1
|
Xu JX, Xu FZ, Furbish A, Braxton AM, Brumfield B, Helke KL, Peterson YK. Inhibition of complement C3 prevents osteoarthritis progression in guinea pigs by blocking STAT1 activation. Commun Biol 2024; 7:370. [PMID: 38538870 PMCID: PMC10973449 DOI: 10.1038/s42003-024-06051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/14/2024] [Indexed: 12/14/2024] Open
Abstract
Osteoarthritis (OA) is one of the leading causes of disability, affecting over 500 million adults worldwide. Previous studies have found that various inflammatory factors can contribute to the pathogenesis of OA, including complement factors in the synovial fluid of OA patients. However, the pathogenesis of this disease is still not known, and the only therapy of severe OA is total joint replacements. Total joint replacements are invasive, expensive, and affect quality of life. Here we show that when human articular chondrocytes are stimulated with pro-inflammatory mediator interleukin-1β (IL-1β) there is an increase in inflammatory factors including complement component 3 (C3). We also found the transcription factor, signal transducer and activator of transcription 1 (STAT1), is responsible for increased C3 expression after IL-1β stimulation in human articular chondrocytes. A specific STAT1 inhibitor, fludarabine, attenuates the hyper-expression of C3 and delays/prevents spontaneous OA in Dunkin-Hartley guinea pigs. Since fludarabine is already clinically used for chemotherapy, this study has great translational potential as a unique disease-modifying osteoarthritis drug (DMOAD) in treating primary OA.
Collapse
Affiliation(s)
- Jen X Xu
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA.
| | - Frank Z Xu
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA
- UAB Heersink School of Medicine, Alabama, AL, 35233, USA
| | - Amelia Furbish
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA
| | - Alicia M Braxton
- Department of Comparative Medicine, Medical University of South Carolina, 114 Doughty Street, Charleston, SC, 29425, USA
| | - Brook Brumfield
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, 114 Doughty Street, Charleston, SC, 29425, USA
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President Street, Charleston, SC, 29425, USA.
| |
Collapse
|
2
|
Triggianese P, Conigliaro P, De Martino E, Monosi B, Chimenti MS. Overview on the Link Between the Complement System and Auto-Immune Articular and Pulmonary Disease. Open Access Rheumatol 2023; 15:65-79. [PMID: 37214353 PMCID: PMC10198272 DOI: 10.2147/oarrr.s318826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Complement system (CS) dysregulation is a key factor in the pathogenesis of different autoimmune diseases playing a central role in many immune innate and adaptive processes. Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by ta breach of self-tolerance leading to a synovitis and extra-articular manifestations. The CS is activated in RA and seems not only to mediate direct tissue damage but also play a role in the initiation of RA pathogenetic mechanisms through interactions with citrullinated proteins. Interstitial lung disease (ILD) represents the most common extra-articular manifestation that can lead to progressive fibrosis. In this review, we focused on the evidence of CS dysregulation in RA and in ILD, and highlighted the role of the CS in both the innate and adaptive immune responses in the development of diseases, by using idiopathic pulmonary fibrosis as a model of lung disease. As a proof of concept, we dissected the evidence that several treatments used to treat RA and ILD such as glucocorticoids, pirfenidone, disease modifying antirheumatic drugs, targeted biologics such as tumor necrosis factor (TNF)-inhibitors, rituximab, tocilizumab, and nintedanib may act indirectly on the CS, suggesting that the CS might represent a potential therapeutic target in these complex diseases.
Collapse
Affiliation(s)
- Paola Triggianese
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Erica De Martino
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Benedetta Monosi
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Maria Sole Chimenti
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
3
|
Zarantonello A, Revel M, Grunenwald A, Roumenina LT. C3-dependent effector functions of complement. Immunol Rev 2023; 313:120-138. [PMID: 36271889 PMCID: PMC10092904 DOI: 10.1111/imr.13147] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is the central effector molecule of the complement system, mediating its multiple functions through different binding sites and their corresponding receptors. We will introduce the C3 forms (native C3, C3 [H2 O], and intracellular C3), the C3 fragments C3a, C3b, iC3b, and C3dg/C3d, and the C3 expression sites. To highlight the important role that C3 plays in human biological processes, we will give an overview of the diseases linked to C3 deficiency and to uncontrolled C3 activation. Next, we will present a structural description of C3 activation and of the C3 fragments generated by complement regulation. We will proceed by describing the C3a interaction with the anaphylatoxin receptor, followed by the interactions of opsonins (C3b, iC3b, and C3dg/C3d) with complement receptors, divided into two groups: receptors bearing complement regulatory functions and the effector receptors without complement regulatory activity. We outline the molecular architecture of the receptors, their binding sites on the C3 activation fragments, the cells expressing them, the diversity of their functions, and recent advances. With this review, we aim to give an up-to-date analysis of the processes triggered by C3 activation fragments on different cell types in health and disease contexts.
Collapse
Affiliation(s)
- Alessandra Zarantonello
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Margot Revel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
4
|
Postlethwaite AE, Tuckey RC, Kim TK, Li W, Bhattacharya SK, Myers LK, Brand DD, Slominski AT. 20 S-Hydroxyvitamin D3, a Secosteroid Produced in Humans, Is Anti-Inflammatory and Inhibits Murine Autoimmune Arthritis. Front Immunol 2021; 12:678487. [PMID: 34276665 PMCID: PMC8278399 DOI: 10.3389/fimmu.2021.678487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
The ability to use large doses of vitamin D3 (D3) to chronically treat autoimmune diseases such as rheumatoid arthritis (RA) is prohibitive due to its calcemic effect which can damage vital organs. Cytochrome P450scc (CYP11A1) is able to convert D3 into the noncalcemic analog 20S-hydroxyvitamin D3 [20S(OH)D3]. We demonstrate that 20S(OH)D3 markedly suppresses clinical signs of arthritis and joint damage in a mouse model of RA. Furthermore, treatment with 20S(OH)D3 reduces lymphocyte subsets such as CD4+ T cells and CD19+ B cells leading to a significant reduction in inflammatory cytokines. The ratio of T reg cells (CD4+CD25+Foxp3+ T cells) to CD3+CD4+ T cells is increased while there is a decrease in critical complement-fixing anti-CII antibodies. Since pro-inflammatory cytokines and antibodies against type II collagen ordinarily lead to destruction of cartilage and bone, their decline explains why arthritis is attenuated by 20(OH) D3. These results provide a basis for further consideration of 20S(OH)D3 as a potential treatment for RA and other autoimmune disorders.
Collapse
Affiliation(s)
- Arnold E. Postlethwaite
- Research Service, Department of Veterans Affairs Medical Center, Memphis, TN, United States
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert C. Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Tae-Kang Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wei Li
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Syamal K. Bhattacharya
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Linda K. Myers
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - David D. Brand
- Research Service, Department of Veterans Affairs Medical Center, Memphis, TN, United States
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Andrzej T. Slominski
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Research Service, Department of Veterans Affairs Medical Center, Birmingham, AL, United States
| |
Collapse
|
5
|
Taylor ZL, Thompson LE, Bear H, Mizuno T, Vinks AA, Ramsey LB. Toward pharmacogenetic SLCO1B1-guided dosing of methotrexate in arthritis using a murine Slco1b2 knockout model. Clin Transl Sci 2021; 14:2267-2277. [PMID: 34121338 PMCID: PMC8604247 DOI: 10.1111/cts.13086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022] Open
Abstract
Low‐dose methotrexate (MTX) is a first‐line therapy for the treatment of arthritis. However, there is considerable interindividual variability in MTX exposure following standard dosing. Polymorphisms in SLCO1B1 significantly effect MTX clearance, altering therapeutic response. One decreased function variant, rs4149056 (c.521T>C, Val174Ala), slows MTX clearance and in vitro uptake of MTX. This phenotype was recapitulated in a mouse model using a knockout (KO) of the murine orthologue, Slco1b2. Our objective was to investigate the impact of this phenotype on the pharmacokinetics and therapeutic outcomes of low‐dose MTX in a murine model of collagen‐induced arthritis (CIA). We evaluated response to MTX in mice with CIA using wildtype (WT), heterozygous, and KO Slco1b2 mice on a DBA1/J background. Arthritis was macroscopically evaluated daily to quantify disease progression. Mice received 2 mg/kg or a pharmacogenetically guided MTX dose subcutaneously 3 times a week for 2 weeks. MTX concentrations were collected at the end of the study and exposure (day*µM) was estimated using a two‐compartment model. Mice displayed a seven‐fold range in MTX exposure and revealed a significant exposure‐response relationship (p = 0.0027). KO mice receiving the 2 mg/kg dosing regimen had 2.3‐fold greater exposure to MTX (p < 0.0001) and a 66% reduction in overall disease progression (p = 0.011) compared to WT mice. However, exposure and response were equivalent when pharmacogenetically guided dosing was used. These studies demonstrate that an exposure‐response relationship exists for MTX and that Slco1b2 genotype affects MTX exposure and therapeutic response. Such evidence supports the use of SLCO1B1‐pharmacogenetic dosing of low‐dose MTX for patients with arthritis.
Collapse
Affiliation(s)
- Zachary L Taylor
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lauren E Thompson
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Heather Bear
- Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alexander A Vinks
- Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Laura B Ramsey
- Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Berberine Delays Onset of Collagen-Induced Arthritis through T Cell Suppression. Int J Mol Sci 2021; 22:ijms22073522. [PMID: 33805383 PMCID: PMC8037694 DOI: 10.3390/ijms22073522] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
There is evidence that berberine (BBR), a clinically relevant plant compound, ameliorates clinically apparent collagen-induced arthritis (CIA) in vivo. However, to date, there are no studies involving the use of BBR which explore its prophylactic potential in this model of rheumatoid arthritis (RA). The aim of this study was to determine if prophylactic BBR use during the preclinical phase of collagen-induced arthritis would delay arthritic symptom onset, and to characterize the cellular mechanism underlying such an effect. DBA/1J mice were injected with an emulsion of bovine type II collagen (CII) and complete Freund’s adjuvant (day 0) and a booster injection of CII in incomplete Freund’s adjuvant (day 18) to induce arthritis. Mice were then given i.p. injections of 1 mg/kg/day of BBR or PBS (vehicle with 0.01% DMSO) from days 0 to 28, were left untreated (CIA control), or were in a non-arthritic control group (n = 15 per group). Incidence of arthritis in BBR-treated mice was 50%, compared to 90% in both the CIA and PBS controls. Populations of B and T cells from the spleens and draining lymph nodes of mice were examined on day 14 (n = 5 per group) and day 28 (n = 10 per group). BBR-treated mice had significantly reduced populations of CD4+Th and CD4+CXCR5+ Tfh cells, and an increased proportion of Foxp3+ Treg at days 14 and 28, as well as reduced expression of co-stimulatory molecules CD28 and CD154 at both endpoints. The effect seen on T cell populations and co-stimulatory molecule expression in BBR-treated mice was not mirrored in CD19+ B cells. Additionally, BBR-treated mice experienced reduced anti-CII IgG2a and anti-CII total IgG serum concentrations. These results indicate a potential role for BBR as a prophylactic supplement for RA, and that its effect may be mediated specifically through T cell suppression. However, the cellular effector involved raises concern for BBR prophylactic use in the context of vaccine efficacy and other primary adaptive immune responses.
Collapse
|
7
|
Galindo-Izquierdo M, Pablos Alvarez JL. Complement as a Therapeutic Target in Systemic Autoimmune Diseases. Cells 2021; 10:cells10010148. [PMID: 33451011 PMCID: PMC7828564 DOI: 10.3390/cells10010148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
The complement system (CS) includes more than 50 proteins and its main function is to recognize and protect against foreign or damaged molecular components. Other homeostatic functions of CS are the elimination of apoptotic debris, neurological development, and the control of adaptive immune responses. Pathological activation plays prominent roles in the pathogenesis of most autoimmune diseases such as systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, dermatomyositis, and ANCA-associated vasculitis. In this review, we will review the main rheumatologic autoimmune processes in which complement plays a pathogenic role and its potential relevance as a therapeutic target.
Collapse
|
8
|
The Role of Yersinia enterocolitica O:3 Lipopolysaccharide in Collagen-Induced Arthritis. J Immunol Res 2020; 2020:7439506. [PMID: 33274243 PMCID: PMC7676966 DOI: 10.1155/2020/7439506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
Yersinia enterocolitica O:3 is mentioned among the most common arthritogenic pathogens. Bacterial components (including lipopolysaccharide (LPS)) may persist in the joint after eradication of infection. Having an adjuvant activity, LPS may enhance production of anticollagen antibodies, involved in the pathogenesis of rheumatoid arthritis. Furthermore, its ability to activate complement contributes to the inflammation. The aim of this work was to investigate whether Yersinia LPS (coinjected with collagen) is associated with arthritis progression or other pathological effects and to elucidate the mechanism of this association. It was demonstrated that murine mannose-binding lectin C (MBL-C) recognizes the inner core heptoses of the Rd1 chemotype LPS of Yersinia. In addition, the Rd1 LPS activates the MBL-associated serine protease 1 (MASP-1) stronger than the S and Ra chemotype LPS and comparable to Klebsiella pneumoniae O:3 LPS. However, in contrast to the latter, Yersinia Rd1 LPS was associated neither with the adjuvancity nor with the enhancement of pathological changes in animal paws/impairment of motility. On the other hand, it seemed to be more hepatotoxic when compared with the other tested endotoxins, while the enlargement of inguinal lymph nodes and drop in hepatic MBL-C expression (at the mRNA level) were independent of LPS chemotype. Our data did not suggest no greater impact Y. enterocolitica O:3 on the development or severity of arthropathy related to anticollagen antibody-induced arthritis in mice, although its interaction with MBL-C and subsequent complement activation may contribute to some adverse effects.
Collapse
|
9
|
Li Y, Zou W, Brestoff JR, Rohatgi N, Wu X, Atkinson JP, Harris CA, Teitelbaum SL. Fat-Produced Adipsin Regulates Inflammatory Arthritis. Cell Rep 2020; 27:2809-2816.e3. [PMID: 31167128 DOI: 10.1016/j.celrep.2019.05.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
We explored the relationship of obesity and inflammatory arthritis (IA) by selectively expressing diphtheria toxin in adipose tissue yielding "fat-free" (FF) mice completely lacking white and brown fat. FF mice exhibit systemic neutrophilia and elevated serum acute phase proteins suggesting a predisposition to severe IA. Surprisingly, FF mice are resistant to K/BxN serum-induced IA and attendant bone destruction. Despite robust systemic basal neutrophilia, neutrophil infiltration into joints of FF mice does not occur when challenged with K/BxN serum. Absence of adiponectin, leptin, or both has no effect on joint disease, but deletion of the adipokine adipsin (complement factor D) completely prevents serum-induced IA. Confirming that fat-expressed adipsin modulates the disorder, transplantation of wild-type (WT) adipose tissue into FF mice restores susceptibility to IA, whereas recipients of adipsin-deficient fat remain resistant. Thus, adipose tissue regulates development of IA through a pathway in which adipocytes modify neutrophil responses in distant tissues by producing adipsin.
Collapse
Affiliation(s)
- Yongjia Li
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Zou
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan R Brestoff
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nidhi Rohatgi
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles A Harris
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Teitelbaum
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Kirpotina LN, Schepetkin IA, Hammaker D, Kuhs A, Khlebnikov AI, Quinn MT. Therapeutic Effects of Tryptanthrin and Tryptanthrin-6-Oxime in Models of Rheumatoid Arthritis. Front Pharmacol 2020; 11:1145. [PMID: 32792961 PMCID: PMC7394103 DOI: 10.3389/fphar.2020.01145] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/13/2020] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease involving joint and bone damage that is mediated in part by proteases and cytokines produced by synovial macrophages and fibroblast-like synoviocytes (FLS). Although current biological therapeutic strategies for RA have been effective in many cases, new classes of therapeutics are needed. We investigated anti-inflammatory properties of the natural alkaloid tryptanthrin (TRYP) and its synthetic derivative tryptanthrin-6-oxime (TRYP-Ox). Both TRYP and TRYP-Ox inhibited matrix metalloproteinase (MMP)-3 gene expression in interleukin (IL)-1β-stimulated primary human FLS, as well as IL-1β–induced secretion of MMP-1/3 by FLS and synovial SW982 cells and IL-6 by FLS, SW982 cells, human umbilical vein endothelial cells (HUVECs), and monocytic THP-1 cells, although TRYP-Ox was generally more effective and had no cytotoxicity in vitro. Evaluation of the therapeutic potential of TRYP and TRYP-Ox in vivo in murine arthritis models showed that both compounds significantly attenuated the development of collagen-induced arthritis (CIA) and collagen-antibody–induced arthritis (CAIA), with comparable efficacy. Collagen II (CII)-specific antibody levels were similarly reduced in TRYP- and TRYP-Ox-treated CIA mice. TRYP and TRYP-Ox also suppressed proinflammatory cytokine production by lymph node cells from CIA mice, with TRYP-Ox being more effective in inhibiting IL-17A, granulocyte-macrophage colony-stimulating factor (GM-CSF), and receptor activator of nuclear factor-κB ligand (RANKL). Thus, even though TRYP-Ox generally had a better in vitro profile, possibly due to its ability to inhibit c-Jun N-terminal kinase (JNK), both TRYP and TRYP-Ox were equally effective in inhibiting the clinical symptoms and damage associated with RA. Overall, TRYP and/or TRYP-Ox may represent potential new directions for the pursuit of novel treatments for RA.
Collapse
Affiliation(s)
- Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Deepa Hammaker
- Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amanda Kuhs
- Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, Russia.,Research Institute of Biological Medicine, Altai State University, Barnaul, Russia
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
11
|
Cheng TH, Yoon SH, Lee P, Dimaculangan D, Vikram Maheshwari A, Zhang M. Knee synovial fluid complement C3-β chain levels correlate with clinical symptoms of knee osteoarthritis. Int J Rheum Dis 2020; 23:569-575. [PMID: 31989759 DOI: 10.1111/1756-185x.13794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/17/2019] [Accepted: 12/29/2019] [Indexed: 12/20/2022]
Abstract
AIM Early research found innate immune factor complement C3 in the synovial fluid (SF) and activated in serum of osteoarthritis (OA) patients. Whether synovial C3 comes from circulation, or is produced locally, is still unknown. It is also unclear whether synovial and circulating C3 is responsible to OA symptoms. A native C3 molecule consists of two chains, C3-α and C3-β. Small fragments breaking down from C3-α chain in serum and SF were reported to be related to OA severity. Little is known if C3-β chain is involved in the pathogenesis. METHOD In this study, we evaluated these important areas by biochemical analyses of C3-α and C3-β chains in both the SF and plasma of OA patients. RESULTS Our results showed that C3-α and C3-β levels in SF did not correlate with those in plasma, suggesting that synovial C3 is independently and locally produced, rather than being "leaked" from circulation. Synovial C3-β but not C3-α levels correlated with pain, other OA symptoms, function in daily living, and sports/recreational activities. Plasma C3-β levels only marginally correlated with pain, and plasma C3-α levels did not correlate with any of these OA symptoms. CONCLUSION We present first-hand evidence that the clinical symptoms of OA are mainly associated with C3 in the local SF rather than systemic circulation, suggesting local factors in the etiopathogenesis. Future local targeted therapies for pain management may be more effective and safer.
Collapse
Affiliation(s)
- Tzu Hsuan Cheng
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Seung Ho Yoon
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Philip Lee
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Dennis Dimaculangan
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | | - Ming Zhang
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA.,Department of Orthopedics, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
12
|
Complement activation and regulation in rheumatic disease. Semin Immunol 2019; 45:101339. [DOI: 10.1016/j.smim.2019.101339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 01/02/2023]
|
13
|
Bemis EA, Norris JM, Seifert J, Frazer-Abel A, Okamoto Y, Feser ML, Demoruelle MK, Deane KD, Banda NK, Holers VM. Complement and its environmental determinants in the progression of human rheumatoid arthritis. Mol Immunol 2019; 112:256-265. [PMID: 31207549 PMCID: PMC7712508 DOI: 10.1016/j.molimm.2019.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/26/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disease with an etiology that is not yet well understood, disproportionally affects women and also varies in incidence and prevalence by population. The presence of anti-citrullinated protein antibodies (ACPA) is a highly specific biomarker for the diagnosis of clinically apparent RA. ACPA are also present in the serum for an average of 3-5 years prior to the onset of RA during an asymptomatic period characterized by mucosal inflammation and local ACPA production at these sites. We hypothesized that systemic complement activation products might be generated during the pre-clinical initiation of RA and/or provide a second hit that promotes subsequent arthritis development in the joints. In addition, we evaluated which demographic and genetic features and environmental exposures could influence the complement activation process. We analyzed plasma from healthy subjects, subjects at-risk for the development of RA based on serum ACPA positivity in absence of inflammatory arthritis (IA), and ACPA positive RA subjects by Multiplex Assay and ELISA for eighteen complement system components, factors and activation products belonging to the classical, lectin and alternative pathways. By using regression models, associations between complement proteins and various demographic, genetic, and environmental factors previously found to be associated with RA, including sex, smoking, shared epitope, and oral contraceptive use, were examined. We found no evidence of systemic complement activation in ACPA positive subjects without IA, but in contrast found evidence of systemic involvement of the both classical and alternative pathways during the stage of the disease where classified RA is present, (i.e. during joint inflammation and damage). With regard to the demographic, genetic, and environmental variables, females who reported current or past oral contraceptive use and subjects with current tobacco exposure demonstrated alterations of the alternative pathway of complement. Furthermore, RA subjects with established disease who have a body mass index categorized as obese demonstrated higher levels of C2 compared to RA subjects who are not considered obese. In sum, the complement system may be involved in the pathogenesis of RA, with only localized mucosal effects during the preclinical period in those at-risk for RA but in the joint as well as systemically in those who have developed clinically apparent arthritis.
Collapse
Affiliation(s)
- Elizabeth A Bemis
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Jennifer Seifert
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Ashley Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Yuko Okamoto
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Marie L Feser
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - M Kristen Demoruelle
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Kevin D Deane
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States.
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| |
Collapse
|
14
|
Associations of TRAF1/C5 rs10818488 and rs3761847 polymorphisms with genetic susceptibility to rheumatoid arthritis: a case-control study and updated meta-analysis. Cent Eur J Immunol 2019; 44:159-173. [PMID: 31530986 PMCID: PMC6745538 DOI: 10.5114/ceji.2019.87067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
The results on associations of tumor necrosis factor (TNF)-receptor associated factor 1/complement component 5 (TRAF1/C5) rs10818488 and rs3761847 polymorphisms with rheumatoid arthritis (RA) are controversial, thus this study was performed to examine whether the aforementioned polymorphisms were associated with RA in a Chinese population. Furthermore, an updated meta-analysis was conducted. The polymorphisms were genotyped in 328 Chinese RA patients and 449 healthy controls. Studies examining the association of TRAF1/C5 rs10818488 and/or rs3761847 polymorphism with RA were exhaustively searched. No significant difference in either genotype or allele distribution between RA patients and controls was found. The updated meta-analysis was conducted based on 19 articles including the present study. A significant association of RA with TRAF1/C5 rs10818488 polymorphism G allele in Europeans (OR = 0.843, 95% CI = 0.730-0.975, p = 0.021) and in Asians (OR = 1.070, 95% CI = 1.009-1.136, p = 0.024) was found. Additionally, a significant association of RA with TRAF1/C5 rs10818488 polymorphism G allele under the recessive model in Asians (OR = 1.129, 95% CI = 1.023-1.246, p = 0.016) and in Africans (OR = 0.657, 95% CI = 0.507-0.851, p = 0.001) was found. Only a borderline significant association of RA with TRAF1/C5 rs3761847 polymorphism A allele was found in Europeans. Non-significant associations of RA with TRAF1/C5 rs10818488 and rs3761847 polymorphisms were found in our study. The updated meta-analysis results demonstrate that TRAF1/C5 rs10818488 polymorphism is associated with RA in Europeans, Asians and Africans, and TRAF1/C5 rs3761847 polymorphism is associated with RA in Europeans with borderline significant evidence.
Collapse
|
15
|
Dong L, Wu J, Chen K, Xie J, Wang Y, Li D, Liu Y, Yin A, Zhao Y, Han Y, Zhou J, Zhang L, Chen Z, Zuo D. Mannan-Binding Lectin Attenuates Inflammatory Arthritis Through the Suppression of Osteoclastogenesis. Front Immunol 2019; 10:1239. [PMID: 31214191 PMCID: PMC6557994 DOI: 10.3389/fimmu.2019.01239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
Mannan-binding lectin (MBL) is a vital element in the host innate immune system, which is primarily produced by the liver and secreted into the circulation. Low serum level of MBL is reported to be associated with an increased risk of arthritis. However, the underlying mechanism by which MBL contributes to the pathogenesis of arthritis is poorly understood. In this study, we investigated the precise role of MBL on the course of experimental murine adjuvant-induced arthritis (AIA). MBL-deficient (MBL−/−) AIA mice showed significantly increased inflammatory responses compared with wild-type C57BL/6 AIA mice, including exacerbated cartilage damage, enhanced histopathological features and high level of tartrate-resistant acid phosphatase (TRAP)-positive cells. MBL protein markedly inhibited the osteoclast formation from human blood monocytes induced by receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) in vitro. Mechanistic studies established that MBL inhibited osteoclast differentiation via down-regulation of p38 signaling pathway and subsequent nuclear translocation of c-fos as well as activation of nuclear factor of activated T-cells c1 (NFATc1) pathway. Importantly, we have provided the evidence that concentrations of MBL correlated negatively with the serum levels of amino-terminal propeptide of type I procollagen (PINP) and C-terminal telopeptide of type I collagen (β-CTX), serum markers of bone turnover, in patients with arthritis. Our study revealed an unexpected function of MBL in osteoclastogenesis, thus providing new insight into inflammatory arthritis and other bone-related diseases in patients with MBL deficiency.
Collapse
Affiliation(s)
- Lijun Dong
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Wu
- Geriatrics Center, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Kai Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingwen Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Youyi Wang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou, China
| | - Dantong Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunzhi Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Aiping Yin
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yue Zhao
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yunpeng Han
- Department of Clinical Laboratory, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liyun Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| | - Daming Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Abstract
Inflammatory arthritis encompasses a set of common diseases characterized by immune-mediated attack on joint tissues. Most but not all affected patients manifest circulating autoantibodies. Decades of study in human and animal arthritis have identified key roles for autoantibodies in immune complexes and through direct modulation of articular biology. However, joint inflammation can arise because of pathogenic T cells and other pathways that are antibody-independent. Here we review the evidence for these parallel tracks, in animal models and in humans, to explore the range of mechanisms engaged in the pathophysiology of arthritis and to highlight opportunities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Margaret H. Chang
- Department of Medicine, Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter A. Nigrovic
- Department of Medicine, Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Fridkis-Hareli M, Storek M, Or E, Altman R, Katti S, Sun F, Peng T, Hunter J, Johnson K, Wang Y, Lundberg AS, Mehta G, Banda NK, Michael Holers V. The human complement receptor type 2 (CR2)/CR1 fusion protein TT32, a novel targeted inhibitor of the classical and alternative pathway C3 convertases, prevents arthritis in active immunization and passive transfer mouse models. Mol Immunol 2018; 105:150-164. [PMID: 30513451 DOI: 10.1016/j.molimm.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/29/2018] [Accepted: 09/20/2018] [Indexed: 02/08/2023]
Abstract
Complement activation in human diseases is characterized by the local covalent deposition of the long-lived C3 fragments iC3b/C3dg/C3d. Previously, TT30, a complement alternative pathway (AP)-selective inhibitor, was designed as a fusion protein linking the first four short consensus repeats (SCRs) of human complement receptor type 2 (CR2) with the first five SCRs of human factor H (fH). TT30 acts by utilizing CR2 SCR1-4 to bind the initially formed iC3b/C3dg/C3d fragments and delivering surface-targeted inhibition of AP C3 and C5 convertases through fH SCR 1-5. In order to combine classical (CP) and lectin (LP) pathway inhibitory abilities employing CR2-mediated targeting, TT32 was developed. TT32 is a CR2-CR1 fusion protein using the first ten SCRs of CR1, chosen because they contain both C3 and C5 convertase inhibitory activity through utilization of decay-acceleration and cofactor activity for both AP and CP. In Wieslab assays, TT32 showed potent inhibition of the CP and AP with IC50 of 11 and 46 nM, respectively. The TT32 inhibitory activity is partially blocked with a molar excess of a competing anti-CR2 mAb, thus demonstrating the importance of the CR2 targeting. TT32 was studied in the type II (CII) collagen-induced arthritis (CIA), an active immunization model, and the CII antibody-induced arthritis (CAIA) passive transfer model. In CIA, injection of 2.0 mg TT32 at day 21 and 28 post disease induction, but not untargeted CR1 alone, resulted in a 51.5% decrease in clinical disease activity (CDA). In CAIA, treatment with TT32 resulted in a 47.4% decrease in CDA. Therefore, a complement inhibitor that targets both the AP and CP/LP C3/C5 convertases was shown to limit complement-mediated tissue damage and inflammation in disease models in which all three complement activation pathways are implicated.
Collapse
Affiliation(s)
| | - Michael Storek
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Eran Or
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Richard Altman
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Suresh Katti
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Fang Sun
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Tao Peng
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Jeff Hunter
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Krista Johnson
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Yi Wang
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Ante S Lundberg
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Gaurav Mehta
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA.
| | - V Michael Holers
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| |
Collapse
|
18
|
Mödinger Y, Löffler B, Huber-Lang M, Ignatius A. Complement involvement in bone homeostasis and bone disorders. Semin Immunol 2018; 37:53-65. [DOI: 10.1016/j.smim.2018.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
19
|
Holers VM, Banda NK. Complement in the Initiation and Evolution of Rheumatoid Arthritis. Front Immunol 2018; 9:1057. [PMID: 29892280 PMCID: PMC5985368 DOI: 10.3389/fimmu.2018.01057] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/27/2018] [Indexed: 01/03/2023] Open
Abstract
The complement system is a major component of the immune system and plays a central role in many protective immune processes, including circulating immune complex processing and clearance, recognition of foreign antigens, modulation of humoral and cellular immunity, removal of apoptotic and dead cells, and engagement of injury resolving and tissue regeneration processes. In stark contrast to these beneficial roles, however, inadequately controlled complement activation underlies the pathogenesis of human inflammatory and autoimmune diseases, including rheumatoid arthritis (RA) where the cartilage, bone, and synovium are targeted. Recent studies of this disease have demonstrated that the autoimmune response evolves over time in an asymptomatic preclinical phase that is associated with mucosal inflammation. Notably, experimental models of this disease have demonstrated that each of the three major complement activation pathways plays an important role in recognition of injured joint tissue, although the lectin and amplification pathways exhibit particularly impactful roles in the initiation and amplification of damage. Herein, we review the complement system and focus on its multi-factorial role in human patients with RA and experimental murine models. This understanding will be important to the successful integration of the emerging complement therapeutics pipeline into clinical care for patients with RA.
Collapse
Affiliation(s)
| | - Nirmal K. Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
20
|
Moon YM, Lee SY, Kwok SK, Lee SH, Kim D, Kim WK, Her YM, Son HJ, Kim EK, Ryu JG, Seo HB, Kwon JE, Hwang SY, Youn J, Seong RH, Jue DM, Park SH, Kim HY, Ahn SM, Cho ML. The Fos-Related Antigen 1-JUNB/Activator Protein 1 Transcription Complex, a Downstream Target of Signal Transducer and Activator of Transcription 3, Induces T Helper 17 Differentiation and Promotes Experimental Autoimmune Arthritis. Front Immunol 2017; 8:1793. [PMID: 29326694 PMCID: PMC5741610 DOI: 10.3389/fimmu.2017.01793] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 01/11/2023] Open
Abstract
Dysfunction of T helper 17 (Th17) cells leads to chronic inflammatory disorders. Signal transducer and activator of transcription 3 (STAT3) orchestrates the expression of proinflammatory cytokines and pathogenic cell differentiation from interleukin (IL)-17-producing Th17 cells. However, the pathways mediated by STAT3 signaling are not fully understood. Here, we observed that Fos-related antigen 1 (FRA1) and JUNB are directly involved in STAT3 binding to sites in the promoters of Fosl1 and Junb. Promoter binding increased expression of IL-17 and the development of Th17 cells. Overexpression of Fra1 and Junb in mice resulted in susceptibility to collagen-induced arthritis and an increase in Th17 cell numbers and inflammatory cytokine production. In patients with rheumatoid arthritis, FRA1 and JUNB were colocalized with STAT3 in the inflamed synovium. These observations suggest that FRA1 and JUNB are associated closely with STAT3 activation, and that this activation leads to Th17 cell differentiation in autoimmune diseases and inflammation.
Collapse
Affiliation(s)
- Young-Mee Moon
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Seon-Yeong Lee
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- Center for Rheumatic Disease, Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Hoon Lee
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Deokhoon Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo Kyung Kim
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Yang-Mi Her
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Hea-Jin Son
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Eun-Kyung Kim
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Jun-Geol Ryu
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Hyeon-Beom Seo
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Jeong-Eun Kwon
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Sue-Yun Hwang
- Department of Chemical Engineering, Hankyong National University, Anseong, South Korea
| | - Jeehee Youn
- Department of Biomedical Sciences, College of Medicine, Hanyang University, Seoul, South Korea
| | - Rho H Seong
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Research Center for Functional Cellulomics, Seoul National University, Seoul, South Korea
| | - Dae-Myung Jue
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- Center for Rheumatic Disease, Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ho-Youn Kim
- Center for Rheumatic Disease, Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Min Ahn
- Department of Hemato-oncology, Bioinformatics, Cancer Research, Systems Biology, Gachon University, Seongnam, South Korea
| | - Mi-La Cho
- Laboratory of Immune Network, The Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
21
|
Hornum L, Hansen AJ, Tornehave D, Fjording MS, Colmenero P, Wätjen IF, Søe Nielsen NH, Bliddal H, Bartels EM. C5a and C5aR are elevated in joints of rheumatoid and psoriatic arthritis patients, and C5aR blockade attenuates leukocyte migration to synovial fluid. PLoS One 2017; 12:e0189017. [PMID: 29220376 PMCID: PMC5722346 DOI: 10.1371/journal.pone.0189017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/18/2017] [Indexed: 11/17/2022] Open
Abstract
Complement activation correlates to rheumatoid arthritis disease activity, and increased amounts of the complement split product C5a is observed in synovial fluids from rheumatoid arthritis patients. Blockade of C5a or its receptor (C5aR) is efficacious in several arthritis models. The aim of this study was to investigate the role of C5a and C5aR in human rheumatoid arthritis and psoriatic arthritis–both with respect to expression and function. Synovial fluid, blood and synovial samples were obtained from rheumatoid arthritis, psoriatic arthritis and osteoarthritis patients as a less inflammatory arthritis type, and blood from healthy subjects. Cells infiltrating synovial tissue were analysed by immunohistochemistry and flow cytometry. SF and blood were analysed for biomarkers by flow cytometry or ELISA. The effect of a blocking anti-human C5aR mAb on leukocyte migration was determined using a Boyden chamber. Appropriate statistical tests were applied for comparisons. C5aR+ cells were detected in most rheumatoid arthritis, in all psoriatic arthritis, but not in non-inflammatory control synovia. C5aR+ cells were primarily neutrophils and macrophages. C5aR+ macrophages were mainly found in lymphoid aggregates in close contact with T cells. C5a levels were increased in both rheumatoid arthritis and psoriatic arthritis synovial fluid compared to osteoarthritis, and in blood from rheumatoid arthritis compared to healthy subjects. Neutrophil and monocyte migration to rheumatoid arthritis synovial fluid was significantly inhibited by anti-C5aR. The data support that the C5a-C5aR axis may be driving the infiltration of inflammatory cells into the synovial fluid and synovium in both rheumatoid and psoriatic arthritis, and suggest that C5a or C5aR may be a promising treatment target in both diseases.
Collapse
Affiliation(s)
| | | | | | | | - Paula Colmenero
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Inger Falbe Wätjen
- The Parker Institute, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Frederiksberg, Denmark
| | | | - Henning Bliddal
- The Parker Institute, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Frederiksberg, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Else Marie Bartels
- The Parker Institute, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Frederiksberg, Denmark
| |
Collapse
|
22
|
Strait RT, Thornton S, Finkelman FD. Cγ1 Deficiency Exacerbates Collagen-Induced Arthritis. Arthritis Rheumatol 2017; 68:1780-7. [PMID: 26815845 DOI: 10.1002/art.39611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/21/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVE IgG antibodies protect by aggregating pathogens and activating complement and stimulatory Fcγ receptors (FcγR). Although IgG1 accounts for a large percentage of murine serum antibodies, it poorly activates complement, binds more avidly to inhibitory FcγRIIb than to stimulatory FcγRIII, and has a relatively low aggregating ability. We previously demonstrated that IgG1 protects against complement- and FcγR-independent renal disease by inhibiting immune complex obstruction of glomerular capillaries. The purpose of this study was to determine whether IgG1 also protects against the complement- and FcγR-dependent disorder, collagen-induced arthritis (CIA). METHODS CIA was induced by injecting mice with type II collagen (CII) (active model) or with IgG2a and IgG2b anti-CII monoclonal antibodies (ArthritoMab) (passive model). Arthritis severity was assessed, and CII-specific IgG was titered. RESULTS Cγ1-deficient C57BL/6 mice lack IgG1 (IgG1(-/-) ); in these mice, arthritis developed at a higher frequency and was more severe compared with IgG1(+/+) mice in the active model. Disease was FcγRIII- and C3-dependent in both the IgG(+/+) and IgG(-/-) mouse strains and was not influenced by interleukin-4 receptor α in either strain. CII-specific IgG2a/c titers were considerably higher in IgG1(-/-) than in IgG1(+/+) mice and correlated with CIA incidence and severity. IgG1(+/+) mice that developed CIA had higher CII-specific IgG1 and IgG2a/c levels than did those without CIA. CII-inoculated BALB/c IgG1(+/+) and IgG1(-/-) mice had much lower CII-specific IgG2a/c titers than did C57BL/6 mice and failed to develop CIA but developed passive CIA when given ArthritoMab. CONCLUSION The absence of a functional Cγ1 gene indirectly promotes the development of CIA, likely through increased production of IgG2a/c, an isotype that strongly activates complement and stimulatory FcγR.
Collapse
Affiliation(s)
- Richard T Strait
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sherry Thornton
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Fred D Finkelman
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, and Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| |
Collapse
|
23
|
Banda NK, Acharya S, Scheinman RI, Mehta G, Coulombe M, Takahashi M, Sekine H, Thiel S, Fujita T, Holers VM. Mannan-Binding Lectin-Associated Serine Protease 1/3 Cleavage of Pro-Factor D into Factor D In Vivo and Attenuation of Collagen Antibody-Induced Arthritis through Their Targeted Inhibition by RNA Interference-Mediated Gene Silencing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:3680-3694. [PMID: 27707997 PMCID: PMC5113144 DOI: 10.4049/jimmunol.1600719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/07/2016] [Indexed: 12/16/2022]
Abstract
The complement system is proposed to play an important role in the pathogenesis of rheumatoid arthritis (RA). The complement system mannan-binding lectin-associated serine proteases (MASP)-1/3 cleave pro-factor D (proDf; inactive) into Df (active), but it is unknown where this cleavage occurs and whether inhibition of MASP-1/3 is a relevant therapeutic strategy for RA. In the present study, we show that the cleavage of proDf into Df by MASP-1/3 can occur in the circulation and that inhibition of MASP-1/3 by gene silencing is sufficient to ameliorate collagen Ab-induced arthritis in mice. Specifically, to examine the cleavage of proDf into Df, MASP-1/3-producing Df-/- liver tissue (donor) was transplanted under the kidney capsule of MASP-1/3-/- (recipient) mice. Five weeks after the liver transplantation, cleaved Df was present in the circulation of MASP-1/3-/- mice. To determine the individual effects of MASP-1/3 and Df gene silencing on collagen Ab-induced arthritis, mice were injected with scrambled, MASP-1/3-targeted, or Df-targeted small interfering RNAs (siRNAs). The mRNA levels for MASP-1 and -3 decreased in the liver to 62 and 58%, respectively, in mice injected with MASP-1/3 siRNAs, and Df mRNA decreased to 53% in the adipose tissue of mice injected with Df siRNAs; additionally, circulating MASP-1/3 and Df protein levels were decreased. In mice injected with both siRNAs the clinical disease activity, histopathologic injury scores, C3 deposition, and synovial macrophage/neutrophil infiltration were significantly decreased. Thus, MASP-1/3 represent a new therapeutic target for the treatment of RA, likely through both direct effects on the lectin pathway and indirectly through the alternative pathway.
Collapse
Affiliation(s)
- Nirmal K Banda
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| | - Sumitra Acharya
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Robert I Scheinman
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Gaurav Mehta
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marilyne Coulombe
- Colorado Center for Transplantation Care, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan; and
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan; and
| | - Steffen Thiel
- Department of Biomedicine, University of Aarhus, 8000 Aarhus, Denmark
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan; and
| | - V Michael Holers
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
24
|
Christensen AD, Haase C, Cook AD, Hamilton JA. K/BxN Serum-Transfer Arthritis as a Model for Human Inflammatory Arthritis. Front Immunol 2016; 7:213. [PMID: 27313578 PMCID: PMC4889615 DOI: 10.3389/fimmu.2016.00213] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/17/2016] [Indexed: 12/29/2022] Open
Abstract
The K/BxN serum-transfer arthritis (STA) model is a murine model in which the immunological mechanisms occurring in rheumatoid arthritis (RA) and other arthritides can be studied. To induce K/BxN STA, serum from arthritic transgenic K/BxN mice is transferred to naive mice and manifestations of arthritis occur a few days later. The inflammatory response in the model is driven by autoantibodies against the ubiquitously expressed self-antigen, glucose-6-phosphate isomerase (G6PI), leading to the formation of immune complexes that drive the activation of different innate immune cells such as neutrophils, macrophages, and possibly mast cells. The pathogenesis further involves a range of immune mediators including cytokines, chemokines, complement factors, Toll-like receptors, Fc receptors, and integrins, as well as factors involved in pain and bone erosion. Hence, even though the K/BxN STA model mimics only the effector phase of RA, it still involves a wide range of relevant disease mediators. Additionally, as a murine model for arthritis, the K/BxN STA model has some obvious advantages. First, it has a rapid and robust onset of arthritis with 100% incidence in genetically identical animals. Second, it can be induced in a wide range of strain backgrounds and can therefore also be induced in gene-deficient strains to study the specific importance of disease mediators. Even though G6PI might not be an essential autoantigen, for example, in RA, the K/BxN STA model is a useful tool to understand how autoantibodies, in general, drive the progression of arthritis by interacting with downstream components of the innate immune system. Finally, the model has also proven useful as a model wherein arthritic pain can be studied. Taken together, these features make the K/BxN STA model a relevant one for RA, and it is a potentially valuable tool, especially for the preclinical screening of new therapeutic targets for RA and perhaps other forms of inflammatory arthritis. Here, we describe the molecular and cellular pathways in the development of K/BxN STA focusing on the recent advances in the understanding of the important mechanisms. Additionally, this review provides a comparison of the K/BxN STA model to some other arthritis models.
Collapse
Affiliation(s)
- Anne D Christensen
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia; Novo Nordisk A/S, Måløv, Denmark
| | | | - Andrew D Cook
- Department of Medicine, University of Melbourne , Parkville, VIC , Australia
| | - John A Hamilton
- Department of Medicine, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
25
|
Deficiency of the Complement Component 3 but Not Factor B Aggravates Staphylococcus aureus Septic Arthritis in Mice. Infect Immun 2016; 84:930-939. [PMID: 26787717 PMCID: PMC4807474 DOI: 10.1128/iai.01520-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/11/2016] [Indexed: 12/23/2022] Open
Abstract
The complement system plays an essential role in the innate immune response and protection against bacterial infections. However, detailed knowledge regarding the role of complement in Staphylococcus aureus septic arthritis is still largely missing. In this study, we elucidated the roles of selected complement proteins in S. aureus septic arthritis. Mice lacking the complement component 3 (C3(-/-)), complement factor B (fB(-/-)), and receptor for C3-derived anaphylatoxin C3a (C3aR(-/-)) and wild-type (WT) control mice were intravenously or intra-articularly inoculated with S. aureus strain Newman. The clinical course of septic arthritis, as well as histopathological and radiological changes in joints, was assessed. After intravenous inoculation, arthritis severity and frequency were significantly higher in C3(-/-)mice than in WT controls, whereas fB(-/-)mice displayed intermediate arthritis severity and frequency. This was in accordance with both histopathological and radiological findings. C3, but not fB, deficiency was associated with greater weight loss, more frequent kidney abscesses, and higher bacterial burden in kidneys. S. aureus opsonized with C3(-/-)sera displayed decreased uptake by mouse peritoneal macrophages compared with bacteria opsonized with WT or fB(-/-)sera. C3aR deficiency had no effect on the course of hematogenous S. aureus septic arthritis. We conclude that C3 deficiency increases susceptibility to hematogenous S. aureus septic arthritis and impairs host bacterial clearance, conceivably due to diminished opsonization and phagocytosis of S. aureus.
Collapse
|
26
|
Bloom AC, Collins FL, Van't Hof RJ, Ryan ES, Jones E, Hughes TR, Morgan BP, Erlandsson M, Bokarewa M, Aeschlimann D, Evans BAJ, Williams AS. Deletion of the membrane complement inhibitor CD59a drives age and gender-dependent alterations to bone phenotype in mice. Bone 2016; 84:253-261. [PMID: 26721735 PMCID: PMC4764651 DOI: 10.1016/j.bone.2015.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 11/28/2022]
Abstract
Degenerative joint diseases such as osteoarthritis are characterised by aberrant region-specific bone formation and abnormal bone mineral content. A recent study suggested a role for the complement membrane attack complex in experimental models of osteoarthritis. Since CD59a is the principal regulator of the membrane attack complex in mice, we evaluated the impact of CD59a gene deletion upon maintenance of bone architecture. In vivo bone morphology analysis revealed that male CD59a-deficient mice have increased femur length and cortical bone volume, albeit with reduced bone mineral density. However, this phenomenon was not observed in female mice. Histomorphometric analysis of the trabecular bone showed increased rates of bone homeostasis, with both increased bone resorption and mineral apposition rate in CD59a-deficient male mice. When bone cells were studied in isolation, in vitro osteoclastogenesis was significantly increased in male CD59a-deficient mice, although osteoblast formation was not altered. Our data reveal, for the first time, that CD59a is a regulator of bone growth and homeostasis. CD59a ablation in male mice results in longer and wider bones, but with less density, which is likely a major contributing factor for their susceptibility to osteoarthritis. These findings increase our understanding of the role of complement regulation in degenerative arthritis.
Collapse
Affiliation(s)
- Anja C Bloom
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Fraser L Collins
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Rob J Van't Hof
- Bone Research Group, Institute of Ageing & Chronic Disease, University ofLiverpool, Liverpool, UK
| | - Elizabeth S Ryan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Emma Jones
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Timothy R Hughes
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - B Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Malin Erlandsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Göteborg, Gothenburg, Sweden
| | - Maria Bokarewa
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Göteborg, Gothenburg, Sweden
| | - Daniel Aeschlimann
- Matrix Biology and Tissue Repair, Dental School, Cardiff University, Cardiff, UK; Arthritis Research UK Centre for Biomechanics and Bioengineering, Cardiff University, Cardiff, UK
| | - Bronwen A J Evans
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, UK; Arthritis Research UK Centre for Biomechanics and Bioengineering, Cardiff University, Cardiff, UK
| | - Anwen S Williams
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; Arthritis Research UK Centre for Biomechanics and Bioengineering, Cardiff University, Cardiff, UK.
| |
Collapse
|
27
|
Murayama MA, Kakuta S, Inoue A, Umeda N, Yonezawa T, Maruhashi T, Tateishi K, Ishigame H, Yabe R, Ikeda S, Seno A, Chi HH, Hashiguchi Y, Kurata R, Tada T, Kubo S, Sato N, Liu Y, Hattori M, Saijo S, Matsushita M, Fujita T, Sumida T, Iwakura Y. CTRP6 is an endogenous complement regulator that can effectively treat induced arthritis. Nat Commun 2015; 6:8483. [PMID: 26404464 PMCID: PMC4598845 DOI: 10.1038/ncomms9483] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/27/2015] [Indexed: 01/21/2023] Open
Abstract
The complement system is important for the host defence against infection as well as for the development of inflammatory diseases. Here we show that C1q/TNF-related protein 6 (CTRP6; gene symbol C1qtnf6) expression is elevated in mouse rheumatoid arthritis (RA) models. C1qtnf6(-/-) mice are highly susceptible to induced arthritis due to enhanced complement activation, whereas C1qtnf6-transgenic mice are refractory. The Arthus reaction and the development of experimental autoimmune encephalomyelitis are also enhanced in C1qtnf6(-/-) mice and C1qtnf6(-/-) embryos are semi-lethal. We find that CTRP6 specifically suppresses the alternative pathway of the complement system by competing with factor B for C3(H2O) binding. Furthermore, treatment of arthritis-induced mice with intra-articular injection of recombinant human CTRP6 cures the arthritis. CTRP6 is expressed in human synoviocytes, and CTRP6 levels are increased in RA patients. These results indicate that CTRP6 is an endogenous complement regulator and could be used for the treatment of complement-mediated diseases.
Collapse
Affiliation(s)
- Masanori A Murayama
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan.,Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan.,Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-0882, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Shigeru Kakuta
- Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan
| | - Asuka Inoue
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Naoto Umeda
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Tomo Yonezawa
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan.,Department of Systems Biomedicine, National Research Institute of Child Health and Development, Tokyo 157-8535, Japan
| | - Takumi Maruhashi
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan.,Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan
| | - Koichiro Tateishi
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Harumichi Ishigame
- Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan
| | - Rikio Yabe
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan.,Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan.,Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Satoshi Ikeda
- Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan
| | - Akimasa Seno
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan.,Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan.,Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-0882, Japan
| | - Hsi-Hua Chi
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Yuriko Hashiguchi
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Riho Kurata
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan.,Department of Systems Biomedicine, National Research Institute of Child Health and Development, Tokyo 157-8535, Japan
| | - Takuya Tada
- Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan
| | - Sachiko Kubo
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan.,Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan
| | - Nozomi Sato
- Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan
| | - Yang Liu
- Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan
| | - Masahira Hattori
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-0882, Japan
| | - Shinobu Saijo
- Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan.,Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute, Fukushima 960-8142, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan.,Laboratory of Molecular Pathogenesis, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan.,Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-0882, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.,Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
28
|
Nass FR, Skare TL, Goeldner I, Nisihara R, Messias-Reason IJ, Utiyama SRR. Association of complement factor B allotypes and serum biomarkers in rheumatoid arthritis patients and their relatives. Int J Immunogenet 2015; 42:439-44. [PMID: 26385602 DOI: 10.1111/iji.12232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/08/2015] [Accepted: 07/19/2015] [Indexed: 12/21/2022]
Abstract
The aim of the study was to investigate the allotypic variability of complement factor B (BF) in patients and relatives with rheumatoid arthritis (RA) and its association with serological biomarkers and clinical features of the disease. BF allotypes were determined by high-voltage agarose gel electrophoresis in serum samples of 180 patients with RA, 198 relatives and 98 controls from Southern Brazil. Anticyclic citrullinated peptide (anti-CCP), antimutated citrullinated vimentin (anti-MCV) and IgA-rheumatoid factor (RF) were determined by ELISA and IgM-RF by latex agglutination in all samples. No significant differences were found in the allotypic variants of BF between patients with RA, relatives and controls, nor associations with gender and age of RA onset. BF*S07 allotype was significantly associated with extra-articular manifestations (EAMs; Secondary Sjögren Syndrome, pneumonitis, rheumatoid nodules) in patients with RA (P = 0.02; OR = 6.62). Patients with phenotype BF F had lower positivity for anti-MCV biomarker (P = 0.02; OR = 0.22) and those with allotype BF*S had higher prevalence of this autoantibody (P = 0.02; OR = 3.77). An increased frequency of RF-IgA was detected in relatives of patients with RA with BF FS07 phenotype (P = 0.02; OR = 7.78). Complement BF variability did not influence the development of RA in the studied patients, but BF variants may act as markers of disease prognosis, such as development of EAMs, corroborating with the role of the alternative pathway in the pathogenesis of RA.
Collapse
Affiliation(s)
- F R Nass
- Laboratory of Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - T L Skare
- Rheumatology Unit, Evangelic University Hospital of Curitiba, Paraná, Brazil
| | - I Goeldner
- Laboratory of Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - R Nisihara
- Laboratory of Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil.,Rheumatology Unit, Evangelic University Hospital of Curitiba, Paraná, Brazil
| | - I J Messias-Reason
- Laboratory of Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - S R R Utiyama
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
29
|
Giles JL, Choy E, van den Berg C, Morgan BP, Harris CL. Functional analysis of a complement polymorphism (rs17611) associated with rheumatoid arthritis. THE JOURNAL OF IMMUNOLOGY 2015; 194:3029-34. [PMID: 25725109 PMCID: PMC4367161 DOI: 10.4049/jimmunol.1402956] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement is implicated in the pathogenesis of rheumatoid arthritis (RA); elevated levels of complement activation products have been measured in plasma, synovial fluid, and synovial tissues of patients. Complement polymorphisms are associated with RA in genome-wide association studies. Coding-region polymorphisms may directly impact protein activity; indeed, we have shown that complement polymorphisms affecting a single amino acid change cause subtle changes in individual component function that in combination have dramatic effects on complement activity and disease risk. In this study, we explore the functional consequences of a single nucleotide polymorphism (SNP) (rs17611) encoding a V802I polymorphism in C5 and propose a mechanism for its link to RA pathology. Plasma levels of C5, C5a, and terminal complement complex were measured in healthy and RA donors and correlated to rs17611 polymorphic status. Impact of the SNP on C5 functionality was assessed. Plasma C5a levels were significantly increased and C5 levels significantly lower with higher copy number of the RA risk allele for rs17611, suggesting increased turnover of C5 V802. Functional assays using purified C5 variants revealed no significant differences in lytic activity, suggesting that increased C5 V802 turnover was not mediated by complement convertase enzymes. C5 is also cleaved in vivo by proteases; the C5 V802 variant was more sensitive to cleavage with elastase and the “C5a” generated was biologically active. We hypothesize that this SNP in C5 alters the rate at which elastase generates active C5a in rheumatoid joints, hence recruiting neutrophils to the site thus maintaining a state of inflammation in arthritic joints.
Collapse
Affiliation(s)
- Joanna L Giles
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom;
| | - Ernest Choy
- Cardiff Regional Experimental Arthritis Treatment and Evaluation Centre, Section of Rheumatology, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and
| | - Carmen van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - B Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Claire L Harris
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
30
|
Kil LP, Corneth OB, de Bruijn MJ, Asmawidjaja PS, Krause A, Lubberts E, van Loo PF, Hendriks RW. Surrogate light chain expression beyond the pre-B cell stage promotes tolerance in a dose-dependent fashion. J Autoimmun 2015; 57:30-41. [DOI: 10.1016/j.jaut.2014.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/20/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
|
31
|
Zhang F, Wen Y, Guo X, Zhang Y, Wang S, Yang T, Shen H, Chen X, Tan L, Tian Q, Deng HW. Genome-wide pathway-based association study implicates complement system in the development of Kashin-Beck disease in Han Chinese. Bone 2015; 71:36-41. [PMID: 25305519 DOI: 10.1016/j.bone.2014.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 09/06/2014] [Accepted: 09/30/2014] [Indexed: 11/22/2022]
Abstract
Kashin-Beck disease (KBD) is a chronic osteochondropathy. The pathogenesis of KBD remains unknown. To identify relevant biological pathways for KBD, we conducted a genome-wide pathway-based association study (GWPAS) following by replication analysis, totally using 2743 Chinese Han adults. A modified gene set enrichment algorithm was used to detect association between KBD and 963 biological pathways. Cartilage gene expression analysis and serum complement measurement were performed to evaluate the functional relevance of identified pathway with KBD. We found that the Complement and Coagulation Cascades (CACC) pathway was significantly associated with KBD (P value=3.09×10(-5), false-discovery rate=0.042). Within the CACC pathway, the most significant association was observed at rs1656966 (P value=1.97×10(-4)) of KNG1 gene. Further replication study observed that rs1656966 (P value=0.037) was significantly associated with KBD in an independent validation sample of 1026 subjects. Gene expression analysis observed that CFD (ratio=3.39±2.68), A2M (ratio=3.67±5.63), C5 (ratio=2.65±2.52) and CD46 (ratio=2.29±137) genes of the CACC pathway were up-regulated in KBD articular cartilage compared to healthy articular cartilage. The serum level of complement C5 in KBD patients were significantly higher than that in healthy controls (P value=0.038). Our study is the first to suggest that complement system-related CACC pathway contributed to the development of KBD.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Key Laboratory of Trace Elements and Endemic Diseases of Ministry of Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yan Wen
- Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Key Laboratory of Trace Elements and Endemic Diseases of Ministry of Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xiong Guo
- Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Key Laboratory of Trace Elements and Endemic Diseases of Ministry of Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Yingang Zhang
- Department of Orthopedics, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Sen Wang
- Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Key Laboratory of Trace Elements and Endemic Diseases of Ministry of Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Tielin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Hui Shen
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, USA
| | - Xiangding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, P. R. China
| | - Lijun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, P. R. China
| | - Qing Tian
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, USA
| |
Collapse
|
32
|
Banda NK, Mehta G, Kjaer TR, Takahashi M, Schaack J, Morrison TE, Thiel S, Arend WP, Holers VM. Essential role for the lectin pathway in collagen antibody-induced arthritis revealed through use of adenovirus programming complement inhibitor MAp44 expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:2455-68. [PMID: 25070856 PMCID: PMC4134985 DOI: 10.4049/jimmunol.1400752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous studies using mannose-binding lectin (MBL) and complement C4-deficient mice have suggested that the lectin pathway (LP) is not required for the development of inflammatory arthritis in the collagen Ab-induced arthritis (CAIA) model. MBL, ficolins and collectin-11 are key LP pattern recognition molecules that associate with three serine proteases-MASP-1, MASP-2, and MASP-3-and with two MBL-associated proteins designated sMAP and MBL-associated protein of 44kDA (MAp44). Recent studies have shown that MAp44, an alternatively spliced product of the MASP-1/3 gene, is a competitive inhibitor of the binding of the recognition molecules to all three MASPs. In these studies, we examined the effect of treatment of mice with adenovirus (Ad) programmed to express human MAp44 (AdhMAp44) on the development of CAIA. AdhMAp44 and Ad programming GFP (AdGFP) expression were injected i.p. in C57BL/6 wild type mice prior to the induction of CAIA. AdhMAp44 significantly reduced the clinical disease activity (CDA) score by 81% compared with mice injected with AdGFP. Similarly, histopathologic injury scores for inflammation, pannus, cartilage and bone damage, as well as C3 deposition in the cartilage and synovium, were significantly reduced by AdhMAp44 pretreatment. Mice treated with AdmMAp44, programming expression of mouse MAp44, also showed significantly decreased CDA score and histopathologic injury scores. In addition, administration of AdhMAp44 significantly diminished the severity of Ross River virus-induced arthritis, an LP-dependent model. Our study provides conclusive evidence that an intact complement LP is essential to initiate CAIA, and that MAp44 may be an appropriate treatment for inflammatory arthritis.
Collapse
Affiliation(s)
- Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045;
| | - Gaurav Mehta
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Troels R Kjaer
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; and
| | - Jerome Schaack
- Department of Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Thomas E Morrison
- Department of Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - William P Arend
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045;
| |
Collapse
|
33
|
Ma R, Cui Z, Hu SY, Jia XY, Yang R, Zheng X, Ao J, Liu G, Liao YH, Zhao MH. The alternative pathway of complement activation may be involved in the renal damage of human anti-glomerular basement membrane disease. PLoS One 2014; 9:e91250. [PMID: 24658070 PMCID: PMC3962356 DOI: 10.1371/journal.pone.0091250] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/10/2014] [Indexed: 11/18/2022] Open
Abstract
Linear deposition of IgG and complement 3 (C3) along glomerular basement membrane (GBM) is generally revealed in the kidneys of human anti-GBM disease. Our recent studies demonstrated the pathogenic role of complement activation in renal damage of this disease. However, the pathways of complement activation were still paradoxical. In this study, renal biopsy tissues from 10 patients with anti-GBM disease were used to investigate the pathways of complement activation by detecting the deposition of various complement components, including C1q, factor B, factor P (properdin), mannose-binding lectin (MBL), C3d, C4d and C5b-9, using immunohistochemistry and immunofluorescence. We found that C1q, factor B, properdin, C3d, C4d and C5b-9 were detected in all the glomeruli of our patients, along GBM with a linear and/or granular staining pattern. Furthermore, C1q, factor B and properdin co-localized well with C5b-9. The properdin also co-localized well with C3d. However, the deposition of MBL was diffusive in mesangium, GBM, Bowman's capsule and within crescents and was not co-localized with C5b-9 but partially co-localized with C4d. The intensity of factor B deposition (3.3 vs. 1.2, P<0.001) and C5b-9 deposition (3.2 vs. 1.6, P<0.001) was significantly stronger in the glomeruli with crescent formation, compared with the glomeruli without crescents. The complement system is overall activated via both the alternative pathway and classical pathway in the kidneys of human anti-GBM disease. The alternative pathway might play an important role in complement activation induced renal damage.
Collapse
Affiliation(s)
- Rui Ma
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
- Renal Division, Department of Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhao Cui
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
- * E-mail:
| | - Shui-Yi Hu
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Xiao-Yu Jia
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Rui Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Xin Zheng
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Jie Ao
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Gang Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Yun-Hua Liao
- Renal Division, Department of Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
34
|
Hu X, Holers VM, Thurman JM, Schoeb TR, Ramos TN, Barnum SR. Therapeutic inhibition of the alternative complement pathway attenuates chronic EAE. Mol Immunol 2013; 54:302-8. [PMID: 23337717 PMCID: PMC3602149 DOI: 10.1016/j.molimm.2012.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 12/14/2012] [Indexed: 12/13/2022]
Abstract
Previous studies from our laboratory using complement-mutant mice demonstrated that the alternative pathway is the dominant activation pathway responsible for complement-mediated pathology in demyelinating disease. Using a well-characterized inhibitory monoclonal antibody (mAb 1379) directed against mouse factor B, we assessed the therapeutic value of inhibiting the alternative complement pathway in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Administration of anti-factor B antibody to mice prior to the onset of clinical signs of active EAE had no affect on the onset or acute phase of disease, but significantly attenuated the chronic phase of disease resulting in reduced cellular infiltration, inflammation and demyelination in antibody-treated mice. Attenuation of the chronic phase of disease was long lasting even though antibody administration was terminated shortly after disease onset. Chronic disease was also attenuated in transferred EAE when anti-factor B antibody was administered before or after disease onset. Similar levels of disease attenuation were observed in transferred EAE using MOG-specific encephalitogenic T cells. These studies demonstrate the therapeutic potential for inhibition of factor B in the chronic phase of demyelinating disease, where treatment options are limited.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Complement Factor B/classification
- Complement Pathway, Alternative/drug effects
- Complement Pathway, Alternative/immunology
- Complement System Proteins/immunology
- Demyelinating Diseases/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Inflammation/immunology
- Mice
- Mice, Inbred C57BL
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Xianzhen Hu
- Department of Microbiology, University of Alabama at Birmingham, 845 19th St. S., Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
35
|
Ballanti E, Perricone C, Greco E, Ballanti M, Di Muzio G, Chimenti MS, Perricone R. Complement and autoimmunity. Immunol Res 2013; 56:477-91. [DOI: 10.1007/s12026-013-8422-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Banda NK, Mehta G, Ferreira VP, Cortes C, Pickering MC, Pangburn MK, Arend WP, Holers VM. Essential role of surface-bound complement factor H in controlling immune complex-induced arthritis. THE JOURNAL OF IMMUNOLOGY 2013; 190:3560-9. [PMID: 23436934 DOI: 10.4049/jimmunol.1203271] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Factor H (fH) is an endogenous negative regulator of the alternative pathway (AP) that binds polyanions as well as complement activation fragments C3b and C3d. The AP is both necessary and sufficient to develop collagen Ab-induced arthritis (CAIA) in mice; the mechanisms whereby normal control of the AP is overcome and injury develops are unknown. Although primarily a soluble circulating protein, fH can also bind to tissues in a manner dependent on the carboxyl-terminal domain containing short consensus repeats 19 and 20. We examined the role of fH in CAIA by blocking its binding to tissues through administration of a recombinant negative inhibitor containing short consensus repeats 19 and 20 (rfH19-20), which impairs fH function and amplifies surface AP activation in vitro. Administration of rfH19-20, but not control rfH3-5, significantly worsened clinical disease activity, histopathologic injury, and C3 deposition in the synovium and cartilage in wild-type and fH(+/-) mice. In vitro studies demonstrated that rfH19-20 increased complement activation on cartilage extracts and injured fibroblast-like synoviocytes, two major targets of complement deposition in the joint. We conclude that endogenous fH makes a significant contribution to inhibition of the AP in CAIA through binding to sites of immune complex formation and complement activation.
Collapse
Affiliation(s)
- Nirmal K Banda
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Okura Y, Nawate M, Takahashi Y, Kobayashi I, Yamada M, Ariga T. Rheumatoid factor-positive synovitis in a patient with C3 deficiency. Scand J Rheumatol 2012; 41:405-6. [DOI: 10.3109/03009742.2012.698302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Neighbours LM, Long K, Whitmore AC, Heise MT. Myd88-dependent toll-like receptor 7 signaling mediates protection from severe Ross River virus-induced disease in mice. J Virol 2012; 86:10675-85. [PMID: 22837203 PMCID: PMC3457316 DOI: 10.1128/jvi.00601-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/16/2012] [Indexed: 12/14/2022] Open
Abstract
Arthralgia-associated alphaviruses, including chikungunya virus (CHIKV) and Ross River virus (RRV), pose significant public health threats because of their ability to cause explosive outbreaks of debilitating arthralgia and myalgia in human populations. Although the host inflammatory response is known to contribute to the pathogenesis of alphavirus-induced arthritis and myositis, the role that Toll-like receptors (TLRs), which are major regulators of host antiviral and inflammatory responses, play in the pathogenesis of alphavirus-induced arthritis and myositis has not been extensively studied. Using a mouse model of RRV-induced myositis/arthritis, we found that myeloid differentiation primary response gene 88 (Myd88)-dependent TLR7 signaling is involved in protection from severe RRV-associated disease. Infections of Myd88- and TLR7-deficient mouse strains with RRV revealed that both Myd88 and TLR7 significantly contributed to protection from RRV-induced mortality, and both mouse strains exhibited more severe tissue damage than wild-type (WT) mice following RRV infection. While viral loads were unchanged in either Myd88 or TLR7 knockout mice compared to WT mice at early times postinfection, both Myd88 and TLR7 knockout mice exhibited higher viral loads than WT mice at late times postinfection. Furthermore, while high levels of RRV-specific antibody were produced in TLR7-deficient mice, this antibody had very little neutralizing activity and had lower affinity than WT antibody. Additionally, TLR7- and Myd88-deficient mice showed defects in germinal center activity, suggesting that TLR7-dependent signaling is critical for the development of protective antibody responses against RRV.
Collapse
Affiliation(s)
- Lauren M. Neighbours
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kristin Long
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alan C. Whitmore
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
39
|
Kaczorowski DJ, Scott MJ, Pibris JP, Afrazi A, Nakao A, Edmonds RD, Kim S, Kwak JH, Liu Y, Fan J, Billiar TR. Mammalian DNA is an endogenous danger signal that stimulates local synthesis and release of complement factor B. Mol Med 2012; 18:851-60. [PMID: 22526919 DOI: 10.2119/molmed.2012.00011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/19/2012] [Indexed: 11/06/2022] Open
Abstract
Complement factor B plays a critical role in ischemic tissue injury and autoimmunity. Factor B is dynamically synthesized and released by cells outside of the liver, but the molecules that trigger local factor B synthesis and release during endogenous tissue injury have not been identified. We determined that factor B is upregulated early after cold ischemia-reperfusion in mice, using a heterotopic heart transplant model. These data suggested upregulation of factor B by damage-associated molecular patterns (DAMPs), but multiple common DAMPs did not induce factor B in RAW264.7 mouse macrophages. However, exogenous DNA induced factor B mRNA and protein expression in RAW cells in vitro, as well as in peritoneal and alveolar macrophages in vivo. To determine the cellular mechanisms involved in DNA-induced factor B upregulation we then investigated the role of multiple known DNA receptors or binding partners. We stimulated peritoneal macrophages from wild-type (WT), toll-like receptor 9 (TLR9)-deficient, receptor for advanced glycation end products (RAGE)⁻/⁻ and myeloid differentiation factor 88 (MyD88)⁻/⁻ mice, or mouse macrophages deficient in high-mobility group box proteins (HMGBs), DNA-dependent activator of interferon-regulatory factors (DAI) or absent in melanoma 2 (AIM2), with DNA in the presence or absence of lipofection reagent. Reverse transcription-polymerase chain reaction, Western blotting and immunocytochemical analysis were employed for analysis. Synthesis of factor B was independent of TLR9, RAGE, DAI and AIM2, but was dependent on HMGBs, MyD88, p38 and NF-κB. Our data therefore show that mammalian DNA is an endogenous molecule that stimulates factor B synthesis and release from macrophages via HMGBs, MyD88, p38 and NF-κB signaling. This activation of the immune system likely contributes to damage following sterile injury such as hemorrhagic shock and ischemia-reperfusion.
Collapse
Affiliation(s)
- David J Kaczorowski
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Finnegan A, Ashaye S, Hamel KM. B effector cells in rheumatoid arthritis and experimental arthritis. Autoimmunity 2012; 45:353-63. [PMID: 22432771 DOI: 10.3109/08916934.2012.665526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis is a chronic autoimmune immune disease affecting approximately 1% of the population. There has been a renewed interest in the role of B cells in rheumatoid arthritis based on the evidence that B cell depletion therapy is effective in the treatment of disease. This review summarizes the current knowledge of the mechanisms by which B cells contribute to autoimmune arthritis including roles as autoantibody producing cells, antigen-presenting cells, cytokine producing cells, and regulatory cells.
Collapse
Affiliation(s)
- Alison Finnegan
- Department of Medicine, Section of Rheumatology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
41
|
Banda NK, Hyatt S, Antonioli AH, White JT, Glogowska M, Takahashi K, Merkel TJ, Stahl GL, Mueller-Ortiz S, Wetsel R, Arend WP, Holers VM. Role of C3a receptors, C5a receptors, and complement protein C6 deficiency in collagen antibody-induced arthritis in mice. THE JOURNAL OF IMMUNOLOGY 2011; 188:1469-78. [PMID: 22205026 DOI: 10.4049/jimmunol.1102310] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The complement system, especially the alternative pathway, plays essential roles in the induction of injury in collagen Ab-induced arthritis (CAIA) in mice. The goal of the current study was to directly compare the roles of receptors for C3a and C5a, as well as the membrane attack complex, as effector mechanisms in the pathogenesis of CAIA. Clinical disease activity in C3aR(-/-), C5aR(-/-), and C6-deficient (C6-def) mice was decreased by 52, 94, and 65%, respectively, as compared with wild-type mice. Decreases in histopathologic injury as well as in IgG and C3 deposition paralleled the clinical disease activity. A decrease in the percentage of synovial neutrophils was observed in C3aR(-/-), C5aR(-/-), and C6-def mice, and a decrease in macrophages was observed in C3aR(-/-) and C5aR(-/-), but not in C6-def, mice. Synovial mRNA obtained by laser capture microdissection exhibited a decrease in TNF-α in C5aR(-/-) mice and in IL-1β in both C5aR(-/-) and C6-def mice, whereas C3aR(-/-) mice demonstrated no change in either cytokine. Our findings show that absent C3aR-, C5aR-, or membrane attack complex-initiated effector mechanisms each decrease susceptibility to CAIA, with clinical effects most pronounced in C5aR-deficient mice. Although the absence of C3aR, C5aR, or C6 led to differential deficiencies in effector mechanisms, decreased proximal joint IgG and C3 deposition was common to all three genotypes in comparison with wild-type mice. These data suggest the existence of positive-feedback amplification pathways downstream of all three effectors that promote additional IgG deposition and C3 activation in the joint.
Collapse
Affiliation(s)
- Nirmal K Banda
- Division of Rheumatology, Department of Medicine and Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
B cell depletion reduces the number of autoreactive T helper cells and prevents glucose-6-phosphate isomerase-induced arthritis. PLoS One 2011; 6:e24718. [PMID: 21931827 PMCID: PMC3169631 DOI: 10.1371/journal.pone.0024718] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/16/2011] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefit of B cell depletion in patients with rheumatoid arthritis has provided proof of concept that B cells are relevant for the pathogenesis of arthritis. It remains unknown which B cell effector functions contribute to the induction or chronification of arthritis. We studied the clinical and immunological effects of B cell depletion in glucose-6-phosphate isomerase-induced arthritis. We targeted CD22 to deplete B cells. Mice were depleted of B cells before or after immunization with glucose-6-phosphate isomerase (G6PI). The clinical and histological effects were studied. G6PI-specific antibody responses were measured by ELISA. G6PI-specific T helper (Th) cell responses were assayed by polychromatic flow cytometry. B cell depletion prior to G6PI-immunization prevented arthritis. B cell depletion after immunization ameliorated arthritis, whereas B cell depletion in arthritic mice was ineffective. Transfer of antibodies from arthritic mice into B cell depleted recipients did not reconstitute arthritis. B cell depleted mice harbored much fewer G6PI-specific Th cells than control animals. B cell depletion prevents but does not cure G6PI-induced arthritis. Arthritis prevention upon B cell depletion is associated with a drastic reduction in the number of G6PI-specific effector Th cells.
Collapse
|
43
|
Role of the complement system in rheumatoid arthritis and psoriatic arthritis: Relationship with anti-TNF inhibitors. Autoimmun Rev 2011; 10:617-23. [DOI: 10.1016/j.autrev.2011.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Liu XD, Chen Y, Liu FY, Ye LH, Cai L. Effect of Wenhua Juanbi recipe on proliferation and apoptosis of synoviocytes in rats with collagen-inducing arthritis. Chin J Integr Med 2011; 19:453-8. [PMID: 21717160 DOI: 10.1007/s11655-011-0753-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study the effect of Wenhua Juanbi Recipe (WJR) on proliferation and apoptosis of synoviocytes in rats with collagen-inducing arthritis (CIA). METHODS A CIA model was induced by intradermal injection of bovine collagen type II emulsion at the base of rat tails. Thirty modeled healthy Wistar rats were randomly assigned to one of three groups (10 per group): the model group, the methotrexate (MTX)-treated group (0.78 mg/kg) and the WJR-treated group (22.9 g/kg). A group of 10 healthy rats was used as normal control. Treatments or normal saline for the control group were administered by oral gavage once daily. Rats were sacrificed after 30-day treatment and subjected to the following examinations: arthritis index (AI) was estimated, inflammatory cell infiltration and proliferation in synovial membrane were evaluated by microscopy, the synoviocyte apoptosis was determined by TUNEL assay, and the cell apoptosis index was calculated. RESULTS AI was lowered significantly in the WJR group compared to the model group (P<0.01). The pathological findings observed in the model group were reversed in the WJR group, including increase in inflammatory cell infiltration and synoviocyte proliferation in synovial membrane and reduction in cell apoptosis index (all P<0.01). CONCLUSIONS Synoviocyte proliferation and apoptosis reduction were present in CIA rats. WJR was effective in treating the rat model of CIA. The therapeutic effect might be exerted through inducing apoptosis and suppressing proliferation of synoviocytes.
Collapse
Affiliation(s)
- Xi-de Liu
- Department of Arthropathy, Zhejiang Provincial Hospital of Integrated Traditional and Western Medicine, Hangzhou, China.
| | | | | | | | | |
Collapse
|
45
|
Hinterseher I, Erdman R, Donoso LA, Vrabec TR, Schworer CM, Lillvis JH, Boddy AM, Derr K, Golden A, Bowen WD, Gatalica Z, Tapinos N, Elmore JR, Franklin DP, Gray JL, Garvin RP, Gerhard GS, Carey DJ, Tromp G, Kuivaniemi H. Role of complement cascade in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2011; 31:1653-60. [PMID: 21493888 DOI: 10.1161/atvbaha.111.227652] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The goal of this study was to investigate the role of complement cascade genes in the pathobiology of human abdominal aortic aneurysms (AAAs). METHODS AND RESULTS Results of a genome-wide microarray expression profiling revealed 3274 differentially expressed genes between aneurysmal and control aortic tissue. Interestingly, 13 genes in the complement cascade were significantly differentially expressed between AAA and the controls. In silico analysis of the promoters of the 13 complement cascade genes showed enrichment for transcription factor binding sites for signal transducer and activator of transcription (STAT)5A. Chromatin-immunoprecipitation experiments demonstrated binding of transcription factor STAT5A to the promoters of the majority of the complement cascade genes. Immunohistochemical analysis showed strong staining for C2 in AAA tissues. CONCLUSIONS These results provide strong evidence that the complement cascade plays a role in human AAA. Based on our microarray studies, the pathway is activated in AAA, particularly via the lectin and classical pathways. The overrepresented binding sites of transcription factor STAT5A in the complement cascade gene promoters suggest a role for STAT5A in the coordinated regulation of complement cascade gene expression.
Collapse
Affiliation(s)
- Irene Hinterseher
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822-2610, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Manickam B, Jha P, Matta B, Liu J, Bora PS, Bora NS. Inhibition of complement alternative pathway suppresses experimental autoimmune anterior uveitis by modulating T cell responses. J Biol Chem 2011; 286:8472-8480. [PMID: 21216963 DOI: 10.1074/jbc.m110.197616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The objective of the current study was to delineate the pathway of complement activation that is crucial for the induction of experimental autoimmune anterior uveitis (EAAU). We studied the development of EAAU in melanin-associated antigen (MAA)-sensitized Lewis rats treated with antibody against C4 or factor B. Control animals received isotype IgG control. Antibody against C4 had no effect on EAAU, and all of the animals developed EAAU similar to those injected with control IgG. In contrast, EAAU was completely inhibited in all MAA-sensitized Lewis rats injected with factor B antibody. Treatment with anti-factor B antibody resulted in suppression of ocular complement activation. Adoptive transfer of T lymphocytes harvested from draining lymph nodes of donor animals treated with anti-factor B did not transfer EAAU to naïve syngenic rats. Anti-factor B antibody inhibited the ability of MAA-specific CD4(+) T cells to proliferate (in vitro) in response to MAA in a dose-dependent manner. Level of TNF-α and IFN-γ decreased in the presence of anti-factor B. Collectively, our results provide the novel finding that complement activation via the alternative pathway contributes to intraocular inflammation in EAAU, and anti-factor B-mediated inhibition of EAAU is due to diminished antigen-specific CD4(+) T cell responses to MAA. Our findings explain the interactions between the complement system and T cells that are critical for the induction of EAAU and may lead to the development of therapy for idiopathic anterior uveitis based on selective blockade of the alternative pathway.
Collapse
Affiliation(s)
- Balasubramanian Manickam
- From the Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Purushottam Jha
- From the Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Bharati Matta
- From the Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Juan Liu
- From the Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Puran S Bora
- From the Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Nalini S Bora
- From the Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
47
|
Manickam B, Jha P, Hepburn NJ, Morgan BP, Harris CL, Bora PS, Bora NS. Suppression of complement activation by recombinant Crry inhibits experimental autoimmune anterior uveitis (EAAU). Mol Immunol 2010; 48:231-9. [PMID: 20843553 DOI: 10.1016/j.molimm.2010.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/28/2010] [Accepted: 08/10/2010] [Indexed: 12/12/2022]
Abstract
This study was initiated to explore the effect of recombinant rat Crry linked to the Fc portion of rat IgG2a (Crry-Ig) on the induction of experimental autoimmune anterior uveitis (EAAU) and on established disease. EAAU was induced in Lewis rats by immunization with bovine melanin-associated antigen (MAA). MAA sensitized animals received Crry-Ig, rat IgG2a (isotype control) or PBS separately before the onset of EAAU or after the onset of clinical disease. Administration of Crry-Ig suppressed the induction of EAAU while all animals injected with IgG2a or PBS developed the normal course of EAAU. Treatment with Crry-Ig resulted in the suppression of ocular complement activation as well as the functional activity of complement in the peripheral blood. At the peak of EAAU, levels of IFN-γ, IP-10, ICAM-1 and LECAM-1 were significantly reduced within the eyes of Crry-Ig treated Lewis rats. Importantly, administration of Crry-Ig even after the onset of EAAU resulted in a sharp decline in the disease activity and early resolution of EAAU. Collectively, the evidence presented here demonstrate that inhibition of complement by Crry-Ig results in low levels of inflammatory molecules-C3 activation products, MAC, cytokines, chemokines and adhesion molecules in the eye. Down-regulation of these molecules affects the infiltration and recruitment of inflammatory cells to the eye resulting in the inhibition of EAAU.
Collapse
MESH Headings
- Animals
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/pathology
- Blotting, Western
- Complement Activation/immunology
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Fluorescent Antibody Technique
- Immunohistochemistry
- Male
- Rats
- Rats, Inbred Lew
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Uveitis, Anterior/immunology
- Uveitis, Anterior/metabolism
- Uveitis, Anterior/pathology
Collapse
Affiliation(s)
- Balasubramanian Manickam
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Innate immunity, with macrophages playing a central role, is critically important in the pathogenesis of RA. Although environmental insults such as smoking have been implicated in the initiation of rheumatoid arthritis (RA) in patients who express the shared epitope, the understanding of the role of innate immunity in the pathogenesis of this disease is also expanding. As the understanding continues to expand, enticing targets for new therapeutic interventions continue to be identified. This article focuses on cells of myelomonocytic origin, their receptors, and factors that interact with them.
Collapse
Affiliation(s)
- Angelica Gierut
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 240 East Huron Street, McGaw M300, Chicago, IL 60611, USA
| | | | | |
Collapse
|
49
|
Lin M, Yin N, Murphy B, Medof ME, Segerer S, Heeger PS, Schröppel B. Immune cell-derived c3 is required for autoimmune diabetes induced by multiple low doses of streptozotocin. Diabetes 2010; 59:2247-52. [PMID: 20584999 PMCID: PMC2927947 DOI: 10.2337/db10-0044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The complement system contributes to autoimmune injury, but its involvement in promoting the development of autoimmune diabetes is unknown. In this study, our goal was to ascertain the role of complement C3 in autoimmune diabetes. RESEARCH DESIGN AND METHODS Susceptibility to diabetes development after multiple low-dose streptozotocin treatment in wild-type (WT) and C3-deficient mice was analyzed. Bone marrow chimeras, luminex, and quantitative reverse transcription PCR assays were performed to evaluate the phenotypic and immunologic impact of C3 in the development of this diabetes model. RESULTS Coincident with the induced elevations in blood glucose levels, we documented alternative pathway complement component gene expression within the islets of the diabetic WT mice. When we repeated the experiments with C3-deficient mice, we observed complete resistance to disease, as assessed by the absence of histologic insulitis and the absence of T-cell reactivity to islet antigens. Studies of WT chimeras bearing C3-deficient bone marrow cells showed that bone marrow cell-derived C3, and not serum C3, is involved in the induction of diabetes in this model. CONCLUSIONS The data reveal a key role for immune cell-derived C3 in the pathogenesis of murine multiple low-dose streptozotocin-induced diabetes and support the concept that immune cell mediated diabetes is in part complement-dependent.
Collapse
Affiliation(s)
- Marvin Lin
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York
| | - Na Yin
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York
| | - Barbara Murphy
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York
- Transplantation Institute, Mount Sinai School of Medicine, New York, New York
| | - M. Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Stephan Segerer
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Peter S. Heeger
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York
- Transplantation Institute, Mount Sinai School of Medicine, New York, New York
| | - Bernd Schröppel
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York
- Transplantation Institute, Mount Sinai School of Medicine, New York, New York
- Corresponding author: Bernd Schröppel,
| |
Collapse
|
50
|
Abstract
Previous studies using blocking antibodies suggested that bone marrow (BM)-derived C3 is required for efficient osteoclast (OC) differentiation, and that C3 receptors are involved in this process. However, the detailed underlying mechanism and the possible involvement of other complement receptors remain unclear. In this report, we found that C3(-/-) BM cells exhibited lower RANKL/OPG expression ratios, produced smaller amounts of macrophage colony-stimulating factor and interleukin-6 (IL-6), and generated significantly fewer OCs than wild-type (WT) BM cells. During differentiation, in addition to C3, WT BM cells locally produced all other complement components required to activate C3 and to generate C3a/C5a through the alter-native pathway, which is required for efficient OC differentiation. Abrogating C3aR/C5aR activity either genetically or pharmaceutically suppressed OC generation, while stimulating WT or C3(-/-) BM cells with exogenous C3a and/or C5a augmented OC differentiation. Furthermore, supplementation with IL-6 rescued OC generation from C3(-/-) BM cells, and neutralizing antibodies to IL-6 abolished the stimulatory effects of C3a/C5a on OC differentiation. These data indicate that during OC differentiation, BM cells locally produce components, which are activated through the alternative pathway to regulate OC differentiation. In addition to C3 receptors, C3aR/C5aR also regulate OC differentiation, at least in part, by modulating local IL-6 production.
Collapse
|