein degradation but turned out to be sensitive to inhibition of caspase-3 or caspase-8 activity. Accordingly, treatment of cell extracts with active recombinant caspase-3 led to a decay of immunoreactive gp130. Moreover, activation of caspases by CD95 ligand or hyperosmotic stress also resulted in a downregulation of gp130 levels. This indicates that caspase activation antagonizes IL-6 signaling by decay of gp130 levels. However, caspase inhibition did not prevent GCDC-dependent inhibition of IL-6-induced STAT3 activation, which turned out to be at least partially sensitive to suppression of p38(MAPK) activation. In conclusion, hydrophobic bile acids compromise IL-6 signaling through both a caspase-mediated downregulation of gp130 and a p38(MAPK)-dependent inhibition of STAT3 phosphorylation. This may contribute to bile acid-induced hepatotoxicity in cholestasis through counteracting the known hepatoprotective effects of IL-6.
Collapse
Affiliation(s)
- Dirk Graf
- Department of Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine University, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Duan HO, Simpson-Haidaris PJ. Cell Type-specific Differential Induction of the Human γ-Fibrinogen Promoter by Interleukin-6. J Biol Chem 2006; 281:12451-7. [PMID: 16524883 DOI: 10.1074/jbc.m600294200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During an acute phase response, interleukin-6 (IL-6) and glucocorticoids up-regulate expression of the three fibrinogen (FBG) genes (fga, fgb, and fgg) in liver and lung epithelium; however, little constitutive lung expression occurs. Recently, we showed that the magnitude of Stat3 binding to three IL-6 motifs on the human gammaFBG promoter correlates negatively with their functional activity in hepatocytes, although these cis-elements are critical for promoter activity. We determined the role of IL-6-receptor-gp130-Stat3 signaling in IL-6 activation of the gammaFBG promoter in liver and lung epithelial cells. Although IL-6 induced gammaFBG promoter activity approximately 30-fold in HepG2 cells, it was increased only 2-fold in lung A549 cells. Equivalent production of gp130 was demonstrated in both cell types by Western blotting; however, lower production of both IL-6-receptor and Stat3 explains, in part, reduced activity of the gammaFBG promoter in lung cells. Dexamethasone potentiated IL-6 induction of the gammaFBG promoter 2.3-fold in both HepG2 and A549 cells for a combined increase in promoter activity of 70-fold or 4.5-fold, respectively. Dexamethasone potentiation is likely due to the induction of IL-6-receptor expression as well as prolonged intensity and duration of Stat3 activation. By circumventing IL-6-receptor-gp130-coupled signaling with ectopic expression of the granulocyte colony-stimulating factor receptor (GCSFR)-gp130(133) chimeric receptor, overexpression of Stat3 induced gammaFBG promoter activity 30-fold in A549 cells. Together, the data suggest tissue-specific differences in IL-6-receptor-gp130-coupled signaling, thereby limiting the extent of Stat3 activation and gammaFBG expression during lung inflammation.
Collapse
Affiliation(s)
- Hai Ou Duan
- Department of Medicine/Hematology-Oncology Division, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
23
|
Zorin NA, Zorina VN, Zorina RM. Role of proteins of the macroglobulin family in regulation of tumor growth. Russ J Dev Biol 2006. [DOI: 10.1134/s1062360406010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Hagihara K, Nishikawa T, Sugamata Y, Song J, Isobe T, Taga T, Yoshizaki K. Essential role of STAT3 in cytokine-driven NF-kappaB-mediated serum amyloid A gene expression. Genes Cells 2005; 10:1051-63. [PMID: 16236134 DOI: 10.1111/j.1365-2443.2005.00900.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serum amyloid A (SAA) is a sensitive marker of acute-phase responses and known as a precursor protein of amyloid fibril in amyloid A (AA) (secondary) amyloidosis. Since the serum SAA level is also closely related to activity of chronic inflammatory disease and coronary artery disease, it is important to clarify the exact induction mechanism of SAA from the clinical point of view. Here we provide evidence that STAT3 plays an essential role in cytokine-driven SAA expression, although the human SAA gene shows no typical STAT3 response element (RE) in its promoters. STAT3 and nuclear factor kappaB (NF-kappaB) p65 first form a complex following interleukin (IL)-1 and IL-6 (IL-1+6) stimulation, after which STAT3 interacts with nonconsensus sequences at a 3' site of the SAA gene promoter's NF-kappaB RE. Moreover, co-expression of p300 with STAT3 dramatically enhances the transcriptional activity of SAA. The formation of a complex with STAT3, NF-kappaB p65, and p300 is thus essential for the synergistic induction of the SAA gene by IL-1+6 stimulation. Our findings are expected to aid the understanding of the inflammatory status of AA amyloidosis to aid development of a therapeutic strategy for this disease by means of normalization of serum SAA levels.
Collapse
Affiliation(s)
- Keisuke Hagihara
- Molecular Medicine, Osaka University Graduate School of Medicine, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Lornejad-Schäfer M, Albrecht U, Poppek D, Gehrmann T, Grune T, Bode JG, Häussinger D, Schliess F. Osmotic regulation of STAT3 stability in H4IIE rat hepatoma cells. FEBS Lett 2005; 579:5791-7. [PMID: 16225866 DOI: 10.1016/j.febslet.2005.09.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 09/09/2005] [Indexed: 11/26/2022]
Abstract
Little is known about the regulation of signal transducer and activator of transcription (STAT) stability. Here the osmolarity-dependence of STAT3 stability, ubiquitination, Tyr(705) phosphorylation, STAT3 transactivation and gamma-fibrinogen (gamma-FBG) expression was studied in hepatoma cells. Hyper-osmolarity accelerated STAT3 degradation which was prevented by proteasome inhibitors. Hypo-osmolarity stabilized STAT3, most likely due to a decrease in STAT3 ubiquitination. Accordingly, STAT3 Tyr(705) phosphorylation, alpha(2)-macroglobulin promoter activity and gamma-FBG expression were osmosensitive. Modulation of STAT3 stability may contribute to a hydration dependence of acute phase protein expression.
Collapse
Affiliation(s)
- Mohammad Lornejad-Schäfer
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Li ZF, Wu XH, Engvall E. Identification and characterization of CPAMD8, a novel member of the complement 3/alpha2-macroglobulin family with a C-terminal Kazal domain. Genomics 2005; 83:1083-93. [PMID: 15177561 DOI: 10.1016/j.ygeno.2003.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 12/11/2003] [Indexed: 10/26/2022]
Abstract
We have identified and characterized a novel member of the complement 3/alpha(2)-macroglobulin (C3/alpha(2)M) family named CPAMD8 (complement 3 and pregnancy zone protein-like, alpha2-macroglobulin domain-containing 8). The gene maps to chromosome 19p13.2-p13.3 and spans approximately 130 kb. The gene partially overlaps with the protease-activated receptor-4 (PAR4) gene in the reverse orientation. The cDNA consists of 40 exons ( approximately 6 kb) and encodes a protein of 1885 amino acids. Similar to other proteins in this family, CPAMD8 contains a signal sequence, an RXXR processing site, and a thioester motif. In addition, CPAMD8 has a Kazal-type serine proteinase inhibitor/follistatin-like domain at the C-terminus. The intact CPAMD8 protein generated by in vitro transcription and translation resolved as a single band of about 200 kDa on SDS-PAGE. RT-PCR and immunoblot assays showed that CPAMD8 is expressed in a number of human tissues, most abundantly in the kidney, brain, and testis and at lower levels in heart, liver, and small intestine. CPAMD8 is also expressed in several types of cells in culture, in which it is proteolytically processed into two chains of about 70 and 130 kDa. The Kazal domain of CPAMD8 binds to heparin, and subcellular fractionation shows that CPAMD8 is membrane associated via ionic interaction. In response to immune stimulants, CPAMD8 expression is markedly up-regulated in cells in culture. Thus, CPAMD8 may, like other members of the C3/alpha(2)M family, function in innate immunity but in a localized manner.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Membrane/ultrastructure
- Chromosomes, Human, Pair 19/genetics
- Cloning, Molecular
- Complement C3/chemistry
- Complement C3/classification
- Complement C3/genetics
- Complement C3/metabolism
- Cytokines/metabolism
- Exons/genetics
- Gene Expression Profiling
- Humans
- Molecular Sequence Data
- Protein Processing, Post-Translational
- Protein Sorting Signals/genetics
- Protein Structure, Tertiary
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Trypsin Inhibitor, Kazal Pancreatic/chemistry
- Trypsin Inhibitor, Kazal Pancreatic/genetics
- Trypsin Inhibitor, Kazal Pancreatic/metabolism
- Up-Regulation/genetics
- alpha-Macroglobulins/chemistry
- alpha-Macroglobulins/classification
- alpha-Macroglobulins/genetics
- alpha-Macroglobulins/metabolism
Collapse
Affiliation(s)
- Zhi-Fang Li
- The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
27
|
Ewart KV, Belanger JC, Williams J, Karakach T, Penny S, Tsoi SCM, Richards RC, Douglas SE. Identification of genes differentially expressed in Atlantic salmon (Salmo salar) in response to infection by Aeromonas salmonicida using cDNA microarray technology. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:333-347. [PMID: 15859237 DOI: 10.1016/j.dci.2004.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The response of Atlantic salmon, Salmo salar, to infection by the bacterial pathogen Aeromonas salmonicida (the causative agent of furunculosis), was investigated using a cohabitation model and a custom Atlantic salmon cDNA microarray consisting of over 4000 different amplicons. Pooled samples of each of three immune-relevant tissues (spleen, head kidney and liver) were obtained from fish exposed to infected salmon for 13 days. Reverse transcription-PCR assays were used to verify the differential expression of 12 candidate genes uncovered by microarray analysis. Among the differentially expressed genes were several previously revealed by suppression subtractive hybridization and EST surveys and that are recognized to encode humoral components of the innate immune system. Other genes identified in this study were not previously associated with infection. In addition, a number of genes with no known homologs were uncovered. Determination of their specific roles during infection may lead to a better understanding of innate immunity.
Collapse
Affiliation(s)
- K Vanya Ewart
- Institute for Marine Biosciences, Halifax, NS, Canada B3H 3Z1
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang XP, Albrecht U, Zakowski V, Sobota RM, Häussinger D, Heinrich PC, Ludwig S, Bode JG, Schaper F. Dual Function of Interleukin-1β for the Regulation of Interleukin-6-induced Suppressor of Cytokine Signaling 3 Expression. J Biol Chem 2004; 279:45279-89. [PMID: 15308667 DOI: 10.1074/jbc.m313072200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-6 (IL-6) exerts pro- as well as anti-inflammatory activities in response to infection, injury, or other stimuli that affect the homeostasis of the organism. IL-6-induced expression of acute-phase protein genes in the liver is tightly regulated through both IL-6-induced feedback inhibitors and the activity of pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-1beta. In previous studies mechanisms for how IL-1beta counteracts IL-6-dependent acute-phase protein gene induction have been proposed. Herein we analyzed IL-1beta-mediated regulation of IL-6-induced expression of the feedback inhibitor SOCS3. In hepatocytes IL-1beta alone does not induce SOCS3 expression, but it counteracts SOCS3-promoter activation in long term studies. Surprisingly, short term stimulation revealed IL-1beta to be a potent enhancer of SOCS3 expression in concert with IL-6. This activity of IL-1beta does not depend on IL-1beta-dependent STAT1-serine phosphorylation but on NF-kappaB-dependent gene induction. Such a regulatory network allows IL-1beta to counteract IL-6-dependent expression of acute-phase protein genes without inhibiting IL-6-induced SOCS3 expression and provides a reasonable mechanism for the IL-1beta-dependent inhibition of acute-phase gene induction, because reduced SOCS3 expression would lead to enhanced IL-6 activity.
Collapse
Affiliation(s)
- Xiang-Ping Yang
- Department of Biochemistry, Medical School, Rheinisch-Westfälische Technische Hochschule Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pan J, Clayton M, Feitelson MA. Hepatitis B virus X antigen promotes transforming growth factor-beta1 (TGF-beta1) activity by up-regulation of TGF-beta1 and down-regulation of alpha2-macroglobulin. J Gen Virol 2004; 85:275-282. [PMID: 14769885 DOI: 10.1099/vir.0.19650-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatitis B virus (HBV) X antigen (HBxAg) may contribute to the development of hepatocellular carcinoma (HCC) by activation of signalling pathways such as NF-kappaB. To identify NF-kappaB target genes differentially expressed in HBxAg-positive compared to -negative cells, HepG2 cells consistently expressing HBxAg (HepG2X cells) were stably transfected with pZeoSV2 or pZeoSV2-IkappaBalpha. mRNA from each culture was isolated and compared by PCR select cDNA subtraction. The results showed lower levels of alpha(2)-macroglobulin (alpha(2)-M) in HepG2X-pZeoSV2 compared to HepG2X-pZeoSV2-IkappaBalpha cells. This was confirmed by Northern and Western blotting, and by measurement of extracellular alpha(2)-M levels. Elevated transforming growth factor-beta1 (TGF-beta1) levels were also seen in HepG2X compared to control cells. Serum-free conditioned medium (SFCM) from HepG2X cells suppressed DNA synthesis in a TGF-beta-sensitive cell line, Mv1Lu. The latter was reversed when the SFCM was pretreated with exogenous, activated alpha(2)-M or with anti-TGF-beta. Since elevated TGF-beta1 promotes the development of many tumour types, these observations suggest that the HBxAg-mediated alteration in TGF-beta1 and alpha(2)-M production may contribute importantly to the pathogenesis of HCC.
Collapse
Affiliation(s)
- Jingbo Pan
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Room 222 Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Marcy Clayton
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Room 222 Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Mark A Feitelson
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Room 222 Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
30
|
Yoshida Y, Kumar A, Koyama Y, Peng H, Arman A, Boch JA, Auron PE. Interleukin 1 activates STAT3/nuclear factor-kappaB cross-talk via a unique TRAF6- and p65-dependent mechanism. J Biol Chem 2003; 279:1768-76. [PMID: 14593105 DOI: 10.1074/jbc.m311498200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukins (IL) 1 and 6 are important cytokines that function via the activation, respectively, of the transcription factors NF-kappaB and STAT3. We have observed that a specific type of kappa B DNA sequence motif supports both NF-kappaB p65 homodimer binding and cooperativity with non-tyrosine-phosphorylated STAT3. This activity, in contrast to that mediated by kappaB DNA motifs that do not efficiently bind p65 homodimers, is shown to be uniquely dependent upon signal transduction through the carboxyl terminus of TRAF6. Furthermore, STAT3 and p65 are shown to physically interact, in vivo, and this interaction appears to inhibit the function of "classical" STAT3 GAS-like binding sites. The distinct p50 form of NF-kappaB is also shown to interact with STAT3. However, in contrast to p65, p50 cooperates with STAT3 bound to GAS sites. These data argue for a novel transcription factor cross-talk mechanism that may help resolve inconsistencies previously reported regarding the mechanism of IL-1 inhibition of IL-6 activity during the acute-phase response.
Collapse
Affiliation(s)
- Yasuhiro Yoshida
- New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center and the Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Duan HO, Simpson-Haidaris PJ. Functional analysis of interleukin 6 response elements (IL-6REs) on the human gamma-fibrinogen promoter: binding of hepatic Stat3 correlates negatively with transactivation potential of type II IL-6REs. J Biol Chem 2003; 278:41270-81. [PMID: 12900415 DOI: 10.1074/jbc.m304210200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several families of transcription factors play important roles in modulating liver-specific gene expression during an acute phase response (APR). Stat3/APR factor is the main transactivator of gene expression by the interleukin (IL)-6 family of cytokines signaling through gp130. During an APR, fibrinogen (FBG) genes are coordinately up-regulated by IL-6 and glucocorticoids. Except for rat gammaFBG, attempts to demonstrate direct binding of IL-6-activated Stat3 to FBG CTGGGAA promoter elements have not been successful. Herein we show the presence of three functional type II IL-6 response elements (IL-6REs) on the human gammaFBG promoter and that the magnitude of Stat3 binding to these elements correlates negatively with their functional activity in reporter gene assays. Stat3-specific binding to gammaFBG IL-6REs was confirmed by cross-competition with alpha2-macroglobulin IL-6RE and specific interactions with anti-Stat3 in electrophoretic mobility shift assays. All type II IL-6REs contributed to full promoter activity; however, transactivation from Site II at -306 to -301 was strongest. In contrast to a previous report, IL-6 failed to induce activation of serum amyloid A-activating factor-1/c-Myc-associated zinc finger protein (SAF-1/MAZ), and mutation of the SAF-1RE had little effect on IL-6 induction of gammaFBG promoter activity. In the absence of a functional glucocorticoid receptor response element, dexamethasone potentiated IL-6-induced gammaFBG promoter activity 2-fold, requiring promoter-proximal Site I and Site II; the promoter-distal Site III had no effect on dexamethasone potentiation of IL-6-induced promoter activity. Notably the propensity for Stat3 binding to human gammaFBG IL-6REs was low compared with Stat3 binding to the alpha2-macroglobulin IL-6RE. Together these data suggest that Stat3 transactivation via IL-6REs on FBG promoters likely involves participation of additional transcription factors and/or coactivators to achieve optimal coordinated up-regulation during an APR.
Collapse
Affiliation(s)
- Hai Ou Duan
- Department of Medicine, University of Rochester School of Medicine and Dentistry Rochester, New York 14642, USA
| | | |
Collapse
|
32
|
Abstract
The IL (interleukin)-6-type cytokines IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor, cardiotrophin-1 and cardiotrophin-like cytokine are an important family of mediators involved in the regulation of the acute-phase response to injury and infection. Besides their functions in inflammation and the immune response, these cytokines play also a crucial role in haematopoiesis, liver and neuronal regeneration, embryonal development and fertility. Dysregulation of IL-6-type cytokine signalling contributes to the onset and maintenance of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, osteoporosis, multiple sclerosis and various types of cancer (e.g. multiple myeloma and prostate cancer). IL-6-type cytokines exert their action via the signal transducers gp (glycoprotein) 130, LIF receptor and OSM receptor leading to the activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) cascades. This review focuses on recent progress in the understanding of the molecular mechanisms of IL-6-type cytokine signal transduction. Emphasis is put on the termination and modulation of the JAK/STAT signalling pathway mediated by tyrosine phosphatases, the SOCS (suppressor of cytokine signalling) feedback inhibitors and PIAS (protein inhibitor of activated STAT) proteins. Also the cross-talk between the JAK/STAT pathway with other signalling cascades is discussed.
Collapse
|
33
|
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374:1-20. [PMID: 12773095 PMCID: PMC1223585 DOI: 10.1042/bj20030407] [Citation(s) in RCA: 2330] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 04/30/2003] [Accepted: 05/29/2003] [Indexed: 12/11/2022]
Abstract
The IL (interleukin)-6-type cytokines IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor, cardiotrophin-1 and cardiotrophin-like cytokine are an important family of mediators involved in the regulation of the acute-phase response to injury and infection. Besides their functions in inflammation and the immune response, these cytokines play also a crucial role in haematopoiesis, liver and neuronal regeneration, embryonal development and fertility. Dysregulation of IL-6-type cytokine signalling contributes to the onset and maintenance of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, osteoporosis, multiple sclerosis and various types of cancer (e.g. multiple myeloma and prostate cancer). IL-6-type cytokines exert their action via the signal transducers gp (glycoprotein) 130, LIF receptor and OSM receptor leading to the activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) cascades. This review focuses on recent progress in the understanding of the molecular mechanisms of IL-6-type cytokine signal transduction. Emphasis is put on the termination and modulation of the JAK/STAT signalling pathway mediated by tyrosine phosphatases, the SOCS (suppressor of cytokine signalling) feedback inhibitors and PIAS (protein inhibitor of activated STAT) proteins. Also the cross-talk between the JAK/STAT pathway with other signalling cascades is discussed.
Collapse
Affiliation(s)
- Peter C Heinrich
- Institut für Biochemie, RWTH Aachen, Universitätsklinikum, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Bode JG, Schweigart J, Kehrmann J, Ehlting C, Schaper F, Heinrich PC, Häussinger D. TNF-alpha induces tyrosine phosphorylation and recruitment of the Src homology protein-tyrosine phosphatase 2 to the gp130 signal-transducing subunit of the IL-6 receptor complex. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:257-66. [PMID: 12817006 DOI: 10.4049/jimmunol.171.1.257] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, it has been demonstrated that TNF-alpha and LPS induce the expression of suppressor of cytokine signaling 3 (SOCS3) and inhibit IL-6-induced STAT3 activation in macrophages. Inhibitor studies suggested that both induction of SOCS3 and inhibition of IL-6-induced STAT3 activation depend on the activation of p38 mitogen-activated protein kinase. Since recruitment of the tyrosine phosphatase Src homology protein tyrosine phosphatase 2 (SHP2) to the signal-transducing receptor subunit gp130 attenuates IL-6-mediated STAT-activation, we were interested in whether TNF-alpha also induces the association of SHP2 to the gp130 receptor subunit. In this study we demonstrate that stimulation of macrophages and fibroblast cell lines with TNF-alpha causes the recruitment of SHP2 to the gp130 signal-transducing subunit and leads to tyrosine phosphorylation of SHP2 and gp130. In this context the cytoplasmic SHP2/SOCS3 recruitment site of gp130 tyrosine 759 is shown to be important for the inhibitory effects of TNF-alpha, since mutation of this residue completely restores IL-6-stimulated activation of STAT3 and, consequently, of a STAT3-dependent promoter. In this respect murine fibroblasts lacking exon 3 of SHP2 are not sensitive to TNF-alpha, indicating that functional SHP2 and its recruitment to gp130 are key events in inhibition of IL-6-dependent STAT activation by TNF-alpha. Furthermore, activation of p38 mitogen-activated protein kinase is shown to be essential for the inhibitory effect of TNF-alpha on IL-6 signaling and TNF-alpha-dependent recruitment of SHP2 to gp130.
Collapse
Affiliation(s)
- Johannes G Bode
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Medizinische Klinik der Heinrich Heine Universität, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Pocock J, Gómez-Guerrero C, Harendza S, Ayoub M, Hernández-Vargas P, Zahner G, Stahl RAK, Thaiss F. Differential activation of NF-kappa B, AP-1, and C/EBP in endotoxin-tolerant rats: mechanisms for in vivo regulation of glomerular RANTES/CCL5 expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6280-91. [PMID: 12794161 DOI: 10.4049/jimmunol.170.12.6280] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chemokines play a pivotal role in the regulation of inflammatory cell infiltration in glomerular immune injury. To characterize mechanisms relevant for the regulation of chemokine expression in vivo, the LPS-mediated model of renal inflammation in rats was used in which we have previously demonstrated that the chemokine RANTES/CCL5 is expressed and secreted in glomeruli. Glomerular RANTES/CCL5 expression in this model correlated with an increased glomerular binding activity of the transcription factors AP-1, C/EBP, and NF-kappaB. To gain further insight into the functional roles of these transcription factors in the regulation of glomerular RANTES/CCL5 expression, we cloned the rat RANTES/CCL5 promoter and established the model of in vivo LPS tolerance. In tolerant rats, LPS-induced glomerular RANTES/CCL5 expression and activation of the transcription factors AP-1 and C/EBP were significantly reduced using both consensus and rat RANTES/CCL5-specific oligonucleotides. Reduced glomerular NF-kappaB binding activity after LPS injection could be demonstrated in tolerant rats only when using rat RANTES/CCL5-specific oligonucleotides. Reduced binding activity to this RANTES/CCL5-specific NF-kappaB binding site in the context of broad NF-kappaB activation might be due to changes in transcription factor interactions or chromatin remodeling processes.
Collapse
Affiliation(s)
- Johanna Pocock
- Department of Internal Medicine, Division of Nephrology and Osteology, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zwijnenburg PJG, van der Poll T, Florquin S, Roord JJ, Van Furth AM. IL-1 receptor type 1 gene-deficient mice demonstrate an impaired host defense against pneumococcal meningitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4724-30. [PMID: 12707352 DOI: 10.4049/jimmunol.170.9.4724] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The fatality rate associated with Streptococcus pneumoniae meningitis remains high despite adequate antibiotic treatment. IL-1 is an important proinflammatory cytokine, which is up-regulated in brain tissue after the induction of meningitis. To determine the role of IL-1 in pneumococcal meningitis we induced meningitis by intranasal inoculation with 8 x 10(4) CFU of S. pneumoniae and 180 U of hyaluronidase in IL-1R type I gene-deficient (IL-1R(-/-)) mice and wild-type mice. Meningitis resulted in elevated IL-1alpha and IL-1beta mRNA and protein levels in the brain. The absence of an intact IL-1 signal was associated with a higher susceptibility to develop meningitis. Furthermore, the lack of IL-1 impaired bacterial clearance, as reflected by an increased number of CFU in cerebrospinal fluid of IL-1R(-/-) mice. The characteristic pleocytosis of meningitis was not significantly altered in IL-1R(-/-) mice, but meningitis was associated with lower brain levels of cytokines. The mortality was significantly higher and earlier in the course of the disease in IL-1R(-/-) mice. These results demonstrate that endogenous IL-1 is required for an adequate host defense in pneumococcal meningitis.
Collapse
MESH Headings
- Animals
- Brain/immunology
- Brain/metabolism
- Brain/pathology
- Cerebrospinal Fluid/immunology
- Cerebrospinal Fluid/microbiology
- Cytokines/biosynthesis
- Genetic Predisposition to Disease
- Immunity, Innate/genetics
- Interleukin 1 Receptor Antagonist Protein
- Interleukin-1/biosynthesis
- Leukocytosis/cerebrospinal fluid
- Leukocytosis/genetics
- Leukocytosis/immunology
- Leukocytosis/microbiology
- Meningitis, Pneumococcal/genetics
- Meningitis, Pneumococcal/immunology
- Meningitis, Pneumococcal/mortality
- Meningitis, Pneumococcal/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Interleukin-1/antagonists & inhibitors
- Receptors, Interleukin-1/deficiency
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/physiology
- Receptors, Interleukin-1 Type I
- Sialoglycoproteins/biosynthesis
- Signal Transduction/genetics
- Signal Transduction/immunology
- Streptococcus pneumoniae/growth & development
- Streptococcus pneumoniae/immunology
- Survival Analysis
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Petra J G Zwijnenburg
- Department of Pediatrics, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Cucullo L, Marchi N, Marroni M, Fazio V, Namura S, Janigro D. Blood-brain barrier damage induces release of alpha2-macroglobulin. Mol Cell Proteomics 2003; 2:234-41. [PMID: 12714567 DOI: 10.1074/mcp.m200077-mcp200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Blood-brain barrier (BBB) failure occurs in many neurological diseases and is caused in part by activation of proinflammatory factors including matrix metalloproteinases. Counterbalancing, "BBB protective" cascades have recently been described, including NO-mediated interleukin 6 release by glia. Interleukin 6 has been shown to trigger production of matrix metalloproteinase inhibitors such as alpha2-macroglobulin (alpha2M). We hypothesized that BBB failure may result in increased alpha(2)M release by perivascular astrocytes. This was initially tested in patients undergoing iatrogenic BBB disruption by hyperosmotic mannitol for intra-arterial chemotherapy of brain tumors. Serum samples revealed significantly increased levels of alpha2M at 4 h after BBB disruption by hyperosmotic mannitol. In parallel in vitro experiments, we observed a similar increase of alpha2M release by astrocytes under conditions mimicking BBB failure and perivascular edema. For both experiments, protein analysis was initially performed by bidimensional gel electrophoresis and mass spectrometry followed by Western blotting immunodetection. We conclude that, in addition to proinflammatory changes, BBB failure may also trigger protective release of alpha2M by perivascular astrocytes as well as peripheral source.
Collapse
Affiliation(s)
- Luca Cucullo
- Department of Neurological Surgery, Cerebrovascular Research Center, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
38
|
|