1
|
McKaig CW, Malfetano J, Tran Y, Yang X, Pal U, Wycoff K, Lin YP. Complement therapeutic Factor H-IgG proteins as pre-exposure prophylaxes against Lyme borreliae infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615144. [PMID: 39386713 PMCID: PMC11463399 DOI: 10.1101/2024.09.26.615144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Lyme disease (LD) is the most common vector-borne disease in the northern hemisphere and is caused by the bacteria Borrelia burgdorferi sensu lato (also known as Lyme borreliae) with no effective prevention available. Lyme borreliae evade complement killing, a critical arm of host immune defense, by producing outer surface proteins that bind to a host complement inhibitor, factor H (FH). These outer surface proteins include CspA and CspZ, which bind to the 6th and 7th short consensus repeats of FH (SCR(6-7)), and the OspE family of proteins (OspE), which bind to the 19th and 20th SCR (SCR19-20). In this study, we produced two chimeric proteins, FH-Fc, containing the Fc region of immunoglobulin G (Fc) with SCR(6-7) or SCR(19-20). We found that both FH-Fc constructs killed B. burgdorferi in the presence of complement and reduced bacterial colonization and LD-associated joint inflammation in vivo. While SCR(6-7)-Fc displayed Lyme borreliae species-specific bacterial killing, SCR(19-20)-Fc versatilely eradicated all tested bacterial species/strains. This correlated with SCR(6-7)-Fc binding to select variants of CspA and CspZ, but SCR(19-20)-Fc binding to all tested OspE variants. Overall, we demonstrated the concept of using FH-Fc constructs to kill Lyme borreliae and defined underlying mechanisms, highlighting the potential of FH-Fc as a pre-exposure prophylaxis against LD infection.
Collapse
Affiliation(s)
- Connor W. McKaig
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Jill Malfetano
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | - Y Tran
- Planet Biotechnology, Inc., Hayward, CA, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | | | - Yi-Pin Lin
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| |
Collapse
|
2
|
Peterson SL, Krishnan A, Patel D, Khanehzar A, Lad A, Shaughnessy J, Ram S, Callanan D, Kunimoto D, Genead MA, Tolentino MJ. PolySialic Acid Nanoparticles Actuate Complement-Factor-H-Mediated Inhibition of the Alternative Complement Pathway: A Safer Potential Therapy for Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2024; 17:517. [PMID: 38675477 PMCID: PMC11053938 DOI: 10.3390/ph17040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The alternative pathway of the complement system is implicated in the etiology of age-related macular degeneration (AMD). Complement depletion with pegcetacoplan and avacincaptad pegol are FDA-approved treatments for geographic atrophy in AMD that, while effective, have clinically observed risks of choroidal neovascular (CNV) conversion, optic neuritis, and retinal vasculitis, leaving room for other equally efficacious but safer therapeutics, including Poly Sialic acid (PSA) nanoparticle (PolySia-NP)-actuated complement factor H (CFH) alternative pathway inhibition. Our previous paper demonstrated that PolySia-NP inhibits pro-inflammatory polarization and cytokine release. Here, we extend these findings by investigating the therapeutic potential of PolySia-NP to attenuate the alternative complement pathway. First, we show that PolySia-NP binds CFH and enhances affinity to C3b. Next, we demonstrate that PolySia-NP treatment of human serum suppresses alternative pathway hemolytic activity and C3b deposition. Further, we show that treating human macrophages with PolySia-NP is non-toxic and reduces markers of complement activity. Finally, we describe PolySia-NP-treatment-induced decreases in neovascularization and inflammatory response in a laser-induced CNV mouse model of neovascular AMD. In conclusion, PolySia-NP suppresses alternative pathway complement activity in human serum, human macrophage, and mouse CNV without increasing neovascularization.
Collapse
Affiliation(s)
- Sheri L. Peterson
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Anitha Krishnan
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Diyan Patel
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Ali Khanehzar
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Amit Lad
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (J.S.); (S.R.)
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (J.S.); (S.R.)
| | - David Callanan
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Derek Kunimoto
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Mohamed A. Genead
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Michael J. Tolentino
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
- Department of Ophthalmology, University of Central Florida School of Medicine, Orlando, FL 32827, USA
- Department of Ophthalmology, Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| |
Collapse
|
3
|
Menon SS, Ramirez-Toloza G, Wycoff KL, Ehinger S, Shaughnessy J, Ram S, Ferreira VP. Mechanisms by which Factor H protects Trypanosoma cruzi from the alternative pathway of complement. Front Immunol 2024; 15:1152000. [PMID: 38361922 PMCID: PMC10867245 DOI: 10.3389/fimmu.2024.1152000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Chagas disease, a chronic disabling disease caused by the protozoan Trypanosoma cruzi, has no standardized treatment or preventative vaccine. The infective trypomastigote form of T. cruzi is highly resistant to killing by the complement immune system. Factor H (FH), a negative regulator of the alternative pathway (AP) of complement on cell surfaces and in blood, contains 20 short consensus repeat domains. The four N-terminal domains of FH inactivate the AP, while the other domains interact with C3b/d and glycan markers on cell surfaces. Various pathogens bind FH to inactivate the AP. T. cruzi uses its trans-sialidase enzyme to transfer host sialic acids to its own surface, which could be one of the approaches it uses to bind FH. Previous studies have shown that FH binds to complement-opsonized T. cruzi and parasite desialylation increases complement-mediated lysis of trypomastigotes. However, the molecular basis of FH binding to T. cruzi remain unknown. Only trypomastigotes, but not epimastigotes (non-infective, complement susceptible) bound FH directly, independent of C3 deposition, in a dose-dependent manner. Domain mapping experiments using 3-5 FH domain fragments showed that domains 5-8 competitively inhibited FH binding to the trypomastigotes by ~35% but did not decrease survival in complement. FH-Fc or mutant FH-Fc fusion proteins (3-11 contiguous FH domains fused to the IgG Fc) also did not kill trypomastigotes. FH-related protein-5, whose domains bear significant sequence identity to all known polyanion-binding FH domains (6-7, 10-14, 19-20), fully inhibited FH binding to trypomastigotes and reduced trypomastigote survival to < 24% in the presence of serum. In conclusion, we have elucidated the role of FH in complement resistance of trypomastigotes.
Collapse
Affiliation(s)
- Smrithi S. Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Galia Ramirez-Toloza
- Laboratory of Parasitology, Department of Animal Preventive Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | | | - Sean Ehinger
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
4
|
Girgis MM, Christodoulides M. Vertebrate and Invertebrate Animal and New In Vitro Models for Studying Neisseria Biology. Pathogens 2023; 12:782. [PMID: 37375472 DOI: 10.3390/pathogens12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.
Collapse
Affiliation(s)
- Michael M Girgis
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
5
|
Inklaar MR, Barillas-Mury C, Jore MM. Deceiving and escaping complement - the evasive journey of the malaria parasite. Trends Parasitol 2022; 38:962-974. [PMID: 36089499 PMCID: PMC9588674 DOI: 10.1016/j.pt.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023]
Abstract
During its life cycle, Plasmodium, the malaria parasite, is exposed to the human and mosquito complement systems. Early experiments demonstrated that activation of complement can pose a serious threat to parasites, but recent studies revealed complement-evasion mechanisms important for parasite survival. Blood-stage parasites and gametes recruit regulators to neutralize human complement activation, while ookinetes inhibit mosquito complement by disrupting epithelial nitration in response to midgut invasion. Here we provide an in-depth overview of the evasion mechanisms currently known and speculate on the existence of others not yet identified. Finally, we discuss how these mechanisms could provide novel targets for urgently needed malaria vaccines and therapeutics.
Collapse
Affiliation(s)
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboudumc, The Netherlands.
| |
Collapse
|
6
|
Shaughnessy J, Chabeda A, Tran Y, Zheng B, Nowak N, Steffens C, DeOliveira RB, Gulati S, Lewis LA, Maclean J, Moss JA, Wycoff KL, Ram S. An optimized Factor H-Fc fusion protein against multidrug-resistant Neisseria gonorrhoeae. Front Immunol 2022; 13:975676. [PMID: 36110842 PMCID: PMC9468773 DOI: 10.3389/fimmu.2022.975676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Novel therapeutics against the global threat of multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococci evade killing by complement by binding factor H (FH), a key inhibitor of the alternative pathway. FH comprises 20 short consensus repeat (SCR) domains organized as a single chain. Gonococci bind FH through domains 6 and 7, and C-terminal domains 18 through 20. Previously, we showed that a chimeric protein comprising (from the N- to C-terminus) FH domains 18-20 (containing a point mutation in domain 19 to prevent lysis of host cells) fused to human IgG1 Fc (called FH*/Fc1) killed gonococci in a complement-dependent manner and reduced the duration and bacterial burden in the mouse vaginal colonization model of gonorrhea. Considering the N. gonorrhoeae-binding FH domains 18-20 are C-terminal in native FH, we reasoned that positioning Fc N-terminal to FH* (Fc1/FH*) would improve binding and bactericidal activity. Although both molecules bound gonococci similarly, Fc1/FH* displayed a 5-fold lower IC50 (the concentration required for 50% killing in complement-dependent bactericidal assays) than FH*/Fc1. To further increase complement activation, we replaced human IgG1 Fc in Fc1/FH* with Fc from human IgG3, the most potent complement-activating IgG subclass, to obtain Fc3/FH*. Bactericidal activity was further increased ~2.3-fold in Fc3/FH* compared to Fc1/FH*. Fc3/FH* killed (defined by <50% survival) 45/45 (100%) diverse PorB1B-expessing gonococci, but only 2/15 PorB1A-expressing isolates, in a complement-dependent manner. Decreased Fc3/FH* binding accounted for the limited activity against PorB1A strains. Fc3/FH* was efficacious against all four tested PorB1B gonococcal strains in the mouse vaginal colonization model when administered at a dose of 5 µg intravaginally, daily. Furthermore, Fc3/FH* retained bactericidal activity when reconstituted following lyophilization or spray-drying, suggesting feasibility for formulation into intravaginal rings. In conclusion, Fc3/FH* represents a promising prophylactic immunotherapeutic against multidrug-resistant gonococci.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Y. Tran
- Planet Biotechnology, Inc., Hayward, CA, United States
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Nancy Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Carolynn Steffens
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Rosane B. DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Lisa A. Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - James Maclean
- Planet Biotechnology, Inc., Hayward, CA, United States
| | - John A. Moss
- Oak Crest Institute of Science, Monrovia, CA, United States
| | | | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
7
|
Schulz K, Trendelenburg M. C1q as a target molecule to treat human disease: What do mouse studies teach us? Front Immunol 2022; 13:958273. [PMID: 35990646 PMCID: PMC9385197 DOI: 10.3389/fimmu.2022.958273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
The complement system is a field of growing interest for pharmacological intervention. Complement protein C1q, the pattern recognition molecule at the start of the classical pathway of the complement cascade, is a versatile molecule with additional non-canonical actions affecting numerous cellular processes. Based on observations made in patients with hereditary C1q deficiency, C1q is protective against systemic autoimmunity and bacterial infections. Accordingly, C1q deficient mice reproduce this phenotype with susceptibility to autoimmunity and infections. At the same time, beneficial effects of C1q deficiency on disease entities such as neurodegenerative diseases have also been described in murine disease models. This systematic review provides an overview of all currently available literature on the C1q knockout mouse in disease models to identify potential target diseases for treatment strategies focusing on C1q, and discusses potential side-effects when depleting and/or inhibiting C1q.
Collapse
Affiliation(s)
- Kristina Schulz
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- *Correspondence: Kristina Schulz,
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
8
|
Bettoni S, Maziarz K, Stone MRL, Blaskovich MAT, Potempa J, Bazzo ML, Unemo M, Ram S, Blom AM. Serum Complement Activation by C4BP-IgM Fusion Protein Can Restore Susceptibility to Antibiotics in Neisseria gonorrhoeae. Front Immunol 2021; 12:726801. [PMID: 34539665 PMCID: PMC8440848 DOI: 10.3389/fimmu.2021.726801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Neisseria gonorrhoeae is the etiological agent of gonorrhea, the second most common bacterial sexually transmitted infection worldwide. Reproductive sequelae of gonorrhea include infertility, ectopic pregnancy and chronic pelvic pain. Most antibiotics currently in clinical use have been rendered ineffective due to the rapid spread of antimicrobial resistance among gonococci. The developmental pipeline of new antibiotics is sparse and novel therapeutic approaches are urgently needed. Previously, we utilized the ability of N. gonorrhoeae to bind the complement inhibitor C4b-binding protein (C4BP) to evade killing by human complement to design a chimeric protein that linked the two N-terminal gonococcal binding domains of C4BP with the Fc domain of IgM. The resulting molecule, C4BP-IgM, enhanced complement-mediated killing of gonococci. Here we show that C4BP-IgM induced membrane perturbation through complement deposition and membrane attack complex pore insertion facilitates the access of antibiotics to their intracellular targets. Consequently, bacteria become more susceptible to killing by antibiotics. Remarkably, C4BP-IgM restored susceptibility to azithromycin of two azithromycin-resistant clinical gonococcal strains because of overexpression of the MtrC-MtrD-MtrE efflux pump. Our data show that complement activation can potentiate activity of antibiotics and suggest a role for C4BP-IgM as an adjuvant for antibiotic treatment of drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Serena Bettoni
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karolina Maziarz
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Maria Luiza Bazzo
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Magnus Unemo
- World Health Organization (WHO) Collaborating Centre for Gonorrhoea and other STIs, Department of Laboratory Medicine, Örebro University, Örebro, Sweden
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anna M. Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
9
|
Connolly KL, Pilligua-Lucas M, Gomez C, Costenoble-Caherty AC, Soc A, Underwood K, Macintyre AN, Sempowski GD, Jerse AE. Preclinical Testing of Vaccines and Therapeutics for Gonorrhea in Female Mouse Models of Lower and Upper Reproductive Tract Infection. J Infect Dis 2021; 224:S152-S160. [PMID: 34396408 DOI: 10.1093/infdis/jiab211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Murine models of Neisseria gonorrhoeae lower reproductive tract infection are valuable systems for studying N. gonorrhoeae adaptation to the female host and immune responses to infection. These models have also accelerated preclinical testing of candidate therapeutic and prophylactic products against gonorrhea. However, because N. gonorrhoeae infection is restricted to the murine cervicovaginal region, there is a need for an in vivo system for translational work on N. gonorrhoeae pelvic inflammatory disease (PID). Here we discuss the need for well-characterized preclinical upper reproductive tract infection models for developing candidate products against N. gonorrhoeae PID, and report a refinement of the gonorrhea mouse model that supports sustained upper reproductive tract infection. To establish this new model for vaccine testing, we also tested the licensed meningococcal 4CMenB vaccine, which cross-protects against murine N. gonorrhoeae lower reproductive tract infection, for efficacy against N. gonorrhoeae in the endometrium and oviducts following transcervical or vaginal challenge.
Collapse
Affiliation(s)
- Kristie L Connolly
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Michelle Pilligua-Lucas
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Carolina Gomez
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | | | - Anthony Soc
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Knashka Underwood
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Andrew N Macintyre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Lin EY, Adamson PC, Klausner JD. Epidemiology, Treatments, and Vaccine Development for Antimicrobial-Resistant Neisseria gonorrhoeae: Current Strategies and Future Directions. Drugs 2021; 81:1153-1169. [PMID: 34097283 PMCID: PMC8182353 DOI: 10.1007/s40265-021-01530-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Neisseria gonorrhoeae is the second most common bacterial sexually transmitted infection in the world after Chlamydia trachomatis. The pathogen has developed resistance to every antibiotic currently approved for treatment, and multidrug-resistant strains have been identified globally. The current treatment recommended by the World Health Organization is ceftriaxone and azithromycin dual therapy. However, resistance to azithromycin and ceftriaxone are increasing and treatment failures have been reported. As a result, there is a critical need to develop novel strategies for mitigating the spread of antimicrobial-resistant N. gonorrhoeae through improved diagnosis and treatment of resistant infections. Strategies that are currently being pursued include developing molecular assays to predict resistance, utilizing higher doses of ceftriaxone, repurposing older antibiotics, and developing newer agents. In addition, efforts to discover a vaccine for N. gonorrhoeae have been reignited in recent years with the cross-protectivity provided by the N. meningitidis vaccine, with several new strategies and targets. Despite the significant progress that has been made, there is still much work ahead to combat antimicrobial-resistant N. gonorrhoeae globally.
Collapse
Affiliation(s)
- Eric Y Lin
- David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Paul C Adamson
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave. CHS 52-215, Los Angeles, CA 90095 USA
| | - Jeffrey D. Klausner
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA USA
| |
Collapse
|
11
|
Shaughnessy J, Tran Y, Zheng B, DeOliveira RB, Gulati S, Song WC, Maclean JM, Wycoff KL, Ram S. Development of Complement Factor H-Based Immunotherapeutic Molecules in Tobacco Plants Against Multidrug-Resistant Neisseria gonorrhoeae. Front Immunol 2020; 11:583305. [PMID: 33193396 PMCID: PMC7649208 DOI: 10.3389/fimmu.2020.583305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/24/2020] [Indexed: 01/15/2023] Open
Abstract
Novel therapeutics against the global threat of multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococci possess several mechanisms to evade killing by human complement, including binding of factor H (FH), a key inhibitor of the alternative pathway. FH comprises 20 short consensus repeat (SCR) domains organized in a head-to-tail manner as a single chain. N. gonorrhoeae binds two regions in FH; domains 6 and 7 and domains 18 through 20. We designed a novel anti-infective immunotherapeutic molecule that fuses domains 18-20 of FH containing a D-to-G mutation in domain 19 at position 1119 (called FH*) with human IgG1 Fc. FH*/Fc retained binding to gonococci but did not lyse human erythrocytes. Expression of FH*/Fc in tobacco plants was undertaken as an alternative, economical production platform. FH*/Fc was expressed in high yields in tobacco plants (300-600 mg/kg biomass). The activities of plant- and CHO-cell produced FH*/Fc against gonococci were similar in vitro and in the mouse vaginal colonization model of gonorrhea. The addition of flexible linkers [e.g., (GGGGS)2 or (GGGGS)3] between FH* and Fc improved the bactericidal efficacy of FH*/Fc 2.7-fold. The linkers also improved PMN-mediated opsonophagocytosis about 11-fold. FH*/Fc with linker also effectively reduced the duration and burden of colonization of two gonococcal strains tested in mice. FH*/Fc lost efficacy: i) in C6-/- mice (no terminal complement) and ii) when Fc was mutated to abrogate complement activation, suggesting that an intact complement was necessary for FH*/Fc function in vivo. In summary, plant-produced FH*/Fc represent promising prophylactic or adjunctive immunotherapeutics against multidrug-resistant gonococci.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Y Tran
- Planet Biotechnology, Inc., Hayward, CA, United States
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Rosane B. DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | | | | | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
12
|
Laabei M, Colineau L, Bettoni S, Maziarz K, Ermert D, Riesbeck K, Ram S, Blom AM. Antibacterial Fusion Proteins Enhance Moraxella catarrhalis Killing. Front Immunol 2020; 11:2122. [PMID: 32983170 PMCID: PMC7492680 DOI: 10.3389/fimmu.2020.02122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/05/2020] [Indexed: 01/10/2023] Open
Abstract
Moraxella catarrhalis is a human-specific commensal of the respiratory tract and an opportunistic pathogen. It is one of the leading cause of otitis media in children and of acute exacerbations in patients with chronic obstructive pulmonary disease, resulting in significant morbidity and economic burden. Vaccines and new immunotherapeutic strategies to treat this emerging pathogen are needed. Complement is a key component of innate immunity that mediates the detection, response, and subsequent elimination of invading pathogens. Many pathogens including M. catarrhalis have evolved complement evasion mechanisms, which include the binding of human complement inhibitors such as C4b-binding protein (C4BP) and Factor H (FH). Inhibiting C4BP and FH acquisition by M. catarrhalis may provide a novel therapeutic avenue to treat infections. To achieve this, we created two chimeric proteins that combined the Moraxella-binding domains of C4BP and FH fused to human immunoglobulin Fcs: C4BP domains 1 and 2 and FH domains 6 and 7 fused to IgM and IgG Fc, respectively. As expected, FH6-7/IgG displaced FH from the bacterial surface while simultaneously activating complement via Fc-C1q interactions, together increasing pathogen elimination. C4BP1-2/IgM also increased serum killing of the bacteria through enhanced complement deposition, but did not displace C4BP from the surface of M. catarrhalis. These Fc fusion proteins could act as anti-infective immunotherapies. Many microbes bind the complement inhibitors C4BP and FH through the same domains as M. catarrhalis, therefore these Fc fusion proteins may be promising candidates as adjunctive therapy against many different drug-resistant pathogens.
Collapse
Affiliation(s)
- Maisem Laabei
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.,Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Lucie Colineau
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Serena Bettoni
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Karolina Maziarz
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - David Ermert
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
13
|
Semchenko EA, Day CJ, Seib KL. The Neisseria gonorrhoeae Vaccine Candidate NHBA Elicits Antibodies That Are Bactericidal, Opsonophagocytic and That Reduce Gonococcal Adherence to Epithelial Cells. Vaccines (Basel) 2020; 8:E219. [PMID: 32414194 PMCID: PMC7349534 DOI: 10.3390/vaccines8020219] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 11/17/2022] Open
Abstract
Due to the continuing emergence of multidrug resistant strains of Neisseria gonorrhoeae there is an urgent need for the development of a gonococcal vaccine. We evaluated the gonococcal Neisseria heparin binding antigen (NHBA) as a potential vaccine candidate, in terms of its sequence conservation and expression in a range of N. gonorrhoeae strains, as well as its immunogenicity and the functional activity of antibodies raised to either the full length NHBA or a C-terminal fragment of NHBA (NHBA-c). The gene encoding NHBA is highly conserved and expressed in all N. gonorrhoeae strains investigated. Recombinant NHBA is immunogenic, and mice immunized with either NHBA or NHBA-c adjuvanted with either Freund's or aluminium hydroxide (alum) generated a humoral immune response, with predominantly IgG1 antibodies. Antibodies generated by both NHBA and NHBA-c antigens promoted complement activation and mediated bacterial killing via both serum bactericidal activity and opsonophagocytic activity, with slightly higher titers seen for the NHBA-c antigen. Anti-NHBA was also able to block the functional activity of NHBA by reducing binding to heparin and adherence to cervical and urethral epithelial cells. These data suggest that the gonococcal NHBA is a promising vaccine antigen to include in a vaccine to control N. gonorrhoeae.
Collapse
Affiliation(s)
| | | | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast 4215, Australia; (E.A.S.); (C.J.D.)
| |
Collapse
|
14
|
Lewis LA, Ram S. Complement interactions with the pathogenic Neisseriae: clinical features, deficiency states, and evasion mechanisms. FEBS Lett 2020; 594:2670-2694. [PMID: 32058583 DOI: 10.1002/1873-3468.13760] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, while Neisseria meningitidis is an important cause of bacterial meningitis and sepsis. Complement is a central arm of innate immune defenses and plays an important role in combating Neisserial infections. Persons with congenital and acquired defects in complement are at a significantly higher risk for invasive Neisserial infections such as invasive meningococcal disease and disseminated gonococcal infection compared to the general population. Of note, Neisseria gonorrhoeae and Neisseria meningitidis can only infect humans, which in part may be related to their ability to evade only human complement. This review summarizes the epidemiologic and clinical aspects of Neisserial infections in persons with defects in the complement system. Mechanisms used by these pathogens to subvert killing by complement and preclinical studies showing how these complement evasion strategies may be used to counteract the global threat of meningococcal and gonococcal infections are discussed.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
15
|
Bettoni S, Shaughnessy J, Maziarz K, Ermert D, Gulati S, Zheng B, Mörgelin M, Jacobsson S, Riesbeck K, Unemo M, Ram S, Blom AM. C4BP-IgM protein as a therapeutic approach to treat Neisseria gonorrhoeae infections. JCI Insight 2019; 4:131886. [PMID: 31661468 PMCID: PMC6962029 DOI: 10.1172/jci.insight.131886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Gonorrhea is a sexually transmitted infection with 87 million new cases per year globally. Increasing antibiotic resistance has severely limited treatment options. A mechanism that Neisseria gonorrhoeae uses to evade complement attack is binding of the complement inhibitor C4b-binding protein (C4BP). We screened 107 porin B1a (PorB1a) and 83 PorB1b clinical isolates randomly selected from a Swedish strain collection over the last 10 years and noted that 96/107 (89.7%) PorB1a and 16/83 (19.3%) PorB1b bound C4BP; C4BP binding substantially correlated with the ability to evade complement-dependent killing (r = 0.78). We designed 2 chimeric proteins that fused C4BP domains to the backbone of IgG or IgM (C4BP-IgG; C4BP-IgM) with the aim of enhancing complement activation and killing of gonococci. Both proteins bound gonococci (KD C4BP-IgM = 2.4 nM; KD C4BP-IgG 980.7 nM), but only hexameric C4BP-IgM efficiently outcompeted heptameric C4BP from the bacterial surface, resulting in enhanced complement deposition and bacterial killing. Furthermore, C4BP-IgM substantially attenuated the duration and burden of colonization of 2 C4BP-binding gonococcal isolates but not a non-C4BP-binding strain in a mouse vaginal colonization model using human factor H/C4BP-transgenic mice. Our preclinical data present C4BP-IgM as an adjunct to conventional antimicrobials for the treatment of gonorrhea.
Collapse
Affiliation(s)
- Serena Bettoni
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jutamas Shaughnessy
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karolina Maziarz
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - David Ermert
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Sunita Gulati
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bo Zheng
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Susanne Jacobsson
- World Health Organization (WHO) Collaborating Centre for Gonorrhoea and other STIs, Department of Laboratory Medicine, Örebro University, Örebro, Sweden
| | - Kristian Riesbeck
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Magnus Unemo
- World Health Organization (WHO) Collaborating Centre for Gonorrhoea and other STIs, Department of Laboratory Medicine, Örebro University, Örebro, Sweden
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna M. Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
16
|
Shen X, Wang L, Xu C, Yang J, Peng R, Hu X, Wang F, Zheng H, Lao X. Fusion of thymosin alpha 1 with mutant IgG1 CH3 prolongs half-life and enhances antitumor effects in vivo. Int Immunopharmacol 2019; 74:105662. [PMID: 31220695 DOI: 10.1016/j.intimp.2019.05.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
Thymosin alpha 1 (Tα1) is an immunomodulatory polypeptide secreted from the thymus. Tα1 has a wide range of biological functions, such as immunomodulation and endocrine regulation. Tα1 also displays antiviral and antitumor activities. Tα1 has been successfully used in clinical adjuvant therapy for solid tumors to improve the immune response of patients undergoing chemotherapy and radiotherapy. However, the half-life of Tα1 in the body is short, so frequent administration is required to maintain efficacy. In order to improve the pharmacokinetic profile of Tα1, we linked the mutated CH3 (mCH3) fragment of IgG1 (human) to the C-terminus of Tα1 to produce a long-acting fusion protein, Tα1-mCH3. The half-life of Tα1-mCH3 (47 h) was substantially increased compared with that of the parent molecule Tα1 (3 h). In vivo studies indicated that mCH3 fusion retained the original biological activity of Tα1, and Tα1-mCH3 showed slightly better immunomodulatory effect than Ta1. In the 4 T1 and B16F10 tumor xenograft models, Tα1-mCH3 induced a greater abundance of CD4+ and CD8+ T-cells in tumor tissues compared with Ta1. Tα1-mCH3 exhibited better effect in promoting the production of IL-2 and IFN-γ compared with Tα1. Therefore, Tα1-mCH3 more efficiently inhibited the growth of 4 T1 and B16F10 tumors than Tα1. In conclusion, fusion with mCH3 is an attractive strategy to lengthen the half-life and increase the activity of Tα1.
Collapse
Affiliation(s)
- Xutong Shen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Liping Wang
- Department of Clinical Oncology, the First City Hospital of Chenzhou, Hunan 423000, PR China
| | - Caoying Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jiahui Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Renhao Peng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xinyi Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fanwen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
17
|
Role of Gonococcal Neisserial Surface Protein A (NspA) in Serum Resistance and Comparison of Its Factor H Binding Properties with Those of Its Meningococcal Counterpart. Infect Immun 2019; 87:IAI.00658-18. [PMID: 30510105 DOI: 10.1128/iai.00658-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/25/2018] [Indexed: 01/15/2023] Open
Abstract
Neisseria gonorrhoeae, the causative agent of gonorrhea, has evolved several mechanisms to subvert complement, including binding of the complement inhibitor factor H (FH). We previously reported FH binding to N. gonorrhoeae independently of lipooligosaccharide (LOS) sialylation. Here we report that factor H-like protein 1 (FHL-1), which contains FH domains 1 through 7 and possesses complement-inhibitory activity, also binds to N. gonorrhoeae The ligand for both FH and FHL-1 was identified as neisserial surface protein A (NspA), which has previously been identified as a ligand for these molecules on Neisseria meningitidis As with N. meningitidis NspA (Nm-NspA), N. gonorrhoeae NspA (Ng-NspA) bound FH/FHL-1 through FH domains 6 and 7. Binding of FH/FHL-1 to NspA was human specific; the histidine (H) at position 337 of domain 6 contributed to human-specific FH binding to both Ng- and Nm-NspA. FH/FHL-1 bound Nm-NspA better than Ng-NspA; introducing Q at position 73 (loop 2, present in Ng-NspA) or replacing V and D at positions 112 and 113 in Nm-NspA loop 3 with A and H (Ng-NspA), respectively, reduced FH/FHL-1 binding. The converse Ng-NspA to Nm-NspA mutations increased FH/FHL-1 binding. Binding of FH/FHL-1 through domains 6 and 7 to N. gonorrhoeae increased with truncation of the heptose I (HepI) chain of LOS and decreased with LOS sialylation. Loss of NspA significantly decreased serum resistance of N. gonorrhoeae with either wild-type or truncated LOS. This report highlights the role for NspA in enabling N. gonorrhoeae to subvert complement despite LOS phase variation. Knowledge of FH-NspA interactions will inform the design of vaccines and immunotherapies against the global threat of multidrug-resistant gonorrhea.
Collapse
|
18
|
Kenno S, Speth C, Rambach G, Binder U, Chatterjee S, Caramalho R, Haas H, Lass-Flörl C, Shaughnessy J, Ram S, Gow NAR, Orth-Höller D, Würzner R. Candida albicans Factor H Binding Molecule Hgt1p - A Low Glucose-Induced Transmembrane Protein Is Trafficked to the Cell Wall and Impairs Phagocytosis and Killing by Human Neutrophils. Front Microbiol 2019; 9:3319. [PMID: 30697200 PMCID: PMC6340940 DOI: 10.3389/fmicb.2018.03319] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022] Open
Abstract
Complement is a tightly controlled arm of the innate immune system, facilitating phagocytosis and killing of invading pathogens. Factor H (FH) is the main fluid-phase inhibitor of the alternative pathway. Many pathogens can hijack FH from the host and protect themselves from complement-dependent killing. Candida albicans is a clinically important opportunistic yeast, expressing different FH binding molecules on its cell surface, which allow complement evasion. One such FH binding molecule is the transmembrane protein "High affinity glucose transporter 1" (Hgt1p), involved in glucose metabolism. This study demonstrated that Hgt1p transcription and expression is induced and highest at the low, but physiological glucose concentration of 0.1%. Thus, this concentration was used throughout the study. We also demonstrated the transport of Hgt1p to the fungal cell wall surface by vesicle trafficking and its release by exosomes containing Hgt1p integrated in the vesicular membrane. We corroborated Hgt1p as FH binding molecule. A polyclonal anti-Hgt1p antibody was created which interfered with the binding of FH, present in normal human serum to the fungal cell wall. A chimeric molecule consisting of FH domains 6 and 7 fused to human IgG1 Fc (FH6.7/Fc) even more comprehensively blocked FH binding, likely because FH6.7/Fc diverted FH away from fungal FH ligands other than Hgt1p. Reduced FH binding to the yeast was associated with a concomitant increase in C3b/iC3b deposition and resulted in significantly increased in vitro phagocytosis and killing by human neutrophils. In conclusion, Hgt1p also exhibits non-canonical functions such as binding FH after its export to the cell wall. Blocking Hgt1p-FH interactions may represent a tool to enhance complement activation on the fungal surface to promote phagocytosis and killing of C. albicans.
Collapse
Affiliation(s)
- Samyr Kenno
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulrike Binder
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sneha Chatterjee
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rita Caramalho
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubertus Haas
- Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Neil A R Gow
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Dorothea Orth-Höller
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|