1
|
Loh L, Saunders PM, Faoro C, Font-Porterias N, Nemat-Gorgani N, Harrison GF, Sadeeq S, Hensen L, Wong SC, Widjaja J, Clemens EB, Zhu S, Kichula KM, Tao S, Zhu F, Montero-Martin G, Fernandez-Vina M, Guethlein LA, Vivian JP, Davies J, Mentzer AJ, Oppenheimer SJ, Pomat W, Ioannidis AG, Barberena-Jonas C, Moreno-Estrada A, Miller A, Parham P, Rossjohn J, Tong SYC, Kedzierska K, Brooks AG, Norman PJ. An archaic HLA class I receptor allele diversifies natural killer cell-driven immunity in First Nations peoples of Oceania. Cell 2024; 187:7008-7024.e19. [PMID: 39476840 PMCID: PMC11606752 DOI: 10.1016/j.cell.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 05/24/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Genetic variation in host immunity impacts the disproportionate burden of infectious diseases that can be experienced by First Nations peoples. Polymorphic human leukocyte antigen (HLA) class I and killer cell immunoglobulin-like receptors (KIRs) are key regulators of natural killer (NK) cells, which mediate early infection control. How this variation impacts their responses across populations is unclear. We show that HLA-A∗24:02 became the dominant ligand for inhibitory KIR3DL1 in First Nations peoples across Oceania, through positive natural selection. We identify KIR3DL1∗114, widespread across and unique to Oceania, as an allele lineage derived from archaic humans. KIR3DL1∗114+NK cells from First Nations Australian donors are inhibited through binding HLA-A∗24:02. The KIR3DL1∗114 lineage is defined by phenylalanine at residue 166. Structural and binding studies show phenylalanine 166 forms multiple unique contacts with HLA-peptide complexes, increasing both affinity and specificity. Accordingly, assessing immunogenetic variation and the functional implications for immunity are fundamental toward understanding population-based disease associations.
Collapse
Affiliation(s)
- Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Philippa M Saunders
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Camilla Faoro
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Neus Font-Porterias
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Neda Nemat-Gorgani
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Genelle F Harrison
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Suraju Sadeeq
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Shu Cheng Wong
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jacqueline Widjaja
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Shiying Zhu
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Katherine M Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sudan Tao
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Blood Center of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Gonzalo Montero-Martin
- Stanford Blood Centre, Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Marcelo Fernandez-Vina
- Stanford Blood Centre, Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Julian P Vivian
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jane Davies
- Menzies School of Health Research, Charles Darwin University, Darwin, NT 0810, Australia; Department of Infectious Diseases, Royal Darwin Hospital, Casuarina, NT 0810, Australia
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Stephen J Oppenheimer
- Institute of Social and Cultural Anthropology, School of Anthropology and Museum Ethnography, University of Oxford, Oxford OX3 7LF, UK
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Post Office Box 60, Goroka, Papua New Guinea
| | | | - Carmina Barberena-Jonas
- Advanced Genomics Unit, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36821, Mexico
| | - Andrés Moreno-Estrada
- Advanced Genomics Unit, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36821, Mexico
| | - Adrian Miller
- Jawun Research Centre, Central Queensland University, Cairns, QLD 4870, Australia
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Steven Y C Tong
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia; Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Paul J Norman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Wright PA, van de Pasch LAL, Dignan FL, Kichula KM, Pollock NR, Norman PJ, Marchan E, Hill L, Vandelbosch S, Fullwood C, Sheldon S, Hampson L, Tholouli E, Poulton KV. Donor KIR2DL1 Allelic Polymorphism Influences Posthematopoietic Progenitor Cell Transplantation Outcomes in the T Cell Depleted and Reduced Intensity Conditioning Setting. Transplant Cell Ther 2024; 30:488.e1-488.e15. [PMID: 38369017 PMCID: PMC11056303 DOI: 10.1016/j.jtct.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The majority of established KIR clinical assessment algorithms used for donor selection for hematopoietic progenitor cell transplantation (HPCT) evaluate gene content (presence/absence) of the KIR gene complex. In comparison, relatively little is known about the impact of KIR allelic polymorphism. By analyzing donors of T cell depleted (TcD) reduced intensity conditioning (RIC) HPCT, this study investigated the influence on post-transplant outcome of 2 polymorphic residues of the inhibitory KIR2DL1. The aim of this study was to expand upon existing research into the influence of KIR2DL1 allelic polymorphism upon post-transplant outcome. The effects of allele groups upon transplant outcomes were investigated within a patient cohort using a defined treatment protocol of RIC with TcD. Using phylogenetic data, KIR2DL1 allelic polymorphism was categorized into groups on the basis of variation within codons 114 and 245 (positive or negative for the following groups: KIR2DL1*002/001g, KIR2DL1*003, KIR2DL1*004g) and the identification of null alleles. The influence of these KIR2DL1 allele groups in hematopoietic progenitor cell transplantation (HPCT) donors was assessed in the post-transplant data of 86 acute myelogenous leukemia patients receiving RIC TcD HPCT at a single center. KIR2DL1 allele groups in the donor significantly impacted upon 5-year post-transplant outcomes in RIC TcD HPCT. Donor KIR2DL1*003 presented the greatest influence upon post-transplant outcomes, with KIR2DL1*003 positive donors severely reducing 5-year post-transplant overall survival (OS) compared to those receiving a transplant from a KIR2DL1*003 negative donor (KIR2DL1*003 pos versus neg: 27.0% versus 60.0%, P = .008, pc = 0.024) and disease-free survival (DFS) (KIR2DL1*003 pos versus neg: 23.5% versus 60.0%, P = .004, pc = 0.012), and increasing 5-year relapse incidence (KIR2DL1*003 pos versus neg: 63.9% versus 27.2%, P = .009, pc = 0.027). KIR2DL1*003 homozygous and KIR2DL1*003 heterozygous grafts did not present significantly different post-transplant outcomes. Donors possessing the KIR2DL1*002/001 allele group were found to significantly improve post-transplant outcomes, with donors positive for the KIR2DL1*004 allele group presenting a trend towards improvement. KIR2DL1*002/001 allele group (KIR2DL1*002/001g) positive donors improved 5-year OS (KIR2DL1*002/001g pos versus neg: 56.4% versus 27.2%, P = .009, pc = 0.024) and DFS (KIR2DL1*002/001g pos versus neg: 53.8% versus 25.5%, P = .018, pc = 0.036). KIR2DL1*004 allele group (KIR2DL1*004g) positive donors trended towards improving 5-year OS (KIR2DL1*004g pos versus neg: 53.3% versus 35.5%, P = .097, pc = 0.097) and DFS (KIR2DL1*004g pos versus neg: 50.0% versus 33.9%, P = .121, pc = 0.121), and reducing relapse incidence (KIR2DL1*004g pos versus neg: 33.1% versus 54.0%, P = .079, pc = 0.152). The presented findings suggest donor selection algorithms for TcD RIC HPCT should consider avoiding KIR2DL1*003 positive donors, where possible, and contributes to the mounting evidence that KIR assessment in donor selection algorithms should reflect the conditioning regime protocol used.
Collapse
Affiliation(s)
- Paul A Wright
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK; Histocompatibility & Immunogenetics Laboratory, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, Merseyside, UK.
| | | | - Fiona L Dignan
- Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Katherine M Kichula
- Department of Biomedical Informatics, Anschutz Medical Campus, University of Colorado, Denver, Colorado
| | - Nicholas R Pollock
- Department of Biomedical Informatics, Anschutz Medical Campus, University of Colorado, Denver, Colorado
| | - Paul J Norman
- Department of Biomedical Informatics and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Denver, Colorado
| | - Earl Marchan
- Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Lesley Hill
- Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | | | - Catherine Fullwood
- Division of Population Health, Health Services Research & Primary Care, University of Manchester, Manchester, Greater Manchester, UK
| | - Stephen Sheldon
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Lynne Hampson
- Division of Cancer Sciences, University of Manchester, Manchester, Greater Manchester, UK
| | - Eleni Tholouli
- Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Kay V Poulton
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK; Faculty of Biology, Medicine & Health, University of Manchester, Manchester, Greater Manchester, UK
| |
Collapse
|
3
|
Choi EJ, Baek IC, Park S, Kim HJ, Kim TG. Development of cost-effective and fast KIR genotyping by multiplex PCR-SSP. HLA 2024; 103:e15191. [PMID: 37688498 DOI: 10.1111/tan.15191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 09/11/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIR) control natural killer (NK) cell functions by recognizing HLA molecules and modulating the activity of NK cells. The KIR gene cluster contains polymorphic and highly homologous genes. Diversity of the KIR region is achieved through differences in gene content, allelic polymorphism, and gene copy number, which result in unrelated individuals having different KIR genotypes and individualized immune responses that are relevant to multiple aspects of human health and disease. Therefore, KIR genotyping is increasingly used in epidemiological studies. Here, we developed multiplex polymerase chain reaction with sequence-specific primers (PCR-SSP) to compensate for the shortcomings of the conventional PCR-SSP method, which is most commonly used for KIR analysis. Multiplex PCR-SSP method involves six multiplex reactions that detect 16 KIR genes and distinguish variant types of some KIR genes by adding two reactions. The assay was evaluated in a blind survey using a panel of 40 reference DNA standards from the UCLA KIR Exchange Program. The results are 100% concordant with the genotype determined using Luminex-based reverse sequence-specific oligonucleotide typing systems. Additionally, we investigated the currently known 16 KIR genes and their common variants in 120 unrelated Korean individuals. The results were consistent with the KIR genotype previously reported by Hwang et al. This multiplex PCR-SSP is an efficient method for analyzing KIR genotypes in both small- and large-scale studies with minimal labor, reagents, and DNA. Furthermore, by providing a better definition of KIR polymorphisms it can contribute to developments in immunogenetics.
Collapse
Affiliation(s)
- Eun-Jeong Choi
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In-Cheol Baek
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Silvia Park
- Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tai-Gyu Kim
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
4
|
Al Hadra B, Lukanov T, Mihaylova A, Naumova E. High-resolution characterization of KIR genes polymorphism in healthy subjects from the Bulgarian population-A pilot study. HLA 2024; 103:e15341. [PMID: 38180282 DOI: 10.1111/tan.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
Although killer-cell immunoglobulin-like receptor (KIR) gene content has been widely studied in health and disease, with the advancement of next-generation sequencing (NGS) technology the high-resolution characterization of this complex gene region has become achievable. KIR allele-level diversity has lately been described across human populations. The present study aimed to analyze for the first time the allele-level polymorphism of nine KIR genes in 155 healthy, unrelated individuals from the Bulgarian population by applying NGS. The highest degree of polymorphism was detected for the KIR3DL3 gene with 40 observed alleles at five-digit resolution in total, 22 of which were common. On the other hand, the KIR3DS1 gene was found to have the lowest degree of polymorphism among the studied KIR genes with one common allele: KIR3DS1*01301 (31.6%). To better understand KIR allelic associations and patterns in Bulgarians, we have estimated the pairwise linkage disequilibrium (LD) for the 10 KIR loci, where KIR2DL3*00501 allele was found in strong LD with KIR2DL1*00101 (D' = 1.00, R2 = 0.742). This is the first study investigating KIR polymorphism at the allele level in a population from the South-East European region. Considering the effect of the populationally shaped KIR allelic polymorphism on NK cell function, this data could lead to a better understanding of the genetic heterogeneity of this region and can be carried into clinical practice by improvement of the strategies taken for NK-mediated diseases.
Collapse
Affiliation(s)
- Bushra Al Hadra
- Clinic of Clinical Immunology and Stem Cell Bank, Alexandrovska University Hospital, Sofia, Bulgaria
- Department of Clinical Immunology, Medical University, Sofia, Bulgaria
| | - Tsvetelin Lukanov
- Clinic of Clinical Immunology and Stem Cell Bank, Alexandrovska University Hospital, Sofia, Bulgaria
- Department of Clinical Immunology, Medical University, Sofia, Bulgaria
| | - Anastasiya Mihaylova
- Clinic of Clinical Immunology and Stem Cell Bank, Alexandrovska University Hospital, Sofia, Bulgaria
| | - Elissaveta Naumova
- Clinic of Clinical Immunology and Stem Cell Bank, Alexandrovska University Hospital, Sofia, Bulgaria
| |
Collapse
|
5
|
Montero-Martin G, Kichula KM, Misra MK, Vargas LB, Marin WM, Hollenbach JA, Fernández-Viña MA, Elfishawi S, Norman PJ. Exceptional diversity of KIR and HLA class I in Egypt. HLA 2024; 103:e15177. [PMID: 37528739 PMCID: PMC11068459 DOI: 10.1111/tan.15177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Genetically determined variation of killer cell immunoglobulin like receptors (KIR) and their HLA class I ligands affects multiple aspects of human health. Their extreme diversity is generated through complex interplay of natural selection for pathogen resistance and reproductive health, combined with demographic structure and dispersal. Despite significant importance to multiple health conditions of differential effect across populations, the nature and extent of immunogenetic diversity is under-studied for many geographic regions. Here, we describe the first high-resolution analysis of KIR and HLA class I combinatorial diversity in Northern Africa. Analysis of 125 healthy unrelated individuals from Cairo in Egypt yielded 186 KIR alleles arranged in 146 distinct centromeric and 79 distinct telomeric haplotypes. The most frequent haplotypes observed were KIR-A, encoding two inhibitory receptors specific for HLA-C, two that are specific for HLA-A and -B, and no activating receptors. Together with 141 alleles of HLA class I, 75 of which encode a KIR ligand, we identified a mean of six distinct interacting pairs of inhibitory KIR and HLA allotypes per individual. We additionally characterize 16 KIR alleles newly identified in the study population. Our findings place Egyptians as one of the most highly diverse populations worldwide, with important implications for transplant matching and studies of immune-mediated diseases.
Collapse
Affiliation(s)
| | - Katherine M. Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maneesh K. Misra
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Luciana B. Vargas
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wesley M. Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jill A. Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Sally Elfishawi
- BMT lab unit, Clinical Pathology Dept., National Cancer Institute, Cairo University, Cairo, Egypt
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
6
|
Palmer WH, Leaton LA, Codo AC, Crute B, Roest J, Zhu S, Petersen J, Tobin RP, Hume PS, Stone M, van Bokhoven A, Gerich ME, McCarter MD, Zhu Y, Janssen WJ, Vivian JP, Trowsdale J, Getahun A, Rossjohn J, Cambier J, Loh L, Norman PJ. Polymorphic KIR3DL3 expression modulates tissue-resident and innate-like T cells. Sci Immunol 2023; 8:eade5343. [PMID: 37390222 PMCID: PMC10360443 DOI: 10.1126/sciimmunol.ade5343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/07/2023] [Indexed: 07/02/2023]
Abstract
Most human killer cell immunoglobulin-like receptors (KIR) are expressed by natural killer (NK) cells and recognize HLA class I molecules as ligands. KIR3DL3 is a conserved but polymorphic inhibitory KIR recognizing a B7 family ligand, HHLA2, and is implicated for immune checkpoint targeting. The expression profile and biological function of KIR3DL3 have been somewhat elusive, so we searched extensively for KIR3DL3 transcripts, revealing highly enriched expression in γδ and CD8+ T cells rather than NK cells. These KIR3DL3-expressing cells are rare in the blood and thymus but more common in the lungs and digestive tract. High-resolution flow cytometry and single-cell transcriptomics showed that peripheral blood KIR3DL3+ T cells have an activated transitional memory phenotype and are hypofunctional. The T cell receptor (TCR) usage is biased toward genes from early rearranged TCR-α variable segments or Vδ1 chains. In addition, we show that TCR-mediated stimulation can be inhibited through KIR3DL3 ligation. Whereas we detected no impact of KIR3DL3 polymorphism on ligand binding, variants in the proximal promoter and at residue 86 can reduce expression. Together, we demonstrate that KIR3DL3 is up-regulated alongside unconventional T cell stimulation and that individuals may vary in their ability to express KIR3DL3. These results have implications for the personalized targeting of KIR3DL3/HHLA2 checkpoint inhibition.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Laura Ann Leaton
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Ana Campos Codo
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Bergren Crute
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - James Roest
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Shiying Zhu
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Richard P. Tobin
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Patrick S. Hume
- Department of Medicine, National Jewish Health, Denver, CO,
USA
| | - Matthew Stone
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado School of
Medicine, Aurora, CO, USA
| | - Mark E. Gerich
- Division of Gastroenterology and Hepatology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Martin D. McCarter
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Julian P. Vivian
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | | | - Andrew Getahun
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University,
School of Medicine, Heath Park, Cardiff, UK
| | - John Cambier
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Liyen Loh
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Microbiology and Immunology, University of
Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville,
Australia
| | - Paul J. Norman
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
7
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
8
|
Meazza R, Falco M, Canevali P, Loiacono F, Colomar-Carando N, Muntasell A, Rea A, Mingari MC, Locatelli F, Moretta L, Lopez-Botet M, Pende D. Characterization of KIR + NK cell subsets with a monoclonal antibody selectively recognizing KIR2DL1 and blocking the specific interaction with HLA-C. HLA 2022; 100:119-132. [PMID: 35439359 PMCID: PMC9543057 DOI: 10.1111/tan.14640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
The phenotypic identification of different NK cell subsets allows more in‐depth characterization of KIR repertoire and function, which are of potential interest in KIR and disease association studies. KIR genes are highly polymorphic, but a great homology exists among the various sequences and few monoclonal antibodies (mAbs) specifically recognize a single KIR. This is the case of HP‐DM1 which was demonstrated by analysis of cell transfectants and epitope mapping to be exclusively KIR2DL1‐specific, covering all allotypes identified to date, except for KIR2DL1*022 and *020, and also to react with KIR2DS1*013. Here, we compared in immunofluorescence analyses the staining of HP‐DM1 with other available mAbs to precisely identify KIR2DL1+ NK cells in potential donors for αβT/B‐depleted haplo‐HSCT, with known KIR genotype. HP‐DM1 mAb was used in combination with EB6 or 11PB6 (anti‐KIR2DL1/S1 and anti‐KIR2DL3*005), 143211 (anti‐KIR2DL1/S5), and HP‐MA4 (anti‐KIR2DL1/S1/S3/S5) mAbs, allowing the accurate identification of different KIR+ NK cell subsets. These phenotypic evaluations appeared useful to dissect the expression pattern of various KIR2D in NK cells from KIR2DL3*005+ individuals, particularly if KIR2DS1 is present. HP‐DM1 mAb remarkably refined NK cell phenotyping of donors carrying KIR2DS5, either in the centromeric or telomeric region. Functional assays with KIR2DL1+/S1+/S5+ NK cells confirmed that only HP‐DM1 exclusively reacts with KIR2DL1. Finally, we demonstrated that HP‐DM1 mAb blocked KIR2DL1 recognition of C2+ HLA‐C. Altogether, the data support that HP‐DM1 is a unique reagent valuable for characterizing KIR+ NK cell subsets.
Collapse
Affiliation(s)
| | | | | | | | - Natalia Colomar-Carando
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Rea
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Cristina Mingari
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Gynecology/Obstetrics and Pediatrics, Sapienza University, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Miguel Lopez-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniela Pende
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
9
|
Falco M, Meazza R, Alicata C, Canevali P, Muntasell A, Bottino C, Moretta L, Pende D, Lopez-Botet M. Epitope characterization of a monoclonal antibody that selectively recognizes KIR2DL1 allotypes. HLA 2022; 100:107-118. [PMID: 35411634 PMCID: PMC9544867 DOI: 10.1111/tan.14630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
Killer immunoglobulin‐like receptor (KIR) genes code for a family of inhibitory and activating receptors, finely tuning NK cell function. Numerous studies reported the relevance of KIR allelic polymorphism on KIR expression, ligand affinity, and strength in signal transduction. Although KIR variability, including gene copy number and allelic polymorphism, in combination with HLA class I polymorphism, impacts both KIR expression and NK cell education, only a precise phenotypic analysis can define the size of the different KIRpos NK cell subsets. In this context, reagents recognizing a limited number of KIRs is essential. In this study, we have characterized the specificity of an anti‐KIR mAb termed HP‐DM1. Testing its binding to HEK‐293T cells transfected with plasmids coding for different KIRs, we demonstrated that HP‐DM1 mAb exclusively reacts with KIR2DL1. Using site‐directed mutagenesis, we identified the four amino acids relevant for HP‐DM1 recognition: M44, S67, R68, and T70. HP‐DM1 mAb binds to a conformational epitope including M44, the residue crucial for HLA‐C K80 recognition by KIR2DL1. Based on the HP‐DM1 epitope characterization, we could extend its reactivity to all KIR2DL1 allotypes identified except for KIR2DL1*022 and, most likely, KIR2DL1*020, predicting that it does not recognize any other KIR with the only exception of KIR2DS1*013. Moreover, by identifying the residues relevant for HP‐DM1 binding, continuously updating of its reactivity will be facilitated.
Collapse
Affiliation(s)
| | | | | | | | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cristina Bottino
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.,DIMES, University of Genoa, Genoa, Italy
| | | | - Daniela Pende
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Miguel Lopez-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
10
|
Yawata M, Yawata N. Practical Considerations and Workflow in Utilizing KIR Genotyping in Transplantation Medicine. Methods Mol Biol 2022; 2463:291-310. [PMID: 35344182 DOI: 10.1007/978-1-0716-2160-8_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This chapter is intended to serve as a practical guide for establishing a workflow using sequence-specific polymorphism PCR (SSP-PCR) for killer cell immunoglobulin-like receptor (KIR) genotyping in a clinical setting, especially in allogeneic hematopoietic stem cell transplantation (HSCT). As clinical evidence accumulates on the application of KIR and HLA genetics to guide donor selection in HSCT, there is an increasing need for KIR genotyping in clinical settings, and thus medical institutes may need to build this capability. Among the various KIR genotyping approaches now available, SSP-PCR methods are well-established and are the most cost-effective and will likely be the method of choice especially when expenses will be passed on to the patient. The protocol described in this chapter developed by Vilches et al. features small amplicon PCR and is suitable for KIR genotyping using FFPE-derived DNA as well as DNA extracted from blood samples. Setting up a laboratory workflow for in-house KIR genotyping is relatively straightforward; in this chapter, considerations for KIR genotyping to guide clinical decisions are discussed.In HSCT, a main objective of KIR genotyping is to apply the genetic analysis to predict donor and recipient combinations that have the most potential to produce NK cell alloresponses either through the missing-self mechanism or by action associated with activating KIR. The desired effects are reduction in acute GVHD and relapse rates and enhancement of overall survival. The information herein may also be useful to clinical laboratories considering the application of KIR genotyping in areas such as solid organ transplantation, NK cell-based treatment in other forms of cancer and autoimmune diseases, humanized antibody treatment, regenerative medicine, and reproductive medicine. Some background knowledge on KIR genetics will be necessary in managing a KIR genotyping platform. This chapter aims to address the main difficulties often encountered by physicians in understanding the KIR system, such as basic aspects of the nomenclature of KIR genes and haplotypes, genotypes, and determining presence/absence of KIR ligands in the patient and donor from the extensively diversified HLA class I allotypes. In describing the workflow, emphasis has been placed on the processes after genotype PCR and gel image acquisition: haplotype inference, generating B content scores, deduction of KIR ligands from HLA typing results, and the emerging algorithms for donor selection based on KIR and HLA genetics.
Collapse
Affiliation(s)
- Makoto Yawata
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
- NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore.
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Kyushu, Japan
- Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
11
|
Vargas LDB, Beltrame MH, Ho B, Marin WM, Dandekar R, Montero-Martín G, Fernández-Viña MA, Hurtado AM, Hill KR, Tsuneto LT, Hutz MH, Salzano FM, Petzl-Erler ML, Hollenbach JA, Augusto DG. Remarkably low KIR and HLA diversity in Amerindians reveals signatures of strong purifying selection shaping the centromeric KIR region. Mol Biol Evol 2021; 39:6388041. [PMID: 34633459 PMCID: PMC8763117 DOI: 10.1093/molbev/msab298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The killer-cell immunoglobulin-like receptors (KIR) recognize human leukocyte antigen (HLA) molecules to regulate the cytotoxic and inflammatory responses of natural killer cells. KIR genes are encoded by a rapidly evolving gene family on chromosome 19 and present an unusual variation of presence and absence of genes and high allelic diversity. Although many studies have associated KIR polymorphism with susceptibility to several diseases over the last decades, the high-resolution allele-level haplotypes have only recently started to be described in populations. Here, we use a highly innovative custom next-generation sequencing method that provides a state-of-art characterization of KIR and HLA diversity in 706 individuals from eight unique South American populations: five Amerindian populations from Brazil (three Guarani and two Kaingang); one Amerindian population from Paraguay (Aché); and two urban populations from Southern Brazil (European and Japanese descendants from Curitiba). For the first time, we describe complete high-resolution KIR haplotypes in South American populations, exploring copy number, linkage disequilibrium, and KIR-HLA interactions. We show that all Amerindians analyzed to date exhibit the lowest numbers of KIR-HLA interactions among all described worldwide populations, and that 83-97% of their KIR-HLA interactions rely on a few HLA-C molecules. Using multiple approaches, we found signatures of strong purifying selection on the KIR centromeric region, which codes for the strongest NK cell educator receptors, possibly driven by the limited HLA diversity in these populations. Our study expands the current knowledge of KIR genetic diversity in populations to understand KIR-HLA coevolution and its impact on human health and survival.
Collapse
Affiliation(s)
- Luciana de Brito Vargas
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Marcia H Beltrame
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Brenda Ho
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Wesley M Marin
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Ravi Dandekar
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Gonzalo Montero-Martín
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | | | - A Magdalena Hurtado
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, USA
| | - Kim R Hill
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, USA
| | - Luiza T Tsuneto
- Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, PR, 87020-900, Brazil
| | - Mara H Hutz
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Maria Luiza Petzl-Erler
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Jill A Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, 94158, USA
| | - Danillo G Augusto
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, 81531-980, Brazil.,Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
12
|
Marin WM, Dandekar R, Augusto DG, Yusufali T, Heyn B, Hofmann J, Lange V, Sauter J, Norman PJ, Hollenbach JA. High-throughput Interpretation of Killer-cell Immunoglobulin-like Receptor Short-read Sequencing Data with PING. PLoS Comput Biol 2021; 17:e1008904. [PMID: 34339413 PMCID: PMC8360517 DOI: 10.1371/journal.pcbi.1008904] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/12/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
The killer-cell immunoglobulin-like receptor (KIR) complex on chromosome 19 encodes receptors that modulate the activity of natural killer cells, and variation in these genes has been linked to infectious and autoimmune disease, as well as having bearing on pregnancy and transplant outcomes. The medical relevance and high variability of KIR genes makes short-read sequencing an attractive technology for interrogating the region, providing a high-throughput, high-fidelity sequencing method that is cost-effective. However, because this gene complex is characterized by extensive nucleotide polymorphism, structural variation including gene fusions and deletions, and a high level of homology between genes, its interrogation at high resolution has been thwarted by bioinformatic challenges, with most studies limited to examining presence or absence of specific genes. Here, we present the PING (Pushing Immunogenetics to the Next Generation) pipeline, which incorporates empirical data, novel alignment strategies and a custom alignment processing workflow to enable high-throughput KIR sequence analysis from short-read data. PING provides KIR gene copy number classification functionality for all KIR genes through use of a comprehensive alignment reference. The gene copy number determined per individual enables an innovative genotype determination workflow using genotype-matched references. Together, these methods address the challenges imposed by the structural complexity and overall homology of the KIR complex. To determine copy number and genotype determination accuracy, we applied PING to European and African validation cohorts and a synthetic dataset. PING demonstrated exceptional copy number determination performance across all datasets and robust genotype determination performance. Finally, an investigation into discordant genotypes for the synthetic dataset provides insight into misaligned reads, advancing our understanding in interpretation of short-read sequencing data in complex genomic regions. PING promises to support a new era of studies of KIR polymorphism, delivering high-resolution KIR genotypes that are highly accurate, enabling high-quality, high-throughput KIR genotyping for disease and population studies.
Collapse
Affiliation(s)
- Wesley M. Marin
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Ravi Dandekar
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Danillo G. Augusto
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Tasneem Yusufali
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | | | | | | | | | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jill A. Hollenbach
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
13
|
Guethlein LA, Beyzaie N, Nemat-Gorgani N, Wang T, Ramesh V, Marin WM, Hollenbach JA, Schetelig J, Spellman SR, Marsh SGE, Cooley S, Weisdorf DJ, Norman PJ, Miller JS, Parham P. Following Transplantation for Acute Myelogenous Leukemia, Donor KIR Cen B02 Better Protects against Relapse than KIR Cen B01. THE JOURNAL OF IMMUNOLOGY 2021; 206:3064-3072. [PMID: 34117109 DOI: 10.4049/jimmunol.2100119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
In the treatment of acute myelogenous leukemia with allogeneic hematopoietic cell transplantation, we previously demonstrated that there is a greater protection from relapse of leukemia when the hematopoietic cell transplantation donor has either the Cen B/B KIR genotype or a genotype having two or more KIR B gene segments. In those earlier analyses, KIR genotyping could only be assessed at the low resolution of gene presence or absence. To give the analysis greater depth, we developed high-resolution KIR sequence-based typing that defines all the KIR alleles and distinguishes the expressed alleles from those that are not expressed. We now describe and analyze high-resolution KIR genotypes for 890 donors of this human transplant cohort. Cen B01 and Cen B02 are the common CenB haplotypes, with Cen B02 having evolved from Cen B01 by deletion of the KIR2DL5, 2DS3/5, 2DP1, and 2DL1 genes. We observed a consistent trend for Cen B02 to provide stronger protection against relapse than Cen B01 This correlation indicates that protection depends on the donor having inhibitory KIR2DL2 and/or activating KIR2DS2, and is enhanced by the donor lacking inhibitory KIR2DL1, 2DL3, and 3DL1. High-resolution KIR typing has allowed us to compare the strength of the interactions between the recipient's HLA class I and the KIR expressed by the donor-derived NK cells and T cells, but no clinically significant interactions were observed. The trend observed between donor Cen B02 and reduced relapse of leukemia points to the value of studying ever larger transplant cohorts.
Collapse
Affiliation(s)
- Lisbeth A Guethlein
- Department of Structural Biology, Stanford University, Stanford, CA.,Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Niassan Beyzaie
- Department of Structural Biology, Stanford University, Stanford, CA.,Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University, Stanford, CA.,Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Tao Wang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | | | - Wesley M Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Jill A Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | | | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Campus, London, United Kingdom.,University College London Cancer Institute, Royal Free Campus, London, United Kingdom
| | - Sarah Cooley
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN; and
| | - Daniel J Weisdorf
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN; and
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, Aurora, CO
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN; and
| | - Peter Parham
- Department of Structural Biology, Stanford University, Stanford, CA; .,Department of Microbiology and Immunology, Stanford University, Stanford, CA
| |
Collapse
|
14
|
Deng Z, Zhen J, Harrison GF, Zhang G, Chen R, Sun G, Yu Q, Nemat-Gorgani N, Guethlein LA, He L, Tang M, Gao X, Cai S, Palmer WH, Shortt JA, Gignoux CR, Carrington M, Zou H, Parham P, Hong W, Norman PJ. Adaptive Admixture of HLA Class I Allotypes Enhanced Genetically Determined Strength of Natural Killer Cells in East Asians. Mol Biol Evol 2021; 38:2582-2596. [PMID: 33616658 PMCID: PMC8136484 DOI: 10.1093/molbev/msab053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human natural killer (NK) cells are essential for controlling infection, cancer, and fetal development. NK cell functions are modulated by interactions between polymorphic inhibitory killer cell immunoglobulin-like receptors (KIR) and polymorphic HLA-A, -B, and -C ligands expressed on tissue cells. All HLA-C alleles encode a KIR ligand and contribute to reproduction and immunity. In contrast, only some HLA-A and -B alleles encode KIR ligands and they focus on immunity. By high-resolution analysis of KIR and HLA-A, -B, and -C genes, we show that the Chinese Southern Han (CHS) are significantly enriched for interactions between inhibitory KIR and HLA-A and -B. This enrichment has had substantial input through population admixture with neighboring populations, who contributed HLA class I haplotypes expressing the KIR ligands B*46:01 and B*58:01, which subsequently rose to high frequency by natural selection. Consequently, over 80% of Southern Han HLA haplotypes encode more than one KIR ligand. Complementing the high number of KIR ligands, the CHS KIR locus combines a high frequency of genes expressing potent inhibitory KIR, with a low frequency of those expressing activating KIR. The Southern Han centromeric KIR region encodes strong, conserved, inhibitory HLA-C-specific receptors, and the telomeric region provides a high number and diversity of inhibitory HLA-A and -B-specific receptors. In all these characteristics, the CHS represent other East Asians, whose NK cell repertoires are thus enhanced in quantity, diversity, and effector strength, likely augmenting resistance to endemic viral infections.
Collapse
Affiliation(s)
- Zhihui Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jianxin Zhen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
- Central Laboratory, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Guobin Zhang
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - Rui Chen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - Ge Sun
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - Qiong Yu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Liumei He
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - Mingzhong Tang
- Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, P. R. China
| | - Xiaojiang Gao
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Siqi Cai
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - William H Palmer
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jonathan A Shortt
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher R Gignoux
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD21702, and Ragon Institute of MGH, Cambridge, MA, USA
| | - Hongyan Zou
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenxu Hong
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
15
|
Tao S, He Y, Kichula KM, Wang J, He J, Norman PJ, Zhu F. High-Resolution Analysis Identifies High Frequency of KIR-A Haplotypes and Inhibitory Interactions of KIR With HLA Class I in Zhejiang Han. Front Immunol 2021; 12:640334. [PMID: 33995358 PMCID: PMC8121542 DOI: 10.3389/fimmu.2021.640334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIR) interact with human leukocyte antigen (HLA) class I molecules, modulating critical NK cell functions in the maintenance of human health. Characterizing the distribution and characteristics of KIR and HLA allotype diversity across defined human populations is thus essential for understanding the multiple associations with disease, and for directing therapies. In this study of 176 Zhejiang Han individuals from Southeastern China, we describe diversity of the highly polymorphic KIR and HLA class I genes at high resolution. KIR-A haplotypes, which carry four inhibitory receptors specific for HLA-A, B or C, are known to associate with protection from infection and some cancers. We show the Chinese Southern Han from Zhejiang are characterized by a high frequency of KIR-A haplotypes and a high frequency of C1 KIR ligands. Accordingly, interactions of inhibitory KIR2DL3 with C1+HLA are more frequent in Zhejiang Han than populations outside East Asia. Zhejiang Han exhibit greater diversity of inhibitory than activating KIR, with three-domain inhibitory KIR exhibiting the greatest degree of polymorphism. As distinguished by gene copy number and allele content, 54 centromeric and 37 telomeric haplotypes were observed. We observed 6% of the population to have KIR haplotypes containing large-scale duplications or deletions that include complete genes. A unique truncated haplotype containing only KIR2DL4 in the telomeric region was also identified. An additional feature is the high frequency of HLA-B*46:01, which may have arisen due to selection pressure from infectious disease. This study will provide further insight into the role of KIR and HLA polymorphism in disease susceptibility of Zhejiang Chinese.
Collapse
Affiliation(s)
- Sudan Tao
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Yanmin He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jielin Wang
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Ji He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Faming Zhu
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
16
|
Tao S, Kichula KM, Harrison GF, Farias TDJ, Palmer WH, Leaton LA, Hajar CGN, Zefarina Z, Edinur HA, Zhu F, Norman PJ. The combinatorial diversity of KIR and HLA class I allotypes in Peninsular Malaysia. Immunology 2021; 162:389-404. [PMID: 33283280 PMCID: PMC7968402 DOI: 10.1111/imm.13289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) interact with polymorphic human leucocyte antigen (HLA) class I molecules, modulating natural killer (NK) cell functions and affecting both the susceptibility and outcome of immune-mediated diseases. The KIR locus is highly diverse in gene content, copy number and allelic polymorphism within individuals and across geographical populations. To analyse currently under-represented Asian and Pacific populations, we investigated the combinatorial diversity of KIR and HLA class I in 92 unrelated Malay and 75 Malaysian Chinese individuals from the Malay Peninsula. We identified substantial allelic and structural diversity of the KIR locus in both populations and characterized novel variations at each analysis level. The Malay population is more diverse than Malay Chinese, likely representing a unique history including admixture with immigrating populations spanning several thousand years. Characterizing the Malay population are KIR haplotypes with large structural variants present in 10% individuals, and KIR and HLA alleles previously identified in Austronesian populations. Despite the differences in ancestries, the proportion of HLA allotypes that serve as KIR ligands is similar in each population. The exception is a significantly reduced frequency of interactions of KIR2DL1 with C2+ HLA-C in the Malaysian Chinese group, caused by the low frequency of C2+ HLA. One likely implication is a greater protection from preeclampsia, a pregnancy disorder associated with KIR2DL1, which shows higher incidence in the Malay than in the Malaysian Chinese. This first complete, high-resolution, characterization of combinatorial diversity of KIR and HLA in Malaysians will form a valuable reference for future clinical and population studies.
Collapse
Affiliation(s)
- Sudan Tao
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Blood Center of Zhejiang ProvinceKey Laboratory of Blood Safety Research of Zhejiang ProvinceHangzhouZhejiangChina
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Genelle F. Harrison
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Ticiana Della Justina Farias
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - William H. Palmer
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Laura Ann Leaton
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | | | - Zulkafli Zefarina
- School of Medical SciencesUniversiti Sains Malaysia, Health CampusKelantanMalaysia
| | - Hisham Atan Edinur
- School of Health SciencesUniversiti Sains Malaysia, Health CampusKelantanMalaysia
| | - Faming Zhu
- Blood Center of Zhejiang ProvinceKey Laboratory of Blood Safety Research of Zhejiang ProvinceHangzhouZhejiangChina
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| |
Collapse
|
17
|
Vargas LDB, Dourado RM, Amorim LM, Ho B, Calonga-Solís V, Issler HC, Marin WM, Beltrame MH, Petzl-Erler ML, Hollenbach JA, Augusto DG. Single Nucleotide Polymorphism in KIR2DL1 Is Associated With HLA-C Expression in Global Populations. Front Immunol 2020; 11:1881. [PMID: 32983108 PMCID: PMC7478174 DOI: 10.3389/fimmu.2020.01881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Regulation of NK cell activity is mediated through killer-cell immunoglobulin-like receptors (KIR) ability to recognize human leukocyte antigen (HLA) class I molecules as ligands. Interaction of KIR and HLA is implicated in viral infections, autoimmunity, and reproduction and there is growing evidence of the coevolution of these two independently segregating gene families. By leveraging KIR and HLA-C data from 1000 Genomes consortium we observed that the KIR2DL1 variant rs2304224 * T is associated with lower expression of HLA-C in individuals carrying the ligand HLA-C2 (p = 0.0059). Using flow cytometry, we demonstrated that this variant is also associated with higher expression of KIR2DL1 on the NK cell surface (p = 0.0002). Next, we applied next generation sequencing to analyze KIR2DL1 sequence variation in 109 Euro and 75 Japanese descendants. Analyzing the extended haplotype homozygosity, we show signals of positive selection for rs4806553 * G and rs687000 * G, which are in linkage disequilibrium with rs2304224 * T. Our results suggest that lower expression of HLA-C2 ligands might be compensated for higher expression of the receptor KIR2DL1 and bring new insights into the coevolution of KIR and HLA.
Collapse
Affiliation(s)
- Luciana de Brito Vargas
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Renata M Dourado
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Leonardo M Amorim
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Brenda Ho
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Verónica Calonga-Solís
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Hellen C Issler
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Wesley M Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Marcia H Beltrame
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Maria Luiza Petzl-Erler
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jill A Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Danillo G Augusto
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil.,Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
18
|
Alicata C, Ashouri E, Nemat-Gorgani N, Guethlein LA, Marin WM, Tao S, Moretta L, Hollenbach JA, Trowsdale J, Traherne JA, Ghaderi A, Parham P, Norman PJ. KIR Variation in Iranians Combines High Haplotype and Allotype Diversity With an Abundance of Functional Inhibitory Receptors. Front Immunol 2020; 11:556. [PMID: 32300348 PMCID: PMC7142237 DOI: 10.3389/fimmu.2020.00556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/11/2020] [Indexed: 01/03/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that eliminate infected and transformed cells. They discriminate healthy from diseased tissue through killer cell Ig-like receptor (KIR) recognition of HLA class I ligands. Directly impacting NK cell function, KIR polymorphism associates with infection control and multiple autoimmune and pregnancy syndromes. Here we analyze KIR diversity of 241 individuals from five groups of Iranians. These five populations represent Baloch, Kurd, and Lur, together comprising 15% of the ethnically diverse Iranian population. We identified 159 KIR alleles, including 11 not previously characterized. We also identified 170 centromeric and 94 telomeric haplotypes, and 15 different KIR haplotypes carrying either a deletion or duplication encompassing one or more complete KIR genes. As expected, comparing our data with those representing major worldwide populations revealed the greatest similarity between Iranians and Europeans. Despite this similarity we observed higher frequencies of KIR3DL1*001 in Iran than any other population, and the highest frequency of HLA-B*51, a Bw4-containing allotype that acts as a strong educator of KIR3DL1*001+ NK cells. Compared to Europeans, the Iranians we studied also have a reduced frequency of 3DL1*004, which encodes an allotype that is not expressed at the NK cell surface. Concurrent with the resulting high frequency of strong viable interactions between inhibitory KIR and polymorphic HLA class I, the majority of KIR-A haplotypes characterized do not express a functional activating receptor. By contrast, the most frequent KIR-B haplotype in Iran expresses only one functional inhibitory KIR and the maximum number of activating KIR. This first complete, high-resolution, characterization of the KIR locus of Iranians will form a valuable reference for future clinical and population studies.
Collapse
Affiliation(s)
- Claudia Alicata
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elham Ashouri
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States.,Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States.,Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Wesley M Marin
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Sudan Tao
- Blood Center of Zhejiang Province, Hangzhou, China.,Division of Personalized Medicine, Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Jill A Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - John Trowsdale
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - James A Traherne
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States.,Division of Personalized Medicine, Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
19
|
Sim MJW, Rajagopalan S, Altmann DM, Boyton RJ, Sun PD, Long EO. Human NK cell receptor KIR2DS4 detects a conserved bacterial epitope presented by HLA-C. Proc Natl Acad Sci U S A 2019; 116:12964-12973. [PMID: 31138701 PMCID: PMC6601252 DOI: 10.1073/pnas.1903781116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells have an important role in immune defense against viruses and cancer. Activation of human NK cell cytotoxicity toward infected or tumor cells is regulated by killer cell immunoglobulin-like receptors (KIRs) that bind to human leukocyte antigen class I (HLA-I). Combinations of KIR with HLA-I are genetically associated with susceptibility to disease. KIR2DS4, an activating member of the KIR family with poorly defined ligands, is a receptor of unknown function. Here, we show that KIR2DS4 has a strong preference for rare peptides carrying a Trp at position 8 (p8) of 9-mer peptides bound to HLA-C*05:01. The complex of a peptide bound to HLA-C*05:01 with a Trp at p8 was sufficient for activation of primary KIR2DS4+ NK cells, independent of activation by other receptors and of prior NK cell licensing. HLA-C*05:01+ cells that expressed the peptide epitope triggered KIR2DS4+ NK cell degranulation. We show an inverse correlation of the worldwide allele frequency of functional KIR2DS4 with that of HLA-C*05:01, indicative of functional interaction and balancing selection. We found a highly conserved peptide sequence motif for HLA-C*05:01-restricted activation of human KIR2DS4+ NK cells in bacterial recombinase A (RecA). KIR2DS4+ NK cells were stimulated by RecA epitopes from multiple human pathogens, including Helicobacter, Chlamydia, Brucella, and Campylobacter. We predict that over 1,000 bacterial species could activate NK cells through KIR2DS4, and propose that human NK cells also contribute to immune defense against bacteria through recognition of a conserved RecA epitope presented by HLA-C*05:01.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Molecular and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Sumati Rajagopalan
- Molecular and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Daniel M Altmann
- Lung Immunology Group, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Rosemary J Boyton
- Lung Immunology Group, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Peter D Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Eric O Long
- Molecular and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| |
Collapse
|
20
|
Nemat-Gorgani N, Guethlein LA, Henn BM, Norberg SJ, Chiaroni J, Sikora M, Quintana-Murci L, Mountain JL, Norman PJ, Parham P. Diversity of KIR, HLA Class I, and Their Interactions in Seven Populations of Sub-Saharan Africans. THE JOURNAL OF IMMUNOLOGY 2019; 202:2636-2647. [PMID: 30918042 DOI: 10.4049/jimmunol.1801586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
Abstract
HLA class I and KIR sequences were determined for Dogon, Fulani, and Baka populations of western Africa, Mbuti of central Africa, and Datooga, Iraqw, and Hadza of eastern Africa. Study of 162 individuals identified 134 HLA class I alleles (41 HLA-A, 60 HLA-B, and 33 HLA-C). Common to all populations are three HLA-C alleles (C1+C*07:01, C1+C*07:02, and C2+C*06:02) but no HLA-A or -B Unexpectedly, no novel HLA class I was identified in these previously unstudied and anthropologically distinctive populations. In contrast, of 227 KIR detected, 22 are present in all seven populations and 28 are novel. A high diversity of HLA A-C-B haplotypes was observed. In six populations, most haplotypes are represented just once. But in the Hadza, a majority of haplotypes occur more than once, with 2 having high frequencies and 10 having intermediate frequencies. The centromeric (cen) part of the KIR locus exhibits an even balance between cenA and cenB in all seven populations. The telomeric (tel) part has an even balance of telA to telB in East Africa, but this changes across the continent to where telB is vestigial in West Africa. All four KIR ligands (A3/11, Bw4, C1, and C2) are present in six of the populations. HLA haplotypes of the Iraqw and Hadza encode two KIR ligands, whereas the other populations have an even balance between haplotypes encoding one and two KIR ligands. Individuals in these African populations have a mean of 6.8-8.4 different interactions between KIR and HLA class I, compared with 2.9-6.5 for non-Africans.
Collapse
Affiliation(s)
- Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, NY 11794
| | | | - Jacques Chiaroni
- UMR 7268-Anthropologie Bio-Culturelle, Droit, Éthique et Santé, Aix-Marseille Université, l'Etablissement Français du Sang, Centre National de la Recherche Scientifique, 13344 Marseille, France
| | - Martin Sikora
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
| | | | | | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, CO 80045; and.,Department of Immunology, University of Colorado, Denver, CO 80045
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
21
|
Jayaraman J, Kirgizova V, Di D, Johnson C, Jiang W, Traherne JA. qKAT: Quantitative Semi-automated Typing of Killer-cell Immunoglobulin-like Receptor Genes. J Vis Exp 2019:10.3791/58646. [PMID: 30907867 PMCID: PMC6794157 DOI: 10.3791/58646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are a set of inhibitory and activating immune receptors, on natural killer (NK) and T cells, encoded by a polymorphic cluster of genes on chromosome 19. Their best-characterized ligands are the human leukocyte antigen (HLA) molecules that are encoded within the major histocompatibility complex (MHC) locus on chromosome 6. There is substantial evidence that they play a significant role in immunity, reproduction, and transplantation, making it crucial to have techniques that can accurately genotype them. However, high-sequence homology, as well as allelic and copy number variation, make it difficult to design methods that can accurately and efficiently genotype all KIR genes. Traditional methods are usually limited in the resolution of data obtained, throughput, cost-effectiveness, and the time taken for setting up and running the experiments. We describe a method called quantitative KIR semi-automated typing (qKAT), which is a high-throughput multiplex real-time polymerase chain reaction method that can determine the gene copy numbers for all genes in the KIR locus. qKAT is a simple high-throughput method that can provide high-resolution KIR copy number data, which can be further used to infer the variations in the structurally polymorphic haplotypes that encompass them. This copy number and haplotype data can be beneficial for studies on large-scale disease associations, population genetics, as well as investigations on expression and functional interactions between KIR and HLA.
Collapse
Affiliation(s)
- Jyothi Jayaraman
- Department of Pathology, University of Cambridge; Department of Physiology, Development and Neuroscience, University of Cambridge; Department of Obstetrics and Gynaecology, University of Cambridge School of Medicine, NIHR Cambridge Biomedical Research Centre; Centre for Trophoblast Research, University of Cambridge
| | | | - Da Di
- Department of Pathology, University of Cambridge; Department of Genetics & Evolution, University of Geneva
| | | | - Wei Jiang
- Department of Pathology, University of Cambridge; Department of Plant Sciences, University of Cambridge
| | | |
Collapse
|
22
|
Leaton LA, Shortt J, Kichula KM, Tao S, Nemat-Gorgani N, Mentzer AJ, Oppenheimer SJ, Deng Z, Hollenbach JA, Gignoux CR, Guethlein LA, Parham P, Carrington M, Norman PJ. Conservation, Extensive Heterozygosity, and Convergence of Signaling Potential All Indicate a Critical Role for KIR3DL3 in Higher Primates. Front Immunol 2019; 10:24. [PMID: 30745901 PMCID: PMC6360152 DOI: 10.3389/fimmu.2019.00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/07/2019] [Indexed: 01/12/2023] Open
Abstract
Natural killer (NK) cell functions are modulated by polymorphic killer cell immunoglobulin-like receptors (KIR). Among 13 human KIR genes, which vary by presence and copy number, KIR3DL3 is ubiquitously present in every individual across diverse populations. No ligand or function is known for KIR3DL3, but limited knowledge of expression suggests involvement in reproduction, likely during placentation. With 157 human alleles, KIR3DL3 is also highly polymorphic and we show heterozygosity exceeds that of HLA-B in many populations. The external domains of catarrhine primate KIR3DL3 evolved as a conserved lineage distinct from other KIR. Accordingly, and in contrast to other KIR, we show the focus of natural selection does not correspond exclusively to known ligand binding sites. Instead, a strong signal for diversifying selection occurs in the D1 Ig domain at a site involved in receptor aggregation, which we show is polymorphic in humans worldwide, suggesting differential ability for receptor aggregation. Meanwhile in the cytoplasmic tail, the first of two inhibitory tyrosine motifs (ITIM) is conserved, whereas independent genomic events have mutated the second ITIM of KIR3DL3 alleles in all great apes. Together, these findings suggest that KIR3DL3 binds a conserved ligand, and a function requiring both receptor aggregation and inhibitory signal attenuation. In this model KIR3DL3 resembles other NK cell inhibitory receptors having only one ITIM, which interact with bivalent downstream signaling proteins through dimerization. Due to the extensive conservation across species, selection, and other unusual properties, we consider elucidating the ligand and function of KIR3DL3 to be a pressing question.
Collapse
Affiliation(s)
- Laura A. Leaton
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Microbiology & Immunology, University of Colorado, Aurora, CO, United States
| | - Jonathan Shortt
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Microbiology & Immunology, University of Colorado, Aurora, CO, United States
| | - Sudan Tao
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Microbiology & Immunology, University of Colorado, Aurora, CO, United States
- Blood Center of Zhejiang Province, Hangzhou, China
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Alexander J. Mentzer
- Wellcome Trust Centre for Human Genetics, and Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Stephen J. Oppenheimer
- Institute of Social and Cultural Anthropology, School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
| | - Zhihui Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher R. Gignoux
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
| | - Lisbeth A. Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
- Ragon Institute of the Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, United States
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Microbiology & Immunology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
23
|
Huhn O, Chazara O, Ivarsson MA, Retière C, Venkatesan TC, Norman PJ, Hilton HG, Jayaraman J, Traherne JA, Trowsdale J, Ito M, Kling C, Parham P, Ghadially H, Moffett A, Sharkey AM, Colucci F. High-Resolution Genetic and Phenotypic Analysis of KIR2DL1 Alleles and Their Association with Pre-Eclampsia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2593-2601. [PMID: 30249807 PMCID: PMC6258046 DOI: 10.4049/jimmunol.1800860] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022]
Abstract
Killer-cell Ig-like receptor (KIR) genes are inherited as haplotypes. They are expressed by NK cells and linked to outcomes of infectious diseases and pregnancy in humans. Understanding how genotype relates to phenotype is difficult because of the extensive diversity of the KIR family. Indeed, high-resolution KIR genotyping and phenotyping in single NK cells in the context of disease association is lacking. In this article, we describe a new method to separate NK cells expressing allotypes of the KIR2DL1 gene carried by the KIR A haplotype (KIR2DL1A) from those expressing KIR2DL1 alleles carried by the KIR B haplotype (KIR2DL1B). We find that in KIR AB heterozygous individuals, different KIR2DL1 allotypes can be detected in both peripheral blood and uterine NK cells. Using this new method, we demonstrate that both blood and uterine NK cells codominantly express KIR2DL1A and KIR2DL1B allotypes but with a predominance of KIR2DL1A variants, which associate with enhanced NK cell function. In a case-control study of pre-eclampsia, we show that KIR2DL1A, not KIR2DL1B, associates with increased disease risk. This method will facilitate our understanding of how individual KIR2DL1 allelic variants affect NK cell function and contribute to disease risk.
Collapse
Affiliation(s)
- Oisín Huhn
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Olympe Chazara
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Martin A Ivarsson
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christelle Retière
- Etablissement Français du Sang, Université de Nantes, 44011 Nantes, France
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, INSERM U1232, CNRS, Université d'Angers, 49035 Angers, France
| | - Timothy C Venkatesan
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Hugo G Hilton
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jyothi Jayaraman
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - James A Traherne
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - John Trowsdale
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Mitsutero Ito
- Department of Genetics, University of Cambridge, Cambridge CB2 3DY, United Kingdom; and
| | | | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Ashley Moffett
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Andrew M Sharkey
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom;
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, United Kingdom;
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| |
Collapse
|
24
|
Misra MK, Augusto DG, Martin GM, Nemat-Gorgani N, Sauter J, Hofmann JA, Traherne JA, González-Quezada B, Gorodezky C, Bultitude WP, Marin W, Vierra-Green C, Anderson KM, Balas A, Caro-Oleas JL, Cisneros E, Colucci F, Dandekar R, Elfishawi SM, Fernández-Viña MA, Fouda M, González-Fernández R, Große A, Herrero-Mata MJ, Hollenbach SQ, Marsh SGE, Mentzer A, Middleton D, Moffett A, Moreno-Hidalgo MA, Mossallam GI, Nakimuli A, Oksenberg JR, Oppenheimer SJ, Parham P, Petzl-Erler ML, Planelles D, Sánchez-García F, Sánchez-Gordo F, Schmidt AH, Trowsdale J, Vargas LB, Vicario JL, Vilches C, Norman PJ, Hollenbach JA. Report from the Killer-cell Immunoglobulin-like Receptors (KIR) component of the 17th International HLA and Immunogenetics Workshop. Hum Immunol 2018; 79:825-833. [PMID: 30321631 DOI: 10.1016/j.humimm.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
Abstract
The goals of the KIR component of the 17th International HLA and Immunogenetics Workshop (IHIW) were to encourage and educate researchers to begin analyzing KIR at allelic resolution, and to survey the nature and extent of KIR allelic diversity across human populations. To represent worldwide diversity, we analyzed 1269 individuals from ten populations, focusing on the most polymorphic KIR genes, which express receptors having three immunoglobulin (Ig)-like domains (KIR3DL1/S1, KIR3DL2 and KIR3DL3). We identified 13 novel alleles of KIR3DL1/S1, 13 of KIR3DL2 and 18 of KIR3DL3. Previously identified alleles, corresponding to 33 alleles of KIR3DL1/S1, 38 of KIR3DL2, and 43 of KIR3DL3, represented over 90% of the observed allele frequencies for these genes. In total we observed 37 KIR3DL1/S1 allotypes, 40 for KIR3DL2 and 44 for KIR3DL3. As KIR allotype diversity can affect NK cell function, this demonstrates potential for high functional diversity worldwide. Allelic variation further diversifies KIR haplotypes. We determined KIR3DL3 ∼ KIR3DL1/S1 ∼ KIR3DL2 haplotypes from five of the studied populations, and observed multiple population-specific haplotypes in each. This included 234 distinct haplotypes in European Americans, 191 in Ugandans, 35 in Papuans, 95 in Egyptians and 86 in Spanish populations. For another 35 populations, encompassing 642,105 individuals we focused on KIR3DL2 and identified another 375 novel alleles, with approximately half of them observed in more than one individual. The KIR allelic level data gathered from this project represents the most comprehensive summary of global KIR allelic diversity to date, and continued analysis will improve understanding of KIR allelic polymorphism in global populations. Further, the wealth of new data gathered in the course of this workshop component highlights the value of collaborative, community-based efforts in immunogenetics research, exemplified by the IHIW.
Collapse
Affiliation(s)
- Maneesh K Misra
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Danillo G Augusto
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA; Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gonzalo Montero Martin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | - Betsy González-Quezada
- Department of Immunology and Immunogenetics, InDRE, Secretary of Health, Francisco P. Miranda #177, Colonia Lomas de Plateros, Del. Álvaro Obregón, CP 01480, Mexico City, Mexico; Fundación Comparte Vida, A.C. Galileo #92, Col. Polanco, Del. Miguel Hidalgo, CP 11550 Mexico City, Mexico
| | - Clara Gorodezky
- Department of Immunology and Immunogenetics, InDRE, Secretary of Health, Francisco P. Miranda #177, Colonia Lomas de Plateros, Del. Álvaro Obregón, CP 01480, Mexico City, Mexico; Fundación Comparte Vida, A.C. Galileo #92, Col. Polanco, Del. Miguel Hidalgo, CP 11550 Mexico City, Mexico
| | - Will P Bultitude
- Anthony Nolan Research Institute and UCL Cancer Institute, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Wesley Marin
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Cynthia Vierra-Green
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Kirsten M Anderson
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Antonio Balas
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Jose L Caro-Oleas
- Histocompatibility and Immunogenetics, Banc de Sang i Teixits, Barcelona, Spain
| | - Elisa Cisneros
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Ravi Dandekar
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | - Merhan Fouda
- National Cancer Institute, Cairo University, Cairo, Egypt
| | | | | | | | | | - Steven G E Marsh
- Anthony Nolan Research Institute and UCL Cancer Institute, Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Alex Mentzer
- Wellcome Trust Centre for Human Genetics, and Jenner Institute, University of Oxford, Oxford, UK
| | | | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, Cambridge, UK
| | | | | | - Annettee Nakimuli
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jorge R Oksenberg
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | | | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Dolores Planelles
- Histocompatibility, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | | | | | | | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Luciana B Vargas
- Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jose L Vicario
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Carlos Vilches
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology, University of Colorado, Denver, CO 80045, United States
| | - Jill A Hollenbach
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|