1
|
Liang C, Spoerl S, Xiao Y, Habenicht KM, Haeusl SS, Sandner I, Winkler J, Strieder N, Eder R, Stanewsky H, Alexiou C, Dudziak D, Rosenwald A, Edinger M, Rehli M, Hoffmann P, Winkler TH, Berberich-Siebelt F. Oligoclonal CD4 +CXCR5 + T cells with a cytotoxic phenotype appear in tonsils and blood. Commun Biol 2024; 7:879. [PMID: 39025930 PMCID: PMC11258247 DOI: 10.1038/s42003-024-06563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
In clinical situations, peripheral blood accessible CD3+CD4+CXCR5+ T-follicular helper (TFH) cells may have to serve as a surrogate indicator for dysregulated germinal center responses in tissues. To determine the heterogeneity of TFH cells in peripheral blood versus tonsils, CD3+CD4+CD45RA-CXCR5+ cells of both origins were sorted. Transcriptomes, TCR repertoires and cell-surface protein expression were analysed by single-cell RNA sequencing, flow cytometry and immunohistochemistry. Reassuringly, all blood-circulating CD3+CD4+CXCR5+ T-cell subpopulations also appear in tonsils, there with some supplementary TFH characteristics, while peripheral blood-derived TFH cells display markers of proliferation and migration. Three further subsets of TFH cells, however, with bona fide T-follicular gene expression patterns, are exclusively found in tonsils. One additional, distinct and oligoclonal CD4+CXCR5+ subpopulation presents pronounced cytotoxic properties. Those 'killer TFH (TFK) cells' can be discovered in peripheral blood as well as among tonsillar cells but are located predominantly outside of germinal centers. They appear terminally differentiated and can be distinguished from all other TFH subsets by expression of NKG7 (TIA-1), granzymes, perforin, CCL5, CCR5, EOMES, CRTAM and CX3CR1. All in all, this study provides data for detailed CD4+CXCR5+ T-cell assessment of clinically available blood samples and extrapolation possibilities to their tonsil counterparts.
Collapse
Affiliation(s)
- Chunguang Liang
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Silvia Spoerl
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Yin Xiao
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Katharina M Habenicht
- Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sigrun S Haeusl
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Isabel Sandner
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Julia Winkler
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | | | - Rüdiger Eder
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | | | - Christoph Alexiou
- Department of Otorhinolaryngology, Head & Neck Surgery, Else Kröner-Fresenius-Foundation-Professorship, Section of Experimental Oncology & Nanomedicine (SEON), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Matthias Edinger
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Thomas H Winkler
- Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
2
|
Syeda MZ, Hong T, Huang C, Huang W, Mu Q. B cell memory: from generation to reactivation: a multipronged defense wall against pathogens. Cell Death Discov 2024; 10:117. [PMID: 38453885 PMCID: PMC10920759 DOI: 10.1038/s41420-024-01889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Development of B cell memory is a conundrum that scientists are still exploring. Studies have been conducted in vitro and using advanced animal models to elucidate the mechanism underlying the generation of memory B cells (MBCs), the precise roles of MBCs against pathogens, and their protective functions against repeated infections throughout life. Lifelong immunity against invading diseases is mainly the result of overcoming a single infection. This protection is largely mediated by the two main components of B cell memory-MBCs and long-lived plasma cells (PCs). The chemical and cellular mechanisms that encourage fat selection for MBCs or long-lived PCs are an area of active research. Despite the fact that nearly all available vaccinations rely on the capacity to elicit B-cell memory, we have yet to develop successful vaccines that can induce broad-scale protective MBCs against some of the deadliest diseases, including malaria and AIDS. A deeper understanding of the specific cellular and molecular pathways that govern the generation, function, and reactivation of MBCs is critical for overcoming the challenges associated with vaccine development. Here, we reviewed literature on the development of MBCs and their reactivation, interaction with other cell types, strategies against invading pathogens, and function throughout life and discussed the recent advances regarding the key signals and transcription factors which regulate B cell memory and their relevance to the quest for vaccine development.
Collapse
Affiliation(s)
- Madiha Zahra Syeda
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tu Hong
- The First Affiliated Hospital, Zhejiang University, School of Medicine, 310058, Hangzhou, China
| | - Chunming Huang
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| | - Wenhua Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qingchun Mu
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| |
Collapse
|
3
|
He Y, Vinuesa CG. Germinal center versus extrafollicular responses in systemic autoimmunity: Who turns the blade on self? Adv Immunol 2024; 162:109-133. [PMID: 38866437 PMCID: PMC7616122 DOI: 10.1016/bs.ai.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Spontaneously formed germinal centers (GCs) have been reported in most mouse models of human autoimmune disease and autoimmune patients, and have long been considered a source of somatically-mutated and thus high affinity autoantibodies, but their role in autoimmunity is becoming increasingly controversial, particularly in the context of systemic autoimmune diseases like lupus. On the one hand, there is good evidence that some pathogenic lupus antibodies have acquired somatic mutations that increase affinity for self-antigens. On the other hand, recent studies that have genetically prevented GC formation, suggest that GCs are dispensable for systemic autoimmunity, pointing instead to pathogenic extrafollicular (EF) B-cell responses. Furthermore, several lines of evidence suggest germinal centers may in fact be somewhat protective in the context of autoimmunity. Here we review how some of the conflicting evidence arose, and current views on the role of GCs in autoimmunity, outlining mechanisms by which GC may eliminate self-reactivity. We also discuss recent advances in understanding extrafollicular B cell subsets that participate in autoimmunity.
Collapse
Affiliation(s)
- Yuke He
- China-Australia Centre for Personalised Immunology, Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Carola G Vinuesa
- China-Australia Centre for Personalised Immunology, Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China; Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
4
|
DiToro D, Murakami N, Pillai S. T-B Collaboration in Autoimmunity, Infection, and Transplantation. Transplantation 2024; 108:386-398. [PMID: 37314442 PMCID: PMC11345790 DOI: 10.1097/tp.0000000000004671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have attempted here to provide an up-to-date review of the collaboration between helper T cells and B cells in response to protein and glycoprotein antigens. This collaboration is essential as it not only protects from many pathogens but also contributes to a litany of autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel DiToro
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Naoka Murakami
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
5
|
Zeng S, Crichton ES, Ford ML, Badell IR. Memory T follicular helper cells drive donor-specific antibodies independent of memory B cells and primary germinal center and alloantibody formation. Am J Transplant 2023; 23:1511-1525. [PMID: 37302575 PMCID: PMC11228286 DOI: 10.1016/j.ajt.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Human leukocyte antigen antibodies are important immunologic mediators of renal allograft loss and are difficult to control. The inability to permanently eliminate donor-specific antibodies (DSA) is partly due to an incomplete understanding of the cellular mechanisms driving alloantibody formation, recurrence, and maintenance. Memory T follicular helper (mTfh) cells rapidly interact with memory B cells upon antigen re-exposure for anamnestic humoral responses, but little is known about Tfh memory in transplantation. We hypothesized that alloreactive mTfh cells form after transplantation and play a critical role in DSA formation following alloantigen re-encounter. To test this hypothesis, we utilized murine skin allograft models to identify and characterize Tfh memory and interrogate its ability to mediate alloantibody responses. We identified alloreactive Tfh memory as a mediator of accelerated humoral alloresponses independent of memory B cells and primary germinal center, or DSA, formation. Furthermore, we demonstrate that mTfh-driven alloantibody formation is susceptible to CD28 costimulation blockade. These findings provide novel insight into a pathologic role for memory Tfh in alloantibody responses and strongly support shifting therapeutic focus from the singular targeting of B cell lineage cells and alloantibodies themselves to multimodal strategies that include inhibition of mTfh cells to treat DSA.
Collapse
Affiliation(s)
- Shan Zeng
- Emory Transplant Center, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
6
|
Ruffin AT, Li H, Vujanovic L, Zandberg DP, Ferris RL, Bruno TC. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer 2023; 23:173-188. [PMID: 36456755 PMCID: PMC9992112 DOI: 10.1038/s41568-022-00531-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 12/03/2022]
Abstract
Targeted immunotherapy has improved patient survival in head and neck squamous cell carcinoma (HNSCC), but less than 20% of patients produce a durable response to these treatments. Thus, new immunotherapies that consider all key players of the complex HNSCC tumour microenvironment (TME) are necessary to further enhance tumour-specific T cell responses in patients. HNSCC is an ideal tumour type in which to evaluate immune and non-immune cell differences because of two distinct TME aetiologies (human papillomavirus (HPV)-positive and HPV-negative disease), multiple anatomic sites for tumour growth, and clear distinctions between patients with locally advanced disease and those with recurrent and/or metastatic disease. Recent technological and scientific advancements have provided a more complete picture of all cellular constituents within this complex TME and have evaluated the interplay of both immune and non-immune cells within HNSCC. Here, we include a comprehensive analysis of the complete ecosystem of the HNSCC TME, performed utilizing data-rich resources such as The Cancer Genome Atlas, and cutting-edge techniques, such as single-cell RNA sequencing, high-dimensional flow cytometry and spatial multispectral imaging, to generate improved treatment strategies for this diverse disease.
Collapse
Affiliation(s)
- Ayana T Ruffin
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Housaiyin Li
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Molecular Genetics and Developmental Biology (MGDB) Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lazar Vujanovic
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dan P Zandberg
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Robert L Ferris
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Tullia C Bruno
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Yu D, Walker LSK, Liu Z, Linterman MA, Li Z. Targeting T FH cells in human diseases and vaccination: rationale and practice. Nat Immunol 2022; 23:1157-1168. [PMID: 35817844 DOI: 10.1038/s41590-022-01253-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022]
Abstract
The identification of CD4+ T cells localizing to B cell follicles has revolutionized the knowledge of how humoral immunity is generated. Follicular helper T (TFH) cells support germinal center (GC) formation and regulate clonal selection and differentiation of memory and antibody-secreting B cells, thus controlling antibody affinity maturation and memory. TFH cells are essential in sustaining protective antibody responses necessary for pathogen clearance in infection and vaccine-mediated protection. Conversely, aberrant and excessive TFH cell responses mediate and sustain pathogenic antibodies to autoantigens, alloantigens, and allergens, facilitate lymphomagenesis, and even harbor viral reservoirs. TFH cell generation and function are determined by T cell antigen receptor (TCR), costimulation, and cytokine signals, together with specific metabolic and survival mechanisms. Such regulation is crucial to understanding disease pathogenesis and informing the development of emerging therapies for disease or novel approaches to boost vaccine efficacy.
Collapse
Affiliation(s)
- Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia. .,Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, Royal Free Campus, London, UK
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Zhanguo Li
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
8
|
Tan HX, Wragg KM, Kelly HG, Esterbauer R, Dixon BJ, Lau JSY, Flanagan KL, van de Sandt CE, Kedzierska K, McMahon JH, Wheatley AK, Juno JA, Kent SJ. Cutting Edge: SARS-CoV-2 Infection Induces Robust Germinal Center Activity in the Human Tonsil. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2267-2271. [PMID: 35487578 DOI: 10.4049/jimmunol.2101199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/14/2022] [Indexed: 01/15/2023]
Abstract
Understanding the generation of immunity to SARS-CoV-2 in lymphoid tissues draining the site of infection has implications for immunity to SARS-CoV-2. We performed tonsil biopsies under local anesthesia in 19 subjects who had recovered from SARS-CoV-2 infection 24-225 d previously. The biopsies yielded >3 million cells for flow cytometric analysis in 17 subjects. Total and SARS-CoV-2 spike-specific germinal center B cells, and T follicular helper cells, were readily detectable in human tonsils early after SARS-CoV-2 infection, as assessed by flow cytometry. Responses were higher in samples within 2 mo of infection but still detectable in some subjects out to 7 mo following infection. We conclude the tonsils are a secondary lymphoid organ that develop germinal center responses to SARS-CoV-2 infection and could play a role in the long-term development of immunity.
Collapse
Affiliation(s)
- Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Benjamin J Dixon
- Head and Neck Surgery, Epworth Healthcare, Richmond, Victoria, Australia
| | - Jillian S Y Lau
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Katie L Flanagan
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia.,School of Health and Biomedical Science, RMIT University, Melbourne, Victoria, Australia; and.,Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - James H McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia;
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia;
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; .,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Haghighi M, Khorasani A, Karimi P, Mahdavi M. Improvement of the inactivated SARS-CoV-2 vaccine potency through formulation in alum/naloxone adjuvant; Robust T cell and anti-RBD IgG responses. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:554-561. [PMID: 35911642 PMCID: PMC9282741 DOI: 10.22038/ijbms.2022.63527.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES SARS-CoV-2, emerging as a major threat to public health, has to be controlled through vaccination. Naloxone (NLX), an opioid receptor antagonist, demonstrated its adjuvant activity for microbial vaccines. In this study, inactivated SARS-CoV-2 was developed in the Alum/NLX adjuvant to increase the potency of the inactivated SARS-CoV-2 vaccine. MATERIALS AND METHODS BALB/c mice were immunized on days 0 and 14 with inactivated SARS-CoV-2-Alum, -Alum + NLX 3 mg/kg, -Alum + NLX 10 mg/kg, and -Freund adjuvant, as well as PBS. IFN-γ and IL-4 cytokines and Granzyme-B release were assessed with ELISA. In addition, specific total IgG, IgG1/IgG2a isotypes, and ratio as well as anti-RBD IgG responses were assessed with an optimized ELISA. RESULTS SARS-CoV-2-Alum-NLX10 group showed a significant increase in the IFN-γ cytokine response versus SARS-CoV-2-Alum, SARS-CoV-2-Alum-NLX3, and PBS groups. The SARS-CoV-2-Alum-NLX3 group exhibited a significant decrease in IL-4 cytokine versus SARS-CoV-2-Alum. The mice immunized with SARS-CoV-2-Alum-NLX10 showed a significant increase in CTL activity versus SARS-CoV-2-Alum and PBS. In addition, mice immunized with SARS-CoV-2-Alum-NLX3, SARS-CoV-2-Alum-NLX10 and SARS-CoV-2-Freund demonstrated an increase in IgG response, as compared with SARS-CoV-2-Alum and PBS group. Furthermore, all formulations of SARS-CoV-2 vaccines could induce both IgG1 and IgG2a isotypes. But, the IgG2a/IgG1 ratio in SARS-CoV-2-Freund and SARS-CoV-2-Alum-NLX10 revealed an increase as compared with that of the SARS-CoV-2-Alum group. Anti-RBD IgG response in the SARS-CoV-2-Alum-NLX10 group showed a significant increase as compared with the Alum-based vaccine. CONCLUSION Formulation of inactivated SARS-CoV-2 virus in NLX/alum adjuvant improved the potency of humoral and, especially, cellular responses.
Collapse
Affiliation(s)
- Melika Haghighi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran,These authors contributed eqully to this work
| | - Akbar Khorasani
- Department of FMD Vaccine Production, Razi Vaccine & Serum Research Institute, Agricultural Research, Education & Extension Organization (AREEO), Karaj, Iran ,These authors contributed eqully to this work
| | - Pegah Karimi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran,Immunotherapy Group, The Institute of Pharmaceutical Science (TIPS), Tehran University of Medical Science, Tehran, Iran,Corresponding author: Mehdi Mahdavi. ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, Tehran, Iran. NO.146, South Gandi Ave, Vanak Sq. Tehran, Iran; Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Immunotherapy Group, The Institute of Pharmaceutical Science (TIPS), Tehran University of Medical Science, Tehran, Iran. Tel/Fax: +98-21-88203915;
| |
Collapse
|
10
|
Ko H, Kim CJ, Im SH. T Helper 2-Associated Immunity in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2022; 13:866549. [PMID: 35444658 PMCID: PMC9014558 DOI: 10.3389/fimmu.2022.866549] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease that mainly affects women in their reproductive years. A complex interaction of environmental and genetic factors leads to the disruption of immune tolerance towards self, causing overt immune activation and production of autoantibodies that attack multiple organs. Kidney damage, termed lupus nephritis, is the leading cause of SLE-related morbidity and mortality. Autoantibodies are central to propagating lupus nephritis through forming immune complexes and triggering complements. Immunoglobulin G (IgG) potently activates complement; therefore, autoantibodies were mainly considered to be of the IgG isotype. However, studies revealed that over 50% of patients produce autoantibodies of the IgE isotype. IgE autoantibodies actively participate in disease pathogenesis as omalizumab treatment, a humanized anti-IgE monoclonal antibody, improved disease severity in an SLE clinical trial. IgE is a hallmark of T helper 2-associated immunity. Thus, T helper 2-associated immunity seems to play a pathogenic role in a subset of SLE patients. This review summarizes human and animal studies that illustrate type 2 immune responses involved during the pathology of SLE.
Collapse
Affiliation(s)
- Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea.,Pohang University of Science and Technology (POSTECH) Biotech Center, Pohang University of Science and Technology, Pohang, South Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea.,Institute for Convergence Research and Education, Yonsei University, Seoul, South Korea.,ImmunoBiome Inc., Bio Open Innovation Center, Pohang, South Korea
| |
Collapse
|
11
|
Kim ST, Chu Y, Misoi M, Suarez-Almazor ME, Tayar JH, Lu H, Buni M, Kramer J, Rodriguez E, Hussain Z, Neelapu SS, Wang J, Shah AY, Tannir NM, Campbell MT, Gibbons DL, Cascone T, Lu C, Blumenschein GR, Altan M, Lim B, Valero V, Loghin ME, Tu J, Westin SN, Naing A, Garcia-Manero G, Abdel-Wahab N, Tawbi HA, Hwu P, Oliva ICG, Davies MA, Patel SP, Zou J, Futreal A, Diab A, Wang L, Nurieva R. Distinct molecular and immune hallmarks of inflammatory arthritis induced by immune checkpoint inhibitors for cancer therapy. Nat Commun 2022; 13:1970. [PMID: 35413951 PMCID: PMC9005525 DOI: 10.1038/s41467-022-29539-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors are associated with immune-related adverse events (irAEs), including arthritis (arthritis-irAE). Management of arthritis-irAE is challenging because immunomodulatory therapy for arthritis should not impede antitumor immunity. Understanding of the mechanisms of arthritis-irAE is critical to overcome this challenge, but the pathophysiology remains unknown. Here, we comprehensively analyze peripheral blood and/or synovial fluid samples from 20 patients with arthritis-irAE, and unmask a prominent Th1-CD8+ T cell axis in both blood and inflamed joints. CX3CR1hi CD8+ T cells in blood and CXCR3hi CD8+ T cells in synovial fluid, the most clonally expanded T cells, significantly share TCR repertoires. The migration of blood CX3CR1hi CD8+ T cells into joints is possibly mediated by CXCL9/10/11/16 expressed by myeloid cells. Furthermore, arthritis after combined CTLA-4 and PD-1 inhibitor therapy preferentially has enhanced Th17 and transient Th1/Th17 cell signatures. Our data provide insights into the mechanisms, predictive biomarkers, and therapeutic targets for arthritis-irAE.
Collapse
Affiliation(s)
- Sang T Kim
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mercy Misoi
- Department of General Internal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria E Suarez-Almazor
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jean H Tayar
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huifang Lu
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maryam Buni
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jordan Kramer
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biology, Georgetown University, Washington, DC, 20057, USA
| | - Emma Rodriguez
- Department of Infectious Disease, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zulekha Hussain
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amishi Y Shah
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew T Campbell
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Don L Gibbons
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tina Cascone
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Charles Lu
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - George R Blumenschein
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mehmet Altan
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vincente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Monica E Loghin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Janet Tu
- Department of General Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Noha Abdel-Wahab
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Rheumatology and Rehabilitation, Assiut University Hospitals, Faculty of Medicine, Assiut University, El Fateh, Egypt
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sapna P Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Zou
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, 77030, USA.
| | - Roza Nurieva
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, 77030, USA.
| |
Collapse
|
12
|
In vivo CRISPR screens reveal a HIF-1α-mTOR-network regulates T follicular helper versus Th1 cells. Nat Commun 2022; 13:805. [PMID: 35145086 PMCID: PMC8831505 DOI: 10.1038/s41467-022-28378-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
T follicular helper (Tfh) cells provide signals to initiate and maintain the germinal center (GC) reaction and are crucial for the generation of robust, long-lived antibody responses, but how the GC microenvironment affects Tfh cells is not well understood. Here we develop an in vivo T cell-intrinsic CRISPR-knockout screen to evaluate Tfh and Th1 cells in an acute viral infection model to identify regulators of Tfh cells in their physiological setting. Using a screen of druggable-targets, alongside genetic, transcriptomic and cellular analyses, we identify a function of HIF-1α in suppressing mTORC1-mediated and Myc-related pathways, and provide evidence that VHL-mediated degradation of HIF-1α is required for Tfh development; an expanded in vivo CRISPR screen reveals multiple components of these pathways that regulate Tfh versus Th1 cells, including signaling molecules, cell-cycle regulators, nutrient transporters, metabolic enzymes and autophagy mediators. Collectively, our data serve as a resource for studying Tfh versus Th1 decisions, and implicate the VHL-HIF-1α axis in fine-tuning Tfh generation. T follicular helper (Tfh) and T help type 1 (Th1) cells both arise from naïve CD4 T cells, but detailed knowledge of their differentiation remains incomplete. Here the authors pursue an in vivo CRISPR screen to identify genes, focusing on druggable targets, regulating Tfh versus Th1 to provide a resource for related studies, while also implicating HIF-1α and VHL in this regulation.
Collapse
|
13
|
Juno JA, Hill DL. T follicular helper cells and their impact on humoral responses during pathogen and vaccine challenge. Curr Opin Immunol 2021; 74:112-117. [PMID: 34861545 DOI: 10.1016/j.coi.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022]
Abstract
T follicular helper (Tfh) cells are essential for the establishment, maintenance and output of the germinal centre (GC) response. The transient nature of this response, and its location within secondary lymphoid tissues have hampered our understanding of this critical cell type, particularly in humans. A counterpart of GC Tfh cells in peripheral blood has enabled recent discoveries in disease and vaccination settings, while direct sampling of lymph nodes provides exciting new avenues to study GC responses directly in vivo. Tfh differentiation is shaped by the cytokine milieu during inflammation, vaccination and with age, and disease-specific patterns are emerging. An improved understanding of how to support a Tfh response remains key to enhancing vaccine immunity across the lifespan.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne 3000, Victoria, Australia.
| | - Danika L Hill
- Department of Immunology and Pathology, Monash University, 89 Commercial Rd., Melbourne 3004, Victoria, Australia.
| |
Collapse
|
14
|
Keller B, Strohmeier V, Harder I, Unger S, Payne KJ, Andrieux G, Boerries M, Felixberger PT, Landry JJM, Nieters A, Rensing-Ehl A, Salzer U, Frede N, Usadel S, Elling R, Speckmann C, Hainmann I, Ralph E, Gilmour K, Wentink MWJ, van der Burg M, Kuehn HS, Rosenzweig SD, Kölsch U, von Bernuth H, Kaiser-Labusch P, Gothe F, Hambleton S, Vlagea AD, Garcia Garcia A, Alsina L, Markelj G, Avcin T, Vasconcelos J, Guedes M, Ding JY, Ku CL, Shadur B, Avery DT, Venhoff N, Thiel J, Becker H, Erazo-Borrás L, Trujillo-Vargas CM, Franco JL, Fieschi C, Okada S, Gray PE, Uzel G, Casanova JL, Fliegauf M, Grimbacher B, Eibel H, Ehl S, Voll RE, Rizzi M, Stepensky P, Benes V, Ma CS, Bossen C, Tangye SG, Warnatz K. The expansion of human T-bet highCD21 low B cells is T cell dependent. Sci Immunol 2021; 6:eabh0891. [PMID: 34623902 DOI: 10.1126/sciimmunol.abh0891] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accumulation of human CD21low B cells in peripheral blood is a hallmark of chronic activation of the adaptive immune system in certain infections and autoimmune disorders. The molecular pathways underpinning the development, function, and fate of these CD21low B cells remain incompletely characterized. Here, combined transcriptomic and chromatin accessibility analyses supported a prominent role for the transcription factor T-bet in the transcriptional regulation of these T-bethighCD21low B cells. Investigating essential signals for generating these cells in vitro established that B cell receptor (BCR)/interferon-γ receptor (IFNγR) costimulation induced the highest levels of T-bet expression and enabled their differentiation during cell cultures with Toll-like receptor (TLR) ligand or CD40L/interleukin-21 (IL-21) stimulation. Low proportions of CD21low B cells in peripheral blood from patients with defined inborn errors of immunity (IEI), because of mutations affecting canonical NF-κB, CD40, and IL-21 receptor or IL-12/IFNγ/IFNγ receptor/signal transducer and activator of transcription 1 (STAT1) signaling, substantiated the essential roles of BCR- and certain T cell–derived signals in the in vivo expansion of T-bethighCD21low B cells. Disturbed TLR signaling due to MyD88 or IRAK4 deficiency was not associated with reduced CD21low B cell proportions. The expansion of human T-bethighCD21low B cells correlated with an expansion of circulating T follicular helper 1 (cTfh1) and T peripheral helper (Tph) cells, identifying potential sources of CD40L, IL-21, and IFNγ signals. Thus, we identified important pathways to target autoreactive T-bethighCD21low B cells in human autoimmune conditions, where these cells are linked to pathogenesis and disease progression.
Collapse
Affiliation(s)
- Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Valentina Strohmeier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Ina Harder
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathryn J Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) partner site, Freiburg, Germany
- German Cancer Research Center (DKFZ), partner site Freiburg, 79106 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) partner site, Freiburg, Germany
- German Cancer Research Center (DKFZ), partner site Freiburg, 79106 Freiburg, Germany
| | - Peter Tobias Felixberger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alexandra Nieters
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- FREEZE-Biobank-Zentrum für Biobanking, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Natalie Frede
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Usadel
- Department of Infection Medicine, Medical Service Centre Clotten, Freiburg, Germany
| | - Roland Elling
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ina Hainmann
- Department of Pediatric Hematology and Oncology, University Hospital Bonn, Bonn, Germany
| | | | | | | | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine (DLM), National Institutes of Health (NIH) Clinical Center (CC), Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine (DLM), National Institutes of Health (NIH) Clinical Center (CC), Bethesda, MD, USA
| | - Uwe Kölsch
- Department of Immunology, Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Horst von Bernuth
- Department of Immunology, Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Kaiser-Labusch
- Prof. Hess Children's Hospital, Klinikum Bremen-Mitte, Gesundheit Nord gGmbH, Bremen, Germany
| | - Florian Gothe
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Dr. von Hauner Children's Hospital, Department of Paediatrics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Alexandru Daniel Vlagea
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
- Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Ana Garcia Garcia
- Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Gašper Markelj
- Department of Allergology, Rheumatology and Clinical Immunology, Children's Hospital, University Medical Center Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Avcin
- Department of Allergology, Rheumatology and Clinical Immunology, Children's Hospital, University Medical Center Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Julia Vasconcelos
- Serviço de Imunologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Margarida Guedes
- Pediatric Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Jing-Ya Ding
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Bella Shadur
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
- St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Becker
- German Cancer Consortium (DKTK) partner site, Freiburg, Germany
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucía Erazo-Borrás
- Group of Primary Immunodeficiencies and CCBB, University of Antioquia UDEA, Medellin, Colombia
| | - Claudia Milena Trujillo-Vargas
- Group of Primary Immunodeficiencies, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UDEA, Medellin, Colombia
| | - José Luis Franco
- Group of Primary Immunodeficiencies, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UDEA, Medellin, Colombia
| | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, AP-HP Université de Paris, Paris, France
- INSERM UMR1126, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Paul E Gray
- University of New South Wales School of Women's and Children's Health, Sydney, New South Wales, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Medical School, Paris Descartes University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
- DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- RESIST-Cluster of Excellence 2155 to Hannover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Vladimir Benes
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Claudia Bossen
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Reinmuth L, Hsiao CC, Hamann J, Rosenkilde M, Mackrill J. Multiple Targets for Oxysterols in Their Regulation of the Immune System. Cells 2021; 10:cells10082078. [PMID: 34440846 PMCID: PMC8391951 DOI: 10.3390/cells10082078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Oxysterols, or cholesterol oxidation products, are naturally occurring lipids which regulate the physiology of cells, including those of the immune system. In contrast to effects that are mediated through nuclear receptors or by epigenetic mechanism, which take tens of minutes to occur, changes in the activities of cell-surface receptors caused by oxysterols can be extremely rapid, often taking place within subsecond timescales. Such cell-surface receptor effects of oxysterols allow for the regulation of fast cellular processes, such as motility, secretion and endocytosis. These cellular processes play critical roles in both the innate and adaptive immune systems. This review will survey the two broad classes of cell-surface receptors for oxysterols (G-protein coupled receptors (GPCRs) and ion channels), the mechanisms by which cholesterol oxidation products act on them, and their presence and functions in the different cell types of the immune system. Overall, this review will highlight the potential of oxysterols, synthetic derivatives and their receptors for physiological and therapeutic modulation of the immune system.
Collapse
Affiliation(s)
- Lisa Reinmuth
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Mette Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| | - John Mackrill
- Department of Physiology, School of Medicine, BioSciences Institute, University College Cork, College Road, Cork T12 YT20, Ireland
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| |
Collapse
|
16
|
Hou X, Yang C, Lin M, Tian B, Zhao S, Liu X, Yang P. Altered peripheral helper T cells in peripheral blood and muscle tissue of the patients with dermatomyositis. Clin Exp Med 2021; 21:655-661. [PMID: 33900488 DOI: 10.1007/s10238-021-00713-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/16/2021] [Indexed: 01/20/2023]
Abstract
Peripheral helper T (Tph) cells, phenotypically PD-1hiCXCR5-CD4+, are a recently identified Th cell subset that relates to several autoimmune diseases. Contrary to PD-1hiCXCR5+CD4+ follicular helper T (Tfh) cells, Tph cells are not located in lymphoid organs but accumulate in inflamed tissues. This study investigated Tph cells to determine their involvement in dermatomyositis (DM). The frequency of circulating Tph and Tfh cells was evaluated by flow cytometry at baseline and after glucocorticoid treatment. The expression of Tph and B cells was determined in muscle tissue by immunohistochemistry (IHC). Further, the correlations between circulating Tph cells and clinical characteristics were investigated. Flow cytometry revealed that circulating Tph and Tfh cells were decreased in peripheral blood of DM patients compared with healthy controls (HCs). However, the muscular expression of Tph and B cells was upregulated in patients with DM compared to that in the controls by IHC. Interestingly, the increased B cells accumulated around Tph cells in infiltrated lesions. The frequency of circulating Tph cells was positively correlated with Tfh cells, CD3+ T cells, CD4+ T cells, and CD8+ T cells, whereas negatively correlated with erythrocyte sedimentation rate (ESR), interleukin (IL)-6, and IL-10 levels. Furthermore, the abnormal circulating Tph cells in peripheral blood were recovered after glucocorticoid treatment. These results indicate that Tph cells might be involved in the immunopathogenesis of DM and therefore might provide novel insight for the development of DM therapies.
Collapse
Affiliation(s)
- Xiaoyu Hou
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Chunshu Yang
- Department of 1St Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Meiyi Lin
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Bailing Tian
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Shan Zhao
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Xudong Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Pingting Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
17
|
Wang L, Fu Y, Yu B, Jiang X, Liu H, Liu J, Zha B, Chu Y. HSP70, a Novel Regulatory Molecule in B Cell-Mediated Suppression of Autoimmune Diseases. J Mol Biol 2020; 433:166634. [PMID: 32860772 DOI: 10.1016/j.jmb.2020.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
B cells have recently emerged as playing regulatory role in autoimmune diseases. We have previously demonstrated that human peripheral blood CD19+CD24hiCD27+ B cells have regulatory function both in healthy donors and in patients with autoimmune disease. However, the mechanism of this regulation is still not fully understood. In this study, microarrays were utilized to compare gene expression of CD19+CD24hiCD27+ B cells (regulatory B cells, Bregs) with CD19+CD24loCD27- B cells (non-Bregs) in human peripheral blood. We found that heat shock protein 70 (HSP70) expression was significantly upregulated in Bregs. In vitro studies explored that HSP70 inhibition impaired the regulatory function of peripheral blood Bregs. In mouse models of autoimmune disease, using HSP70-deficient mice or HSP70 inhibitors, Bregs suppressed effector cells and rescued disease-associated phenotypes that were dependent on HSP70. Mechanistically, Bregs secreted HSP70, directly suppressing effector cells, such as T effect cells. These findings reveal that HSP70 is a novel factor that modulates Breg function and suggest that enhancing Breg-mediated production of HSP70 could be a viable therapy for autoimmune disease.
Collapse
Affiliation(s)
- Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Biotherapy Research Center, Fudan University, Shanghai 200032, China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xuechao Jiang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hongchun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Bingbing Zha
- Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Biotherapy Research Center, Fudan University, Shanghai 200032, China.
| |
Collapse
|
18
|
Schmidt A, Huber JE, Sercan Alp Ö, Gürkov R, Reichel CA, Herrmann M, Keppler OT, Leeuw T, Baumjohann D. Complex human adenoid tissue-based ex vivo culture systems reveal anti-inflammatory drug effects on germinal center T and B cells. EBioMedicine 2020; 53:102684. [PMID: 32114393 PMCID: PMC7049648 DOI: 10.1016/j.ebiom.2020.102684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Human immunology research is often limited to peripheral blood. However, there are important differences between blood immune cells and their counterparts residing in secondary lymphoid organs, such as in the case of germinal center (GC) T follicular helper (Tfh) cells and GC B cells. METHODS We developed a versatile ex vivo lymphoid organ culture platform that is based on human pharyngeal tonsils (adenoids) and allows for drug testing. We systematically phenotyped Tfh and GC B cell subsets in explant- and suspension cultures using multicolor flow cytometry and cytokine multiplex analysis. FINDINGS Phenotypic changes of certain ex vivo cultured immune cell subsets could be modulated by cytokine addition. Furthermore, we optimized an activation-induced marker assay to evaluate the response to T cell stimulation. We provide proof-of-concept that Tfh and GC B cells could be modulated in these cultures by different anti-inflammatory drugs in unstimulated states and upon activation with vaccine-derived antigens. For example, GC B cells were lost upon CD40L blockade, and clinically approved JAK inhibitors impacted Tfh and GC B cells, including down-regulation of their key transcription factor BCL6. BCL6 regulation was affected by IL-6 signaling in T cells and IL-4 in B cells, respectively. Furthermore, we demonstrated that JAK signaling and TNF signaling contributed to the stimulation-induced activation of tonsil-derived T cells. INTERPRETATION Our optimized methods, assays, and mechanistic findings can contribute to a better understanding of human GC responses. These insights may be relevant for improving autoimmune disease therapy and vaccination efficacy. FUNDING This work was supported by a project grant under the joint research cooperation agreement of LMU Munich, LMU University Hospital, and Sanofi-Aventis Deutschland GmbH, as well as by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Emmy Noether Programme BA 5132/1-1 and BA 5132/1-2 (252623821), SFB 1054 Project B12 (210592381), and SFB 914 Project B03 (165054336).
Collapse
Affiliation(s)
- Angelika Schmidt
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany.
| | - Johanna E Huber
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Özen Sercan Alp
- R&D, TA Immunology & Inflammation Research, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Robert Gürkov
- Department of Otorhinolaryngology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology, University Hospital, LMU Munich, 81377 Munich, Germany; Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Herrmann
- R&D, TA Immunology & Inflammation Research, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Thomas Leeuw
- R&D, TA Immunology & Inflammation Research, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Dirk Baumjohann
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
19
|
Lyashchenko KP, Vordermeier HM, Waters WR. Memory B cells and tuberculosis. Vet Immunol Immunopathol 2020; 221:110016. [PMID: 32050091 DOI: 10.1016/j.vetimm.2020.110016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/30/2019] [Accepted: 01/29/2020] [Indexed: 02/09/2023]
Abstract
Immunological memory is a central feature of adaptive immunity. Memory B cells are generated upon stimulation with antigen presented by follicular dendritic cells in the peripheral lymphoid tissues. This process typically involves class-switch recombination and somatic hypermutation and it can be dependent or independent on germinal centers or T cell help. The mature B cell memory pool is generally characterized by remarkable heterogeneity of functionally and phenotypically distinct sub-populations supporting multi-layer immune plasticity. Memory B cells found in human patients infected with Mycobacterium tuberculosis include IgD+ CD27+ and IgM+ CD27+ subsets. In addition, expansion of atypical memory B cells characterized by the lack of CD27 expression and by inability to respond to antigen-induced re-activation is documented in human tuberculosis. These functionally impaired memory B cells are believed to have adverse effects on host immunity. Human and animal studies demonstrate recruitment of antigen-activated B cells to the infection sites and their presence in lung granulomas where proliferating B cells are organized into discrete clusters resembling germinal centers of secondary lymphoid organs. Cattle studies show development of IgM+, IgG+, and IgA+ memory B cells in M. bovis infection with the ability to rapidly differentiate into antibody-producing plasma cells upon antigen re-exposure. This review discusses recent advances in research on generation, re-activation, heterogeneity, and immunobiological functions of memory B cells in tuberculosis. The role of memory B cells in post-skin test recall antibody responses in bovine tuberculosis and implications for development of improved immunodiagnostics are also reviewed.
Collapse
Affiliation(s)
| | - H Martin Vordermeier
- Tuberculosis Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom; Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - W Ray Waters
- National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA
| |
Collapse
|
20
|
Song W, Craft J. T follicular helper cell heterogeneity: Time, space, and function. Immunol Rev 2019; 288:85-96. [PMID: 30874350 DOI: 10.1111/imr.12740] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
T follicular helper (Tfh) cells play a crucial role in orchestrating the humoral arm of adaptive immune responses. Mature Tfh cells localize to follicles in secondary lymphoid organs (SLOs) where they provide help to B cells in germinal centers (GCs) to facilitate immunoglobulin affinity maturation, class-switch recombination, and generation of long-lived plasma cells and memory B cells. Beyond the canonical GC Tfh cells, it has been increasingly appreciated that the Tfh phenotype is highly diverse and dynamic. As naive CD4+ T cells progressively differentiate into Tfh cells, they migrate through a variety of microanatomical locations to obtain signals from other cell types, which in turn alters their phenotypic and functional profiles. We herein review the heterogeneity of Tfh cells marked by the dynamic phenotypic changes accompanying their developmental program. Focusing on the various locations where Tfh and Tfh-like cells are found, we highlight their diverse states of differentiation. Recognition of Tfh cell heterogeneity has important implications for understanding the nature of T helper cell identity specification, especially the plasticity of the Tfh cells and their ontogeny as related to conventional T helper subsets.
Collapse
Affiliation(s)
- Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Department of Internal Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
21
|
B cell memory: building two walls of protection against pathogens. Nat Rev Immunol 2019; 20:229-238. [PMID: 31836872 PMCID: PMC7223087 DOI: 10.1038/s41577-019-0244-2] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Surviving a single infection often results in lifelong immunity to the infecting pathogen. Such protection is mediated, in large part, by two main B cell memory ‘walls’ — namely, long-lived plasma cells and memory B cells. The cellular and molecular processes that drive the production of long-lived plasma cells and memory B cells are subjects of intensive research and have important implications for global health. Indeed, although nearly all vaccines in use today depend on their ability to induce B cell memory, we have not yet succeeded in developing vaccines for some of the world’s most deadly diseases, including AIDS and malaria. Here, we describe the two-phase process by which antigen drives the generation of long-lived plasma cells and memory B cells and highlight the challenges for successful vaccine development in each phase. The authors discuss the formation of two main ‘walls’ of B cell memory to protect against pathogen reinfection. The first wall comprises high-affinity antibodies produced by long-lived plasma cells, while the second wall is formed by memory B cells.
Collapse
|
22
|
Zhao J, Shi J, Qu M, Zhao X, Wang H, Huang M, Liu Z, Li Z, He Q, Zhang S, Zhang Z. Hyperactive Follicular Helper T Cells Contribute to Dysregulated Humoral Immunity in Patients With Liver Cirrhosis. Front Immunol 2019; 10:1915. [PMID: 31456809 PMCID: PMC6700335 DOI: 10.3389/fimmu.2019.01915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives: Liver cirrhosis (LC) is usually accompanied by cirrhosis associated immune dysfunction (CAID), including reduced naïve T cells and memory B cells. However, little is known regarding on follicular helper T (Tfh) cell compartments in cirrhotic patients, especially in the secondary lymphoid organs such as spleen. This study characterizes splenic Tfh cells and explores its association with humoral immunity and disease progression in cirrhotic patients. Methods: Using flow cytometry and histological staining, we analyzed the frequency and cytokine production of splenic Tfh cells from LC patients and healthy controls (HCs). Co-culture experiments of sorted Tfh and B cells were performed for functional analysis in vitro. The correlations between Tfh cells and disease progression markers as well as B cell subset perturbations were also examined. Results: PD-1highICOS+CXCR5+ Tfh cells were preferentially enriched in the spleen of cirrhotic patients, where they expressed higher levels of CXCR3 and produced more interleukin (IL)-21. Histologically, more splenic Tfh cells occupied the B cell follicular structure in LC patients where they shaped more active germinal centers (GCs) than those in HC spleens. In vitro, splenic Tfh cells in cirrhotic patients robustly induce plasma cell differentiation through IL-21 dependent manner. Finally, increased Tfh cell frequency is positively correlated with the plasma cells and disease severity in LC patients. Conclusions: We conclude that hyperactive Tfh cells contribute to dysregulated humoral immunity in patients with liver cirrhosis.
Collapse
Affiliation(s)
- Juanjuan Zhao
- The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.,Institute for Hepatology, Shenzhen Third People's Hospital, Shenzhen, China.,Research Center for Clinical & Translational Medicine, Fifth Medical Center for General Hospital of PLA, Beijing, China
| | - Jijing Shi
- The Central Laboratory, The First People's Hospital of Zhengzhou, Zhengzhou, China
| | - Mengmeng Qu
- Research Center for Clinical & Translational Medicine, Fifth Medical Center for General Hospital of PLA, Beijing, China
| | - Xin Zhao
- The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.,Department of Surgery, Fifth Medical Center for General Hospital of PLA, Beijing, China
| | - Hongbo Wang
- Department for Liver Transplantation, Fifth Medical Center for General Hospital of PLA, Beijing, China
| | - Man Huang
- The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.,Institute for Hepatology, Shenzhen Third People's Hospital, Shenzhen, China
| | - Zhenwen Liu
- Department for Liver Transplantation, Fifth Medical Center for General Hospital of PLA, Beijing, China
| | - Zhiwei Li
- The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.,Department for Liver Transplantation, Shenzhen Third People's Hospital, Shenzhen, China
| | - Qing He
- The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.,Institute for Hepatology, Shenzhen Third People's Hospital, Shenzhen, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zheng Zhang
- The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.,Institute for Hepatology, Shenzhen Third People's Hospital, Shenzhen, China.,Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China.,Key Laboratory of Immunology, School of Basic Medical Sciences, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Seth A, Craft J. Spatial and functional heterogeneity of follicular helper T cells in autoimmunity. Curr Opin Immunol 2019; 61:1-9. [PMID: 31374450 DOI: 10.1016/j.coi.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022]
Abstract
Follicular helper T cells provide signals that promote B cell development, proliferation, and production of affinity matured and appropriately isotype switched antibodies. In addition to their classical locations within B cell follicles and germinal centers therein, B cell helper T cells are also found in extrafollicular spaces - either in secondary lymphoid or non-lymphoid tissues. Both follicular and extrafollicular T helper cells drive autoantibody-mediated autoimmunity. Interfering with B cell help provided by T cells can ameliorate autoimmune disease in animal models and human patients. The next frontier in Tfh cell biology will be identification of Tfh cell-specific pathogenic changes in autoimmunity and exploiting them for therapeutic purposes.
Collapse
Affiliation(s)
- Abhinav Seth
- Department of Internal Medicine, Section of Rheumatology, New Haven, CT, United States
| | - Joe Craft
- Department of Internal Medicine, Section of Rheumatology, New Haven, CT, United States; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
24
|
Crotty S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity 2019; 50:1132-1148. [PMID: 31117010 PMCID: PMC6532429 DOI: 10.1016/j.immuni.2019.04.011] [Citation(s) in RCA: 926] [Impact Index Per Article: 185.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/16/2019] [Accepted: 04/25/2019] [Indexed: 01/09/2023]
Abstract
Helping B cells and antibody responses is a major function of CD4+ T cells. It has been 10 years since the publication of Bcl6 as the lineage-defining transcription factor for T follicular helper (Tfh) differentiation and the requirement of Tfh cells as the specialized subset of CD4+ T cells needed for germinal centers (the microanatomical sites of B cell mutation and antibody affinity maturation) and related B cell responses. A great deal has been learned about Tfh cells in the past 10 years, particularly regarding their roles in a surprising range of diseases. Advances in the understanding of Tfh cell differentiation and function are discussed, as are the understanding of Tfh cells in infectious diseases, vaccines, autoimmune diseases, allergies, atherosclerosis, organ transplants, and cancer. This includes discussion of Tfh cells in the human immune system. Based on the discoveries to date, the next decade of Tfh research surely holds many more surprises. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), Scripps Research, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Aranda SS, Polack FP. Prevention of Pediatric Respiratory Syncytial Virus Lower Respiratory Tract Illness: Perspectives for the Next Decade. Front Immunol 2019; 10:1006. [PMID: 31134078 PMCID: PMC6524688 DOI: 10.3389/fimmu.2019.01006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/18/2019] [Indexed: 12/30/2022] Open
Abstract
The landscape of infant bronchiolitis and viral pneumonia may be altered by preventive interventions against respiratory syncytial virus under evaluation today. Pediatric wards in 2018 in developing countries may differ from those attended by future generation pediatricians who may not witness the packed emergency rooms, lack of available beds, or emergency situations that all physicians caring for children with RSV experience every year. In this review, we describe and discuss different prevention strategies under evaluation to protect pediatric patients. Then, we outline a number of potential challenges, benefits, and concerns that may result from successful interventions after licensure.
Collapse
|
26
|
Fortea-Gordo P, Nuño L, Villalba A, Peiteado D, Monjo I, Sánchez-Mateos P, Puig-Kröger A, Balsa A, Miranda-Carús ME. Two populations of circulating PD-1hiCD4 T cells with distinct B cell helping capacity are elevated in early rheumatoid arthritis. Rheumatology (Oxford) 2019; 58:1662-1673. [DOI: 10.1093/rheumatology/kez169] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/02/2019] [Indexed: 12/24/2022] Open
Abstract
Abstract
Objective
A novel population of B helper cells, phenotypically CD4+CXCR5−PD-1hi, has been described in the synovial tissues and peripheral blood of seropositive RA patients, and termed ‘peripheral helper T’ (Tph) cells. Contrary to CD4+CXCR5+PD-1hi follicular helper T (Tfh), Tph cells are not located in lymphoid organs but accumulate in inflamed tissues. Our objective was to study the frequency of circulating Tph (cTph) and circulating Tfh cell counterparts (cTfh) in patients with early RA (eRA).
Methods
Freshly isolated peripheral blood mononuclear cells from 56 DMARD-naïve eRA patients and 56 healthy controls were examined by flow cytometry. Autologous cocultures of naïve or memory B cells were established with isolated peripheral blood Tph or Tfh cells.
Results
Seropositive (RF+ and/or ACPA+, n = 38) but not seronegative eRA patients (n = 18) demonstrated increased frequencies and absolute numbers of cTph and cTfh cells. cTph but not cTfh cells expressed CCR2. Those eRA patients who experienced a significant clinical improvement at 12 months demonstrated a marked decrease of their cTph cell numbers whereas their cTfh cell numbers remained unchanged. Both isolated Tph and isolated Tfh cells were able to induce maturation of memory B cells, whereas only Tfh cells could differentiate naïve B cells.
Conclusion
Two populations of PD-1hiCD4 T cells with distinct phenotype and B cell helping capacity are increased in the peripheral blood of seropositive eRA patients. Whereas cTph cells are present only in patients with an active disease, cTfh cells seem to be constitutively elevated.
Collapse
Affiliation(s)
| | - Laura Nuño
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz
| | | | - Diana Peiteado
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz
| | - Irene Monjo
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz
| | - Paloma Sánchez-Mateos
- Laboratorio de Inmuno-Oncología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Amaya Puig-Kröger
- Laboratorio de Inmuno-Oncología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alejandro Balsa
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz
| | | |
Collapse
|
27
|
Jares Baglivo S, Polack FP. The long road to protect infants against severe RSV lower respiratory tract illness. F1000Res 2019; 8. [PMID: 31105933 PMCID: PMC6498742 DOI: 10.12688/f1000research.18749.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
Severe respiratory syncytial virus (RSV) lower respiratory tract illness (LRTI) in infants has proven challenging to prevent. In the last 50 years, conceptually different approaches failed to evolve into viable preventive alternatives for routine use. Inactivated RSV vaccine (that is, formalin-inactivated RSV) elicited severe LRTI in RSV-infected toddlers pre-immunized as infants; early purified F protein approaches in pregnant women failed to elicit sufficient immunity more than a decade ago; a second-generation monoclonal antibody (mAb) of high potency against the virus (that is, motavizumab) caused severe adverse reactions in the skin, and owing to lack of efficacy against RSV subgroup B, an extended half-life mAb targeting site V in the RSV fusion protein (that is, REG2222) did not meet its primary endpoint. In the meantime, two protein F vaccines failed to prevent medically attended LRTI in the elderly. However, palivizumab and the recent results of the Novavax maternal immunization trial with ResVax demonstrate that severe RSV LRTI can be prevented by mAb and by maternal immunization (at least to a certain extent). In fact, disease prevention may also decrease the rates of recurrent wheezing and all-cause pneumonia for at least 180 days. In this review, we discuss the history of RSV vaccine development, previous and current vaccine strategies undergoing evaluation, and recent information about disease burden and its implications for the effects of successful preventive strategies.
Collapse
|
28
|
Akkaya M, Pierce SK. From zero to sixty and back to zero again: the metabolic life of B cells. Curr Opin Immunol 2019; 57:1-7. [PMID: 30312894 PMCID: PMC6456432 DOI: 10.1016/j.coi.2018.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022]
Abstract
Throughout their lifetimes B cells shift metabolic gears to move rapidly from quiescent states to full out proliferative expansion and back again. Here we discuss recent findings that shed light on how B cells rapidly shift gears to metabolically fuel expansion and then just as rapidly down shift during phases of receptor rearrangements to ensure genome stability. We also discuss the link between metabolic activity and fate decisions in B cells.
Collapse
Affiliation(s)
- Munir Akkaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
29
|
Hu XX, Wu YJ, Zhang J, Wei W. T-cells interact with B cells, dendritic cells, and fibroblast-like synoviocytes as hub-like key cells in rheumatoid arthritis. Int Immunopharmacol 2019; 70:428-434. [PMID: 30856393 DOI: 10.1016/j.intimp.2019.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory synovitis-based systemic disease characterized by invasive joint inflammation and synovial hyperplasia, which can lead to arthrentasis and defunctionalization. Previous research has shown that T cells, B cells, dendritic cells (DCs), and fibroblast-like synoviocytes (FLSs) play vital roles in the regulation of RA. Both T follicular helper (Tfh) cells and helper T (Th) 17 cells play immunomodulatory roles in RA. Moreover, interleukin-23 (IL-23), and IL-17 are vital to the pathogenesis of RA. T cells behave as a hub, in that B cells, DCs, and FLSs can interact with T cells to inhibit their activation and interfere with the process of RA. T cells cooperate with B cells, DCs, and FLSs to maintain the stability of the immune system under physiological conditions. However, under pathological conditions, the balance is disrupted, and the interaction of T cells with other cells may intensify disease progression. This review focuses on the interaction of T cells with B cells, DCs, and FLSs in different tissues and organs of RA patients and animal models, and highlight that the interplay between immune cells may underline the unique function of T cells and the application prospect of targeting T cell treatment for RA.
Collapse
Affiliation(s)
- Xiao-Xi Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yu-Jing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Jing Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|