1
|
Alonso-Guallart P, Harle D. Role of chemokine receptors in transplant rejection and graft-versus-host disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:95-123. [PMID: 39260939 DOI: 10.1016/bs.ircmb.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Organ transplantation increases life expectancy and improves the quality of life of patients experiencing specific conditions such as terminal organ failure. Despite matching efforts between donor and recipient, immune activation can interfere with allograft survival after transplantation if immunosuppression is not used. With both innate and adaptive responses, this is a complicated immunological process. This can lead to organ rejection, or graft-versus-host disease (GVHD), depending on the origin of the immune response. Inflammatory factors, such as chemokine receptors and their ligands, are involved in a wide variety of immunological processes, including modulating transplant rejection or GVHD, therefore, chemokine biology has been a major focus of transplantation studies. These molecules attract circulating peripheral leukocytes to infiltrate into the allograft and facilitate dendritic and T cell trafficking between lymph nodes and the graft during the allogeneic response. In this chapter, we will review the most relevant chemokine receptors such as CXCR3 and CCR5, among others, and their ligands involved in the process of allograft rejection for solid organ transplantation and graft-versus-host disease in the context of hematopoietic cell transplantation.
Collapse
Affiliation(s)
| | - David Harle
- Columbia Center for Translational Immunology
| |
Collapse
|
2
|
Pang Y, Holtzman NG. Immunopathogenic mechanisms and modulatory approaches to graft-versus-host disease prevention in acute myeloid leukaemia. Best Pract Res Clin Haematol 2023; 36:101475. [PMID: 37353287 PMCID: PMC10291443 DOI: 10.1016/j.beha.2023.101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/25/2023]
Abstract
Allogeneic haematopoietic stem cell transplantation (HSCT) remains the only potential cure for intermediate to high-risk acute myeloid leukaemia (AML). The therapeutic effect of HSCT is largely dependent on the powerful donor-derived immune response against recipient leukaemia cells, known as graft-versus-leukaemia effect (GvL). However, the donor-derived immune system can also cause acute or chronic damage to normal recipient organs and tissues, in a process known as graft-versus-host disease (GvHD). GvHD is a leading cause of non-relapse mortality in HSCT recipients. There are many similarities and cross talk between the immune pathways of GvL and GvHD. Studies have demonstrated that both processes require the presence of mismatched alloantigens between the donor and recipient, and activation of immune responses centered around donor T-cells, which can be further modulated by various recipient or donor factors. Dissecting GvL from GvHD to achieve more effective GvHD prevention and enhanced GvL has been the holy grail of HSCT research. In this review, we focused on the key factors that contribute to the immune responses of GvL and GvHD, the effect on GvL with different GvHD prophylactic strategies, and the potential impact of various AML relapse prevention therapy or treatments on GvHD.
Collapse
Affiliation(s)
- Yifan Pang
- Department of Haematologic Oncology and Blood Disorders, Levine Cancer Institute, Charlotte, NC, USA.
| | - Noa G Holtzman
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Khanolkar RA, Tripathi G, Dharmani-Khan P, Dabas R, Kinzel M, Kalra A, Puckrin R, Jimenez-Zepeda V, Jamani K, Duggan PR, Chaudhry A, Bryant A, Stewart DA, Khan FM, Storek J. Incomplete chimerism following myeloablative and anti-thymocyte globulin-conditioned hematopoietic cell transplantation is a risk factor for relapse and chronic graft-versus-host disease. Cytotherapy 2022; 24:1225-1231. [PMID: 36057497 DOI: 10.1016/j.jcyt.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/16/2022] [Accepted: 07/31/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AIMS The value of routine chimerism determination after myeloablative hematopoietic cell transplantation (HCT) is unclear, particularly in the setting of anti-thymocyte globulin (ATG)-based graft-versus-host disease (GVHD) prophylaxis. METHODS Blood samples were collected at 3 months post-HCT from 558 patients who received myeloablative conditioning and ATG-based GVHD prophylaxis. Chimerism was assessed using multiplex polymerase chain reaction of short tandem repeats in sorted T cells (CD3+) and leukemia lineage cells (CD13+CD33+ for myeloid malignancies and CD19+ for B-lymphoid malignancies). ATG exposure was determined using a flow cytometry-based assay. The primary outcomes of interest were relapse and chronic GVHD (cGVHD). RESULTS Incomplete (<95%) T-cell chimerism and leukemia lineage chimerism were present in 17% and 4% of patients, respectively. Patients with incomplete T-cell chimerism had a significantly greater incidence of relapse (36% versus 22%, subhazard ratio [SHR] = 2.03, P = 0.001) and lower incidence of cGVHD (8% versus 25%, SHR = 0.29, P < 0.001) compared with patients with complete chimerism. In multivariate modeling, patients with high post-transplant ATG area under the curve and any cytomegalovirus (CMV) serostatus other than donor/recipient seropositivity (non-D+R+) had an increased likelihood of incomplete T-cell chimerism. Patients with incomplete leukemia lineage chimerism had a significantly greater incidence of relapse (50% versus 23%, SHR = 2.70, P = 0.011) and, surprisingly, a greater incidence of cGVHD (45% versus 20%, SHR = 2.64, P = 0.003). CONCLUSIONS High post-transplant ATG exposure and non-D+R+ CMV serostatus predispose patients to incomplete T-cell chimerism, which is associated with an increased risk of relapse. The increased risk of cGVHD with incomplete B-cell/myeloid chimerism is a novel finding that suggests an important role for recipient antigen-presenting cells in cGVHD pathogenesis.
Collapse
Affiliation(s)
- Rutvij A Khanolkar
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1.
| | - Gaurav Tripathi
- Department of Laboratory Medicine and Pathology, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Precision Laboratories, Calgary, Canada, T2N 4N1
| | - Poonam Dharmani-Khan
- Department of Laboratory Medicine and Pathology, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Precision Laboratories, Calgary, Canada, T2N 4N1
| | - Rosy Dabas
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Megan Kinzel
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Amit Kalra
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Robert Puckrin
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Victor Jimenez-Zepeda
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Kareem Jamani
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Peter R Duggan
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Ahsan Chaudhry
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Adam Bryant
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Douglas A Stewart
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| | - Faisal M Khan
- Department of Laboratory Medicine and Pathology, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Precision Laboratories, Calgary, Canada, T2N 4N1
| | - Jan Storek
- Department of Medicine, University of Calgary, Calgary, Canada, T2N 4N1; Alberta Health Services, Calgary, Canada, T2N 4N1
| |
Collapse
|
4
|
Yao Q, Xie Y, Xu D, Qu Z, Wu J, Zhou Y, Wei Y, Xiong H, Zhang XL. Lnc-EST12, which is negatively regulated by mycobacterial EST12, suppresses antimycobacterial innate immunity through its interaction with FUBP3. Cell Mol Immunol 2022; 19:883-897. [PMID: 35637281 PMCID: PMC9149337 DOI: 10.1038/s41423-022-00878-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in the pathogenesis of intracellular pathogens. However, the role and mechanism of the important lncRNAs in Mycobacterium tuberculosis (M.tb) infection remain largely unexplored. Recently, we found that a secreted M.tb Rv1579c (an early secreted target with a molecular weight of 12 kDa, named EST12) protein activates NLRP3-gasdermin D (GSDMD)-mediated pyroptosis and plays a pivotal role in M.tb-induced immunity. In the present study, M.tb and the EST12 protein negatively regulated the expression of a key lncRNA (named lnc-EST12) in mouse macrophages by activating the JAK2-STAT5a signaling pathway. Lnc-EST12, with a size of 1583 bp, is mainly expressed in immune-related organs (liver, lung and spleen). Lnc-EST12 not only reduces the expression of the proinflammatory cytokines IL-1β, IL-6, and CCL5/8 but also suppresses the NLRP3 inflammasome and GSDMD pyroptosis-IL-1β immune pathway through its interaction with the transcription factor far upstream element-binding protein 3 (FUBP3). The KH3 and KH4 domains of FUBP3 are the critical sites for binding to lnc-EST12. Deficiency of mouse lnc-EST12 or FUBP3 in macrophages increased M.tb clearance and inflammation in mouse macrophages or mice. In conclusion, we report a new immunoregulatory mechanism in which mouse lnc-EST12 negatively regulates anti-M.tb innate immunity through FUBP3.
Collapse
Affiliation(s)
- Qili Yao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Dandan Xu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Zilu Qu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Jian Wu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yuanyuan Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yuying Wei
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Huan Xiong
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
5
|
Diamond T, Burn TN, Nishiguchi MA, Minichino D, Chase J, Chu N, Kreiger PA, Behrens EM. Familial hemophagocytic lymphohistiocytosis hepatitis is mediated by IFN-γ in a predominantly hepatic-intrinsic manner. PLoS One 2022; 17:e0269553. [PMID: 35671274 PMCID: PMC9173616 DOI: 10.1371/journal.pone.0269553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
Interferon gamma (IFN-γ) is the main cytokine driving organ dysfunction in Familial Hemophagocytic Lymphohistiocytosis (FHL). Blockade of IFN-γ pathway ameliorates FHL hepatitis, both in animal models and in humans with FHL. Hepatocytes are known to express IFN-γ receptor (IFN-γ-R). However, whether IFN-γ induced hepatitis in FHL is a lymphocyte or liver intrinsic response to the cytokine has yet to be elucidated. Using a IFNgR-/- bone marrow chimeric model, this study showed that non-hematopoietic IFN-γ response is critical for development of FHL hepatitis in LCMV-infected Prf1-/- mice. Lack of hepatic IFN-γ responsiveness results in reduced hepatitis as measured by hepatomegaly, alanine aminotransferase (ALT) levels and abrogated histologic endothelial inflammation. In addition, IFN-γ non-hematopoietic response was critical in activation of lymphocytes by soluble interleukin 2 receptor (sIL-2r) and recruitment of CD8+ effector T lymphocytes (CD8+ CD44hi CD62Llo) (Teff) and inflammatory monocytes. Lastly, non-hematopoietic IFN-γ response results in increased hepatic transcription of type 1 immune response and oxidative stress response pathways, while decreasing transcription of genes involved in extracellular matrix (ECM) production. In summary, these findings demonstrate that there is a hepatic transcriptional response to IFN-γ, likely critical in the pathogenesis of FHL hepatitis and hepatic specific responses could be a therapeutic target in this disorder.
Collapse
Affiliation(s)
- Tamir Diamond
- Division of Gastroenterology Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Thomas N. Burn
- Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mailyn A. Nishiguchi
- Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Danielle Minichino
- Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Julie Chase
- Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Niansheng Chu
- Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Portia A. Kreiger
- Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Edward M. Behrens
- Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| |
Collapse
|
6
|
Chagué C, Gautier T, Dal Zuffo L, Pais de Barros J, Wetzel A, Tarris G, Pallot G, Martin L, Valmary‐Degano S, Deckert V, Lagrost L, Daguindau E, Saas P. High-density lipoprotein infusion protects from acute graft-versus-host disease in experimental allogeneic hematopoietic cell transplantation. Am J Transplant 2022; 22:1350-1361. [PMID: 35038785 PMCID: PMC9306461 DOI: 10.1111/ajt.16960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/25/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a major limitation of the therapeutic potential of allogeneic hematopoietic cell transplantation. Lipopolysaccharides (LPS) derived from intestinal gram-negative bacteria are well-known aGVHD triggers and amplifiers. Here, we explored the LPS metabolism in aGVHD mouse models using an innovative quantification method. We demonstrated that systemic LPS accumulation after transplantation was due, at least partly, to a defect in its clearance through lipoprotein-mediated transport to the liver (i.e., the so-called reverse LPS transport). After transplantation, reduced circulating HDL concentration impaired LPS neutralization and elimination through biliary flux. Accordingly, HDL-deficient (Apoa1tm1Unc ) recipient mice developed exacerbated aGVHD. Repeated administration of HDL isolated from human plasma significantly decreased the mortality and the severity of aGVHD. While the potential role of HDL in scavenging circulating LPS was examined in this study, it appears that HDL plays a more direct immunomodulatory role by limiting or controlling aGVHD. Notably, HDL infusion mitigated liver aGVHD by diminishing immune infiltration (e.g., interferon-γ-secreting CD8+ T cells and non-resident macrophages), systemic and local inflammation (notably cholangitis). Hence, our results revealed the interest of HDL-based therapies in the prevention of aGVHD.
Collapse
Affiliation(s)
- Cécile Chagué
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance
| | - Thomas Gautier
- University Bourgogne Franche‐ComtéINSERMLNC UMR1231LabEX LipSTICDijonFrance
| | - Ludivine Dal Zuffo
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance
| | | | - Audrey Wetzel
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance
| | - Georges Tarris
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance,Service d’Anatomie et Cytologie PathologiquesCHU DijonDijonFrance
| | - Gaëtan Pallot
- University Bourgogne Franche‐ComtéINSERMLNC UMR1231LabEX LipSTICDijonFrance
| | - Laurent Martin
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance,Service d’Anatomie et Cytologie PathologiquesCHU DijonDijonFrance
| | | | - Valérie Deckert
- University Bourgogne Franche‐ComtéINSERMLNC UMR1231LabEX LipSTICDijonFrance
| | - Laurent Lagrost
- University Bourgogne Franche‐ComtéINSERMLNC UMR1231LabEX LipSTICDijonFrance
| | - Etienne Daguindau
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance,Service d’HématologieCHU BesançonBesançonFrance
| | - Philippe Saas
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance
| |
Collapse
|
7
|
STING negatively regulates allogeneic T-cell responses by constraining antigen-presenting cell function. Cell Mol Immunol 2021; 18:632-643. [PMID: 33500563 PMCID: PMC8027033 DOI: 10.1038/s41423-020-00611-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/26/2020] [Indexed: 01/30/2023] Open
Abstract
Stimulator of interferon genes (STING)-mediated innate immune activation plays a key role in tumor- and self-DNA-elicited antitumor immunity and autoimmunity. However, STING can also suppress tumor immunity and autoimmunity. STING signaling in host nonhematopoietic cells was reported to either protect against or promote graft-versus-host disease (GVHD), a major complication of allogeneic hematopoietic cell transplantation (allo-HCT). Host hematopoietic antigen-presenting cells (APCs) play key roles in donor T-cell priming during GVHD initiation. However, how STING regulates host hematopoietic APCs after allo-HCT remains unknown. We utilized murine models of allo-HCT to assess the role of STING in hematopoietic APCs. STING-deficient recipients developed more severe GVHD after major histocompatibility complex-mismatched allo-HCT. Using bone marrow chimeras, we found that STING deficiency in host hematopoietic cells was primarily responsible for exacerbating the disease. Furthermore, STING on host CD11c+ cells played a dominant role in suppressing allogeneic T-cell responses. Mechanistically, STING deficiency resulted in increased survival, activation, and function of APCs, including macrophages and dendritic cells. Consistently, constitutive activation of STING attenuated the survival, activation, and function of APCs isolated from STING V154M knock-in mice. STING-deficient APCs augmented donor T-cell expansion, chemokine receptor expression, and migration into intestinal tissues, resulting in accelerated/exacerbated GVHD. Using pharmacologic approaches, we demonstrated that systemic administration of a STING agonist (bis-(3'-5')-cyclic dimeric guanosine monophosphate) to recipient mice before transplantation significantly reduced GVHD mortality. In conclusion, we revealed a novel role of STING in APC activity that dictates T-cell allogeneic responses and validated STING as a potential therapeutic target for controlling GVHD after allo-HCT.
Collapse
|
8
|
Li A, Abraham C, Wang Y, Zhang Y. New insights into the basic biology of acute graft-versus-host-disease. Haematologica 2020; 105:2540-2549. [PMID: 33131244 PMCID: PMC7604569 DOI: 10.3324/haematol.2019.240291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 12/03/2022] Open
Abstract
Although allogeneic hematopoietic stem cell transplantation is an important therapy for many hematological and non-hematological diseases, acute graft-versus-host-disease (aGVHD) is a major obstacle to its success. The pathogenesis of aGVHD is divided into three distinct phases which occur largely as the result of interactions between infused donor T cells and numerous cell types of both hematopoietic and non-hematopoietic origin. In light of the disease's immensely complex biology, epigenetics has emerged as a framework with which to examine aGVHD. This review focuses on new findings that clarify the roles specific epigenetic regulators play in T cell-mediated aGVHD development and discusses how their modulation could disrupt that process to beneficial effects. DNA methyltransferases, histone methyltransferases and histone deacetylases are the most closely studied regulators across aGVHD priming, induction and effector phases and have been manipulated using drugs and other methods in both murine models and clinical trials to varying degrees of success. Antigen-presenting cells, effector T cells and memory T cells, among others, are targeted and affected by these regulators in different ways. Finally, our review highlights new directions for study and potential novel targets for modulation to abrogate aGVHD.
Collapse
Affiliation(s)
- Alicia Li
- Fels Institute for Cancer Research & Molecular Biology
| | - Ciril Abraham
- Fels Institute for Cancer Research & Molecular Biology
| | - Ying Wang
- Fels Institute for Cancer Research & Molecular Biology
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yi Zhang
- Fels Institute for Cancer Research & Molecular Biology
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Zheng J, Taylor B, Dodge J, Stephans A, Zheng SG, Chen Q, Chen X. Radiation and host retinoic acid signaling promote the induction of gut-homing donor T cells after allogeneic hematopoietic stem cell transplantation. Am J Transplant 2020; 20:64-74. [PMID: 31207088 PMCID: PMC6918002 DOI: 10.1111/ajt.15501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 01/25/2023]
Abstract
Intestinal graft-versus-host disease (GVHD) remains a devastating complication after allogeneic hematopoietic stem cell transplantation (HSCT). Although it has been well established that gut-tropic donor T cells expressing integrin α4β7 are required to cause intestinal damage, the factors that control the induction of this pathogenic T cell population remain to be identified. Retinoic acid (RA) plays an important role in inducing α4β7 expression on T cells. In this study, we showed that gene expression of retinaldehyde dehydrogenase, the key enzyme involved in RA biosynthesis, is significantly increased in the spleen and mesenteric lymph nodes (MLNs) of irradiated mice. In a C57BL/6-into-B6D2F1 allogeneic HSCT model, irradiation significantly increased the induction of α4β7+ -donor T cells in mesenteric lymph nodes and spleen. Furthermore, we found that the RA pathway modulates the ability of dendritic cells to imprint gut-homing specificity on alloreactive T cells. We also showed that host dendritic cell RA signaling influences GVHD risk. Our studies identified radiation and recipient RA signaling as 2 primary factors that dictate the magnitude of gut-homing donor T cell induction after allogeneic HSCT. Attenuating radiation-associated inflammation and modulating host RA signaling represent feasible strategies to mitigate intestinal GVHD by reducing gut-seeking pathogenic donor T cells.
Collapse
Affiliation(s)
- Jianwei Zheng
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;,Department of Oncology, the Union Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China
| | - Brian Taylor
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Joseph Dodge
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison Stephans
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Internal Medicine, Ohio State University School of Medicine and Wexner Medical Center, Columbus, OH 43201
| | - Qiang Chen
- Department of Oncology, the Union Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China
| | - Xiao Chen
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
Tijaro-Ovalle NM, Karantanos T, Wang HT, Boussiotis VA. Metabolic Targets for Improvement of Allogeneic Hematopoietic Stem Cell Transplantation and Graft-vs.-Host Disease. Front Immunol 2019; 10:295. [PMID: 30891031 PMCID: PMC6411635 DOI: 10.3389/fimmu.2019.00295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Abstract
Utilization of the adaptive immune system against malignancies, both by immune-based therapies to activate T cells in vivo to attack cancer and by T-cell therapies to transfer effector cytolytic T lymphocytes (CTL) to the cancer patient, represent major novel therapeutic advancements in oncologic therapy. Allogeneic hematopoietic stem cell (HSC) transplantation (HSCT) is a form of cell-based therapy, which replaces the HSC in the patient's bone marrow but also serves as a T-cell therapy due to the Graft-vs.-leukemia (GVL) effect mediated by donor T cells transferred with the graft. Allogeneic HSCT provides one potentially curative option to patients with relapsed or refractory leukemia but Graft-vs.-Host-Disease (GVHD) is the main cause of non-relapse mortality and limits the therapeutic benefit of allogeneic HSCT. Metabolism is a common cellular feature and has a key role in the differentiation and function of T cells during the immune response. Naïve T cells and memory T cells that mediate GVHD and GVL, respectively, utilize distinct metabolic programs to obtain their immunological and functional specification. Thus, metabolic targets that mediate immunosuppression might differentially affect the functional program of GVHD-mediating or GVL-mediating T cells. Components of the innate immune system that are indispensable for the activation of alloreactive T cells are also subjected to metabolism-dependent regulation. Metabolic alterations have also been implicated in the resistance to chemotherapy and survival of malignant cells such as leukemia and lymphoma, which are targeted by GVL-mediating T cells. Development of novel approaches to inhibit the activation of GVHD-specific naïve T cell but maintain the function of GVL-specific memory T cells will have a major impact on the therapeutic benefit of HSCT. Here, we will highlight the importance of metabolism on the function of GVHD-inducing and GVL-inducing alloreactive T cells as well as on antigen presenting cells (APC), which are required for presentation of host antigens. We will also analyze the metabolic alterations involved in the leukemogenesis which could differentiate leukemia initiating cells from normal HSC, providing potential therapeutic opportunities. Finally, we will discuss the immuno-metabolic effects of key drugs that might be repurposed for metabolic management of GVHD without compromising GVL.
Collapse
Affiliation(s)
- Natalia M Tijaro-Ovalle
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Theodoros Karantanos
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Hong-Tao Wang
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Yu H, Tian Y, Wang Y, Mineishi S, Zhang Y. Dendritic Cell Regulation of Graft-Vs.-Host Disease: Immunostimulation and Tolerance. Front Immunol 2019; 10:93. [PMID: 30774630 PMCID: PMC6367268 DOI: 10.3389/fimmu.2019.00093] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Graft-vs.-host disease (GVHD) remains a significant cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Significant progresses have been made in defining the dichotomous role of dendritic cells (DCs) in the development of GVHD. Host-derived DCs are important to elicit allogeneic T cell responses, whereas certain donor-types of DCs derived from newly engrafted hematopoietic stem/progenitor cells (HSPCs) can amply this graft-vs.-host reaction. In contrast, some DCs also play non-redundant roles in mediating immune tolerance. They induce apoptotic deletion of host-reactive donor T cells while promoting expansion and function of regulatory T cells (Treg). Unfortunately, this tolerogenic effect of DCs is impaired during GVHD. Severe GVHD in patients subject to allo-HSCT is associated with significantly decreased number of circulating peripheral blood DCs during engraftment. Existing studies reveal that GVHD causes delayed reconstitution of donor DCs from engrafted HSPCs, impairs the antigen presentation function of newly generated DCs and reduces the capacity of DCs to regulate Treg. The present review will discuss the importance of DCs in alloimmunity and the mechanism underlying DC reconstitution after allo-HSCT.
Collapse
Affiliation(s)
- Hongshuang Yu
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Yuanyuan Tian
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Shin Mineishi
- Department of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States,Department of Microbiology & Immunology, Temple University, Philadelphia, PA, United States,*Correspondence: Yi Zhang
| |
Collapse
|
12
|
He S, Liu Y, Meng L, Sun H, Wang Y, Ji Y, Purushe J, Chen P, Li C, Madzo J, Issa JP, Soboloff J, Reshef R, Moore B, Gattinoni L, Zhang Y. Ezh2 phosphorylation state determines its capacity to maintain CD8 + T memory precursors for antitumor immunity. Nat Commun 2017; 8:2125. [PMID: 29242551 PMCID: PMC5730609 DOI: 10.1038/s41467-017-02187-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022] Open
Abstract
Memory T cells sustain effector T-cell production while self-renewing in reaction to persistent antigen; yet, excessive expansion reduces memory potential and impairs antitumor immunity. Epigenetic mechanisms are thought to be important for balancing effector and memory differentiation; however, the epigenetic regulator(s) underpinning this process remains unknown. Herein, we show that the histone methyltransferase Ezh2 controls CD8+ T memory precursor formation and antitumor activity. Ezh2 activates Id3 while silencing Id2, Prdm1 and Eomes, promoting the expansion of memory precursor cells and their differentiation into functional memory cells. Akt activation phosphorylates Ezh2 and decreases its control of these transcriptional programs, causing enhanced effector differentiation at the expense of T memory precursors. Engineering T cells with an Akt-insensitive Ezh2 mutant markedly improves their memory potential and capability of controlling tumor growth compared to transiently inhibiting Akt. These findings establish Akt-mediated phosphorylation of Ezh2 as a critical target to potentiate antitumor immunotherapeutic strategies. During an immune response naive CD8+ T cells can differentiate into either effector or memory T cells. Here the authors show that Akt-mediated phosphorylation of the epigenetic regulator Ezh2 is critical for the generation of an anti-tumor CD8 T cell response and promotes the expansion of memory-precursors.
Collapse
Affiliation(s)
- Shan He
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA.
| | - Yongnian Liu
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Lijun Meng
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Hongxing Sun
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Yun Ji
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Janaki Purushe
- Department of Microbiology & Immunology, Temple University, Philadelphia, PA, 19140, USA
| | - Pan Chen
- The Division of Endocrinology and the Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Changhong Li
- The Division of Endocrinology and the Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jozef Madzo
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Jean-Pierre Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Ran Reshef
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Bethany Moore
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Luca Gattinoni
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, 19140, USA. .,Department of Microbiology & Immunology, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
13
|
Ding Q, Shen Y, Li D, Yang J, Yu J, Yin Z, Zhang XL. Ficolin-2 triggers antitumor effect by activating macrophages and CD8 + T cells. Clin Immunol 2017; 183:145-157. [PMID: 28844702 DOI: 10.1016/j.clim.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/02/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
Ficolin-2 is an important serum complement lectin. Here, we describe novel findings indicating that serum ficolin-2 concentrations in multiple tumor patients are significantly lower than those in healthy donors. Administration of exogenous ficolin-2 or ficolin-A (a ficolin-2-like molecule in mouse), with only once, could remarkably inhibit the tumor cells growth in murine tumor models via early macrophages, dendritic cells (DCs) and CD8+ T cells, but not CD4+ T cells. Ficolin-A (FCN-A) knockout (KO) mice exhibits significantly increased tumor cell growth. Ficolin-2 induces macrophage activation, promotes M1 polarization and facilitates proliferation and antigen-specific cytotoxicity of CD8+ T cells. Ficolin-2 binds to Toll-like receptor 4 (TLR4) on macrophages and DCs and promotes their antigen-presenting abilities to CD8+ T cells. Our findings provide a new therapeutic strategy for tumors based on the triggering of immune-mediated antitumor effect by ficolin-2.
Collapse
Affiliation(s)
- Quanquan Ding
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Yanying Shen
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Dongqing Li
- Department of Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Juan Yang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Jing Yu
- Hubei Province Cancer Hospital, Wuhan 430079, PR China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China.
| |
Collapse
|
14
|
Hossain MS, Kunter GM, El-Najjar VF, Jaye DL, Al-Kadhimi Z, Taofeek OK, Li JM, Waller EK. PD-1 and CTLA-4 up regulation on donor T cells is insufficient to prevent GvHD in allo-HSCT recipients. PLoS One 2017; 12:e0184254. [PMID: 28953925 PMCID: PMC5617147 DOI: 10.1371/journal.pone.0184254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/21/2017] [Indexed: 01/22/2023] Open
Abstract
The expression of checkpoint blockade molecules PD-1, PD-L1, CTLA-4, and foxp3+CD25+CD4+ T cells (Tregs) regulate donor T cell activation and graft-vs-host disease (GvHD) in allogeneic hematopoietic stem cell transplant (allo-HSCT). Detailed kinetics of PD-1-, CTLA-4-, and PD-L1 expression on donor and host cells in GvHD target organs have not been well studied. Using an established GvHD model of allo-HSCT (B6 → CB6F1), we noted transient increases of PD-1- and CTLA-4-expressing donor CD4+ and CD8+ T cells on day 10 post transplant in spleens of allo-HSCT recipients compared with syngeneic HSCT (syn-HSCT) recipients. In contrast, expression of PD-1- and CTLA-4 on donor T cells was persistently increased in bone marrow (BM) of allo-HSCT recipients compared with syn-HSCT recipients. Similar differential patterns of donor T cell immune response were observed in a minor histocompatibility (miHA) mismatched transplant model of GvHD. Despite higher PD-1 and CTLA-4 expression in BM, numbers of foxp3+ T cells and Tregs were much lower in allo-HSCT recipients compared with syn-HSCT recipients. PD-L1-expressing host cells were markedly decreased concomitant with elimination of residual host hematopoietic elements in spleens of allo-HSCT recipients. Allo-HSCT recipients lacking PD-L1 rapidly developed increased serum inflammatory cytokines and lethal acute GvHD compared with wild-type (WT) B6 allo-HSCT recipients. These data suggest that increased expression of checkpoint blockade molecules PD-1 and CTLA-4 on donor T cells is not sufficient to prevent GvHD, and that cooperation between checkpoint blockade signaling by host cells and donor Tregs is necessary to limit GvHD in allo-HSCT recipients.
Collapse
Affiliation(s)
- Mohammad S. Hossain
- Department of Hematology and Medical Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ghada M. Kunter
- Holzer Cancer Center, Gallipolis, Ohio, United States of America
| | - Vicky F. El-Najjar
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - David L. Jaye
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Zaid Al-Kadhimi
- Department of Hematology and Medical Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Owonikoko K. Taofeek
- Department of Hematology and Medical Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jian-Ming Li
- Department of Hematology and Medical Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
15
|
IAPs protect host target tissues from graft-versus-host disease in mice. Blood Adv 2017; 1:1517-1532. [PMID: 29296793 DOI: 10.1182/bloodadvances.2017004242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/01/2017] [Indexed: 12/13/2022] Open
Abstract
Inhibitors of apoptosis proteins (IAPs) regulate apoptosis, but little is known about the role of IAPs in the regulation of immunity. Development of IAP inhibition by second mitochondria-derived activator of caspase (SMAC) mimetics is emerging as a novel therapeutic strategy to treat malignancies. We explored the role of IAPs in allogeneic immunity with 2 distinct yet complementary strategies, namely, chemical and genetic approaches, in clinically relevant models of experimental bone marrow transplantation (BMT). The small-molecule pan-IAP inhibitor SMAC mimetic AT-406 aggravated gastrointestinal graft-versus-host disease (GVHD) in multiple models. The role of specific IAPs in various host and donor cellular compartments was explored by utilizing X-linked IAP (XIAP)- and cellular IAP (cIAP)-deficient animals as donors or recipients. Donor T cells from C57BL/6 cIAP1-/- or XIAP-/- animals demonstrated equivalent GVHD severity and allogeneic responses, both in vivo and in vitro, when compared with B6 wild-type (B6-WT) T cells. By contrast, when used as recipient animals, both XIAP-/- and cIAP1-/- animals demonstrated increased mortality from GVHD when compared with B6-WT animals. BM chimera studies revealed that cIAP and XIAP deficiency in host nonhematopoietic target cells, but not in host hematopoietic-derived cells, is critical for exacerbation of GVHD. Intestinal epithelial cells from IAP-deficient animals showed reduced levels of antiapoptotic proteins as well as autophagy-related protein LC3 after allogeneic BMT. Collectively, our data highlight a novel immune cell-independent but target tissue-intrinsic role for IAPs in the regulation of gastrointestinal damage from GVHD.
Collapse
|
16
|
Tormo A, Khodayarian F, Cui Y, Al-Chami E, Kanjarawi R, Noé B, Wang H, Rafei M. Interleukin-21 promotes thymopoiesis recovery following hematopoietic stem cell transplantation. J Hematol Oncol 2017; 10:120. [PMID: 28615039 PMCID: PMC5471903 DOI: 10.1186/s13045-017-0490-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Impaired T cell reconstitution remains a major deterrent in the field of bone marrow (BM) transplantation (BMT) due to pre-conditioning-induced damages inflicted to the thymi of recipient hosts. Given the previously reported thymo-stimulatory property of interleukin (IL)-21, we reasoned that its use post-BMT could have a profound effect on de novo T cell development. METHODS To evaluate the effect of IL-21 on de novo T cell development in vivo, BM derived from RAG2p-GFP mice was transplanted into LP/J mice. Lymphocyte reconstitution was first assessed using a hematological analyzer and a flow cytometer on collected blood samples. Detailed flow cytometry analysis was then performed on the BM, thymus, and spleen of transplanted animals. Finally, the effect of human IL-21 on thymopoiesis was validated in humanized mice. RESULTS Using a major histocompatibility complex (MHC)-matched allogeneic BMT model, we found that IL-21 administration improves immune reconstitution by triggering the proliferation of BM Lin-Sca1+c-kit+ (LSK) subsets. The pharmacological effect of IL-21 also culminates in the recovery of both hematopoietic (thymocytes) and non-hematopoietic (stromal) cells within the thymi of IL-21-treated recipient animals. Although T cells derived from all transplanted groups proliferate, secrete various cytokines, and express granzyme B similarly in response to T cell receptor (TCR) stimulation, full regeneration of peripheral naïve CD4+ and CD8+ T cells and normal TCRvβ distribution could only be detected in IL-21-treated recipient mice. Astonishingly, none of the recipient mice who underwent IL-21 treatment developed graft-versus-host disease (GVHD) in the MHC-matched allogeneic setting while the graft-versus-tumor (GVT) effect was strongly retained. Inhibition of GVHD onset could also be attributed to the enhanced generation of regulatory B cells (B10) observed in the IL-21, but not PBS, recipient mice. We also tested the thymopoiesis-stimulating property of human IL-21 in NSG mice transplanted with cord blood (CB) and found significant improvement in de novo human CD3+ T cell development. CONCLUSIONS In sum, our study indicates that IL-21 represents a new class of unforeseen thymopoietin capable of restoring thymic function following BMT.
Collapse
Affiliation(s)
- Aurélie Tormo
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Fatemeh Khodayarian
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Yun Cui
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Edouard Al-Chami
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Reem Kanjarawi
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Beatriz Noé
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Huijie Wang
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Moutih Rafei
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada. .,The Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada. .,The Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Québec, H3A 2B4, Canada.
| |
Collapse
|
17
|
Novel Treatment of Chronic Graft-Versus-Host Disease in Mice Using the ER Stress Reducer 4-Phenylbutyric Acid. Sci Rep 2017; 7:41939. [PMID: 28165054 PMCID: PMC5292729 DOI: 10.1038/srep41939] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a notorious complication of allogeneic hematopoietic stem cell transplantation and causes disabling systemic inflammation and fibrosis. In this novel study, we focused on a relationship between endoplasmic reticulum (ER) stress and cGVHD, and aimed to create effective treatment of cGVHD. A series of experiments were conducted using a mouse model of cGVHD. Our data suggested (1) that ER stress was elevated in organs affected by cGVHD and (2) that 4-phenylbutyric acid (PBA) could reduce cGVHD-induced ER stress and thereby alleviate systemic inflammation and fibrosis. Because fibroblasts are thought to be implicated in cGVHD-elicited fibrosis and because macrophages are reported to play a role in the development of cGVHD, we investigated cGVHD-triggered ER stress in fibroblasts and macrophages. Our investigation demonstrated (1) that indicators for ER stress and activation markers for fibroblasts were elevated in cGVHD-affected lacrimal gland fibroblasts and (2) that they could be reduced by PBA. Our work also indicated that splenic macrophages from PBA-dosed mice exhibited the lower levels of ER stress and M2 macrophage markers than those from cGVHD-affected mice. Collectively, this study suggests that the reduction of ER stress utilizing PBA can be a clinically translatable method to treat systemic cGVHD.
Collapse
|
18
|
Dodge J, Stephans A, Lai J, Drobyski WR, Chen X. Effects of Donor Vitamin A Deficiency and Pharmacologic Modulation of Donor T Cell Retinoic Acid Pathway on the Severity of Experimental Graft-versus-Host Disease. Biol Blood Marrow Transplant 2016; 22:2141-2148. [PMID: 27596131 DOI: 10.1016/j.bbmt.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/01/2016] [Indexed: 02/08/2023]
Abstract
Graft-versus-host disease (GVHD) is the major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). A combination of genetic and nongenetic factors dictates the incidence and severity of GVHD. Recent studies have identified the potential role of the retinoic acid (RA)/retinoic acid receptor (RAR) pathway in the pathogenesis of GVHD. RA is the active metabolite of vitamin A. Thus, a clinically relevant question is whether HSCT donor and/or recipient vitamin A status affects the development of GVHD. It has been previously reported that recipient vitamin A deficiency is associated with reduced intestinal GVHD and prolonged overall survival after experimental allogeneic HSCT. However, it is still unknown whether donor vitamin A status influences GVHD development. In the current study, we report that chronic vitamin A deficiency changes the composition of T cell compartment of donor mice with a reduction in the percentage of CD4+ T cells. We showed that although vitamin A deficiency does not affect donor T cell alloreactivity on a per cell basis, a decreased proportion of donor CD4+ T cells in marrow graft inoculums leads to reduced incidence and severity of GVHD. Furthermore, our proof of principle studies using a pan-RAR antagonist demonstrated that transient inhibition of donor T cell RAR signaling can reduce T cell alloreactivity and their ability to cause lethal GVHD. Our studies provide preclinical evidence that donor vitamin A deficiency may be a nongenetic factor that can modulate the severity of GVHD and pharmacologic interfering RA/RAR pathway in donor T cells might be a valuable approach for mitigating GVHD after allogeneic HSCT.
Collapse
Affiliation(s)
- Joseph Dodge
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allison Stephans
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jinping Lai
- Department of Pathology, St. Louis University School of Medicine, St. Louis, Missouri
| | - William R Drobyski
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiao Chen
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
19
|
DLL4 + dendritic cells: Key regulators of Notch Signaling in effector T cell responses. Pharmacol Res 2016; 113:449-457. [PMID: 27639599 DOI: 10.1016/j.phrs.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/07/2023]
Abstract
Dendritic cells (DCs) are critical regulators of adaptive immune responses. DCs can elicit primary T cell responses at low DC:T cell ratios through their expression of high levels of antigen-presenting molecules and costimulatory molecules. DCs are important for induction of functionally diverse T cell subsets such as CD4+ T helper (Th)1 and Th17 cells and effector CD8+ T cells able to reside in epithelial tissues. Recent studies begin illuminating the underlying mechanism by which DCs regulate specialized T cell subsets. DCs are composed of subsets that differ in their phenotype, localization and function. DCs expressing high levels of DLL4 (DLL4+ DCs), which is a member of Notch ligand family, are newly discovered cells that have greater ability than DLL4- DCs to promote the generation of Th1 and Th17 CD4+ T cells. DLL4 derived from DLL4+ DCs is also important for promoting the differentiation and expansion of effector CD8+ T cells. Experimental studies have demonstrated that selective deletion of DLL4 in DCs causes impaired antitumor immunity. In contrast, blocking DLL4 leads to dramatic reduction of inflammatory T cell responses and their-mediated tissue damage. We will discuss emerging functional specialization within the DLL4+ DC compartment, DLL4+ DC biology and the impact of pharmacological modulation of DLL4 to control inflammatory disorders.
Collapse
|
20
|
Zhao S, Zhang L, Han J, Chu J, Wang H, Chen X, Wang Y, Tun N, Lu L, Bai XF, Yearsley M, Devine S, He X, Yu J. Conformal Nanoencapsulation of Allogeneic T Cells Mitigates Graft-versus-Host Disease and Retains Graft-versus-Leukemia Activity. ACS NANO 2016; 10:6189-200. [PMID: 27224853 PMCID: PMC5514314 DOI: 10.1021/acsnano.6b02206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Allogeneic transplantation of hematopoietic stem cells (HSC) in combination with T cells has a curative potential for hematopoietic malignancies through graft-versus-leukemia (GVL) effects, but is often compromised by the notorious side effect of graft-versus-host disease (GVHD) resulting from alloreactivity of the donor T cells. Here, we tested if temporary immunoisolation achieved by conformally encapsulating the donor T cells within a biocompatible and biodegradable porous film (∼450 nm in thickness) of chitosan and alginate could attenuate GVHD without compromising GVL. The nanoencapsulation was found not to affect the phenotype of T cells in vitro in terms of size, viability, proliferation, cytokine secretion, and cytotoxicity against tumor cells. Moreover, the porous nature of the nanoscale film allowed the encapsulated T cells to communicate with their environment, as evidenced by their intact capability of binding to antibodies. Lethally irradiated mice transplanted with bone marrow cells (BMCs) and the conformally encapsulated allogeneic T cells exhibited significantly improved survival and reduced GVHD together with minimal liver damage and enhanced engraftment of donor BMCs, compared to the transplantation of BMCs and non-encapsulated allogeneic T cells. Moreover, the conformal nanoencapsulation did not compromise the GVL effect of the donor T cells. These data show that conformal nanoencapsulation of T cells within biocompatible and biodegradable nanoscale porous materials is a potentially safe and effective approach to improve allogeneic HSC transplantation for treating hematological malignancies and possibly other diseases.
Collapse
Affiliation(s)
- Shuting Zhao
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lingling Zhang
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Jianfeng Han
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jianhong Chu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Suzhou Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215000, China
| | - Hai Wang
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xilin Chen
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Youwei Wang
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Norm Tun
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lanchun Lu
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xue-Feng Bai
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven Devine
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- The James Cancer Hospital, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jianhua Yu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- The James Cancer Hospital, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
MyD88 in donor bone marrow cells is critical for protection from acute intestinal graft-vs.-host disease. Mucosal Immunol 2016; 9:730-43. [PMID: 26442657 DOI: 10.1038/mi.2015.96] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023]
Abstract
To understand the role of myeloid differentiation factor 88 (MyD88) expressed by donor bone marrow (BM) in the pathophysiology of graft-vs.-host disease (GVHD), we investigated the effects of transplantation of MyD88-deficient T cell-depleted BM (MyD88KO TCD-BM) on the severity of GVHD. Transplantation with MyD88KO TCD-BM aggravated GVHD; serious gut damage was evident, with high infiltration of T cells into the intestines of recipients and markedly reduced expansion of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs). MDSCs from MyD88KO mice were defective in inducing donor T-cell apoptosis and inhibiting T-cell proliferation. Supplementation of transplanted mice with MDSCs from wild-type mice, but not MyD88KO mice, attenuated GVHD severity with reduced intestinal T-cell infiltration in MyD88KO TCD-BM recipients. Pretreatment of BM donors with lipopolysaccharide to increase MDSC levels and MyD88 transcription in the TCD-BM transplant alleviated GVHD severity and intestinal T-cell infiltration. The T cell/MDSC ratios were correlated with intestinal GVHD severity in both animal models and human patients. This study indicates that MyD88-dependent MDSC expansion from donor BM is critical for protection against fatal intestinal GVHD.
Collapse
|
22
|
Meng L, Bai Z, He S, Mochizuki K, Liu Y, Purushe J, Sun H, Wang J, Yagita H, Mineishi S, Fung H, Yanik GA, Caricchio R, Fan X, Crisalli LM, Hexner EO, Reshef R, Zhang Y, Zhang Y. The Notch Ligand DLL4 Defines a Capability of Human Dendritic Cells in Regulating Th1 and Th17 Differentiation. THE JOURNAL OF IMMUNOLOGY 2015; 196:1070-80. [PMID: 26712946 DOI: 10.4049/jimmunol.1501310] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023]
Abstract
Notch signaling regulates multiple helper CD4(+) T cell programs. We have recently demonstrated that dendritic cells (DCs) expressing the Notch ligand DLL4 are critical for eliciting alloreactive T cell responses and induction of graft-versus-host disease in mice. However, the human counterpart of murine DLL4(+) DCs has yet to be examined. We report the identification of human DLL4(+) DCs and their critical role in regulating Th1 and Th17 differentiation. CD1c(+) DCs and plasmacytoid DCs (pDCs) from the peripheral blood (PB) of healthy donors did not express DLL4. In contrast, patients undergoing allogeneic hematopoietic stem cell transplantation had a 16-fold more DLL4(+)CD1c(+) DCs than healthy donors. Upon activation of TLR signaling, healthy donor-derived CD1c(+) DCs dramatically upregulated DLL4, as did pDCs to a lesser extent. Activated DLL4(+) DCs were better able to promote Th1 and Th17 differentiation than unstimulated PB DCs. Blocking DLL4 using a neutralizing Ab decreased Notch signaling in T cells stimulated with DLL4(+) DCs, and it reduced the generation of Th1 and Th17 cells. Both NF-κB and STAT3 were crucial for inducing DLL4 in human DCs. Interestingly, STAT3 directly activated DLL4 transcription and inhibiting STAT3 alone was sufficient to reduce DLL4 in activated PB DCs. Thus, DLL4 is a unique functional molecule of human circulating DCs critical for directing Th1 and Th17 differentiation. These findings identify a pathway for therapeutic intervention for inflammatory disorders in humans, such as graft-versus-host disease after allogeneic hematopoietic stem cell transplantation, autoimmunity, and tumor immunity.
Collapse
Affiliation(s)
- Lijun Meng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200231, China; Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140
| | - Zhenjiang Bai
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Pediatric Intensive Care Unit, Children's Hospital of Soochow University, Soochow University, Suzhou 215003, China
| | - Shan He
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140
| | - Kazuhiro Mochizuki
- Department of Pediatric Oncology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yongnian Liu
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Janaki Purushe
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140
| | - Hongxing Sun
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140
| | - Jian Wang
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, Soochow University, Suzhou 215003, China
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shin Mineishi
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294
| | - Henry Fung
- Department of Hematology/Oncology, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111
| | - Gregory A Yanik
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Roberto Caricchio
- Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19148
| | - Xiaoxuan Fan
- Flow Cytometry Core Facility, Temple University School of Medicine, Temple University, Philadelphia, PA 19148; and
| | - Lisa M Crisalli
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Elizabeth O Hexner
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Ran Reshef
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Yanyun Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200231, China;
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140;
| |
Collapse
|
23
|
Lum FM, Ng LF. Cellular and molecular mechanisms of chikungunya pathogenesis. Antiviral Res 2015; 120:165-74. [DOI: 10.1016/j.antiviral.2015.06.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/27/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
|
24
|
Depletion of host CCR7(+) dendritic cells prevented donor T cell tissue tropism in anti-CD3-conditioned recipients. Biol Blood Marrow Transplant 2014; 20:920-8. [PMID: 24691220 DOI: 10.1016/j.bbmt.2014.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/25/2014] [Indexed: 11/23/2022]
Abstract
We reported previously that anti-CD3 mAb treatment before hematopoietic cell transplantation (HCT) prevented graft-versus-host disease (GVHD) and preserved graft-versus-leukemia (GVL) effects in mice. These effects were associated with downregulated donor T cell expression of tissue-specific homing and chemokine receptors, marked reduction of donor T cell migration into GVHD target tissues, and deletion of CD103(+) dendritic cells (DCs) in mesenteric lymph nodes (MLN). MLN CD103(+) DCs and peripheral lymph node (PLN) DCs include CCR7(+) and CCR7(-) subsets, but the role of these DC subsets in regulating donor T cell expression of homing and chemokine receptors remain unclear. Here, we show that recipient CCR7(+), but not CCR7(-), DCs in MLN induced donor T cell expression of gut-specific homing and chemokine receptors in a retinoid acid-dependent manner. CCR7 regulated activated DC migration from tissue to draining lymph node, but it was not required for the ability of DCs to induce donor T cell expression of tissue-specific homing and chemokine receptors. Finally, anti-CD3 treatment depleted CCR7(+) but not CCR7(-) DCs by inducing sequential expansion and apoptosis of CCR7(+) DCs in MLN and PLN. Apoptosis of CCR7(+) DCs was associated with DC upregulation of Fas expression and natural killer cell but not T, B, or dendritic cell upregulation of FasL expression in the lymph nodes. These results suggest that depletion of CCR7(+) host-type DCs, with subsequent inhibition of donor T cell migration into GVHD target tissues, can be an effective approach in prevention of acute GVHD and preservation of GVL effects.
Collapse
|
25
|
Effect of novel proteasome and immunoproteasome inhibitors on dendritic cell maturation, function, and expression of IκB and NFκB. Transpl Immunol 2013; 29:1-6. [PMID: 24103732 DOI: 10.1016/j.trim.2013.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 11/23/2022]
Abstract
Dendritic cells (DC) play a central role in the pathophysiology of graft versus host disease (GvHD). Their antigen presenting capacity is nuclear factor κB- (NF-κB) dependent. Consequently, DC have emerged as a potential target for the prevention of GvHD and clinical trials with bortezomib are underway. We explored the activity of novel proteasome and immunoproteasome inhibitors on healthy volunteer peripheral blood DC. After incubation with the drug or drug combination, DC were stimulated with lipopolysaccharide, stained for maturation surface markers and then analyzed by flow cytometry. We found that the different molecule(s) inhibited DC maturation marker expression to variable degrees, with the constitutive proteasome-selective agent being the least active. In a DC and allogeneic CD4+ mixed lymphocyte reaction, DC incubation with the studied proteasome and immunoproteasome inhibitor(s), impeded T cell proliferation as measured by BrDU incorporation. Finally, we found that DC incubation with the drug(s) enhanced IκB expression and that oprozomib inhibited NF-κB expression. We concluded that based on its activity and oral bioavailability, oprozomib merits further investigation in an animal GvHD prevention model. We also suggest that altering IκB and NF-κB expressions may, in DC, represent a new mechanism of action of proteasome and immunoproteasome inhibitors.
Collapse
|
26
|
Arai Y, Yamashita K, Mizugishi K, Takaori-Kondo A, Chiba T, Watanabe T. The implications of myelodysplastic syndrome - associated chromosomal abnormalities in the development of graft-versus-host disease. Eur J Haematol 2013; 90:525-30. [DOI: 10.1111/ejh.12100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Yasuyuki Arai
- Department of Hematology and Oncology, Graduate School of Medicine; Kyoto University; Kyoto; Japan
| | - Kouhei Yamashita
- Department of Hematology and Oncology, Graduate School of Medicine; Kyoto University; Kyoto; Japan
| | - Kiyomi Mizugishi
- Department of Hematology and Oncology, Graduate School of Medicine; Kyoto University; Kyoto; Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine; Kyoto University; Kyoto; Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Graduate School of Medicine; Kyoto University; Kyoto; Japan
| | | |
Collapse
|
27
|
A critical role for the retinoic acid signaling pathway in the pathophysiology of gastrointestinal graft-versus-host disease. Blood 2013; 121:3970-80. [PMID: 23529927 DOI: 10.1182/blood-2012-08-445130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Damage to the gastrointestinal tract during graft-versus-host disease (GVHD) is one of the major causes of morbidity and mortality in allogeneic hematopoietic stem cell transplant (HSCT) recipients. In the current study, we identified a critical role for the retinoic acid (RA) signaling pathway in the induction and propagation of gastrointestinal GVHD. The administration of exogenous RA significantly increased expression of the gut-homing molecules, CCR9 and α4β7, on donor T cells in mesenteric lymph nodes, and augmented the accumulation of proinflammatory CD4(+) and CD8(+) T cells within the gut mucosa, leading to a selective exacerbation of colonic GVHD and increased overall mortality. Conversely, depletion of RA in recipient mice by vitamin A deprivation resulted in a dramatic reduction of gut-homing molecule expression on donor T cells after HSCT. Significantly, absence of the RA receptor-α on donor T cells markedly attenuated the ability of these cells to cause lethal GVHD. This observation was attributable to a significant reduction in pathological damage within the colon. These findings identify an organ-specific role for RA in GVHD and provide evidence that blockade of the RA signaling pathway may represent a novel strategy for mitigating the severity of colonic GVHD.
Collapse
|
28
|
Mochizuki K, Xie F, He S, Tong Q, Liu Y, Mochizuki I, Guo Y, Kato K, Yagita H, Mineishi S, Zhang Y. Delta-like ligand 4 identifies a previously uncharacterized population of inflammatory dendritic cells that plays important roles in eliciting allogeneic T cell responses in mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:3772-82. [PMID: 23440416 DOI: 10.4049/jimmunol.1202820] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graft-versus-host disease (GVHD) reflects an exaggerated inflammatory allogeneic T cell response in hosts receiving allogeneic hematopoietic stem cell transplantation (HSCT). Inhibition of pan-Notch receptor signaling in donor T cells causes reduction of GVHD. However, which Notch ligand(s) in what APCs is important for priming graft-versus-host reaction remains unknown. We demonstrate that δ-like ligand-4 (Dll4) and Dll4-positive (Dll4(high)) inflammatory dendritic cells (i-DCs) play important roles in eliciting allogeneic T cell responses. Host-type Dll4(high) i-DCs occurred in the spleen and intestine of HSCT mice during GVHD induction phase. These Dll4(high) i-DCs were CD11c(+)B220(+)PDCA-1(+), resembling plasmacytoid dentritic cells (pDCs) of naive mice. However, as compared with unstimulated pDCs, Dll4(high) i-DCs expressed higher levels of costimulatory molecules, Notch ligands Jagged1 and Jagged2, and CD11b, and produced more Ifnb and Il23 but less Il12. In contrast, Dll4-negative (Dll4(low)) i-DCs were CD11c(+)B220(-)PDCA-1(-), and had low levels of Jagged1. In vitro assays showed that Dll4(high) i-DCs induced significantly more IFN-γ- and IL-17-producing effector T cells (3- and 10-fold, respectively) than Dll4(low) i-DCs. This effect could be blocked by anti-Dll4 Ab. In vivo administration of Dll4 Ab reduced donor-alloreactive effector T cells producing IFN-γ and IL-17 in GVHD target organs, leading to reduction of GVHD and improved survival of mice after allogeneic HSCT. Our findings indicate that Dll4(high) i-DCs represent a previously uncharacterized i-DC population distinctive from steady state DCs and Dll4(low) i-DCs. Furthermore, Dll4 and Dll4(high) i-DCs may be beneficial targets for modulating allogeneic T cell responses, and could facilitate the discovery of human counterparts of mouse Dll4(high) i-DCs.
Collapse
Affiliation(s)
- Kazuhiro Mochizuki
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Teo TH, Lum FM, Claser C, Lulla V, Lulla A, Merits A, Rénia L, Ng LFP. A Pathogenic Role for CD4+T Cells during Chikungunya Virus Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2012; 190:259-69. [DOI: 10.4049/jimmunol.1202177] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Ma Q, Li D, Nurieva R, Patenia R, Bassett R, Cao W, Alekseev AM, He H, Molldrem JJ, Kroll MH, Champlin RE, Sale GE, Afshar-Kharghan V. Reduced graft-versus-host disease in C3-deficient mice is associated with decreased donor Th1/Th17 differentiation. Biol Blood Marrow Transplant 2012; 18:1174-81. [PMID: 22664751 DOI: 10.1016/j.bbmt.2012.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/24/2012] [Indexed: 12/11/2022]
Abstract
Graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation is mediated by the activation of recipient dendritic cells and subsequent proliferation of donor T cells. The complement system was recently shown to modulate adaptive immunity through an interaction of the complement system and lymphocytes. Complement proteins participate in the activation of dendritic cells, antigen presentation to T cells, and proliferation of T cells. Our studies with a murine model of bone marrow transplantation demonstrate that complement system regulates alloimmune responses in GVHD. Mice deficient in the central component of the complement system (C3(-/-)) had significantly lower GVHD-related mortality and morbidity compared with wild-type recipient mice. The numbers of donor-derived T cells, including IFN-γ(+), IL-17(+), and IL-17(+)IFN-γ(+) subsets, were decreased in secondary lymphoid organs of C3(-/-) recipients. Furthermore, the number of recipient CD8α(+)CD11c(+) cells in lymphoid organs was reduced. We conclude that C3 regulates Th1/17 differentiation in bone marrow transplantation, and define a novel function of the complement system in GVHD.
Collapse
Affiliation(s)
- Qing Ma
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Emergence of T cells that recognize nonpolymorphic antigens during graft-versus- host disease. Blood 2012; 119:6354-64. [PMID: 22496151 DOI: 10.1182/blood-2012-01-401596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chronic GVHD is a major cause of morbidity and mortality in allogeneic stem cell transplantation recipients and typically develops from antecedent acute GVHD. In contrast to acute GVHD, chronic GVHD has much broader tissue involvement and clinical manifestations that bear striking similarity to what is observed in autoimmune diseases. How autoimmunity arises out of alloimmunity has been a longstanding unresolved issue. To address this question, in the present study, we performed a comprehensive analysis of the clonotypic T-cell response using complementary murine models that simulate what occurs during the transition from acute to chronic GVHD. These studies revealed repertoire skewing and the presence of high-frequency clonotypes that had undergone significant in vivo expansion, indicating that GVHD-associated autoimmunity was characterized by antigen-driven expansion of a limited number of T-cell clones. Furthermore, we observed that T cells with identical TCRβ CDR3 nucleotide sequences were capable of recognizing donor and host antigens, providing evidence that the loss of self-tolerance during acute GVHD leads to the emergence of self-reactive donor T cells that are capable of recognizing nonpolymorphic tissue or commensally derived antigens. These data provide a mechanistic framework for how autoimmunity develops within the context of preexisting GVHD and provide additional insight into the pathophysiology of chronic GVHD.
Collapse
|
32
|
Song MG, Kang B, Jeon JY, Chang J, Lee S, Min CK, Youn H, Choi EY. In vivo imaging of differences in early donor cell proliferation in graft-versus-host disease hosts with different pre-conditioning doses. Mol Cells 2012; 33:79-86. [PMID: 22228184 PMCID: PMC3887749 DOI: 10.1007/s10059-012-2228-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 01/28/2023] Open
Abstract
Graft-versus-host disease (GVHD) results from immunemediated attacks on recipient tissues by donor-originated cells through the recognition of incompatible antigens expressed on host cells. The pre-conditioning irradiation dose is a risk factor influencing GVHD severity. In this study, using newly generated luciferase transgenic mice on a B6 background (B6.Luc(Tg)) as bone marrow and splenocyte donors, we explored the effects of irradiation doses on donor cell dynamics in major histocompatibility complex (MHC)-matched allogeneic GVHD hosts via bioluminescence imaging (BLI). Results from BLI of GVHD hosts showed higher emission intensities of luminescence signals from hosts irradiated with 900 cGy as compared with those irradiated with 400 cGy. In particular, BLI signals from target organs, such as the spleen, liver, and lung, and several different lymph nodes fluctuated with similar time kinetics soon after transplantation, reflecting the synchronous proliferation of donor cells in the different organs in hosts irradiated with 900 cGy. The kinetic curves of the BLI signals were not synchronized between the target organs and the secondary organs in hosts irradiated with 400 cGy. These results demonstrate that pre-conditioning doses influence the kinetics and degree of proliferation in the target organs soon after transplantation. The results from this study are the first describing donor cell dynamics in MHC-matched allogeneic GVHD hosts and the influence of irradiation doses on proliferation dynamics, and will provide spatiotemporal information to help understand GVHD pathophysiology.
Collapse
Affiliation(s)
- Myung Geun Song
- Department of Tumor Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Bora Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Ji Yeong Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jun Chang
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750,
Korea
| | - Seungbok Lee
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul 110-749,
Korea
| | - Chang-Ki Min
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, St. Mary’s Hospital, Seoul 137-701,
Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Cancer Imaging Center, Seoul National University Cancer Hospital, Seoul 110-799,
Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| |
Collapse
|
33
|
Ellison CA, Lissitsyn YV, Gheorghiu I, Gartner JG. Immunomodulatory Effects of Palifermin (Recombinant Human Keratinocyte Growth Factor) in an SLE-Like Model of Chronic Graft-Versus-Host Disease. Scand J Immunol 2011; 75:69-76. [DOI: 10.1111/j.1365-3083.2011.02628.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Abstract
The mononuclear phagocyte system (MPS) comprises monocytes, macrophages and dendritic cells. Tissue phagocytes share several cell surface markers, phagocytic capability and myeloid classification; however, the factors that regulate the differentiation, homeostasis and function of macrophages and dendritic cells remain largely unknown. The purpose of this manuscript is to review the tools that are currently available and those that are under development to study the origin and function of mononuclear phagocytes.
Collapse
|
35
|
The humanized anti-HLA-DR moAb, IMMU-114, depletes APCs and reduces alloreactive T cells: implications for preventing GVHD. Bone Marrow Transplant 2011; 47:967-80. [PMID: 22020022 DOI: 10.1038/bmt.2011.203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In contrast to the conventional immunosuppressive agents and nonselective T-cell-depleting antibodies, selective depletion of donor alloreactive T cells and/or host APCs, particularly DCs, represents a novel approach that can effectively control GVHD with less or no impairment of T-cell-mediated antiviral and GVL immunity. Here we report that IMMU-114, a humanized anti-human leukocyte antigen-DR (HLA-DR) moAb, efficiently depleted human PBMCs of all APCs, including B cells, monocytes, myeloid DC type-1 (mDC1), mDC2 and plasmacytoid DCs (pDCs). Early and late apoptosis of mDC1, mDC2 and pDCs, and late apoptosis of all APC subsets, were increased by IMMU-114 treatment. Although IMMU-114 had little, if any, effect on the survival and apoptosis of non-B lymphocytes (>80% of which are T cells and ∼1-2% of T cells express HLA-DR), it selectively inhibited the proliferation of purified HLA-DR(+) T cells rather than HLA-DR(-) T cells. As a consequence, IMMU-114 treatment resulted in suppressed T-cell proliferation and reduced CD25(+) alloreactive T cells in allogeneic MLRs. Given the critical roles of APCs and alloreactive T cells in the pathogenesis of GVHD, these results suggest that IMMU-114 may have therapeutic potential against GVHD.
Collapse
|
36
|
Hashimoto D, Chow A, Greter M, Saenger Y, Kwan WH, Leboeuf M, Ginhoux F, Ochando JC, Kunisaki Y, van Rooijen N, Liu C, Teshima T, Heeger PS, Stanley ER, Frenette PS, Merad M. Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation. ACTA ACUST UNITED AC 2011; 208:1069-82. [PMID: 21536742 PMCID: PMC3092347 DOI: 10.1084/jem.20101709] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Host macrophages protect against graft-versus-host disease in part by engulfing donor T cells and inhibiting their proliferation. Acute graft-versus-host disease (GVHD) results from the attack of host tissues by donor allogeneic T cells and is the most serious limitation of allogeneic hematopoietic cell transplantation (allo-HCT). Host antigen-presenting cells are thought to control the priming of alloreactive T cells and the induction of acute GVHD after allo-HCT. However, whereas the role of host DC in GVHD has been established, the contribution of host macrophages to GVHD has not been clearly addressed. We show that, in contrast to DC, reducing of the host macrophage pool in recipient mice increased donor T cell expansion and aggravated GVHD mortality after allo-HCT. We also show that host macrophages that persist after allo-HCT engulf donor allogeneic T cells and inhibit their proliferation. Conversely, administration of the cytokine CSF-1 before transplant expanded the host macrophage pool, reduced donor T cell expansion, and improved GVHD morbidity and mortality after allo-HCT. This study establishes the unexpected key role of host macrophages in inhibiting GVHD and identifies CSF-1 as a potential prophylactic therapy to limit acute GVHD after allo-HCT in the clinic.
Collapse
Affiliation(s)
- Daigo Hashimoto
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ikaros-Notch axis in host hematopoietic cells regulates experimental graft-versus-host disease. Blood 2011; 118:192-204. [PMID: 21471527 DOI: 10.1182/blood-2010-12-324616] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Host hematopoietically derived APCs play a vital role in the initiation of GVH responses. However, the APC autonomous molecular mechanisms that are critical for the induction of GVHD are not known. We report here that the Ikaros-Notch axis in host hematopoietically derived APCs regulates the severity of acute GVHD across multiple clinically relevant murine models of experimental bone marrow transplantation. In the present study, Ikaros deficiency (Ik(-/-)) limited to host hematopoietically derived APCs enhanced donor T-cell expansion and intensified acute GVHD, as determined by survival and other GVHD-specific parameters. The Ik(-/-) conventional CD8(+) and CD8(-)CD11c(+) dendritic cells (DCs), the most potent APCs, showed no increase in the expression of activation markers or in response to TLR stimulation compared with wild-type controls. However, Ik(-/-) DCs demonstrated an enhanced stimulation of allogeneic T cells. Deficiency of Ikaros in the conventional CD8(+) and CD8(-)CD11c(+) DCs was associated with an increase in Notch signaling, the blockade of which mitigated the enhanced in vitro and in vivo allostimulatory capacity. Therefore, the Ikaros-Notch axis is a novel pathway that modulates DC biology in general, and targeting this pathway in host hematopoietically derived APCs may reduce GVHD.
Collapse
|
38
|
Tao Y, Zhang W, Fang Y, Yang D, Wang L, Zhou H, Wang J. Bortezomib attenuates acute graft-vs.-host disease through interfering with host immature dendritic cells. Exp Hematol 2011; 39:710-20. [PMID: 21392555 DOI: 10.1016/j.exphem.2011.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/16/2011] [Accepted: 03/01/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the conditions under which proteasome inhibitor bortezomib improves acute graft-vs.-host disease (aGVHD) and the mechanism underlying the differential effects of bortezomib on aGVHD. MATERIALS AND METHODS Murine aGVHD models (C57BL/6→BALB/c) of different severities were set up by infusing with decreasing doses of donor splenocytes (SC). Bortezomib were administered immediately or 6 days after bone marrow transplantation (BMT). Serum levels of tumor necrosis factor-α (TNF-α) and lipopolysaccharide along with the number of donor TNF-α(+) T cells in recipients before intervention were determined. Major histocompatibility complex II expression and interleukin-12 production were analyzed to evaluate the maturation state of host dendritic cells (DCs) before intervention. Phenotypic changes, apoptosis, allogeneic stimulation, and IκBα expression levels in bortezomib-treated mature DCs or immature DCs were analyzed in vitro. RESULTS Neither early bortezomib (day 0 BMT) administration in a modest (SC 1 × 10(7)) or severe (SC 2 × 10(7)) aGVHD model, nor delayed administration (day +6 BMT) could protect mice form aGVHD. Marked inhibition of aGVHD was observed in a mild aGVHD model (SC 5 × 10(6)) with early intervention. This inhibition correlated with a relatively immature state of host DCs before intervention. Additional in vitro studies showed that, in comparison to mature DCs, bortezomib inhibited phenotypic and functional maturation as well as induced more potent apoptosis in immature DCs through suppression of nuclear factor-κB activity. CONCLUSIONS Manipulating host immature DCs may represent a novel mechanism by which bortezomib improves aGVHD.
Collapse
Affiliation(s)
- Yi Tao
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
39
|
Harnessing dendritic cells to improve allogeneic hematopoietic cell transplantation outcome. Semin Immunol 2011; 23:50-7. [DOI: 10.1016/j.smim.2011.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/05/2011] [Indexed: 11/20/2022]
|
40
|
The importance of neovascularization and its inhibition for allogeneic hematopoietic stem cell transplantation. Blood 2011; 117:4181-9. [PMID: 21258010 DOI: 10.1182/blood-2010-10-312934] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
GVHD and tumor relapse are fundamental problems in allogeneic HSCT. Recent research has linked neovascularization to GVHD, tumor growth, and graft-versus-tumor (GVT) activity. Damage of the endothelium by the conditioning regimen provides the initiation stimulus for recruitment of donor-derived endothelial cells and their progenitors. During the early inflammatory phase of GVHD there is considerable neovascularization facilitating migration of inflammatory cells to target organs. In the course of GVHD, however, the vasculature itself becomes a target of alloreactive donor T cells. As a consequence, later stages of GVHD are characterized by fibrosis and rarefaction of blood vessels. Importantly, the inhibition of tumor-neovascularization by activated donor T cells that release antiangiogenic substances contributes to GVT and may be enhanced by pharmacologic inhibition of neovascularization. Furthermore, the therapeutic inhibition of neovascularization may improve immunotherapy for cancer by enhancing leukocyte infiltration in tumor tissue because of normalization of tumor vessels and stimulation of leukocyte-vessel wall interactions. These insights identify important mechanisms underlining the importance of neovascularization for allogeneic immune responses and move therapeutic approaches targeting neovascularization into the spotlight. This perspective covers current knowledge of the role of neovascularization during GVHD as well as GVT and its implications for HSCT.
Collapse
|
41
|
Blockade of osteopontin reduces alloreactive CD8+ T cell-mediated graft-versus-host disease. Blood 2010; 117:1723-33. [PMID: 21119110 DOI: 10.1182/blood-2010-04-281659] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Graft-versus-host disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem cell transplantation, is caused by alloreactive donor T cells that trigger host tissue damage. The inflammatory environment inside recipients is critical for GVHD pathogenesis, but the underpinning mechanisms remain elusive. Using mouse model of human GVHD, we demonstrate osteopontin (OPN), a potent proinflammatory cytokine, plays an important role in regulating activation, migration, and survival of alloreactive T cells during GVHD. OPN was significantly elevated after irradiation and persisted throughout the course of GVHD. Blockade of OPN attenuated GVHD with reduced accumulation of donor T cells in recipient organs. Amelioration was the result of migration and survival suppression caused by anti-OPN treatment on donor-derived T cells for 2 reasons. First, OPN promoted the migration and infiltration of naive and alloreactive CD8(+) T cells into host organs. Second, it also facilitated activation and viability of donor-derived CD8(+) T cells via synergizing with T-cell receptor/CD3 signaling. Finally, anti-OPN treatment retained graft-versus-leukemia effect of alloreactive CD8(+) T cells. This study demonstrates, to our knowledge for the first time, the critical effect of OPN in the initiation and persistence of CD8(+) T cell-mediated GVHD and validates OPN as a potential target in GVHD prevention.
Collapse
|
42
|
Saas P, Gaugler B, Perruche S. Intravenous apoptotic cell infusion as a cell-based therapy toward improving hematopoietic cell transplantation outcome. Ann N Y Acad Sci 2010; 1209:118-26. [PMID: 20958324 DOI: 10.1111/j.1749-6632.2010.05741.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allogeneic hematopoietic cell transplantation (AHCT) is an efficient therapy for different malignant and nonmalignant hematological diseases. However, the use of this therapeutic approach is still limited by some severe toxic side effects, mainly graft-versus-host disease (GvHD). Today, the risk of fatal GvHD restrains the wider application of AHCT to many patients in need of an effective therapy for their high-risk hematologic malignancies. Thus, new strategies, including cell-based therapy approaches, are required. We propose to use intravenous donor apoptotic leukocyte infusion to improve AHCT outcome. In experimental AHCT models, we demonstrated that intravenous apoptotic leukocyte infusion, simultaneously with allogeneic bone marrow grafts, favors hematopoietic engraftment, prevents allo-immunization, and delays acute GvHD onset. Here, we review the different mechanisms and the potential beneficial effects associated with the immunomodulatory properties of apoptotic cells in the AHCT setting.
Collapse
|
43
|
Ushiki T, Kizaka-Kondoh S, Ashihara E, Tanaka S, Masuko M, Hirai H, Kimura S, Aizawa Y, Maekawa T, Hiraoka M. Noninvasive tracking of donor cell homing by near-infrared fluorescence imaging shortly after bone marrow transplantation. PLoS One 2010; 5:e11114. [PMID: 20559437 PMCID: PMC2885427 DOI: 10.1371/journal.pone.0011114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 05/24/2010] [Indexed: 12/12/2022] Open
Abstract
Background Many diseases associated with bone marrow transplantation (BMT) are caused by transplanted hematopoietic cells, and the onset of these diseases occurs after homing of donor cells in the initial phase after BMT. Noninvasive observation of donor cell homing shortly after transplantation is potentially valuable for improving therapeutic outcomes of BMT by diagnosing the early stages of these diseases. Methodology/Principal Findings Freshly harvested near-infrared fluorescence-labeled cells were noninvasively observed for 24 h after BMT using a photon counting device to track their homing process. In a congenic BMT model, the homing of Alexa Fluor 750-labeled donor cells in the tibia was detected less than 1 h after BMT. In addition, subsequent cell distribution in an intraBM BMT model was successfully monitored for the first time using this method. In the allogeneic BMT model, T-cell depletion decreased the near-infrared fluorescence (NIRF) signals of the reticuloendothelial system. Conclusions/Significance This approach in several murine BMT models revealed that the transplanted cells homed within 24 h after transplantation. NIRF labeling is useful for tracking transplanted cells in the initial phase after BMT, and this approach can contribute to in vivo studies aimed at improving the therapeutic outcomes of BMT.
Collapse
Affiliation(s)
- Takashi Ushiki
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Moon JH, Kim SN, Kang BW, Chae YS, Kim JG, Ahn JS, Kim YK, Yang DH, Lee JJ, Kim HJ, Choi YJ, Shin HJ, Chung JS, Cho GJ, Sohn SK. Early onset of acute GVHD indicates worse outcome in terms of severity of chronic GVHD compared with late onset. Bone Marrow Transplant 2010; 45:1540-5. [PMID: 20190848 DOI: 10.1038/bmt.2010.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute GVHD (aGVHD) is an important risk factor for predicting the incidence or severity of chronic GVHD (cGVHD). Transplant outcome can be influenced by the onset time of aGVHD in patients who have received allogeneic PBSC transplants (PBSCTs). The medical records of 134 patients who survived more than 3 months after myeloablative allogeneic PBSCT were retrospectively reviewed. In all, 38 patients (28.4%) developed grade II-IV aGVHD before day +28 (early aGVHD) and 25 patients (18.7%) after day +28 (late aGVHD). The 5-year cumulative incidence of cGVHD was 78.9% in the early-aGVHD group and 56.6% in the late-aGVHD group (P=0.034). The 5-year OS was 51.0% for the early-aGVHD and 80.8% for the late-aGVHD group (P=0.406). Infection was the primary cause of death for the early-aGVHD group (51.4 vs 16.7%, P=0.017), whereas relapse of the primary disease was higher among the patients with late aGVHD, although this was statistically insignificant (58.3 vs 25.7%, P=0.309). In a multivariate analysis, early aGVHD was identified as a risk factor for developing cGVHD (hazard ratio (HR) 2.278, P=0.004). The development of aGVHD early after allogeneic PBSCT increased the risk of cGVHD and infection-related death rate when compared with the late onset of aGVHD.
Collapse
Affiliation(s)
- J H Moon
- Department of Hematology/Oncology, Kyungpook National University Hospital, Daegu, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kato K, Cui S, Kuick R, Mineishi S, Hexner E, Ferrara JLM, Emerson SG, Zhang Y. Identification of stem cell transcriptional programs normally expressed in embryonic and neural stem cells in alloreactive CD8+ T cells mediating graft-versus-host disease. Biol Blood Marrow Transplant 2010; 16:751-71. [PMID: 20116439 DOI: 10.1016/j.bbmt.2010.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 01/20/2010] [Indexed: 02/01/2023]
Abstract
A hallmark of graft-versus-host-disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem cell transplantation, is the cytopathic injury of host tissues mediated by persistent alloreactive effector T cells (T(E)). However, the mechanisms that regulate the persistence of alloreactive T(E) during GVHD remain largely unknown. Using mouse GVHD models, we demonstrate that alloreactive CD8(+) T(E) rapidly diminished in vivo when adoptively transferred into irradiated secondary congenic recipient mice. In contrast, although alloreactive CD8(+) T(E) underwent massive apoptosis upon chronic exposure to alloantigens, they proliferated in vivo in secondary allogeneic recipients, persisted, and caused severe GVHD. Thus, the continuous proliferation of alloreactive CD8(+) T(E), which is mediated by alloantigenic stimuli rather than homeostatic factors, is critical to maintaining their persistence. Gene expression profile analysis revealed that although alloreactive CD8(+) T(E) increased the expression of genes associated with cell death, they activated a group of stem cell genes normally expressed in embryonic and neural stem cells. Most of these stem cell genes are associated with cell cycle regulation, DNA replication, chromatin modification, and transcription. One of these genes, Ezh2, which encodes a chromatin modifying enzyme, was abundantly expressed in CD8(+) T(E). Silencing Ezh2 significantly reduced the proliferation of alloantigen-activated CD8(+) T cells. Thus, these findings identify that a group of stem cell genes could play important roles in sustaining terminally differentiated alloreactive CD8(+) T(E) and may be therapeutic targets for controlling GVHD.
Collapse
Affiliation(s)
- Koji Kato
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109-5942, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kim ES, Lee JK. Histone deacetylase inhibitors decrease the antigen presenting activity of murine bone marrow derived dendritic cells. Cell Immunol 2009; 262:52-7. [PMID: 20096829 DOI: 10.1016/j.cellimm.2009.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 12/21/2009] [Indexed: 11/29/2022]
Abstract
Once activated by infected pathogens, dendritic cells (DCs) undergo activation and release inflammatory mediators responsible for the signs of inflammation. Our aim was to elucidate whether histone deacetylase inhibitors (HDACIs), trichostatine-A (TSA), scriptaid (ST) and sodium butylate (SB) regulate the inflammatory response of DCs. Pre-treatment with TSA and ST reduced the syngeneic and allogeneic-antigen presenting activity of LPS-stimulated DCs in a dose dependent manner to statistical significance. SB also reduced the antigen presenting activity of DCs, but not significantly. HDACIs mediate their effects through the modulation of DC maturation and pre-treatment of the DCs with TSA or ST prior to treatment with LPS reduced the expressions of DC mature markers to the level of immature dendritic cells (iDCs). Moreover, TSA and ST reduced the IL-2 production from LPS-stimulated mature DCs. Our results suggest that HDACIs may actively modulate the DC-induced inflammatory response through inhibition of phenotypical or functional maturation.
Collapse
Affiliation(s)
- Eun Sun Kim
- Department of Biology Education, College of Education, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | | |
Collapse
|
47
|
Abstract
Allogeneic hematopoietic stem cell transplantation is an established treatment modality for malignant and nonmalignant hematologic diseases. Acute and chronic graft-versus-host diseases (GVHDs) are a major cause of morbidity and mortality after allogeneic stem cell transplantation. T cells have been identified as key players in the graft-versus-host reaction and, therefore, most established drugs used against GVHD target T cells. Despite our knowledge on the pathogenesis of the GVH reaction, success of established therapies for prevention and treatment of GHVD is unsatisfactory. Recently, animal and human studies demonstrated that B cells are involved in the immunopathophysiology of acute and chronic GVHD. Early phase clinical trials of B-cell depletion with rituximab have shown beneficial effects on both acute and chronic GVHD. This review summarizes the current experimental and clinical evidence for the involvement of B cells in the pathogenesis of acute and chronic GVHD and discusses the clinical implications for the management of patients undergoing allogeneic stem cell transplantation.
Collapse
|
48
|
Wilson J, Cullup H, Lourie R, Sheng Y, Palkova A, Radford KJ, Dickinson AM, Rice AM, Hart DN, Munster DJ. Antibody to the dendritic cell surface activation antigen CD83 prevents acute graft-versus-host disease. J Exp Med 2009; 206:387-98. [PMID: 19171763 PMCID: PMC2646577 DOI: 10.1084/jem.20070723] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 12/23/2008] [Indexed: 12/31/2022] Open
Abstract
Allogeneic (allo) hematopoietic stem cell transplantation is an effective therapy for hematological malignancies but it is limited by acute graft-versus-host disease (GVHD). Dendritic cells (DC) play a major role in the allo T cell stimulation causing GVHD. Current immunosuppressive measures to control GVHD target T cells but compromise posttransplant immunity in the patient, particularly to cytomegalovirus (CMV) and residual malignant cells. We showed that treatment of allo mixed lymphocyte cultures with activated human DC-depleting CD83 antibody suppressed alloproliferation but preserved T cell numbers, including those specific for CMV. We also tested CD83 antibody in the human T cell-dependent peripheral blood mononuclear cell transplanted SCID (hu-SCID) mouse model of GVHD. We showed that this model requires human DC and that CD83 antibody treatment prevented GVHD but, unlike conventional immunosuppressants, did not prevent engraftment of human T cells, including cytotoxic T lymphocytes (CTL) responsive to viruses and malignant cells. Immunization of CD83 antibody-treated hu-SCID mice with irradiated human leukemic cell lines induced allo antileukemic CTL effectors in vivo that lysed (51)Cr-labeled leukemic target cells in vitro without further stimulation. Antibodies that target activated DC are a promising new therapeutic approach to the control of GVHD.
Collapse
Affiliation(s)
- John Wilson
- Mater Medical Research Institute, South Brisbane, Queensland 4101, Australia
| | - Hannah Cullup
- Mater Medical Research Institute, South Brisbane, Queensland 4101, Australia
- Haematological Sciences, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England, UK
| | - Rohan Lourie
- Mater Health Services Pathology, South Brisbane, Queensland 4101, Australia
| | - Yonghua Sheng
- Mater Medical Research Institute, South Brisbane, Queensland 4101, Australia
| | - Anna Palkova
- Mater Medical Research Institute, South Brisbane, Queensland 4101, Australia
| | - Kristen J. Radford
- Mater Medical Research Institute, South Brisbane, Queensland 4101, Australia
| | - Anne M. Dickinson
- Haematological Sciences, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England, UK
| | - Alison M. Rice
- Mater Medical Research Institute, South Brisbane, Queensland 4101, Australia
| | - Derek N.J. Hart
- Mater Medical Research Institute, South Brisbane, Queensland 4101, Australia
| | - David J. Munster
- Mater Medical Research Institute, South Brisbane, Queensland 4101, Australia
| |
Collapse
|
49
|
Haniffa M, Ginhoux F, Wang XN, Bigley V, Abel M, Dimmick I, Bullock S, Grisotto M, Booth T, Taub P, Hilkens C, Merad M, Collin M. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J Exp Med 2009; 206:371-85. [PMID: 19171766 PMCID: PMC2646566 DOI: 10.1084/jem.20081633] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 12/18/2008] [Indexed: 12/12/2022] Open
Abstract
Animal models of hematopoietic stem cell transplantation have been used to analyze the turnover of bone marrow-derived cells and to demonstrate the critical role of recipient antigen-presenting cells (APC) in graft versus host disease (GVHD). In humans, the phenotype and lineage relationships of myeloid-derived tissue APC remain incompletely understood. It has also been proposed that the risk of acute GVHD, which extends over many months, is related to the protracted survival of certain recipient APC. Human dermis contains three principal subsets of CD45(+)HLA-DR(+) cells: CD1a(+)CD14(-) DC, CD1a(-)CD14(+) DC, and CD1a(-)CD14(+)FXIIIa(+) macrophages. In vitro, each subset has characteristic properties. After transplantation, both CD1a(+) and CD14(+) DC are rapidly depleted and replaced by donor cells, but recipient macrophages can be found in GVHD lesions and may persist for many months. Macrophages isolated from normal dermis secrete proinflammatory cytokines. Although they stimulate little proliferation of naive or memory CD4(+) T cells, macrophages induce cytokine expression in memory CD4(+) T cells and activation and proliferation of CD8(+) T cells. These observations suggest that dermal macrophages and DC are from distinct lineages and that persistent recipient macrophages, although unlikely to initiate alloreactivity, may contribute to GVHD by sustaining the responses of previously activated T cells.
Collapse
Affiliation(s)
- Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Florent Ginhoux
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Xiao-Nong Wang
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Venetia Bigley
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Michal Abel
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Ian Dimmick
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Sarah Bullock
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Marcos Grisotto
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Trevor Booth
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Peter Taub
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Catharien Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
| | - Miriam Merad
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, England, UK
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
50
|
Interleukin-23 secretion by donor antigen-presenting cells is critical for organ-specific pathology in graft-versus-host disease. Blood 2008; 113:2352-62. [PMID: 19059877 DOI: 10.1182/blood-2008-08-175448] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Damage to the gastrointestinal tract during graft-versus-host disease (GVHD) from the conditioning regimen in conjunction with alloreactive donor T cells plays a pivotal role in the pathogenesis of this disease. In this study, we have identified secretion of interleukin-23 (IL-23) by donor antigen-presenting cells (APCs) as a critical event in the induction of GVHD of the colon linking conditioning regimen-induced mucosal injury and lipopolysaccharide (LPS) translocation to subsequent proinflammatory cytokine production and GVHD-associated pathologic damage. In the absence of donor APC-derived IL-23 secretion, there is a selective and profound reduction in pathologic damage as well as a marked reduction in LPS and proinflammatory cytokine production in the colon microenvironment. The downstream proinflammatory effects of IL-23 are dependent upon donor-derived secretion of interferon-gamma (IFN-gamma), but are independent of donor IL-17 production. These findings define a novel organ-specific role for IL-23 in the pathophysiology of GVHD and demonstrate that IL-23 can direct tissue-specific pathology within the context of a systemic inflammatory disorder. Furthermore, these studies also identify IL-23 as a potential therapeutic target for the prevention of this life-threatening disorder.
Collapse
|