1
|
Sabuz Vidal O, Deepika D, Schuhmacher M, Kumar V. EDC-induced mechanisms of immunotoxicity: a systematic review. Crit Rev Toxicol 2022; 51:634-652. [PMID: 35015608 DOI: 10.1080/10408444.2021.2009438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) refer to a group of chemicals that cause adverse effects in human health, impairing hormone production and regulation, resulting in alteration of homeostasis, reproductive, and developmental, and immune system impairments. The immunotoxicity of EDCs involves many mechanisms altering gene expression that depend on the activation of nuclear receptors such as the aryl hydrocarbon receptor (AHR), the estrogen receptor (ER), and the peroxisome proliferator-activated receptor (PPAR), which also results in skin and intestinal disorders, microbiota alterations and inflammatory diseases. This systematic review aims to review different mechanisms of immunotoxicity and immunomodulation of T cells, focusing on T regulatory (Treg) and Th17 subsets, B cells, and dendritic cells (DCs) caused by specific EDCs such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), bisphenols (BPs) and polyfluoroalkyl substances (PFASs). To achieve this objective, a systematic study was conducted searching various databases including PubMed and Scopus to find in-vitro, in-vivo, and biomonitoring studies that examine EDC-dependent mechanisms of immunotoxicity. While doing the systematic review, we found species- and cell-specific outcomes and a translational gap between in-vitro and in-vivo experiments. Finally, an adverse outcome pathway (AOP) framework is proposed, which explains mechanistically toxicity endpoints emerging from different EDCs having similar key events and can help to improve our understanding of EDCs mechanisms of immunotoxicity. In conclusion, this review provides insights into the mechanisms of immunotoxicity mediated by EDCs and will help to improve human health risk assessment.
Collapse
Affiliation(s)
- Oscar Sabuz Vidal
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Deepika Deepika
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain.,IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|
2
|
miR-155 indicates the fate of CD4 + T cells. Immunol Lett 2020; 224:40-49. [PMID: 32485191 DOI: 10.1016/j.imlet.2020.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are a class of short noncoding RNAs that regulate the translation of target messenger RNA (mRNA) and consequently participate in a variety of biological processes at the posttranscriptional level. miR-155, encoded within a region known as the B cell integration cluster (BIC), plays multifunctional roles in shaping lymphocytes ranging from biological development to adaptive immunity. It has been revealed that miR-155 plays a key role in fine-tuning the regulation of lymphocyte subsets, including dendritic cells (DCs), macrophages, B cells, and CD8+ and CD4+ T cells. Antigen-specific CD4+ T lymphocytes are critical for host defense against pathogens and prevention of damage resulting from excessive inflammation. Over the past years, various studies have shown that miR-155 plays a critical role in CD4+ T cells function. Therefore, we summarize multiple target genes of miR-155 that regulate aspects of CD4+ T cells immunity, particularly CD4+ T cells differentiation, in this review. In addition, we also focus on the role of miR-155 in the regulation of immunological diseases, suggesting it as a potential disease biomarker and therapeutic target.
Collapse
|
3
|
Ambrosio LF, Insfran C, Volpini X, Acosta Rodriguez E, Serra HM, Quintana FJ, Cervi L, Motrán CC. Role of Aryl Hydrocarbon Receptor (AhR) in the Regulation of Immunity and Immunopathology During Trypanosoma cruzi Infection. Front Immunol 2019; 10:631. [PMID: 30984194 PMCID: PMC6450169 DOI: 10.3389/fimmu.2019.00631] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Resistance to Trypanosoma cruzi infection is dependent on a rapid induction of Th1-type and CD8+ T cell responses that should be promptly balanced to prevent immunopathology. T. cruzi-infected B6 mice are able to control parasite replication but show a limited expansion of Foxp3+regulatory T (Treg) cells that results in the accumulation of effector immune cells and the development of acute liver pathology. AhR is a ligand-activated transcription factor that promotes Treg cell development and suppression of pro-inflammatory cytokine production in dendritic cells, altering the course of adaptive immune response and the development of immunopathology. Here, we used different AhR-dependent activation strategies aiming to improve the Treg response, and B6 congenic mice carrying a mutant AhR variant with low affinity for its ligands (AhRd) to evaluate the role of AhR activation by natural ligands during experimental T. cruzi infection. The outcome of TCDD or 3-HK plus ITE treatments indicated that strong or weak AhR activation before or during T. cruzi infection was effective to regulate inflammation improving the Treg cell response and regularizing the ratio between CD4+ CD25- to Treg cells. However, AhR activation shifted the host-parasite balance to the parasite replication. Weak AhR activation resulted in Treg promotion while strong activation differentially modulated the susceptibility and resistance of cell death in activated T and Treg cells and the increase in TGF-β-producing Treg cells. Of note, T. cruzi-infected AhRd mice showed low levels of Treg cells associated with strong Th1-type response, low parasite burden and absence of liver pathology. These mice developed a Treg- and Tr1-independent mechanism of Th1 constriction showing increased levels of systemic IL-10 and IL-10-secreting CD4+ splenocytes. In addition, AhR activation induced by exogenous ligands had negative effects on the development of memory CD8+ T cell subsets while the lack/very weak activation in AhRd mice showed opposite results, suggesting that AhR ligation restricts the differentiation of memory CD8+T cell subsets. We propose a model in which a threshold of AhR activation exists and may explain how activation or inhibition of AhR-derived signals by infection/inflammation-induced ligands, therapeutic interventions or exposure to pollutants can modulate infections/diseases outcomes or vaccination efficacy.
Collapse
Affiliation(s)
- Laura Fernanda Ambrosio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Constanza Insfran
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Ximena Volpini
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Eva Acosta Rodriguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Horacio Marcelo Serra
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Claudia Cristina Motrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| |
Collapse
|
4
|
Localized immune tolerance from FasL-functionalized PLG scaffolds. Biomaterials 2018; 192:271-281. [PMID: 30458362 DOI: 10.1016/j.biomaterials.2018.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022]
Abstract
Intraportal allogeneic islet transplantation has been demonstrated as a potential therapy for type 1 diabetes (T1D). The placement of islets into the liver and chronic immunosuppression to control rejection are two major limitations of islet transplantation. We hypothesize that localized immunomodulation with a novel form of FasL chimeric with streptavidin, SA-FasL, can provide protection and long-term function of islets at an extrahepatic site in the absence of chronic immunosuppression. Allogeneic islets modified with biotin and engineered to transiently display SA-FasL on their surface showed sustained survival following transplantation on microporous scaffolds into the peritoneal fat in combination with a short course (15 days) of rapamycin treatment. The challenges with modifying islets for clinical translation motivated the modification of scaffolds with SA-FasL as an off-the-shelf product. Poly (lactide-co-glycolide) (PLG) was conjugated with biotin and fabricated into particles and subsequently formed into microporous scaffolds to allow for rapid and efficient conjugation with SA-FasL. Biotinylated particles and scaffolds efficiently bound SA-FasL and induced apoptosis in cells expressing Fas receptor (FasR). Scaffolds functionalized with SA-FasL were subsequently seeded with allogeneic islets and transplanted into the peritoneal fat under the short-course of rapamycin treatment. Scaffolds modified with SA-FasL had robust engraftment of the transplanted islets that restored normoglycemia for 200 days. Transplantation without rapamycin or without SA-FasL did not support long-term survival and function. This work demonstrates that scaffolds functionalized with SA-FasL support allogeneic islet engraftment and long-term survival and function in an extrahepatic site in the absence of chronic immunosuppression with significant potential for clinical translation.
Collapse
|
5
|
Datta A, Moitra S, Das PK, Mondal S, Omar Faruk SM, Hazra I, Tripathi SK, Chaudhuri S. Allergen immunotherapy modulates sensitivity of Treg cells to apoptosis in a rat model of allergic asthma. Immunotherapy 2018; 9:1239-1251. [PMID: 29130799 DOI: 10.2217/imt-2017-0038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM To study the apoptosis of Foxp3+ Treg cells following Alstonia scholaris pollen sensitization-challenge and following allergen immunotherapy. MATERIALS & METHODS Wistar rats were sensitized-challenged with Alstonia scholaris pollen and were further given intranasal immunotherapy. For the analysis of the apoptotic proteins on Treg cells by flow cytometry, multiple gating procedures were followed. RESULTS Allergen sensitization-challenge increases Annexin-V, Fas, FasL, caspases-8, 9, 3 cytochrome-C, APAF-1, Bax, perforin-1 and granzyme-B on Treg cells which is decreased following intranasal immunotherapy. On the other hand, Bcl-2 expression is decreased in allergy and increased by immunotherapy. CONCLUSION Apoptosis of Treg cells is increased following allergen sensitization-challenge via extrinsic, intrinsic and perforin/granzyme pathways and allergen immunotherapy decreased the sensitivity to apoptosis of Treg cells.
Collapse
Affiliation(s)
- Ankur Datta
- Department of Laboratory Medicine, School of Tropical Medicine, 108 C R Avenue, Kolkata 700073, West Bengal, India
| | - Saibal Moitra
- Department of Laboratory Medicine, School of Tropical Medicine, 108 C R Avenue, Kolkata 700073, West Bengal, India
| | - Prasanta K Das
- Department of Laboratory Medicine, School of Tropical Medicine, 108 C R Avenue, Kolkata 700073, West Bengal, India
| | - Somnath Mondal
- Department of Laboratory Medicine, School of Tropical Medicine, 108 C R Avenue, Kolkata 700073, West Bengal, India
| | - Sk Md Omar Faruk
- Department of Laboratory Medicine, School of Tropical Medicine, 108 C R Avenue, Kolkata 700073, West Bengal, India
| | - Iman Hazra
- Department of Laboratory Medicine, School of Tropical Medicine, 108 C R Avenue, Kolkata 700073, West Bengal, India
| | - Santanu K Tripathi
- Department of Clinical & Experimental Pharmacology, School of Tropical Medicine, 108 C R Avenue, Kolkata 700073, West Bengal, India
| | - Swapna Chaudhuri
- Department of Laboratory Medicine, School of Tropical Medicine, 108 C R Avenue, Kolkata 700073, West Bengal, India
| |
Collapse
|
6
|
Sampath R, Cummins NW, Natesampillai S, Bren GD, Chung TD, Baker J, Henry K, Pagliuzza A, Badley AD. Increasing procaspase 8 expression using repurposed drugs to induce HIV infected cell death in ex vivo patient cells. PLoS One 2017. [PMID: 28628632 PMCID: PMC5476266 DOI: 10.1371/journal.pone.0179327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HIV persists because a reservoir of latently infected CD4 T cells do not express viral proteins and are indistinguishable from uninfected cells. One approach to HIV cure suggests that reactivating HIV will activate cytotoxic pathways; yet when tested in vivo, reactivating cells do not die sufficiently to reduce cell-associated HIV DNA levels. We recently showed that following reactivation from latency, HIV infected cells generate the HIV specific cytotoxic protein Casp8p41 which is produced by HIV protease cleaving procaspase 8. However, cell death is prevented, possibly due to low procaspase 8 expression. Here, we tested whether increasing procaspase 8 levels in CD4 T cells will produce more Casp8p41 following HIV reactivation, causing more reactivated cells to die. Screening 1277 FDA approved drugs identified 168 that increased procaspase 8 expression by at least 1.7-fold. Of these 30 were tested for anti-HIV effects in an acute HIVIIIb infection model, and 9 drugs at physiologic relevant levels significantly reduced cell-associated HIV DNA. Primary CD4 T cells from ART suppressed HIV patients were treated with one of these 9 drugs and reactivated with αCD3/αCD28. Four drugs significantly increased Casp8p41 levels following HIV reactivation, and decreased total cell associated HIV DNA levels (flurbiprofen: p = 0.014; doxycycline: p = 0.044; indomethacin: p = 0.025; bezafibrate: P = 0.018) without effecting the viability of uninfected cells. Thus procaspase 8 levels can be increased pharmacologically and, in the context of HIV reactivation, increase Casp8p41 causing death of reactivating cells and decreased HIV DNA levels. Future studies will be required to define the clinical utility of this or similar approaches.
Collapse
Affiliation(s)
- Rahul Sampath
- Division of Infectious Disease, Mayo Clinic Rochester, Rochester, MN, United States of America
| | - Nathan W. Cummins
- Division of Infectious Disease, Mayo Clinic Rochester, Rochester, MN, United States of America
| | - Sekar Natesampillai
- Division of Infectious Disease, Mayo Clinic Rochester, Rochester, MN, United States of America
| | - Gary D. Bren
- Division of Infectious Disease, Mayo Clinic Rochester, Rochester, MN, United States of America
| | - Thomas D. Chung
- Office of Translation to Practice, Mayo Clinic Rochester, Rochester, MN, United States of America
| | - Jason Baker
- Division of Infectious Diseases, University of Minnesota, Minneapolis, MN, United States of America
| | - Keith Henry
- HIV Program, Hennepin County Medical Center, Minnneapolis, MN, United States of America
| | - Amélie Pagliuzza
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Andrew D. Badley
- Division of Infectious Disease, Mayo Clinic Rochester, Rochester, MN, United States of America
- Office of Translation to Practice, Mayo Clinic Rochester, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
7
|
c-FLIP Expression in Foxp3-Expressing Cells Is Essential for Survival of Regulatory T Cells and Prevention of Autoimmunity. Cell Rep 2017; 18:12-22. [DOI: 10.1016/j.celrep.2016.12.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 10/21/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
|
8
|
Volpe E, Sambucci M, Battistini L, Borsellino G. Fas-Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis. Front Immunol 2016; 7:382. [PMID: 27729910 PMCID: PMC5037862 DOI: 10.3389/fimmu.2016.00382] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022] Open
Abstract
Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their T cell receptor (TCR) genes and of those that recognize self-antigens, a process called negative selection; moreover, Fas–FasL interaction leads to activation-induced cell death, a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral deletion of activated T cells. Both control mechanisms are particularly relevant in the context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert an immune response against self-antigens. This concept is well demonstrated by the development of autoimmune diseases in mice and humans with defects in Fas or FasL. In recent years, several new aspects of T cell functions in MS have been elucidated, such as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory (Treg) cells. Thus, in this review, we summarize the role of the Fas–FasL pathway, with particular focus on its involvement in MS. We then discuss recent advances concerning the role of Fas–FasL in regulating Th17 and Treg cells’ functions, in the context of MS.
Collapse
|
9
|
Bhaskaran N, Quigley C, Weinberg A, Huang A, Popkin D, Pandiyan P. Transforming growth factor-β1 sustains the survival of Foxp3(+) regulatory cells during late phase of oropharyngeal candidiasis infection. Mucosal Immunol 2016; 9:1015-26. [PMID: 26530137 PMCID: PMC4854793 DOI: 10.1038/mi.2015.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/21/2015] [Indexed: 02/04/2023]
Abstract
As CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) play crucial immunomodulatory roles during infections, one key question is how these cells are controlled during antimicrobial immune responses. Mechanisms controlling their homeostasis are central to ensure efficient protection against pathogens, as well as to control infection-associated immunopathology. Here we studied how their viability is regulated in the context of mouse oropharyngeal candidiasis (OPC) infection, and found that these cells show increased protection from apoptosis during late phase of infection and reinfection. Tregs underwent reduced cell death because they are refractory to T cell receptor restimulation-induced cell death (RICD). We confirmed their resistance to RICD, using mouse and human Tregs in vitro, and by inducing α-CD3 antibody-mediated apoptosis in vivo. The enhanced viability is dependent on increased transforming growth factor-β1 (TGF-β1) signaling that results in upregulation of cFLIP (cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein) in Tregs. Protection from cell death is abrogated in the absence of TGF-β1 signaling in Tregs during OPC infection. Taken together, our data unravel the previously unrecognized role of TGF-β1 in promoting Treg viability, coinciding with the pronounced immunomodulatory role of these cells during later phase of OPC infection, and possibly other mucosal infections.
Collapse
Affiliation(s)
- N Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - C Quigley
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - A Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - A Huang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - D Popkin
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - P Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Song J, Li N, Xia Y, Gao Z, Zou SF, Kong L, Yao YJ, Jiao YN, Yan YH, Li SH, Tao ZY, Lian G, Yang JX, Kang TG. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion. Front Pharmacol 2016; 7:182. [PMID: 27445818 PMCID: PMC4916177 DOI: 10.3389/fphar.2016.00182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/10/2016] [Indexed: 12/31/2022] Open
Abstract
Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers neuroprotection of brain tissue through anti-inflammatory and anti-apoptotic effects in a mouse model of SWI. These results suggest a new strategy for promoting neuronal survival and function after CED to improve long-term patient outcome.
Collapse
Affiliation(s)
- Jie Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Na Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Yang Xia
- Department of Engineering, St. Cross College, University of Oxford Oxford, UK
| | - Zhong Gao
- Department of Interventional Therapy, Department of Rehabilitation, Dalian Municipal Central Hospital Dalian, China
| | - Sa-Feng Zou
- Department of Interventional Therapy, Department of Rehabilitation, Dalian Municipal Central Hospital Dalian, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Ying-Jia Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Ya-Nan Jiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Yu-Hui Yan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Shao-Heng Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Zhen-Yu Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Guan Lian
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Jing-Xian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Ting-Guo Kang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| |
Collapse
|
11
|
Askenasy N. Mechanisms of autoimmunity in the non-obese diabetic mouse: effector/regulatory cell equilibrium during peak inflammation. Immunology 2016; 147:377-88. [PMID: 26749404 DOI: 10.1111/imm.12581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Immune imbalance in autoimmune disorders such as type 1 diabetes may originate from aberrant activities of effector cells or dysfunction of suppressor cells. All possible defective mechanisms have been proposed for diabetes-prone species: (i) quantitative dominance of diabetogenic cells and decreased numbers of regulatory T cells, (ii) excessive aggression of effectors and defective function of suppressors, (iii) perturbed interaction between effector and suppressor cells, and (iv) variations in sensitivity to negative regulation. The experimental evidence available to date presents conflicting information on these mechanisms, with identification of perturbed equilibrium on the one hand and negation of critical role of each mechanism in propagation of diabetic autoimmunity on the other hand. In our analysis, there is no evidence that inherent abnormalities in numbers and function of effector and suppressor T cells are responsible for the immune imbalance responsible for propagation of type 1 diabetes as a chronic inflammatory process. Possibly, the experimental tools for investigation of these features of immune activity are still underdeveloped and lack sufficient resolution, in the presence of the extensive biological viability and functional versatility of effector and suppressor elements.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, Petach Tikva, Israel
| |
Collapse
|
12
|
Nogueira JDS, Canto FBD, Nunes CFCG, Vianna PHO, Paiva LDS, Nóbrega A, Bellio M, Fucs R. Enhanced renewal of regulatory T cells in relation to CD4(+) conventional T lymphocytes in the peripheral compartment. Immunology 2015; 147:221-39. [PMID: 26572097 DOI: 10.1111/imm.12555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022] Open
Abstract
CD4(+) Foxp3(+) regulatory T (Treg) cells are necessary for the maintenance of self-tolerance and T-cell homeostasis. This population is kept at stable frequencies in secondary lymphoid organs for the majority of the lifetime, despite permanent thymic emigration or in the face of thymic involution. Continuous competition is expected to occur between recently thymus-emigrated and resident Treg cells (either natural or post-thymically induced). In the present work, we analysed the renewal dynamics of Treg cells compared with CD4(+) Foxp3- conventional T cells (Tconv), using protocols of single or successive T-cell transfers into syngeneic euthymic or lymphopenic (nu/nu or RAG2(-/-)) mice, respectively. Our results show a higher turnover for Treg cells in the peripheral compartment, compared with Tconv cells, when B cell-sufficient euthymic or nude hosts are studied. This increased renewal within the Treg pool, shown by the greater replacement of resident Treg cells by donor counterparts, correlates with augmented rates of proliferation and is not modified following temporary environmental perturbations induced by inflammatory state or microbiota alterations. Notably, the preferential substitution of Treg lymphocytes was not observed in RAG2(-/-) hosts. We showed that limited B-cell replenishment in the RAG2(-/-) hosts decisively contributed to the altered peripheral T-cell homeostasis. Accordingly, weekly transfers of B cells to RAG2(-/-) hosts rescued the preferential substitution of Treg lymphocytes. Our study discloses a new aspect of T-cell homeostasis that depends on the presence of B lymphocytes to regulate the relative incorporation of recently arrived Treg and Tconv cells in the peripheral compartment.
Collapse
Affiliation(s)
- Jeane de Souza Nogueira
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Barrozo do Canto
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Fraga Cabral Gomes Nunes
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Henrique Oliveira Vianna
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana de Souza Paiva
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Alberto Nóbrega
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita Fucs
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Ronit A, Plovsing RR, Gaardbo JC, Berg RMG, Hartling HJ, Ullum H, Andersen ÅB, Madsen HO, Møller K, Nielsen SD. Inflammation-Induced Changes in Circulating T-Cell Subsets and Cytokine Production During Human Endotoxemia. J Intensive Care Med 2015; 32:77-85. [PMID: 26392625 DOI: 10.1177/0885066615606673] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/14/2022]
Abstract
Observational clinical studies suggest the initial phase of sepsis may involve impaired cellular immunity. In the present study, we investigated temporal changes in T-cell subsets and T-cell cytokine production during human endotoxemia. Endotoxin (Escherichia coli lipopolysaccharide 4 ng/kg) was administered intravenously in 15 healthy volunteers. Peripheral blood and bronchoalveolar lavage fluid (BALF) were collected at baseline and after 2, 4, 6, 8, and 24 hours for flow cytometry. CD4+CD25+CD127lowFoxp3+ regulatory T cells (Tregs), CD4+CD161+ cells, and activated Human leukocyte antigen, HLA-DR+CD38+ T cells were determined. Ex vivo whole-blood cytokine production and Toll-like receptor (TLR)-4 expression on Tregs were measured. Absolute number of CD3+CD4+ (P = .026), CD3+CD8+ (P = .046), Tregs (P = .023), and CD4+CD161+ cells (P = .042) decreased after endotoxin administration. The frequency of anti-inflammatory Tregs increased (P = .033), whereas the frequency of proinflammatory CD4+CD161+ cells decreased (P = .034). Endotoxemia was associated with impaired whole-blood production of tumor necrosis factor-α, interleukin-10, IL-6, IL-17, IL-2, and interferon-γ in response to phytohaemagglutinin but did not affect TLR4 expression on Tregs. No changes in the absolute count or frequency of BALF T cells were observed. Systemic inflammation is associated with lymphopenia, a relative increase in the frequency of anti-inflammatory Tregs, and a functional impairment of T-cell cytokine production.
Collapse
Affiliation(s)
- Andreas Ronit
- Department of Infectious Diseases 8632, Viro-immunology Research Unit, University Hospital Rigshospitalet, Copenhagen Ø, Denmark.,Department of Clinical Immunology 2034, Blood Bank, University Hospital Rigshospitalet, Copenhagen Ø, Denmark
| | - Ronni R Plovsing
- Department of Intensive Care, University Hospital Rigshospitalet, Copenhagen Ø, Denmark.,Department of Anaesthesia, Køge Hospital, Køge, Denmark
| | - Julie C Gaardbo
- Department of Infectious Diseases 8632, Viro-immunology Research Unit, University Hospital Rigshospitalet, Copenhagen Ø, Denmark.,Department of Clinical Immunology 2034, Blood Bank, University Hospital Rigshospitalet, Copenhagen Ø, Denmark
| | - Ronan M G Berg
- Department of Intensive Care, University Hospital Rigshospitalet, Copenhagen Ø, Denmark.,Department of Infectious Diseases 7641, Centre of Inflammation and Metabolism, University Hospital Rigshospitalet, Copenhagen Ø, Denmark
| | - Hans J Hartling
- Department of Infectious Diseases 8632, Viro-immunology Research Unit, University Hospital Rigshospitalet, Copenhagen Ø, Denmark.,Department of Clinical Immunology 2034, Blood Bank, University Hospital Rigshospitalet, Copenhagen Ø, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology 2034, Blood Bank, University Hospital Rigshospitalet, Copenhagen Ø, Denmark
| | - Åse B Andersen
- Department of Infectious Diseases 8632, Viro-immunology Research Unit, University Hospital Rigshospitalet, Copenhagen Ø, Denmark
| | - Hans O Madsen
- Department of Clinical Immunology, Tissue Typing Laboratory 7631, University Hospital Rigshospitalet, Copenhagen Ø, Denmark
| | - Kirsten Møller
- Department of Infectious Diseases 7641, Centre of Inflammation and Metabolism, University Hospital Rigshospitalet, Copenhagen Ø, Denmark.,Department of Neuroanaesthesiology, Neurointensive Care Unit 2093, University Hospital Rigshospitalet, Copenhagen Ø, Denmark
| | - Susanne D Nielsen
- Department of Infectious Diseases 8632, Viro-immunology Research Unit, University Hospital Rigshospitalet, Copenhagen Ø, Denmark
| |
Collapse
|
14
|
You S. Differential sensitivity of regulatory and effector T cells to cell death: a prerequisite for transplant tolerance. Front Immunol 2015; 6:242. [PMID: 26042125 PMCID: PMC4437185 DOI: 10.3389/fimmu.2015.00242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Despite significant progress achieved in transplantation, immunosuppressive therapies currently used to prevent graft rejection are still endowed with severe side effects impairing their efficiency over the long term. Thus, the development of graft-specific, non-toxic innovative therapeutic strategies has become a major challenge, the goal being to selectively target alloreactive effector T cells while sparing CD4+Foxp3+ regulatory T cells (Tregs) to promote operational tolerance. Various approaches, notably the one based on monoclonal antibodies or fusion proteins directed against the TCR/CD3 complex, TCR coreceptors, or costimulatory molecules, have been proposed to reduce the alloreactive T cell pool, which is an essential prerequisite to create a therapeutic window allowing Tregs to induce and maintain allograft tolerance. In this mini review, we focus on the differential sensitivity of Tregs and effector T cells to the depleting and inhibitory effect of these immunotherapies, with a particular emphasis on CD3-specific antibodies that beyond their immunosuppressive effect, also express potent tolerogenic capacities.
Collapse
Affiliation(s)
- Sylvaine You
- Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; INSERM U1151, Institut Necker-Enfants Malades , Paris , France ; CNRS UMR 8253, Institut Necker-Enfants Malades , Paris , France
| |
Collapse
|
15
|
Abstract
UNLABELLED Regulatory T (Treg) cells are important in the maintenance of self-tolerance, and the depletion of Treg cells correlates with autoimmune development. It has been shown that type I interferon (IFN) responses induced early in the infection of mice can drive memory (CD44hi) CD8 and CD4 T cells into apoptosis, and we questioned here whether the apoptosis of CD44-expressing Treg cells might be involved in the infection-associated autoimmune development. Instead, we found that Treg cells were much more resistant to apoptosis than CD44hi CD8 and CD4 T cells at days 2 to 3 after lymphocytic choriomeningitis virus infection, when type I IFN levels are high. The infection caused a downregulation of the interleukin-7 (IL-7) receptor, needed for survival of conventional T cells, while increasing on Treg cells the expression of the high-affinity IL-2 receptor, needed for STAT5-dependent survival of Treg cells. The stably maintained Treg cells early during infection may explain the relatively low incidence of autoimmune manifestations among infected patients. IMPORTANCE Autoimmune diseases are controlled in part by regulatory T cells (Treg) and are thought to sometimes be initiated by viral infections. We tested the hypothesis that Treg may die off at early stages of infection, when virus-induced factors kill other lymphocyte types. Instead, we found that Treg resisted this cell death, perhaps reducing the tendency of viral infections to cause immune dysfunction and induce autoimmunity.
Collapse
|
16
|
Metenou S, Coulibaly YI, Sturdevant D, Dolo H, Diallo AA, Soumaoro L, Coulibaly ME, Kanakabandi K, Porcella SF, Klion AD, Nutman TB. Highly heterogeneous, activated, and short-lived regulatory T cells during chronic filarial infection. Eur J Immunol 2014; 44:2036-47. [PMID: 24737144 DOI: 10.1002/eji.201444452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/21/2014] [Accepted: 04/10/2014] [Indexed: 12/14/2022]
Abstract
The mechanisms underlying the increase in the numbers of regulatory T (Treg) cells in chronic infection settings remain unclear. Here we have delineated the phenotype and transcriptional profiles of Treg cells from 18 filarial-infected (Fil(+) ) and 19 filarial-uninfected (Fil(-) ) subjects. We found that the frequencies of Foxp3(+) Treg cells expressing CTLA-4, GITR, LAG-3, and IL-10 were significantly higher in Fil(+) subjects compared with that in Fil(-) subjects. Foxp3-expressing Treg-cell populations in Fil(+) subjects were also more heterogeneous and had higher expression of IL-10, CCL-4, IL-29, CTLA-4, and TGF-β than Fil(-) subjects, each of these cytokines having been implicated in immune suppression. Moreover, Foxp3-expressing Treg cells from Fil(+) subjects had markedly upregulated expression of activation-induced apoptotic genes with concomitant downregulation of those involved in cell survival. To determine whether the expression of apoptotic genes was due to Treg-cell activation, we found that the expression of CTLA-4, CDk8, RAD50, TNFRSF1A, FOXO3, and RHOA were significantly upregulated in stimulated cells compared with unstimulated cells. Taken together, our results suggest that in patent filarial infection, the expanded Treg-cell populations are heterogeneous, short-lived, activated, and express higher levels of molecules known to modulate immune responsiveness, suggesting that filarial infection is associated with high Treg-cell turnover.
Collapse
Affiliation(s)
- Simon Metenou
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
New generation CD3 monoclonal antibodies: are we ready to have them back in clinical transplantation? Curr Opin Organ Transplant 2014; 15:720-4. [PMID: 20881491 DOI: 10.1097/mot.0b013e3283402bd8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The continuing problem of late graft loss and immunosuppressive drug toxicity forces us to explore new treatments for the induction of transplant tolerance. Monoclonal antibodies targeting molecules implicated in lymphocyte activation, in particular CD3/TCR, constitute a promising strategy. RECENT FINDINGS Promising results were obtained from the use of antibodies targeting CD3/TCR, coreceptors or costimulatory pathways as tolerance-promoting tools in experimental transplantation. These antibodies do not uniformly depress the immune system but act in an antigen-specific manner by preferentially targeting effector T cells while preserving regulatory T cells. However, translation to the clinic proved to be more difficult than expected. New generation CD3 antibodies, currently used in phase II/III trials in autoimmunity, constitute a promising approach as, beside their immunosuppressive effect, they also express potent tolerogenic capacities. Importantly, CD3 therapy is effective especially when applied in primed hosts, highlighting the importance of the therapeutic window for tolerance induction. SUMMARY Further investigations are required for adapting to the clinic monoclonal antibodies as substitutes for current immunosuppression. Our aim is to show that development of new therapeutic strategies/molecules may come from transversal-type research, in particular from experience in autoimmunity, as immune responses leading to autoimmunity and graft rejection involve similar pathways.
Collapse
|
18
|
Weiss JM, Subleski JJ, Back T, Chen X, Watkins SK, Yagita H, Sayers TJ, Murphy WJ, Wiltrout RH. Regulatory T cells and myeloid-derived suppressor cells in the tumor microenvironment undergo Fas-dependent cell death during IL-2/αCD40 therapy. THE JOURNAL OF IMMUNOLOGY 2014; 192:5821-9. [PMID: 24808361 DOI: 10.4049/jimmunol.1400404] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fas ligand expression in certain tumors has been proposed to contribute to immunosuppression and poor prognosis. However, immunotherapeutic approaches may elicit the Fas-mediated elimination of immunosuppressive regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) within tumors that represent major obstacles for cancer immunotherapy. Previously, we showed that IL-2 and agonistic CD40 Ab (αCD40) elicited synergistic antitumor responses coincident with the efficient removal of Tregs and MDSCs. We demonstrate in this study in two murine tumor models that Treg and MDSC loss within the tumor microenvironment after IL-2/αCD40 occurs through a Fas-dependent cell death pathway. Among tumor-infiltrating leukocytes, CD8(+) T cells, neutrophils, and immature myeloid cells expressed Fas ligand after treatment. Fas was expressed by tumor-associated Tregs and immature myeloid cells, including MDSCs. Tregs and MDSCs in the tumor microenvironment expressed active caspases after IL-2/αCD40 therapy and, in contrast with effector T cells, Tregs significantly downregulated Bcl-2 expression. In contrast, Tregs and MDSCs proliferated and expanded in the spleen after treatment. Adoptive transfer of Fas-deficient Tregs or MDSCs into wild-type, Treg-, or MDSC-depleted hosts resulted in the persistence of Tregs or MDSCs and the loss of antitumor efficacy in response to IL-2/αCD40. These results demonstrate the importance of Fas-mediated Treg/MDSC removal for successful antitumor immunotherapy. Our results suggest that immunotherapeutic strategies that include exploiting Treg and MDSC susceptibility to Fas-mediated apoptosis hold promise for treatment of cancer.
Collapse
Affiliation(s)
- Jonathan M Weiss
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Jeff J Subleski
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Tim Back
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Xin Chen
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | | | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; and
| | - Thomas J Sayers
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - William J Murphy
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816
| | - Robert H Wiltrout
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702;
| |
Collapse
|
19
|
Wirth T, Westendorf AM, Bloemker D, Wildmann J, Engler H, Mollerus S, Wadwa M, Schäfer MKH, Schedlowski M, del Rey A. The sympathetic nervous system modulates CD4(+)Foxp3(+) regulatory T cells via noradrenaline-dependent apoptosis in a murine model of lymphoproliferative disease. Brain Behav Immun 2014; 38:100-10. [PMID: 24440144 DOI: 10.1016/j.bbi.2014.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/04/2014] [Accepted: 01/09/2014] [Indexed: 01/22/2023] Open
Abstract
The sympathetic nervous system (SNS) plays a crucial role in the course and development of autoimmune disease in Fas-deficient lpr/lpr mice. As regulatory T cells (Tregs) are considered important modulators of autoimmune processes, we analyzed the interaction between the SNS and Tregs in this murine model of lymphoproliferative disease. We found that the percentage of Tregs among CD4(+) T cells is increased in the spleen, lymph nodes, and thymus of lpr/lpr mice as compared to age-matched C57Bl/6J (B6) mice. Furthermore, noradrenaline (NA), the main sympathetic neurotransmitter, induced apoptosis in B6- and lpr/lpr-derived Tregs. NA also reduced the frequency of Foxp3(+) cells and Foxp3 mRNA expression via β2-adrenoceptor (β2-AR)-mediated mechanisms in a concentration and time-dependent manner. Destruction of peripheral sympathetic nerves by 6-hydroxydopamine significantly increased the percentage of Tregs in B6 control mice to an extent comparable to aged-matched lpr/lpr mice. The concentration of splenic NA negatively correlated with the frequency of CD4(+)Foxp3(+) Tregs. Additionally, 60days after sympathectomy, a partial recovery of NA concentrations led to Treg percentages comparable to those of intact, vehicle-treated controls. Immunohistochemical analysis of the spleen revealed localization of single Foxp3(+) Tregs in proximity to NA-producing nerve fibers, providing an interface between Tregs and the SNS. Taken together, our data suggest a relation between the degree of splenic sympathetic innervation and the size of the Treg compartment. While there are few examples of endogenous substances capable of affecting Tregs, our results provide a possible explanation of how the magnitude of the Treg compartment in the spleen can be regulated by the SNS.
Collapse
Affiliation(s)
- Timo Wirth
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany; Department of Immunophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Philipps University of Marburg, Germany.
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Dominique Bloemker
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Johannes Wildmann
- Department of Immunophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Philipps University of Marburg, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Sina Mollerus
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Munisch Wadwa
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Martin K-H Schäfer
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University of Marburg, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Adriana del Rey
- Department of Immunophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Philipps University of Marburg, Germany
| |
Collapse
|
20
|
Khailaie S, Bahrami F, Janahmadi M, Milanez-Almeida P, Huehn J, Meyer-Hermann M. A mathematical model of immune activation with a unified self-nonself concept. Front Immunol 2013; 4:474. [PMID: 24409179 PMCID: PMC3872974 DOI: 10.3389/fimmu.2013.00474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/06/2013] [Indexed: 12/14/2022] Open
Abstract
The adaptive immune system reacts against pathogenic nonself, whereas it normally remains tolerant to self. The initiation of an immune response requires a critical antigen(Ag)-stimulation and a critical number of Ag-specific T cells. Autoreactive T cells are not completely deleted by thymic selection and partially present in the periphery of healthy individuals that respond in certain physiological conditions. A number of experimental and theoretical models are based on the concept that structural differences discriminate self from nonself. In this article, we establish a mathematical model for immune activation in which self and nonself are not distinguished. The model considers the dynamic interplay of conventional T cells, regulatory T cells (Tregs), and IL-2 molecules and shows that the renewal rate ratio of resting Tregs to naïve T cells as well as the proliferation rate of activated T cells determine the probability of immune stimulation. The actual initiation of an immune response, however, relies on the absolute renewal rate of naïve T cells. This result suggests that thymic selection reduces the probability of autoimmunity by increasing the Ag-stimulation threshold of self reaction which is established by selection of a low number of low-avidity autoreactive T cells balanced with a proper number of Tregs. The stability analysis of the ordinary differential equation model reveals three different possible immune reactions depending on critical levels of Ag-stimulation: a subcritical stimulation, a threshold stimulation inducing a proper immune response, and an overcritical stimulation leading to chronic co-existence of Ag and immune activity. The model exhibits oscillatory solutions in the case of persistent but moderate Ag-stimulation, while the system returns to the homeostatic state upon Ag clearance. In this unifying concept, self and nonself appear as a result of shifted Ag-stimulation thresholds which delineate these three regimes of immune activation.
Collapse
Affiliation(s)
- Sahamoddin Khailaie
- Department of Systems Immunology, Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Fariba Bahrami
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran , Tehran , Iran
| | - Mahyar Janahmadi
- Neuroscience Research Centre and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Pedro Milanez-Almeida
- Department of Experimental Immunology, Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Helmholtz Centre for Infection Research , Braunschweig , Germany ; Bio Centre for Life Science, Technische Universität Braunschweig , Braunschweig , Germany
| |
Collapse
|
21
|
Duarte JH, Di Meglio P, Hirota K, Ahlfors H, Stockinger B. Differential influences of the aryl hydrocarbon receptor on Th17 mediated responses in vitro and in vivo. PLoS One 2013; 8:e79819. [PMID: 24244565 PMCID: PMC3828240 DOI: 10.1371/journal.pone.0079819] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has been attributed with anti-inflammatory effects in the development of pathological immune responses leading to experimental autoimmune encephalomyelitis (EAE) via the induction of regulatory T cells. In agreement with previously published findings, we find that TCDD administration confers protection from EAE, however, this immuno-modulatory effect was not the consequence of de novo Treg generation, but the inhibition of Th17 cell differentiation. Systemic application of FICZ at the time of immunization also reduced EAE pathology albeit to a lesser degree than TCDD. In vitro Th17 differentiation in the presence of AhR agonists, including TCDD, promoted IL-17 and IL-22 expression, but did not induce Treg differentiation. AhR affinity influenced the amounts of IL-17 and IL-22 protein that was secreted by Th17 cells, but did not seem to affect susceptibility to EAE in vivo. Making use of conditional AhR-deficient mice, we show that the anti-inflammatory effect of TCDD depends on AhR activation in both T cells and dendritic cells, further emphasising the ability of TCDD to interfere with T effector cell differentiation in vivo. The dichotomy between the in vivo and in vitro effects of AhR reveals the complexity of the AhR pathway, which has the capacity of affecting different AhR-expressing cell types involved in mounting immune responses, thus participating in defining their outcome.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/deficiency
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/immunology
- Carbazoles/pharmacology
- Cell Differentiation/drug effects
- Cells, Cultured
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Environmental Pollutants/pharmacology
- Gene Expression Regulation
- Immunity, Cellular/drug effects
- Immunologic Factors/pharmacology
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukins/genetics
- Interleukins/immunology
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments
- Polychlorinated Dibenzodioxins/analogs & derivatives
- Polychlorinated Dibenzodioxins/pharmacology
- Receptors, Aryl Hydrocarbon/deficiency
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/immunology
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/pathology
- Interleukin-22
Collapse
Affiliation(s)
- João H. Duarte
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Paola Di Meglio
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Keiji Hirota
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Helena Ahlfors
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
22
|
Chen JL, Ge YY, Zhang J, Qiu XY, Qiu JF, Wu JP, Wang Y. The dysfunction of CD4(+)CD25(+) regulatory T cells contributes to the abortion of mice caused by Toxoplasma gondii excreted-secreted antigens in early pregnancy. PLoS One 2013; 8:e69012. [PMID: 23874852 PMCID: PMC3714236 DOI: 10.1371/journal.pone.0069012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii is an opportunistic intracellular parasite that is highly prevalent in human and warm-blooded animals throughout the world, leading to potentially severe congenital infections. Although the abortion caused by T. gondii is believed to be dependent on the timing of maternal infection during pregnancy, the mechanism remains unclear. This study was focused on the effects of T. gondii excreted-secreted antigens on pregnant outcomes and CD4(+)CD25(+) Foxp3(+) regulatory T cells at different stages of pregnancy. The results showed that in mice the frequency and suppressive function of CD4(+)CD25(+) regulatory cells were diminished after injection of T. gondii excreted-secreted antigens at early and intermediate stages of pregnancy. The abortion caused by T. gondii excreted-secreted antigens at early pregnancy could be partly prevented by adoptively transferring of CD4(+)CD25(+) cells from the mice injected with T. gondii excreted-secreted antigens at late pregnancy, but not from the mice with the same treatment at early pregnancy. Furthermore, T. gondii excreted-secreted antigens induced apoptosis of CD4(+)CD25(+) regulatory cells of mice in early and intermediate stages of pregnancy by down-regulating their Bcl-2 expressions and Bcl-2/Bax ratio. This study provides new insights into the mechanism that T. gondii infection is the high risk factor for abortion in early pregnancy.
Collapse
Affiliation(s)
- Jin-ling Chen
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Parasitology and Microbiology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yi-yue Ge
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Pathogen Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Jie Zhang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-yan Qiu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing-fan Qiu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiang-ping Wu
- Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
23
|
Kühlhorn F, Rath M, Schmoeckel K, Cziupka K, Nguyen HH, Hildebrandt P, Hünig T, Sparwasser T, Huehn J, Pötschke C, Bröker BM. Foxp3+ regulatory T cells are required for recovery from severe sepsis. PLoS One 2013; 8:e65109. [PMID: 23724126 PMCID: PMC3665556 DOI: 10.1371/journal.pone.0065109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 04/18/2013] [Indexed: 12/30/2022] Open
Abstract
The role of regulatory T cells (Tregs) in bacterial sepsis remains controversial because antibody-mediated depletion experiments gave conflicting results. We employed DEREG mice (DEpletion of REGulatory T cells) and a caecal ligation and puncture model to elucidate the role of CD4+Foxp3+ Tregs in sepsis. In DEREG mice natural Tregs can be visualized easily and selectively depleted by diphtheria toxin because the animals express the diphtheria toxin receptor and enhanced green fluorescent protein as a fusion protein under the control of the foxp3 locus. We confirmed rapid Treg-activation and an increased ratio of Tregs to Teffs in sepsis. Nevertheless, 24 h after sepsis induction, Treg-depleted and control mice showed equally strong inflammation, immune cell immigration into the peritoneum and bacterial dissemination. During the first 36 h of disease survival was not influenced by Treg-depletion. Later, however, only Treg-competent animals recovered from the insult. We conclude that the suppressive capacity of Tregs is not sufficient to control overwhelming inflammation and early mortality, but is a prerequisite for the recovery from severe sepsis.
Collapse
Affiliation(s)
- Franziska Kühlhorn
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shen X, Niu C, König R. Increased numbers and suppressive activity of regulatory CD25(+)CD4(+) T lymphocytes in the absence of CD4 engagement by MHC class II molecules. Cell Immunol 2013; 282:117-28. [PMID: 23770721 DOI: 10.1016/j.cellimm.2013.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 11/28/2022]
Abstract
Mechanisms of central and peripheral tolerance prevent autoimmunity. Regulatory T cells inhibit the activation of potentially auto-reactive T cells in peripheral lymphoid organs. In transgenic mice in which all MHC class II molecules are incapable of binding to CD4, class II MHC-restricted T cells preferentially differentiated into immunosuppressive, regulatory T cells. In these mutant MHC class II transgenic mice, a subset of CD4(+) T cells constitutively expressed moderately elevated levels of CD25 and potently inhibited interleukin-2 secretion by T cells from normal mice in a cell-to-cell, contact-dependent manner. Immunosuppressive activity depended on activation of the regulatory T cells. Thus, CD25(+)CD4(+) T cells from mutant MHC class II transgenic mice resembled phenotypically and functionally a major subset of natural regulatory T cells in normal mice, but were two to three-times more abundant. These results further clarify the mechanisms that govern the differentiation and maintenance of CD25(+)CD4(+) regulatory T cells, and present avenues for immunomodulation.
Collapse
Affiliation(s)
- Xiaoli Shen
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | | | | |
Collapse
|
25
|
Fazal N, Shelip A, Alzahrani AJ. Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells. RESULTS IN IMMUNOLOGY 2013; 3:85-94. [PMID: 24600563 DOI: 10.1016/j.rinim.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/06/2013] [Accepted: 09/11/2013] [Indexed: 01/18/2023]
Abstract
After scald burn-injury, the intestinal immune system responds to maintain immune balance. In this regard CD4+T cells in Gut-Associated Lymphoid Tissues (GALT), like mesenteric lymph nodes (MLN) and Peyer's patches (PP) respond to avoid immune suppression following major injury such as burn. Therefore, we hypothesized that the gut CD4+T cells become dysfunctional and turn the immune homeostasis towards depression of CD4+ T cell-mediated adaptive immune responses. In the current study we show down regulation of mucosal CD4+ T cell proliferation, IL-2 production and cell surface marker expression of mucosal CD4+ T cells moving towards suppressive-type. Acute burn-injury lead to up-regulation of regulatory marker (CD25+), down regulation of adhesion (CD62L, CD11a) and homing receptor (CD49d) expression, and up-regulation of negative co-stimulatory (CTLA-4) molecule. Moreover, CD4+CD25+ T cells of intestinal origin showed resistance to spontaneous as well as induced apoptosis that may contribute to suppression of effector CD4+ T cells. Furthermore, gut CD4+CD25+ T cells obtained from burn-injured animals were able to down-regulate naïve CD4+ T cell proliferation following adoptive transfer of burn-injured CD4+CD25+ T cells into sham control animals, without any significant effect on cell surface activation markers. Together, these data demonstrate that the intestinal CD4+ T cells evolve a strategy to promote suppressive CD4+ T cell effector responses, as evidenced by enhanced CD4+CD25+ T cells, up-regulated CTLA-4 expression, reduced IL-2 production, tendency towards diminished apoptosis of suppressive CD4+ T cells, and thus lose their natural ability to regulate immune homeostasis following acute burn-injury and prevent immune paralysis.
Collapse
Affiliation(s)
- Nadeem Fazal
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL 60628, USA
| | - Alla Shelip
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL 60628, USA
| | - Alhusain J Alzahrani
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Is autoimmune diabetes caused by aberrant immune activity or defective suppression of physiological self-reactivity? Autoimmun Rev 2012; 12:633-7. [PMID: 23277162 DOI: 10.1016/j.autrev.2012.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/04/2012] [Indexed: 01/15/2023]
Abstract
Two competing hypotheses are proposed to cause autoimmunity: evasion of a sporadic self-reactive clone from immune surveillance and ineffective suppression of autoreactive clones that arise physiologically. We question the relevance of these hypotheses to the study of type 1 diabetes, where autoreactivity may accompany the cycles of physiological adjustment of β-cell mass to body weight and nutrition. Experimental evidence presents variable and conflicting data concerning the activities of both effector and regulatory T cells, arguing in favor and against: quantitative dominance and deficit, aberrant reactivity and expansion, sensitivity to negative regulation and apoptosis. The presence of autoantibodies in umbilical cord blood of healthy subjects and low incidence of the disease following early induction suggest that suppression of self-reactivity is the major determinant factor.
Collapse
|
27
|
Langenhorst D, Gogishvili T, Ribechini E, Kneitz S, McPherson K, Lutz MB, Hünig T. Sequential induction of effector function, tissue migration and cell death during polyclonal activation of mouse regulatory T-cells. PLoS One 2012; 7:e50080. [PMID: 23226238 PMCID: PMC3511437 DOI: 10.1371/journal.pone.0050080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/16/2012] [Indexed: 11/18/2022] Open
Abstract
The ability of CD4(+)Foxp3(+) regulatory T-cells (Treg) to produce interleukin (IL)-10 is important for the limitation of inflammation at environmental interfaces like colon or lung. Under steady state conditions, however, few Tregs produce IL-10 ex vivo. To investigate the origin and fate of IL-10 producing Tregs we used a superagonistic mouse anti-mouse CD28 mAb (CD28SA) for polyclonal in vivo stimulation of Tregs, which not only led to their numeric expansion but also to a dramatic increase in IL-10 production. IL-10 secreting Tregs strongly upregulated surface receptors associated with suppressive function as compared to non-producing Tregs. Furthermore, polyclonally expanding Tregs shifted their migration receptor pattern after activation from a CCR7(+)CCR5(-) lymph node-seeking to a CCR7(-)CCR5(+) inflammation-seeking phenotype, explaining the preferential recruitment of IL-10 producers to sites of ongoing immune responses. Finally, we observed that IL-10 producing Tregs from CD28SA stimulated mice were more apoptosis-prone in vitro than their IL-10 negative counterparts. These findings support a model where prolonged activation of Tregs results in terminal differentiation towards an IL-10 producing effector phenotype associated with a limited lifespan, implicating built-in termination of immunosuppression.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antibodies/pharmacology
- Apoptosis/drug effects
- CD28 Antigens/agonists
- CD28 Antigens/immunology
- Cell Differentiation/drug effects
- Cell Movement/drug effects
- Cells, Cultured
- Clone Cells
- Gene Expression/drug effects
- Inflammation/immunology
- Inflammation/metabolism
- Interleukin-10/biosynthesis
- Interleukin-10/immunology
- Lymph Nodes/cytology
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred C57BL
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, CCR7/genetics
- Receptors, CCR7/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Daniela Langenhorst
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Tea Gogishvili
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Eliana Ribechini
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Susanne Kneitz
- Interdisciplinary Centre for Clinical Research (IZKF), University of Würzburg, Würzburg, Germany
| | - Kirsty McPherson
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Manfred B. Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
28
|
Treg cell resistance to apoptosis in DNA vaccination for experimental autoimmune encephalomyelitis treatment. PLoS One 2012; 7:e49994. [PMID: 23166807 PMCID: PMC3498204 DOI: 10.1371/journal.pone.0049994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/15/2012] [Indexed: 12/29/2022] Open
Abstract
Background Regulatory T (Treg) cells can be induced with DNA vaccinations and protect mice from the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Tacrolimus (FK506) has been shown to have functions on inducing immunosuppression and augmenting apoptosis of pathologic T cells in autoimmune disease. Here we examined the therapeutic effect of DNA vaccine in conjunction with FK506 on EAE. Methodology/Principal Findings After EAE induction, C57BL/6 mice were treated with DNA vaccine in conjunction with FK506. Functional Treg cells were induced in treated EAE mice and suppressed Th1 and Th17 cell responses. Infiltrated CD4 T cells were reduced while Treg cells were induced in spinal cords of treated EAE mice. Remarkably, the activated CD4 T cells augmented apoptosis, but the induced Treg cells resisted apoptosis in treated EAE mice, resulting in alleviation of clinical EAE severity. Conclusions/Significance DNA vaccine in conjunction with FK506 treatment ameliorates EAE by enhancing apoptosis of CD4 T cells and resisting apoptosis of induced Treg cells. Our findings implicate the potential of tolerogenic DNA vaccines for treating MS.
Collapse
|
29
|
You S, Zuber J, Kuhn C, Baas M, Valette F, Sauvaget V, Sarnacki S, Sawitzki B, Bach JF, Volk HD, Chatenoud L. Induction of allograft tolerance by monoclonal CD3 antibodies: a matter of timing. Am J Transplant 2012; 12:2909-19. [PMID: 22882762 DOI: 10.1111/j.1600-6143.2012.04213.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite remarkable progress in organ transplantation through the development of a wealth of immunosuppressive drugs highly effective at controlling acute rejection, two major problems still remain, the loss of transplants due to chronic rejection and the growing number of sensitized recipients due to previous transplants, transfusions or pregnancies. Induction of immune tolerance appears to be the only way to curb this complex situation. Here we describe that a therapy, already successfully used to restore immune tolerance to self-antigens in overt autoimmunity, is effective at promoting transplant tolerance. We demonstrate that a short low-dose course with CD3 antibodies started after transplantation, at the time of effector T cell priming to alloantigens, induces permanent acceptance of fully mismatched islet allografts. Mechanistic studies revealed that antigen-specific regulatory and effector T cells are differentially affected by the treatment. CD3 antibody treatment preferentially induces apoptosis of activated alloreactive T cells which is mandatory for tolerance induction. In contrast, regulatory T cells are relatively spared from CD3 antibody-induced depletion and can transfer antigen-specific tolerance thus arguing for their prominent role in sustaining long-term graft survival.
Collapse
Affiliation(s)
- S You
- Institut National de la Santé et de la Recherche Médicale, Unité U1013, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Klinker MW, Lundy SK. Multiple mechanisms of immune suppression by B lymphocytes. Mol Med 2012; 18:123-37. [PMID: 22033729 PMCID: PMC3276396 DOI: 10.2119/molmed.2011.00333] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/21/2011] [Indexed: 12/20/2022] Open
Abstract
Suppression of the immune system after the resolution of infection or inflammation is an important process that limits immune-mediated pathogenesis and autoimmunity. Several mechanisms of immune suppression have received a great deal of attention in the past three decades. These include mechanisms related to suppressive cytokines, interleukin (IL)-10 and transforming growth factor (TGF)-β, produced by regulatory cells, and mechanisms related to apoptosis mediated by death ligands, Fas ligand (FasL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), expressed by killer or cytotoxic cells. Despite many lines of evidence supporting an important role for B lymphocytes as both regulatory and killer cells in many inflammatory settings, relatively little attention has been given to understanding the biology of these cells, their relative importance or their usefulness as therapeutic targets. This review is intended to give an overview of the major mechanisms of immunosuppression used by B lymphocytes during both normal and inflammatory contexts. The more recent discoveries of expression of granzyme B, programmed death 1 ligand 2 (PD-L2) and regulatory antibody production by B cells as well as the interactions of regulatory and killer B cells with regulatory T cells, natural killer T (NKT) cells and other cell populations are discussed. In addition, new evidence on the basis of independent characterizations of regulatory and killer CD5(+) B cells point toward the concept of a multipotent suppressor B cell with seemingly high therapeutic potential.
Collapse
Affiliation(s)
- Matthew W Klinker
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Steven K Lundy
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
31
|
Yolcu ES, Zhao H, Bandura-Morgan L, Lacelle C, Woodward KB, Askenasy N, Shirwan H. Pancreatic islets engineered with SA-FasL protein establish robust localized tolerance by inducing regulatory T cells in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:5901-9. [PMID: 22068235 PMCID: PMC3232043 DOI: 10.4049/jimmunol.1003266] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allogeneic islet transplantation is an important therapeutic approach for the treatment of type 1 diabetes. Clinical application of this approach, however, is severely curtailed by allograft rejection primarily initiated by pathogenic effector T cells regardless of chronic use of immunosuppression. Given the role of Fas-mediated signaling in regulating effector T cell responses, we tested if pancreatic islets can be engineered ex vivo to display on their surface an apoptotic form of Fas ligand protein chimeric with streptavidin (SA-FasL) and whether such engineered islets induce tolerance in allogeneic hosts. Islets were modified with biotin following efficient engineering with SA-FasL protein that persisted on the surface of islets for >1 wk in vitro. SA-FasL-engineered islet grafts established euglycemia in chemically diabetic syngeneic mice indefinitely, demonstrating functionality and lack of acute toxicity. Most importantly, the transplantation of SA-FasL-engineered BALB/c islet grafts in conjunction with a short course of rapamycin treatment resulted in robust localized tolerance in 100% of C57BL/6 recipients. Tolerance was initiated and maintained by CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells, as their depletion early during tolerance induction or late after established tolerance resulted in prompt graft rejection. Furthermore, Treg cells sorted from graft-draining lymph nodes, but not spleen, of long-term graft recipients prevented the rejection of unmodified allogeneic islets in an adoptive transfer model, further confirming the Treg role in established tolerance. Engineering islets ex vivo in a rapid and efficient manner to display on their surface immunomodulatory proteins represents a novel, safe, and clinically applicable approach with important implications for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Esma S Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Hong Zhao
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Laura Bandura-Morgan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Chantale Lacelle
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Kyle B Woodward
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Nadir Askenasy
- Frankel Laboratory of Experimental Bone Marrow Transplantation, Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Israel
| | - Haval Shirwan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| |
Collapse
|
32
|
Murine antithymocyte globulin T-cell depletion is mediated predominantly by macrophages, but the Fas/FasL pathway selectively targets regulatory T cells. Transplantation 2011; 92:523-8. [PMID: 21804441 DOI: 10.1097/tp.0b013e31822923f7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Thymoglobulin is a T-cell-depleting polyclonal rabbit anti-human thymocyte antibody used clinically for immunosuppression in solid organ and hematopoietic stem-cell transplantation. By using a surrogate rabbit anti-mouse thymocyte globulin (mATG), we previously demonstrated that murine regulatory and memory T cells are preferentially spared from mATG depletion in vivo. The current studies were designed to determine whether different effector mechanisms are involved in differential depletion of T-cell subsets by mATG. METHODS Complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity (ADCC), and apoptotic mechanisms of depletion by mATG were evaluated in vitro and in vivo. RESULTS In vitro, there was evidence of differential susceptibility of T-cell subsets by different effector mechanisms where naïve and CD4 effector memory T cells show reduced susceptibility to apoptosis, whereas regulatory T cells are less susceptible to mATG-mediated complement-dependent cytotoxicity and ADCC. However, mATG treatment of mice depleted of ADCC effector cell types (neutrophils, natural killer cells, or macrophages) or deficient in complement C5 or Fas demonstrated that mATG depletion of all T-cell subsets is mediated primarily by macrophages and that the role of neutrophils, natural killer cells, and complement is minimal in vivo. Interestingly, the Fas/FasL pathway does play a role in regulatory T-cell depletion, which is likely a result of increased basal expression of Fas on these cells. CONCLUSIONS These data suggest that macrophages deplete most T cells by mATG in mice, but regulatory T cells are also uniquely susceptible to mATG-mediated Fas-dependent depletion.
Collapse
|
33
|
Weiss EM, Schmidt A, Vobis D, Garbi N, Lahl K, Mayer CT, Sparwasser T, Ludwig A, Suri-Payer E, Oberle N, Krammer PH. Foxp3-Mediated Suppression of CD95L Expression Confers Resistance to Activation-Induced Cell Death in Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:1684-91. [DOI: 10.4049/jimmunol.1002321] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Kaminitz A, Yolcu ES, Askenasy EM, Stein J, Yaniv I, Shirwan H, Askenasy N. Effector and naturally occurring regulatory T cells display no abnormalities in activation induced cell death in NOD mice. PLoS One 2011; 6:e21630. [PMID: 21738739 PMCID: PMC3124542 DOI: 10.1371/journal.pone.0021630] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/03/2011] [Indexed: 12/23/2022] Open
Abstract
Background Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff) and regulatory T cells (Treg) to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. Principal Findings Both effector (CD25−, FoxP3−) and suppressor (CD25+, FoxP3+) CD4+ T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP tranegenes. Proliferation rates and sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve Treg resistance to Fas-ligand (FasL) in both strains. The effector and suppressor CD4+ subsets display balanced sensitivity to negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and reduced incidence of adoptive disease transfer into NOD.SCID by CD4+CD25− T cells decorated with FasL protein. Treg resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice. Conclusion These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice initiates or promotes autoimmune insulitis.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | | | | | |
Collapse
|
35
|
Kaminitz A, Askenasy EM, Yaniv I, Stein J, Askenasy N. Apoptosis of purified CD4+ T cell subsets is dominated by cytokine deprivation and absence of other cells in new onset diabetic NOD mice. PLoS One 2010; 5:e15684. [PMID: 21209873 PMCID: PMC3013115 DOI: 10.1371/journal.pone.0015684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/22/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Regulatory T cells (Treg) play a significant role in immune homeostasis and self-tolerance. Excessive sensitivity of isolated Treg to apoptosis has been demonstrated in NOD mice and humans suffering of type 1 diabetes, suggesting a possible role in the immune dysfunction that underlies autoimmune insulitis. In this study the sensitivity to apoptosis was measured in T cells from new onset diabetic NOD females, comparing purified subsets to mixed cultures. PRINCIPAL FINDINGS Apoptotic cells are short lived in vivo and death occurs primarily during isolation, manipulation and culture. Excessive susceptibility of CD25(+) T cells to spontaneous apoptosis is characteristic of isolated subsets, however disappears when death is measured in mixed splenocyte cultures. In variance, CD25(-) T cells display balanced sensitivity to apoptosis under both conditions. The isolation procedure removes soluble factors, IL-2 playing a significant role in sustaining Treg viability. In addition, pro- and anti-apoptotic signals are transduced by cell-to-cell interactions: CD3 and CD28 protect CD25(+) T cells from apoptosis, and in parallel sensitize naïve effector cells to apoptosis. Treg viability is modulated both by other T cells and other subsets within mixed splenocyte cultures. Variations in sensitivity to apoptosis are often hindered by fast proliferation of viable cells, therefore cycling rates are mandatory to adequate interpretation of cell death assays. CONCLUSIONS The sensitivity of purified Treg to apoptosis is dominated by cytokine deprivation and absence of cell-to-cell interactions, and deviate significantly from measurements in mixed populations. Balanced sensitivity of naïve/effector and regulatory T cells to apoptosis in NOD mice argues against the concept that differential susceptibility affects disease evolution and progression.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Enosh M. Askenasy
- Soroka Medical School, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Isaac Yaniv
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Jerry Stein
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Bone Marrow Transplant Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Nadir Askenasy
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- * E-mail:
| |
Collapse
|
36
|
Qu Y, Zhang B, Liu S, Zhang A, Wu T, Zhao Y. 2-Gy whole-body irradiation significantly alters the balance of CD4+ CD25- T effector cells and CD4+ CD25+ Foxp3+ T regulatory cells in mice. Cell Mol Immunol 2010; 7:419-27. [PMID: 20871628 PMCID: PMC4002961 DOI: 10.1038/cmi.2010.45] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 07/06/2010] [Accepted: 07/07/2010] [Indexed: 12/25/2022] Open
Abstract
CD4(+)CD25(+) T regulatory (Treg) cells are critical in inducing and maintaining immunological self-tolerance as well as transplant tolerance. The effect of low doses of whole-body irradiation (WBI) on CD4(+)CD25(+)Foxp3(+) Treg cells has not been determined. The proportion, phenotypes and function of CD4(+)CD25(+) Treg cells were investigated 0.5, 5 and 15 days after euthymic, thymectomized or allogeneic bone marrow transplanted C57BL/6 mice received 2-Gy γ-rays of WBI. The 2-Gy WBI significantly enhanced the ratios of CD4(+)CD25(+) Treg cells and CD4(+)CD25(+)Foxp3(+) Treg cells to CD4(+) T cells in peripheral blood, lymph nodes, spleens and thymi of mice. The CD4(+)CD25(+) Treg cells of the WBI-treated mice showed immunosuppressive activities on the immune response of CD4(+)CD25(-) T effector cells to alloantigens or mitogens as efficiently as the control mice. Furthermore, 2-Gy γ-ray WBI significantly increased the percentage of CD4(+)CD25(+)Foxp3(+) Treg cells in the periphery of either thymectomized mice or allogeneic bone marrow transplanted mice. The in vitro assay showed that ionizing irradiation induced less cell death in CD4(+)CD25(+)Foxp3(+) Treg cells than in CD4(+)CD25(-) T cells. Thus, a low dose of WBI could significantly enhance the level of functional CD4(+)CD25(+)Foxp3(+) Treg cells in the periphery of naive or immunized mice. The enhanced proportion of CD4(+)CD25(+)Foxp3(+) Treg cells in the periphery by a low dose of WBI may make hosts more susceptible to immune tolerance induction.
Collapse
Affiliation(s)
- Yanyan Qu
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
37
|
Christaki E, Patrozou E. The kinetics of T regulatory cells in shock: beyond sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:132. [PMID: 20346091 PMCID: PMC2887126 DOI: 10.1186/cc8897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
During the past decade, there have been an increasing number of studies investigating the precise role of T regulatory cells in human disease. First recognized for their ability to prevent autoimmunity, T regulatory cells control effector CD4+ and CD8+ T lymphocytes and innate immune cells by several different suppressive mechanisms, like cell to cell contact, secretion of inhibitory cytokines and cytolysis. This suppressive function of T regulatory cells could contribute in a similar way to the profound immune dysfunction seen in critical illness whether the latter is due to sepsis or severe injury.
Collapse
Affiliation(s)
- Eirini Christaki
- Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI 02906, USA.
| | | |
Collapse
|
38
|
Qu Y, Jin S, Zhang A, Zhang B, Shi X, Wang J, Zhao Y. Gamma-ray resistance of regulatory CD4+CD25+Foxp3+ T cells in mice. Radiat Res 2010; 173:148-57. [PMID: 20095846 DOI: 10.1667/rr0978.1] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract CD4(+)CD25(+) regulatory T cells (Treg cells) are an important subset of T cells for keeping proper immune responses and tolerance. However, the effects of gamma radiation on CD4(+)CD25(high) Foxp3(+) Treg cells have not been examined previously. In the present study, we compared the sensitivity of mouse CD4(+)CD25(high) Foxp3(+) Treg cells and CD4(+)CD25(-) T cells to gamma radiation in vitro and in vivo. After C57BL/6 mice received a whole-body dose of 5 Gy gamma rays, the numbers of lymphocyte subsets in blood, lymph nodes, spleens and thymuses clearly decreased. However, gamma radiation significantly enhanced the ratios of CD4(+)CD25(high) Treg cells and CD4(+)CD25(high) Foxp3(+) Treg cells to CD4(+) T cells in the blood, lymph nodes, spleens and thymuses of mice. More dead cells were observed in CD4(+)CD25(-) T cells than in CD4(+)CD25(high) Treg cells or CD4(+)CD25(high) Foxp3(+) Treg cells when the cells were irradiated in vitro, indicating that CD4(+)CD25(high) Foxp3(+) Treg cells are more resistant to gamma radiation than other T cells. Moreover, a higher expression of Bcl-2 in CD4(+)CD25(high) Treg cells was detected compared with that in CD4(+)CD25(-) T cells. CD4(+)CD25(+) Treg cells from irradiated mice were functional, though their immunosuppressive ability was somewhat impaired compared to those from nonirradiated mice as determined by an in vitro assay. These results indicate that mouse CD4(+)CD25(+) Treg cells and CD4(+)CD25(-) T effector cells have different sensitivities to gamma radiation in mice.
Collapse
Affiliation(s)
- Yanyan Qu
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Bohana-Kashtan O, Morisot S, Hildreth R, Brayton C, Levitsky HI, Civin CI. Selective reduction of graft-versus-host disease-mediating human T cells by ex vivo treatment with soluble Fas ligand. THE JOURNAL OF IMMUNOLOGY 2009; 183:696-705. [PMID: 19535642 DOI: 10.4049/jimmunol.0800561] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous work done in our laboratory, using mouse models, showed that soluble Fas ligand (sFasL) can efficiently delete donor anti-host T cells during their activation against irradiated host cells in MLCs. In the mouse models, this ex vivo sFasL treatment abrogated graft-vs-host disease (GVHD) while sparing donor T cells with antitumor reactivity. The present work was performed with human cells, to extend our work toward reduction of clinical GVHD. PBMC responders from a given individual (first party) were stimulated in vitro with irradiated PBMC stimulators from a second person (second party), in the presence of sFasL. In control MLCs without sFasL, alloreacting T cells began to up-regulate Fas (CD95) detectably and became sensitive to Fas-mediated apoptosis by as early as day 1-2. In MLCs containing sFasL, there were greatly reduced numbers of alloreacting CD3(+)CFSE(lo) cells, activation Ag-expressing CD4(hi) and CD8(hi) cells, IFN-gamma-producing CD4(+) and CD8(+) cells, and CD8(+)CD107a(+) CTLs. Furthermore, mice transplanted with the ex vivo sFasL/MLR-treated cells had prolonged time to fatal GVHD in an in vivo xenogeneic GVHD model. Responder cells harvested from primary MLCs containing sFasL had reduced proliferation in response to second party cells, but proliferated in response to CMV Ags, PHA, and third party cells. In addition, sFasL/MLR-treated cell populations contained influenza-specific T cells, CD4(+)FOXP3(+) T cells, and CD4(+)CD25(+) T cells. These data indicate that this ex vivo sFasL/MLR depletion of alloreacting human donor anti-host T cells was efficient and selective.
Collapse
Affiliation(s)
- Osnat Bohana-Kashtan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|
40
|
Eroukhmanoff L, Oderup C, Ivars F. T-cell tolerance induced by repeated antigen stimulation: selective loss of Foxp3- conventional CD4 T cells and induction of CD4 T-cell anergy. Eur J Immunol 2009; 39:1078-87. [PMID: 19283777 DOI: 10.1002/eji.200838653] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Repeated immunization of mice with bacterial superantigens induces extensive deletion and anergy of reactive CD4 T cells. Here we report that the in vitro proliferation anergy of CD4 T cells from TCR transgenic mice immunized three times with staphylococcal enterotoxin B (SEB) (3 x SEB) is partially due to an increased frequency of Foxp3(+) CD4 T cells. Importantly, reduced number of conventional CD25(-) Foxp3(-) cells, rather than conversion of such cells to Foxp3(+) cells, was the cause of that increase and was also seen in mice repeatedly immunized with OVA (3 x OVA) and OVA-peptide (OVAp) (3 x OVAp). Cell-transfer experiments revealed profound but transient anergy of CD4 T cells isolated from 3 x OVAp and 3x SEB mice. However, the in vivo anergy was CD4 T-cell autonomous and independent of Foxp3(+) Treg. Finally, proliferation of transferred CD4 T cells was inhibited in repeatedly immunized mice but inhibition was lost when transfer was delayed, despite the maintenance of elevated frequency of Foxp3(+) cells. These data provide important implications for Foxp3(+) cell-mediated tolerance in situations of repeated antigen exposure such as human persistent infections.
Collapse
|
41
|
Elinav E, Adam N, Waks T, Eshhar Z. Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor. Gastroenterology 2009; 136:1721-31. [PMID: 19208357 DOI: 10.1053/j.gastro.2009.01.049] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/01/2009] [Accepted: 01/22/2009] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS The therapeutic application of regulatory T cells (Tregs) for the treatment of inflammatory diseases is limited by the scarcity of antigen-specific Tregs. A preferred approach to endow effector T cells (Teff) with a desired specificity uses chimeric immune receptors with antibody-type specificity. Accordingly, employing such chimeric immune receptors to redirect Tregs to sites of inflammation may be a useful therapeutic approach to alleviate a broad scope of diseases in which an uncontrolled inflammatory response plays a major role. METHODS To enable application of the approach in clinical setting, which requires the genetic modification of the patient's own Tregs, we describe here a novel protocol that allows the efficient retroviral transduction and 2,4,6-trinitrophenol-specific expansion of murine naturally occurring regulatory T cells (nTregs), with a 2,4,6-trinitrophenol-specific tripartite chimeric receptor. RESULTS Transduced Tregs maintained their Foxp3 level, could undergo repeated expansion upon ex vivo encounter with their cognate antigen in a major histocompatibility complex-independent, costimulation-independent, and contact-dependent manner and specifically suppressed Teff cells. Adoptive transfer of small numbers of the transduced nTregs was associated with antigen-specific, dose-dependent amelioration of trinitrobenzenesulphonic acid colitis. CONCLUSIONS This study demonstrates that nTregs can be efficiently transduced to express functional, antigen-specific chimeric receptors that enable the specific suppression of effector T cells both in vitro and in vivo. This approach may enable future cell-based therapeutic application in inflammatory bowel disease, as well as other inflammatory disorders.
Collapse
Affiliation(s)
- Eran Elinav
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
42
|
Strauss L, Bergmann C, Whiteside TL. Human circulating CD4+CD25highFoxp3+ regulatory T cells kill autologous CD8+ but not CD4+ responder cells by Fas-mediated apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:1469-80. [PMID: 19155494 PMCID: PMC3721355 DOI: 10.4049/jimmunol.182.3.1469] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mechanisms utilized by human regulatory T cells (Treg) for elimination of effector cells may vary. We investigated the possibility that the mechanism of Treg suppression depends on Fas/FasL-mediated apoptosis of responder cells (RC). CD4(+)CD25(high)Foxp3(+) Treg and autologous CD4(+)CD25(-) and CD8(+)CD25(-) subsets of RC were isolated from blood of 25 cancer patients and 15 normal controls and cocultured in the presence of OKT3 and IL-2 (150 or 1000 IU/ml). Suppression of RC proliferation was measured in CFSE assays. RC and Treg apoptosis was monitored by 7-aminoactinomycin D staining in flow-based cytotoxicity assays. Treg from all subjects expressed CD95(+), but only Treg from cancer patients expressed CD95L. These Treg, when activated via TCR plus IL-2, up-regulated CD95 and CD95L expression (p < 0.001) and suppressed CD8(+) RC proliferation (p < 0.001) by inducing Fas-mediated apoptosis. However, Treg cocultured with CD4(+) RC suppressed proliferation independently of Fas/FasL. In cocultures, Treg were found to be resistant to apoptosis in the presence of 1000 IU/ml IL-2, but at lower IL-2 concentrations (150 IU/ml) they became susceptible to RC-induced death. Thus, Treg and RC can reciprocally regulate Treg survival, depending on IL-2 concentrations present in cocultures. This divergent IL-2-dependent resistance or sensitivity of Treg and RC to apoptosis is amplified in patients with cancer.
Collapse
Affiliation(s)
- Laura Strauss
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | - Christoph Bergmann
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
- Department of Otorhinolarnygology, University of Duisburg-Essen, Essen, Germany
| | - Theresa L. Whiteside
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232
| |
Collapse
|
43
|
Venet F, Chung CS, Kherouf H, Geeraert A, Malcus C, Poitevin F, Bohé J, Lepape A, Ayala A, Monneret G. Increased circulating regulatory T cells (CD4(+)CD25 (+)CD127 (-)) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med 2008; 35:678-86. [PMID: 18946659 DOI: 10.1007/s00134-008-1337-8] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 10/04/2008] [Indexed: 12/16/2022]
Abstract
PURPOSE Sepsis syndrome represents the leading cause of death in intensive care unit. Patients present features consistent with a decline in immune responsiveness potentially contributing to mortality. We investigated whether CD4(+)CD25(+) regulatory T cells (Treg) participate in the induction of lymphocyte anergy after sepsis. METHOD Observational study in septic shock patients and experimental study in mice. RESULTS We took advantage of the recently described flow cytometric gating strategy using the measurement of CD25 and CD127 expressions for monitoring Treg (CD4(+)CD25(+)CD127(-)Foxp3(+)). In patients the increased circulating Treg percentage significantly correlated with a decreased lympho-proliferative response. In a murine model of sepsis mimicking these observations, the ex vivo downregulation of Foxp3 expression using siRNA was associated with a restoration of this response. CONCLUSION The relative increase in circulating Treg might play a role in lymphocyte anergy described after septic shock and represent a standardizable surrogate marker of declining proliferative capacity after sepsis.
Collapse
Affiliation(s)
- Fabienne Venet
- Division of Surgical Research, Rhode Island Hospital, Brown University, Providence, RI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yolcu ES, Ash S, Kaminitz A, Sagiv Y, Askenasy N, Yarkoni S. Apoptosis as a mechanism of T‐regulatory cell homeostasis and suppression. Immunol Cell Biol 2008; 86:650-8. [DOI: 10.1038/icb.2008.62] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Esma S Yolcu
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of LouisvilleLouisvilleKYUSA
| | - Shifra Ash
- Frankel Laboratory for Experimental Bone Marrow Transplantation, Center for Stem Cell Research, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
| | - Ayelet Kaminitz
- Frankel Laboratory for Experimental Bone Marrow Transplantation, Center for Stem Cell Research, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
| | | | - Nadir Askenasy
- Frankel Laboratory for Experimental Bone Marrow Transplantation, Center for Stem Cell Research, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
| | | |
Collapse
|
45
|
GE YY, ZHANG L, ZHANG G, WU JP, TAN MJ, HU W, LIANG YJ, WANG Y. In pregnant mice, the infection ofToxoplasma gondiicauses the decrease of CD4+CD25+-regulatory T cells. Parasite Immunol 2008; 30:471-81. [DOI: 10.1111/j.1365-3024.2008.01044.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Yarkoni S, Kaminitz A, Sagiv Y, Yaniv I, Askenasy N. Involvement of IL-2 in homeostasis of regulatory T cells: the IL-2 cycle. Bioessays 2008; 30:875-88. [DOI: 10.1002/bies.20812] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Yolcu ES, Gu X, Lacelle C, Zhao H, Bandura-Morgan L, Askenasy N, Shirwan H. Induction of tolerance to cardiac allografts using donor splenocytes engineered to display on their surface an exogenous fas ligand protein. THE JOURNAL OF IMMUNOLOGY 2008; 181:931-9. [PMID: 18606644 DOI: 10.4049/jimmunol.181.2.931] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The critical role played by Fas ligand (FasL) in immune homeostasis renders this molecule an attractive target for immunomodulation to achieve tolerance to auto- and transplantation Ags. Immunomodulation with genetically modified cells expressing FasL was shown to induce tolerance to alloantigens. However, genetic modification of primary cells in a rapid, efficient, and clinically applicable manner proved challenging. Therefore, we tested the efficacy of donor splenocytes rapidly and efficiently engineered to display on their surface a chimeric form of FasL protein (SA-FasL) for tolerance induction to cardiac allografts. The i.p. injection of ACI rats with Wistar-Furth rat splenocytes displaying SA-FasL on their surface resulted in tolerance to donor, but not F344 third-party cardiac allografts. Tolerance was associated with apoptosis of donor reactive T effector cells and induction/expansion of CD4(+)CD25(+)FoxP3(+) T regulatory (Treg) cells. Treg cells played a critical role in the observed tolerance as adoptive transfer of sorted Treg cells from long-term graft recipients into naive unmanipulated ACI rats resulted in indefinite survival of secondary Wistar-Furth grafts. Immunomodulation with allogeneic cells rapidly and efficiently engineered to display on their surface SA-FasL protein provides an effective and clinically applicable means of cell-based therapy with potential application to regenerative medicine, transplantation, and autoimmunity.
Collapse
Affiliation(s)
- Esma S Yolcu
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Depleting anti-CD4 monoclonal antibody (GK1.5) treatment: influence on regulatory CD4+CD25+Foxp3+ T cells in mice. Transplantation 2008; 85:1167-74. [PMID: 18431238 DOI: 10.1097/tp.0b013e31816a1242] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND CD4(+)CD25(+) regulatory T (Treg) cells are often essential for the maintenance of immunologic self-tolerance and transplant tolerance in some cases. The effects of depleting anti-CD4 monoclonal antibody (GK1.5), which was used in transplant tolerance induction, on CD4(+)CD25(+) Treg cells have not been investigated. METHODS Three weeks after BALB/c mice were injected with GK1.5 or phosphate-buffered saline, the levels, phenotype and immunosuppressive function of CD4(+)CD25(+) Treg cells in these mice were detected. RESULTS The numbers of CD4 and CD4(+)CD25(+) Treg cells in the periphery were markedly decreased in GK1.5-treated mice. However, GK1.5 treatment significantly enhanced the ratios of CD4(+)CD25(+) T cells or CD4(+)CD25(+)Foxp3 T cells to CD4(+) T cells in the periphery (P<0.01). Compared with the control mice, more CD4(+)CD25(+) T cells in GK1.5-treated mice showed CD45RB and CD62L phenotype. Furthermore, enriched CD4(+)CD25(+) Treg cells in GK1.5-treated mice show immunosuppressive ability on the immune response of T effector cells to alloantigens or mitogen as efficiently as those from the control mice in vitro. CONCLUSIONS GK1.5 could significantly enhance the percentage of CD4(+)CD25(+)Foxp3(+) Treg cells in the periphery while keeping these cells functional, indicating that GK1.5 might affect the potential induction of immune tolerance by different influences on CD4(+)CD25(+)Treg cells and CD4(+)CD25(-) T cells in periphery.
Collapse
|
49
|
Giraud S, Barrou B, Sebillaud S, Debré P, Klatzmann D, Thomas-Vaslin V. Transient depletion of dividing T lymphocytes in mice induces the emergence of regulatory T cells and dominant tolerance to islet allografts. Am J Transplant 2008; 8:942-53. [PMID: 18341686 DOI: 10.1111/j.1600-6143.2008.02195.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We previously showed that transient depletion of dividing T cells at the time of an allogeneic transplantation induces long-term tolerance to the allograft. Here we investigated the role of homeostatic perturbation and regulatory T cells (Treg) in such tolerance. Transient depletion of dividing T cells was induced at the time of an allogeneic pancreatic islets graft, by administration of ganciclovir for 14 days, into diabetic transgenic mice expressing a thymidine kinase (TK) conditional suicide gene in T cells. Allograft tolerance was obtained in 63% of treated mice. It was not due to global immunosuppression, permanent deletion or anergy of donor-alloantigens specific T cells but to a dominant tolerance process since lymphocytes from tolerant mice could transfer tolerance to naïve allografted recipients. The transient depletion of dividing T cells induces a 2- to 3-fold increase in the proportion of CD4(+)CD25(+)Foxp3(+) Treg, within 3 weeks that persisted only in allograft-bearing mice but not in nongrafted mice. Tolerance with similar increased proportion of Treg cells was also obtained after a cytostatic hydroxyurea treatment in normal mice. Thus, the transient depletion of dividing T cells represents a novel means of immuno-intervention based on disturbance of T-cell homeostasis and subsequent increase in Treg proportion.
Collapse
Affiliation(s)
- S Giraud
- UPMC Univ Paris 06, U543, Laboratoire d'Immunologie Cellulaire et Tissulaire, Paris F-75013 France
| | | | | | | | | | | |
Collapse
|
50
|
Askenasy N, Kaminitz A, Yarkoni S. Mechanisms of T regulatory cell function. Autoimmun Rev 2008; 7:370-5. [DOI: 10.1016/j.autrev.2008.03.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/01/2008] [Indexed: 11/25/2022]
|