1
|
Leite CBG, Bumberger A, Franco D, Di Stefano MT, Lattermann C. Effect of specialized pro-resolving mediators on knee joint inflammation. Knee 2025; 53:257-263. [PMID: 39908708 DOI: 10.1016/j.knee.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Chronic inflammation following knee injuries often results in persistent knee pain and post-traumatic osteoarthritis (PTOA). Understanding the inflammatory processes that follow a joint injury is crucial to effectively mitigate PTOA progression. While inflammation is an integral part of any healing response, unresolved, long-lasting inflammation can be detrimental to the joint. The resolution of inflammation is an active process coordinated by pro-resolving molecules, including specialized pro-resolving mediators (SPMs). While SPMs have been primarily studied in chronic inflammatory diseases, their role in degenerative knee conditions such as PTOA remains underexplored. METHODS This review examines the process of inflammation and its resolution following knee joint injuries and subsequent PTOA, with a focus on the impact of SPMs. CONCLUSIONS SPMs play a key role in the resolution of inflammation and may offer potential benefits in the management of knee injuries to improve pain and prevent PTOA.
Collapse
Affiliation(s)
- Chilan Bou Ghosson Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Alexander Bumberger
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Domenico Franco
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Marco Tulio Di Stefano
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Kotlyarov SN. Place of lipid theory in history of study of atherosclerosis. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2024; 32:681-689. [DOI: 10.17816/pavlovj636812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
INTRODUCTION: Despite the significant advances in the study of atherosclerosis in recent decades, the diseases associated with it still remain one of the leading problems of modern Western society. In the complicated history of the study of atherosclerosis, various theories have been proposed that attempted to explain its nature from positions of the scientific knowledge of those years.
АIM: To analyze the place of lipid disorders in various theories of atherogenesis that have been proposed in different historic periods and have shaped the current understanding of its nature and are the basis for future research.
The lipid theory, proposed more than a hundred years ago, is still the basis for the prevention and treatment of atherosclerosis. Subsequent findings on the role of endothelial dysfunction, on the importance of immune cells and innate immune mechanisms, and the importance of vascular hemodynamic disturbances, have shaped today's understanding of the pathogenesis of atherosclerosis, which regards it as a complex chain of immune and metabolic events occurring over many years and involving various cells of the vascular wall and the bloodstream. Much of the data on the pathogenesis of atherosclerosis obtained to date have no therapeutic application and are promising areas for future research.
CONCLUSION: The lipid theory of atherogenesis has passed a complicated way from understanding the role of lipids as a simple substrate for development of atherosclerosis to the fact of their performing complex immune and metabolic functions and being an important diagnostic and therapeutic target.
Collapse
|
3
|
Regidor PA, Eiblwieser J, Steeb T, Rizo JM. Omega-3 long chain fatty acids and their metabolites in pregnancy outcomes for the modulation of maternal inflammatory- associated causes of preterm delivery, chorioamnionitis and preeclampsia. F1000Res 2024; 13:882. [PMID: 39931317 PMCID: PMC11809487 DOI: 10.12688/f1000research.153569.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 02/13/2025] Open
Abstract
Preterm birth is a major cause of perinatal complications and neonatal deaths. Furthermore, in the field of obstetrics many clinical entities like uterine contractions or the occurrence of pre- eclampsia remain to be serious complications during pregnancy and represent a major psychological, financial, and economic burden for society. Several published guidelines, studies and recommendations have highlighted the importance of supplementation of omega-3 long chain polyunsaturated fatty acids (PUFAs) during pregnancy. This narrative review aims at giving an overview on the modern perception of inflammatory processes and the role of specialized pro-resolving mediators (SPMs) in their resolution, especially in obstetrics. Additionally, we highlight the possible role of SPMs in the prevention of obstetric complications through oral supplementation using enriched marine oil nutritional's. The intake of PUFAs may result in an overall improvement of pregnancy outcomes by contributing to fetal brain growth and neurological development but more importantly though modulation of inflammation-associated pathologies. Especially the use of SPMs represents a promising approach for the management of obstetric and perinatal complications. SPMs are monohydroxylates derived from enriched marine oil nutritional's that involve certain pro-resolutive metabolites of omega-3 long chains PUFAs and may contribute to an attenuation of inflammatory diseases. This may be obtained through various mechanisms necessary for a proper resolution of inflammation such as the termination of neutrophil tissue infiltration, initiation of phagocytosis, downregulation of pro-inflammatory cytokines or tissue regeneration. In this way, acute and chronic inflammatory diseases associated with serious obstetrical complications can be modulated, which might contribute to an improved pregnancy outcome.
Collapse
Affiliation(s)
| | - Johanna Eiblwieser
- Medical Department, Exeltis Germany, Ismaning, Adalperostr. 84, 85737, Germany
| | - Theresa Steeb
- Medical Department, Exeltis Germany, Ismaning, Adalperostr. 84, 85737, Germany
| | | |
Collapse
|
4
|
Sun HW, Bai YY, Qin ZL, Li RZ, Madzikatire TB, Akuetteh PDP, Li Q, Kong HR, Jin YP. Transfection of 12/15-lipoxygenase effectively alleviates inflammatory responses during experimental acute pancreatitis. World J Gastroenterol 2024; 30:4544-4556. [PMID: 39563743 PMCID: PMC11572619 DOI: 10.3748/wjg.v30.i42.4544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 10/31/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP), the initially triggered inflammatory process in the pancreas, can be life-threatening. It has been reported that 15-lipoxygenase may promote the removal of damaged intracellular components, maintain intracellular homeostasis, and promote apoptosis by upregulating the activity of caspases. Despite an increased understanding of the lipoxygenase pathway in inflammation and immune diseases, the role of the Alox15 gene product in modulating the inflammatory changes during AP is not well defined. AIM To investigate the effect of Alox15 expression in cerulein-induced AP in rats. METHODS Model rats were transfected with Alox15 by injecting a recombinant lentivirus vector encoding Alox15 into the left gastric artery before inducing AP. The expression of Alox15 was then assessed at the mRNA and protein levels. RESULTS Our in vivo results showed that serum amylase activity and pancreatic tissue water content were significantly reduced in Alox15-transfected rats. Further, the mRNA expression levels of tumor necrosis factor alpha, interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1, as well as the protein expression of nuclear factor kappa B in pancreatic tissue were reduced. Additionally, we observed an upregulation of cleaved caspase-3 that implies an induction of apoptosis in pancreatic cells. The transfection of Alox15 resulted in a lower number of autophagic vacuoles in AP. CONCLUSION Our findings demonstrate a regulatory role of Alox15 in apoptosis and autophagy, making it a potential therapeutic target for AP.
Collapse
Affiliation(s)
- Hong-Wei Sun
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yong-Yu Bai
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Zhen-Liu Qin
- Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Ri-Zhao Li
- Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | | | | | - Qiang Li
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hong-Ru Kong
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yue-Peng Jin
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
5
|
Fredman G, Serhan CN. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:808-823. [PMID: 38216693 DOI: 10.1038/s41569-023-00984-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/14/2024]
Abstract
Timely resolution of the acute inflammatory response (or inflammation resolution) is an active, highly coordinated process that is essential to optimal health. Inflammation resolution is regulated by specific endogenous signalling molecules that function as 'stop signals' to terminate the inflammatory response when it is no longer needed; to actively promote healing, regeneration and tissue repair; and to limit pain. Specialized pro-resolving mediators are a superfamily of signalling molecules that initiate anti-inflammatory and pro-resolving actions. Without an effective and timely resolution response, inflammation can become chronic, a pathological state that is associated with many widely occurring human diseases, including atherosclerotic cardiovascular disease. Uncovering the mechanisms of inflammation resolution failure in cardiovascular diseases and identifying useful biomarkers for non-resolving inflammation are unmet needs. In this Review, we discuss the accumulating evidence that supports the role of non-resolving inflammation in atherosclerosis and the use of specialized pro-resolving mediators as therapeutic tools for the treatment of atherosclerotic cardiovascular disease. We highlight open questions about therapeutic strategies and mechanisms of disease to provide a framework for future studies on the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Cooper PO, Kleb SS, Noonepalle SK, Amuso VM, Varshney R, Rudolph MC, Dhaliwal TK, Nguyen DV, Mazumder MF, Babirye NS, Gupta R, Nguyen BN, Shook BA. G-protein-coupled receptor 84 regulates acute inflammation in normal and diabetic skin wounds. Cell Rep 2024; 43:114288. [PMID: 38814782 PMCID: PMC11247419 DOI: 10.1016/j.celrep.2024.114288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Lipids have emerged as potent regulators of immune cell function. In the skin, adipocyte lipolysis increases the local pool of free fatty acids and is essential for coordinating early macrophage inflammation following injury. Here, we investigate G-protein-coupled receptor 84 (GPR84), a medium-chain fatty acid (MCFA) receptor, for its potential to propagate pro-inflammatory signaling after skin injury. GPR84 signaling was identified as a key component of regulating myeloid cell numbers and subsequent tissue repair through in vivo administration of a pharmacological antagonist and the MCFA decanoic acid. We found that impaired injury-induced dermal adipocyte lipolysis is a hallmark of diabetes, and lipidomic analysis demonstrated that MCFAs are significantly reduced in diabetic murine wounds. Furthermore, local administration of decanoic acid rescued myeloid cell numbers and tissue repair during diabetic wound healing. Thus, GPR84 is a readily targetable lipid signaling pathway for manipulating injury-induced tissue inflammation with beneficial effects on acute diabetic healing.
Collapse
Affiliation(s)
- Paula O Cooper
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Sarah S Kleb
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Satish K Noonepalle
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Veronica M Amuso
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Rohan Varshney
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael C Rudolph
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tanvir K Dhaliwal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Darlene V Nguyen
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Miguel F Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Najuma S Babirye
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Ruchi Gupta
- Department of Surgery, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Bao-Ngoc Nguyen
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; Department of Surgery, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Brett A Shook
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; Department of Dermatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
7
|
Hussein MM, Fouda EM, Shehab Y, Nabih ES, Osman AM, Ishak SR. Association between arachidonate lipoxygenase 15,c.-292 C > T gene polymorphism and non-cystic fibrosis bronchiectasis in children: a pilot study on the effects on airway lipoxin A4 and disease phenotype. Ital J Pediatr 2024; 50:90. [PMID: 38685084 PMCID: PMC11059722 DOI: 10.1186/s13052-024-01654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/07/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Persistent airway inflammation is a central feature of bronchiectasis. Arachidonate 15-lipoxygenase (ALOX-15) controls production of endogenous lipid mediators, including lipoxins that regulate airway inflammation. Mutations at various positions in ALOX-15 gene can influence airway disease development. We investigated association between ALOX-15,c.-292 C > T gene polymorphism and bronchiectasis unrelated to cystic fibrosis in Egyptian children. Also, lipoxin A4 (LXA4) level in bronchoalveolar lavage (BAL) was studied in relation to polymorphism genotypes and disease phenotypes determined by clinical, pulmonary functions, and radiological severity parameters. METHODS This was an exploratory study that included 60 participants. Thirty children with non-cystic fibrosis bronchiectasis (NCFB) were compared with 30 age and sex-matched controls. ALOX-15,c.-292 C > T polymorphism was genotyped using TaqMan-based Real-time PCR. LXA4 was measured in BAL using ELISA method. RESULTS There was no significant difference between patients and controls regarding ALOX-15,c.-292 C > T polymorphism genotypes and alleles (OR = 1.75; 95% CI (0.53-5.7), P = 0.35) (OR = 1; 95% CI (0.48-2), p = 1). BAL LXA4 level was significantly lower in patients, median (IQR) of 576.9 (147.6-1510) ng/ml compared to controls, median (IQR) of 1675 (536.8-2542) (p = 0.002). Patients with severe bronchiectasis had a significantly lower LXA4 level (p < 0.001). There were significant correlations with exacerbations frequency (r=-0.54, p = 0.002) and FEV1% predicted (r = 0.64, p = 0.001). Heterozygous CT genotype carriers showed higher LXA4 levels compared to other genotypes(p = 0.005). CONCLUSIONS Low airway LXA4 in children with NCFB is associated with severe disease phenotype and lung function deterioration. CT genotype of ALOX-15,c.-292 C > T polymorphism might be a protective genetic factor against bronchiectasis development and/or progression due to enhanced LXA4 production.
Collapse
Affiliation(s)
| | - Eman Mahmoud Fouda
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasmine Shehab
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Enas Samir Nabih
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Mohamed Osman
- Radiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sally Raafat Ishak
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Ma R, Liu Y, Xu Y, Duan D. Lipoxin A4 levels predict site-specific clinical improvements post scaling and root planing and correlate negatively with periodontal pathogens in severe periodontitis. BMC Oral Health 2024; 24:204. [PMID: 38331747 PMCID: PMC10851498 DOI: 10.1186/s12903-024-03948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/27/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Serving as a stop signal of inflammation, the role of lipoxin A4 (LXA4) in periodontitis remains to be clarified. This study is aimed to examine the changes in LXA4 levels in gingival crevicular fluid (GCF) after scaling and root planing (SRP) and to determine the relationship between LXA4 levels and treatment outcomes and periodontal pathogens in severe periodontitis. METHODS A total of 74 GCF samples were collected from 21 severe periodontitis participants at the deepest affected sites. These sites were re-sampled at 1, 3, and 6 months after SRP. Besides, GCF samples were also collected from 25 periodontally healthy participants. Clinical parameters including probing depth (PD) and clinical attachment level (CAL) in periodontitis group were recorded. LXA4 levels and periodontal pathogens in the GCF were analyzed by ELISA and PCR, respectively. Correlations between GCF LXA4 levels and treatment effect and periodontal pathogens were assessed. RESULTS LXA4 levels in GCF significantly increased after SRP (p < 0.05), but remained lower than those observed in healthy individuals (p < 0.05). Sites with lower baseline LXA4 concentrations were more likely to experience greater improvements in PD at 6 months post-SRP (area under the curve [AUC] = 0.792), and the improvements were positively correlated with the increase of LXA4 at these sites post-treatment (p < 0.05). Furthermore, more elevated LXA4 levels were observed in sites that became negative for Prevotella intermedia or Tannerella forsythia after SRP. CONCLUSION Baseline LXA4 in GCF has the potential to predict the site-specific response of severe periodontal lesions to SRP. The increase of LXA4 levels after treatment was positively correlated with clinical improvements and negatively correlated with the presence of Prevotella intermedia or Tannerella forsythia.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiying Liu
- State Key Laboratory of Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Yi Xu
- State Key Laboratory of Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Dingyu Duan
- State Key Laboratory of Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
9
|
Alsabri SG, Guedi GG, Najar M, Merimi M, Lavoie F, Grabs D, Fernandes J, Pelletier JP, Martel-Pelletier J, Benderdour M, Fahmi H. Epigenetic regulation of 15-lipoxygenase-1 expression in human chondrocytes by promoter methylation. Inflamm Res 2023; 72:2145-2153. [PMID: 37874359 DOI: 10.1007/s00011-023-01805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE AND DESIGN 15-Lipoxygenase-1 (15-LOX-1) catalyzes the biosynthesis of many anti-inflammatory and immunomodulatory lipid mediators and was reported to have protective properties in several inflammatory conditions, including osteoarthritis (OA). This study was designed to evaluate the expression of 15-LOX-1 in cartilage from normal donors and patients with OA, and to determine whether it is regulated by DNA methylation. METHODS Cartilage samples were obtained at autopsy from normal knee joints and from OA-affected joints at the time of total knee joint replacement surgery. The expression of 15-LOX-1 was evaluated using real-time polymerase chain reaction (PCR). The role of DNA methylation in 15-LOX-1 expression was assessed using the DNA methyltransferase inhibitor 5-Aza-2'-desoxycytidine (5-Aza-dC). The effect of CpG methylation on 15-LOX-1 promoter activity was evaluated using a CpG-free luciferase vector. The DNA methylation status of the 15-LOX-1 promoter was determined by pyrosequencing. RESULTS Expression of 15-LOX-1 was upregulated in OA compared to normal cartilage. Treatment with 5-Aza-dC increased 15-LOX-1 mRNA levels in chondrocytes, and in vitro methylation decreased 15-LOX-1 promoter activity. There was no difference in the methylation status of the 15-LOX-1 gene promoter between normal and OA cartilage. CONCLUSION The expression level of 15-LOX-1 was elevated in OA cartilage, which may be part of a repair process. The upregulation of 15-LOX-1 in OA cartilage was not associated with the methylation status of its promoter, suggesting that other mechanisms are involved in its upregulation.
Collapse
Affiliation(s)
- Sami G Alsabri
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Gadid G Guedi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Makram Merimi
- LBEES, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Frédéric Lavoie
- Departement of Orthopedic Surgery, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Detlev Grabs
- Department of Anatomy, Research Unit in Clinical and Functional Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Julio Fernandes
- Departement of Orthopedic Surgery, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec, H4J 1C5, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Mohamed Benderdour
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec, H4J 1C5, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada.
| |
Collapse
|
10
|
Leite CBG, Merkely G, Charles JF, Lattermann C. From Inflammation to Resolution: Specialized Pro-resolving Mediators in Posttraumatic Osteoarthritis. Curr Osteoporos Rep 2023; 21:758-770. [PMID: 37615856 DOI: 10.1007/s11914-023-00817-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE OF REVIEW To provide a comprehensive overview of the inflammatory response following anterior cruciate ligament (ACL) injury and to highlight the relationship between specialized pro-resolving mediators (SPMs) and inflammatory joint conditions, emphasizing the therapeutic potential of modulating the post-injury resolution of inflammation to prevent posttraumatic osteoarthritis (PTOA). RECENT FINDINGS The inflammatory response triggered after joint injuries such as ACL tear plays a critical role in posttraumatic osteoarthritis development. Inflammation is a necessary process for tissue healing, but unresolved or overactivated inflammation can lead to chronic diseases. SPMs, a family of lipid molecules derived from essential fatty acids, have emerged as active players in the resolution of inflammation and tissue repair. While their role in other inflammatory conditions has been studied, their relationship with PTOA remains underexplored. Proinflammatory mediators contribute to cartilage degradation and PTOA pathogenesis, while anti-inflammatory and pro-resolving mediators may have chondroprotective effects. Therapies aimed at suppressing inflammation in PTOA have limitations, as inflammation is crucial for tissue healing. SPMs offer a pro-resolving response without causing immunosuppression, making them a promising therapeutic option. The known onset date of PTOA makes it amenable to early interventions, and activating pro-resolving pathways may provide new possibilities for preventing PTOA progression. Harnessing the pro-resolving potential of SPMs may hold promise for preventing PTOA and restoring tissue homeostasis and function after joint injuries.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Gergo Merkely
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA.
| |
Collapse
|
11
|
Sahni V, Van Dyke TE. Immunomodulation of periodontitis with SPMs. FRONTIERS IN ORAL HEALTH 2023; 4:1288722. [PMID: 37927821 PMCID: PMC10623003 DOI: 10.3389/froh.2023.1288722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Inflammation is a critical component in the pathophysiology of numerous disease processes, with most therapeutic modalities focusing on its inhibition in order to achieve treatment outcomes. The resolution of inflammation is a separate, distinct pathway that entails the reversal of the inflammatory process to a state of homoeostasis rather than selective inhibition of specific components of the inflammatory cascade. The discovery of specialized pro-resolving mediators (SPMs) resulted in a paradigm shift in our understanding of disease etiopathology. Periodontal disease, traditionally considered as one of microbial etiology, is now understood to be an inflammation-driven process associated with dysbiosis of the oral microbiome that may be modulated with SPMs to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Vaibhav Sahni
- Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | - Thomas E. Van Dyke
- Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
- Faculty of Medicine, Harvard University, Boston, MA, United States
| |
Collapse
|
12
|
Rasquel-Oliveira FS, Silva MDVD, Martelossi-Cebinelli G, Fattori V, Casagrande R, Verri WA. Specialized Pro-Resolving Lipid Mediators: Endogenous Roles and Pharmacological Activities in Infections. Molecules 2023; 28:5032. [PMID: 37446699 DOI: 10.3390/molecules28135032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
During an infection, inflammation mobilizes immune cells to eliminate the pathogen and protect the host. However, inflammation can be detrimental when exacerbated and/or chronic. The resolution phase of the inflammatory process is actively orchestrated by the specialized pro-resolving lipid mediators (SPMs), generated from omega-3 and -6 polyunsaturated fatty acids (PUFAs) that bind to different G-protein coupled receptors to exert their activity. As immunoresolvents, SPMs regulate the influx of leukocytes to the inflammatory site, reduce cytokine and chemokine levels, promote bacterial clearance, inhibit the export of viral transcripts, enhance efferocytosis, stimulate tissue healing, and lower antibiotic requirements. Metabolomic studies have evaluated SPM levels in patients and animals during infection, and temporal regulation of SPMs seems to be essential to properly coordinate a response against the microorganism. In this review, we summarize the current knowledge on SPM biosynthesis and classifications, endogenous production profiles and their effects in animal models of bacterial, viral and parasitic infections.
Collapse
Affiliation(s)
- Fernanda S Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Matheus Deroco Veloso da Silva
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| |
Collapse
|
13
|
Li Y, Yuan X, Zheng Q, Mo F, Zhu S, Shen T, Yang W, Chen Q. The association of periodontal disease and oral health with hypertension, NHANES 2009-2018. BMC Public Health 2023; 23:1122. [PMID: 37308938 DOI: 10.1186/s12889-023-16012-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/29/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Hypertension is a worldwide public health problem. We sought to explore the interaction of oral health and smoking on hypertension, and periodontal disease and smoking on hypertension. METHODS We included 21,800 participants aged ≧ 30 years from the National Health and Nutrition Examination Survey (NHANES) 2009-2018. Information of oral health and periodontal disease were self-reported. Blood pressure was taken by trained personnel and/or physicians at mobile testing center. Multiple logistic regression was used to estimate the association between oral health, periodontal disease and the prevalence of hypertension. The effects of oral health and periodontal disease on hypertension under smoking status and age were analyzed by stratified and interaction analysis. RESULTS A total of 21,800 participants were investigated, including 11,017 (50.54%) in hypertensive group and 10,783 (49.46%) in non-hypertensive group. Compared with the excellent/very good of oral health, the multivariable-adjusted OR of good, fair, and poor were 1.13 (95% CI, 1.02-1.27), 1.30 (95% CI, 1.15-1.47), and 1.48 (95% CI, 1.22-1.79) (p for trend < 0.001) for hypertension, respectively. Compared without periodontal disease group, the multivariable-adjusted OR of periodontal disease for hypertension was 1.21 (95% CI ,1.09-1.35) (p for trend < 0.001). Furthermore, we found the interactions between periodontal disease and smoking, oral health and smoking, periodontal disease and age, oral health and age were p < 0.001. CONCLUSIONS An association between oral health and periodontal disease with the prevalence of hypertension was identified. There exists interactive effect of periodontal disease and smoking, oral health and smoking, periodontal disease and age, oral health and age on hypertension in American population over 30 years of age and older.
Collapse
Affiliation(s)
- Yuting Li
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment(2019GCZX012), Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong Province, China
| | - Xiaojing Yuan
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment(2019GCZX012), Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong Province, China
| | - Qiutong Zheng
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment(2019GCZX012), Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong Province, China
| | - Fengxin Mo
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment(2019GCZX012), Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong Province, China
| | - Shiheng Zhu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment(2019GCZX012), Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong Province, China
| | - Tianran Shen
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment(2019GCZX012), Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong Province, China
| | - Wenhan Yang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, China.
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment(2019GCZX012), Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong Province, China.
| | - Qingsong Chen
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, China.
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment(2019GCZX012), Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong Province, China.
| |
Collapse
|
14
|
Serhan CN, Chiang N. Resolvins and cysteinyl-containing pro-resolving mediators activate resolution of infectious inflammation and tissue regeneration. Prostaglandins Other Lipid Mediat 2023; 166:106718. [PMID: 36813255 PMCID: PMC10175197 DOI: 10.1016/j.prostaglandins.2023.106718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
This review is a synopsis of the main points from the opening presentation by the authors in the Resolution of Inflammation session at the 8th European Workshop on Lipid Mediators held at the Karolinska Institute, Stockholm, Sweden, June 29th, 2022. Specialized pro-resolving mediators (SPM) promote tissue regeneration, control infections and resolution of inflammation. These include resolvins, protectins, maresins and the newly identified conjugates in tissue regeneration (CTRs). We reported mechanisms of CTRs in activating primordial regeneration pathways in planaria using RNA-sequencing. Also, the 4S,5S-epoxy-resolvin intermediate in the biosynthesis of resolvin D3 and resolvin D4 was prepared by total organic synthesis. Human neutrophils convert this to resolvin D3 and resolvin D4, while human M2 macrophages transformed this labile epoxide intermediate to resolvin D4 and a novel cysteinyl-resolvin that is a potent isomer of RCTR1. The novel cysteinyl-resolvin significantly accelerates tissue regeneration with planaria and inhibits human granuloma formation.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Zhu Y, Tao C, Goh C, Shrestha A. Innovative biomaterials for the treatment of periodontal disease. FRONTIERS IN DENTAL MEDICINE 2023; 4:1163562. [PMID: 39916927 PMCID: PMC11797777 DOI: 10.3389/fdmed.2023.1163562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/03/2023] [Indexed: 02/09/2025] Open
Abstract
Periodontitis is a multifactorial disease that involves the destruction of hard and soft tissues surrounding the tooth. Routine periodontal treatment includes mechanical debridement (surgical and non-surgical) and the systemic administration of antibiotics. In contrast, severe and chronic periodontitis involves aggressive tissue destruction and bone resorption, and the damage is usually irreversible. In these severe cases, bone grafts, the delivery of growth hormones, and guided tissue regeneration can all be used to stimulate periodontal regeneration. However, these approaches do not result in consistent and predictable treatment outcomes. As a result, advanced biomaterials have evolved as an adjunctive approach to improve clinical performance. These novel biomaterials are designed to either prolong the release of antibacterial agents or osteogenic molecules, or to act as immunomodulators to promote healing. The first half of this review briefly summarizes the key immune cells and their underlying cellular pathways implicated in periodontitis. Advanced biomaterials designed to promote periodontal regeneration will be highlighted in the second half. Finally, the limitations of the current experimental design and the challenges of translational science will be discussed.
Collapse
Affiliation(s)
- Yi Zhu
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Chen Tao
- Stomatological Hospital of Chongqing, Key Laboratory of Oral Diseases and Biomaterial Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Cynthia Goh
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Dentistry, Mt. Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
16
|
Eltay EG, Van Dyke T. Resolution of inflammation in oral diseases. Pharmacol Ther 2023:108453. [PMID: 37244405 DOI: 10.1016/j.pharmthera.2023.108453] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
The resolution of inflammation is an essential endogenous process that protects host tissues from an exaggerated chronic inflammatory response. Multiple interactions between host cells and resident oral microbiome regulate the protective functions that lead to inflammation in the oral cavity. Failure of appropriate regulation of inflammation can lead to chronic inflammatory diseases that result from an imbalance between pro-inflammatory and pro-resolution mediators. Thus, failure of the host to resolve inflammation can be considered an essential pathological mechanism for progression from the late stages of acute inflammation to a chronic inflammatory response. Specialized pro-resolving mediators (SPMs), which are essential polyunsaturated fatty acid (PUFA)-derived autacoid mediators, aid in regulating the endogenous inflammation resolving process by stimulating immune cell-mediated clearance of apoptotic polymorphonuclear neutrophils, cellular debris, and microbes, restricting further neutrophil tissue infiltration, and counter-regulating pro-inflammatory cytokine production. The SPM superfamily contains four specialized lipid mediator families: lipoxins, resolvins, protectins, and maresins that can activate resolution pathways. Understanding the crosstalk between resolution signals in the tissue response to injury has therapeutic application potential for preventing, maintaining, and regenerating chronically damaged tissues. Here, we discuss the fundamental concepts of resolution as an active biochemical process, novel concepts demonstrating the role of resolution mediators in tissue regeneration in periodontal and pulpal diseases, and future directions for therapeutic applications with particular emphasis on periodontal therapy.
Collapse
Affiliation(s)
- Eiba G Eltay
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, United States; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Thomas Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, United States; Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, United States; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.
| |
Collapse
|
17
|
Harwood JL. Polyunsaturated Fatty Acids: Conversion to Lipid Mediators, Roles in Inflammatory Diseases and Dietary Sources. Int J Mol Sci 2023; 24:ijms24108838. [PMID: 37240183 DOI: 10.3390/ijms24108838] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important components of the diet of mammals. Their role was first established when the essential fatty acids (EFAs) linoleic acid and α-linolenic acid were discovered nearly a century ago. However, most of the biochemical and physiological actions of PUFAs rely on their conversion to 20C or 22C acids and subsequent metabolism to lipid mediators. As a generalisation, lipid mediators formed from n-6 PUFAs are pro-inflammatory while those from n-3 PUFAs are anti-inflammatory or neutral. Apart from the actions of the classic eicosanoids or docosanoids, many newly discovered compounds are described as Specialised Pro-resolving Mediators (SPMs) which have been proposed to have a role in resolving inflammatory conditions such as infections and preventing them from becoming chronic. In addition, a large group of molecules, termed isoprostanes, can be generated by free radical reactions and these too have powerful properties towards inflammation. The ultimate source of n-3 and n-6 PUFAs are photosynthetic organisms which contain Δ-12 and Δ-15 desaturases, which are almost exclusively absent from animals. Moreover, the EFAs consumed from plant food are in competition with each other for conversion to lipid mediators. Thus, the relative amounts of n-3 and n-6 PUFAs in the diet are important. Furthermore, the conversion of the EFAs to 20C and 22C PUFAs in mammals is rather poor. Thus, there has been much interest recently in the use of algae, many of which make substantial quantities of long-chain PUFAs or in manipulating oil crops to make such acids. This is especially important because fish oils, which are their main source in human diets, are becoming limited. In this review, the metabolic conversion of PUFAs into different lipid mediators is described. Then, the biological roles and molecular mechanisms of such mediators in inflammatory diseases are outlined. Finally, natural sources of PUFAs (including 20 or 22 carbon compounds) are detailed, as well as recent efforts to increase their production.
Collapse
Affiliation(s)
- John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
18
|
Evans CE, Zhang X, Machireddy N, Zhao YY. The Unexpected Protective Role of Thrombosis in Sepsis-Induced Inflammatory Lung Injury Via Endothelial Alox15. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.29.23287934. [PMID: 37034726 PMCID: PMC10081399 DOI: 10.1101/2023.03.29.23287934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
BACKGROUND Patients with sepsis-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) commonly suffer from severe pulmonary thrombosis, but clinical trials of anti-coagulant therapies in sepsis and ARDS patients have failed. ARDS patients with thrombocytopenia also exhibit increased mortality, and widespread pulmonary thrombosis is often seen in coronavirus disease 2019 (COVID-19) ARDS patients. METHODS Employing different amounts of microbeads to induce various levels of pulmonary thrombosis. Acute lung injury was induced by either lipopolysaccharide i.p. or cecal ligation and puncture. Endothelial cell (EC)-targeted nanoparticle coupled with CDH5 promoter was employed to delivery plasmid DNA expressing the CRISPR/Cas9 system for EC-specific gene knockout or expressing Alox15 for EC-specific overexpression. Additionally, thrombocytopenia was induced by genetic depletion of platelets using DTR Pf4Cre mice by breeding Pf4 Cre mice into the genetic background of DTR mice. RESULTS We show that while severe pulmonary thrombosis or thrombocytopenia augments sepsis-induced ALI, the induction of mild pulmonary thrombosis conversely reduces endothelial cell (EC) apoptosis, ALI, and mortality via sustained expression of endothelial arachidonate 15-lipoxygenase (Alox15). Endothelial Alox15 knockout via EC-targeted nanoparticle delivery of CRISPR/Cas9 plasmid DNA in adult mice abolished the protective impact of mild lung thrombosis. Conversely, overexpression of endothelial Alox15 inhibited the increases in ALI caused by severe pulmonary thrombosis. The clinical relevance of the findings was validated by the observation of reduced ALOX15-expressing ECs in lung autopsy samples of ARDS patients. Additionally, restoration of pulmonary thrombosis in thrombocytopenic mice also normalized endotoxemia-induced ALI. CONCLUSION We have demonstrated that moderate levels of thrombosis protect against sepsis-induced inflammatory lung injury via endothelial Alox15. Overexpression of Alox5 inhibits severe pulmonary thrombosis-induced increase of ALI. Thus, activation of ALOX15 signaling represents a promising therapeutic strategy for treatment of ARDS, especially in sub-populations of patients with thrombocytopenia and/or severe pulmonary thrombosis.
Collapse
|
19
|
Anti-Inflammatory Effect of Specialized Proresolving Lipid Mediators on Mesenchymal Stem Cells: An In Vitro Study. Cells 2022; 12:cells12010122. [PMID: 36611915 PMCID: PMC9818697 DOI: 10.3390/cells12010122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
An interconnection between tissue inflammation and regeneration has been established through the regulation of defense and repair mechanisms within diseased dental tissue triggered by the release of immune-resolvent mediators. To better our understanding of the role of specific pro-resolving mediators (SPMs) in inflamed human bone marrow-derived mesenchymal stem cells (hBMMSCs), we studied the effects of Resolvin E1 (RvE1) and Maresin 1 (MaR1) in lipopoly-saccharide (LPS) stimulated hBMMSCs. The hBMMSCs were divided into five different groups, each of which was treated with or without SPMs. Group-1: negative control (no LPS stimulation), Group-2: positive control (LPS-stimulated), Group-3: RvE1 100 nM + 1 μg/mL LPS, Group-4: MaR1 100 nM + 1 µg/mL LPS, and Group-5: RvE1 100 nM + MaR1100 nM + 1 μg/mL LPS. Cell proliferation, apoptosis, migration, colony formation, Western blotting, cytokine array, and LC/MS analysis were all performed on each group to determine the impact of SPMs on inflammatory stem cells. According to our data, RvE1 plus MaR1 effectively reduced inflammation in hBMMSCs. In particular, IL-4, 1L-10, and TGF-β1 activation and downregulation of RANKL, TNF-α, and IFN-γ compared to groups receiving single SPM were shown to be significantly different (Group 3 and 4). In addition, the LC/MS analysis revealed the differentially regulated peptide's role in immunological pathways that define the cellular state against inflammation. Inflamed hBMMSCs treated with a combination of Resolvin E1 (RvE1) and Maresin 1 (MaR1) promoted the highest inflammatory resolution compared to the other groups; this finding suggests a potential new approach of treating bacterially induced dental infections.
Collapse
|
20
|
Polymorphisms in genes expressed during amelogenesis and their association with dental caries: a case–control study. Clin Oral Investig 2022; 27:1681-1695. [PMID: 36422720 PMCID: PMC10102052 DOI: 10.1007/s00784-022-04794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
Abstract
Objectives
Dental caries is a widespread multifactorial disease, caused by the demineralization of hard dental tissues. Susceptibility to dental caries is partially genetically conditioned; this study was aimed at finding an association of selected single nucleotide polymorphisms (SNPs) in genes encoding proteins involved in amelogenesis with this disease in children.
Materials and methods
In this case–control study, 15 SNPs in ALOX15, AMBN, AMELX, KLK4, TFIP11, and TUFT1 genes were analyzed in 150 children with primary dentition and 611 children with permanent teeth with/without dental caries from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) cohort.
Results
Dental caries in primary dentition was associated with SNPs in AMELX (rs17878486) and KLK4 (rs198968, rs2242670), and dental caries in permanent dentition with SNPs in AMELX (rs17878486) and KLK4 (rs2235091, rs2242670, rs2978642), (p ≤ 0.05). No significant differences between cases and controls were observed in the allele or genotype frequencies of any of the selected SNPs in ALOX15, AMBN, TFIP11, and TUFT1 genes (p > 0.05). Some KLK4 haplotypes were associated with dental caries in permanent dentition (p ≤ 0.05).
Conclusions
Based on this study, we found that although the SNPs in AMELX and KLK4 are localized in intronic regions and their functional significance has not yet been determined, they are associated with susceptibility to dental caries in children.
Clinical relevance
AMELX and KLK4 variants could be considered in the risk assessment of dental caries, especially in permanent dentition, in the European Caucasian population.
Collapse
|
21
|
Tang X, Liu L, Miao Z, Zhang J, Cai X, Zhao BQ, Chen G, Schultzberg M, Zhao Y, Wang X. Resolution of inflammation is disturbed in acute ischemic stroke with diabetes mellitus and rescued by resolvin D2 treatment. Free Radic Biol Med 2022; 188:194-205. [PMID: 35750271 DOI: 10.1016/j.freeradbiomed.2022.06.231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Inflammation plays an important role in diabetes mellitus (DM)-related acute ischemic stroke (AIS). The mechanisms of un-resolved inflammation in DM-related AIS are not fully understood. Specialized pro-resolving mediators (SPMs) are key regulators that promote resolution of inflammation. We aimed to examine resolution function in patients with AIS complicated with DM, and explore potential treatment effects of one of the SPMs, resolvin D2 (RvD2) ex vivo and in vivo. METHODS Cultured human macrophages, which were derived from peripheral blood mononuclear cells of AIS and none-AIS patients with or without DM, were stimulated with oxidized-low density lipoprotein (ox-LDL). Levels of SPMs and inflammatory markers were analysed, and RvD2 treatment effects were evaluated in these cells. For experiments in vivo, challenges with high fat diet and low-dose streptozotocin (STZ) were used to induce DM in C57BL/6J mice. AIS model was established by permanent middle cerebral artery occlusion (pMCAO) followed by intra-cerebroventricular injection of RvD2. RESULTS Compared with macrophages of AIS patients without DM, the ratios of SPMs to leukotriene B4 (LTB4) were decreased in AIS patients with DM, accompanied by reduced expression of SPM synthesis enzyme, 15-lipoxygenase-1. Moreover, the levels of pro-inflammatory pathway markers were increased, and the macrophages were skewed to M1 polarization in AIS patients with DM. In mice, treatment with RvD2 ameliorated pMCAO-induced brain injury, neurological dysfunction, and inflammatory response. Furthermore, RvD2 rescued resolution of inflammation by promoting macrophage/microglia polarization to pro-resolving M2 phenotype ex vivo and in vivo. CONCLUSIONS Our data demonstrate resolution of inflammation is impaired by DM in AIS patients, implicating a novel mechanism of un-resolved inflammation in DM-related AIS. Furthermore, RvD2 promotes inflammation resolution in macrophages/microglia and protects DM-related AIS, and may thus serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Xin Tang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lan Liu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhijuan Miao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiawei Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaolong Cai
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bing-Qiao Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
22
|
Speckmann B, Kleinbölting J, Börner F, Jordan PM, Werz O, Pelzer S, tom Dieck H, Wagner T, Schön C. Synbiotic Compositions of Bacillus megaterium and Polyunsaturated Fatty Acid Salt Enable Self-Sufficient Production of Specialized Pro-Resolving Mediators. Nutrients 2022; 14:nu14112265. [PMID: 35684065 PMCID: PMC9182845 DOI: 10.3390/nu14112265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Specialized pro-resolving mediators (SPM) have emerged as crucial lipid mediators that confer the inflammation-resolving effects of omega-3 polyunsaturated fatty acids (n-3 PUFA). Importantly, SPM biosynthesis is dysfunctional in various conditions, which may explain the inconclusive efficacy data from n-3 PUFA interventions. To overcome the limitations of conventional n-3 PUFA supplementation strategies, we devised a composition enabling the self-sufficient production of SPM in vivo. Bacillus megaterium strains were fed highly bioavailable n-3 PUFA, followed by metabololipidomics analysis and bioinformatic assessment of the microbial genomes. All 48 tested Bacillus megaterium strains fed with the n-3 PUFA formulation produced a broad range of SPM and precursors thereof in a strain-specific manner, which may be explained by the CYP102A1 gene polymorphisms that we detected. A pilot study was performed to test if a synbiotic Bacillus megaterium/n-3 PUFA formulation increases SPM levels in vivo. Supplementation with a synbiotic capsule product led to significantly increased plasma levels of hydroxy-eicosapentaenoic acids (5-HEPE, 15-HEPE, 18-HEPE) and hydroxy-docosahexaenoic acids (4-HDHA, 7-HDHA) as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in healthy humans. To the best of our knowledge, we report here for the first time the development and in vivo application of a self-sufficient SPM-producing formulation. Further investigations are warranted to confirm and expand these findings, which may create a new class of n-3 PUFA interventions targeting inflammation resolution.
Collapse
Affiliation(s)
- Bodo Speckmann
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (B.S.); (J.K.); (S.P.); (H.t.D.)
| | - Jessica Kleinbölting
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (B.S.); (J.K.); (S.P.); (H.t.D.)
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; (F.B.); (P.M.J.); (O.W.)
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; (F.B.); (P.M.J.); (O.W.)
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; (F.B.); (P.M.J.); (O.W.)
| | - Stefan Pelzer
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (B.S.); (J.K.); (S.P.); (H.t.D.)
| | - Heike tom Dieck
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (B.S.); (J.K.); (S.P.); (H.t.D.)
| | - Tanja Wagner
- BioTeSys GmbH, Schelztorstraße 54-56, 73728 Esslingen, Germany;
| | - Christiane Schön
- BioTeSys GmbH, Schelztorstraße 54-56, 73728 Esslingen, Germany;
- Correspondence:
| |
Collapse
|
23
|
Papathanasiou E, Scott AR, Trotman CA, Beale C, Price LL, Huggins GS, Zhang Y, Georgakoudi I, Van Dyke TE. Specialized Pro-Resolving Mediators Reduce Scarring After Cleft Lip Repair. Front Immunol 2022; 13:871200. [PMID: 35572588 PMCID: PMC9094441 DOI: 10.3389/fimmu.2022.871200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Residual scarring after cleft lip repair surgery remains a challenge for both surgeons and patients and novel therapeutics are critically needed. The objective of this preclinical experimental study was to evaluate the impact of the methyl-ester of pro-resolving lipid mediator lipoxin A4 (LXA4-ME) on scarring in a novel rabbit model of cleft lip repair. Methods A defect of the lip was surgically created and repaired in eight six-week old New Zealand white rabbits to simulate human cleft lip scars. Rabbits were randomly assigned to topical application of PBS (control) or 1 ug of LXA4-ME (treatment). 42 days post surgery all animals were euthanized. Photographs of the cleft lip area defect and histologic specimens were evaluated. Multiple scar assessment scales were used to compare scarring. Results Animals treated with LXA4-ME exhibited lower Visual Scar Assessment scores compared to animals treated with PBS. Treatment with LXA4-ME resulted in a significant reduction of inflammatory cell infiltrate and density of collagen fibers. Control animals showed reduced 2D directional variance (orientation) of collagen fibers compared to animals treated with LXA4-ME demonstrating thicker and more parallel collagen fibers, consistent with scar tissue. Conclusions These data suggest that LXA4-ME limits scarring after cleft lip repair and improves wound healing outcomes in rabbits favoring the resolution of inflammation. Further studies are needed to explore the mechanisms that underlie the positive therapeutic impact of LXA4-ME on scarring to set the stage for future human clinical trials of LXA4-ME for scar prevention or treatment after cleft lip repair.
Collapse
Affiliation(s)
- Evangelos Papathanasiou
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, United States
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, United States
| | - Andrew R. Scott
- Department of Otolaryngology – Head & Neck Surgery, Tufts University School of Medicine, Boston, MA, United States
| | - Carroll Ann Trotman
- College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Corinna Beale
- Tufts Comparative Medicine Services, Tufts University, Boston, MA, United States
| | - Lori Lyn Price
- Tufts Clinical and Translational Science Institute, Tufts University, Boston, MA, United States
- Institute of Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, United States
| | - Gordon S. Huggins
- Molecular Cardiology Research Institute and Cardiology Division, Tufts Medical Center and Tufts University School of Medicine, Boston, MA, United States
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| | - Thomas E. Van Dyke
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, United States
- Department of Oral Medicine, Infection and Immunity, Faculty of Medicine, Harvard University, Boston, MA, United States
| |
Collapse
|
24
|
Schebb NH, Kühn H, Kahnt AS, Rund KM, O’Donnell VB, Flamand N, Peters-Golden M, Jakobsson PJ, Weylandt KH, Rohwer N, Murphy RC, Geisslinger G, FitzGerald GA, Hanson J, Dahlgren C, Alnouri MW, Offermanns S, Steinhilber D. Formation, Signaling and Occurrence of Specialized Pro-Resolving Lipid Mediators-What is the Evidence so far? Front Pharmacol 2022; 13:838782. [PMID: 35308198 PMCID: PMC8924552 DOI: 10.3389/fphar.2022.838782] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Formation of specialized pro-resolving lipid mediators (SPMs) such as lipoxins or resolvins usually involves arachidonic acid 5-lipoxygenase (5-LO, ALOX5) and different types of arachidonic acid 12- and 15-lipoxygenating paralogues (15-LO1, ALOX15; 15-LO2, ALOX15B; 12-LO, ALOX12). Typically, SPMs are thought to be formed via consecutive steps of oxidation of polyenoic fatty acids such as arachidonic acid, eicosapentaenoic acid or docosahexaenoic acid. One hallmark of SPM formation is that reported levels of these lipid mediators are much lower than typical pro-inflammatory mediators including the monohydroxylated fatty acid derivatives (e.g., 5-HETE), leukotrienes or certain cyclooxygenase-derived prostaglandins. Thus, reliable detection and quantification of these metabolites is challenging. This paper is aimed at critically evaluating i) the proposed biosynthetic pathways of SPM formation, ii) the current knowledge on SPM receptors and their signaling cascades and iii) the analytical methods used to quantify these pro-resolving mediators in the context of their instability and their low concentrations. Based on current literature it can be concluded that i) there is at most, a low biosynthetic capacity for SPMs in human leukocytes. ii) The identity and the signaling of the proposed G-protein-coupled SPM receptors have not been supported by studies in knock-out mice and remain to be validated. iii) In humans, SPM levels were neither related to dietary supplementation with their ω-3 polyunsaturated fatty acid precursors nor were they formed during the resolution phase of an evoked inflammatory response. iv) The reported low SPM levels cannot be reliably quantified by means of the most commonly reported methodology. Overall, these questions regarding formation, signaling and occurrence of SPMs challenge their role as endogenous mediators of the resolution of inflammation.
Collapse
Affiliation(s)
- Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Hartmut Kühn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Astrid S. Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Katharina M. Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Valerie B. O’Donnell
- School of Medicine, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicolas Flamand
- Département de Médecine, Faculté de Médecine, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karsten H. Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Ruppin General Hospital, Brandenburg Medical School, Neuruppin, Germany
| | - Nadine Rohwer
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Ruppin General Hospital, Brandenburg Medical School, Neuruppin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Robert C. Murphy
- Department of Pharmacology, University of Colorado-Denver, Aurora, CO, United States
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital of Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, CIMD, Frankfurt, Germany
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
- Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mohamad Wessam Alnouri
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, CIMD, Frankfurt, Germany
| |
Collapse
|
25
|
Elgreu T, Lee S, Wen S, Elghadafi R, Tangkham T, Ma Y, Liu B, Dibart S, Tang X. The pathogenic mechanism of oral bacteria and treatment with inhibitors. Clin Exp Dent Res 2022; 8:439-448. [PMID: 34626163 PMCID: PMC8874083 DOI: 10.1002/cre2.499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES The objective of this study was to introduce the evidence obtained through extensive research that periodontitis increases risk of many systemic diseases. METHOD Analysis of some oral bacteria (P. gingivalis, T. denticola, T. forsythia, A. actinomycetemcomitans, and F. nucleatum) and its related treatments and mediators by the specific methods (western blot, ELISA, etc). RESULTS This article reviews in detail the evidence obtained through extensive research that periodontitis increases risk of many systemic diseases, including cardiovascular disease, rheumatoid arthritis, and Alzheimer's disease. These diseases are known to be associated with some certain specific gram-negative bacteria as periodontal pathogens, which induce inflammation and related diseases through TLR receptors, kinases, transcriptional factors and other cytokines. We also reviewed the latest research for inhibitors against inflammation and related diseases that have potential to be further applied clinically. In addition, based on a large amount of research evidence, we draw two tables about the mechanism of disease caused by periodontal bacteria, so that readers can easily search and analyze these research results. DISCUSSION This review details how the periodontal bacteria and their virulence factors can trigger host immune defense and induce many systemic diseases via inflammation and invasion. This Review also addressed the latest research around inhibitors against inflammation.
Collapse
Affiliation(s)
- Thuraya Elgreu
- Henry M. Goldman School of Dental Medicine, Department of PeriodontologyBoston UniversityBostonMassachusettsUSA
| | - Sean Lee
- Henry M. Goldman School of Dental Medicine, Department of PeriodontologyBoston UniversityBostonMassachusettsUSA
| | - Sabrina Wen
- Department of Corporate Finance and AccountingBentley UniversityWalthamMassachusettsUSA
| | - Radwa Elghadafi
- Henry M. Goldman School of Dental Medicine, Department of PeriodontologyBoston UniversityBostonMassachusettsUSA
| | - Thanarut Tangkham
- Henry M. Goldman School of Dental Medicine, Department of PeriodontologyBoston UniversityBostonMassachusettsUSA
| | - Yun Ma
- Henry M. Goldman School of Dental Medicine, Department of PeriodontologyBoston UniversityBostonMassachusettsUSA
| | - Bing Liu
- Henry M. Goldman School of Dental Medicine, Department of General DentistryBoston UniversityBostonMassachusettsUSA
| | - Serge Dibart
- Henry M. Goldman School of Dental Medicine, Department of PeriodontologyBoston UniversityBostonMassachusettsUSA
| | - Xiaoren Tang
- Henry M. Goldman School of Dental Medicine, Department of PeriodontologyBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
26
|
Golovanov A, Zhuravlev A, Cruz A, Aksenov V, Shafiullina R, Kakularam KR, Lluch JM, Kuhn H, González-Lafont À, Ivanov I. N-Substituted 5-(1H-Indol-2-yl)-2-methoxyanilines Are Allosteric Inhibitors of the Linoleate Oxygenase Activity of Selected Mammalian ALOX15 Orthologs: Mechanism of Action. J Med Chem 2022; 65:1979-1995. [DOI: 10.1021/acs.jmedchem.1c01563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alexey Golovanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA─Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| | - Alexander Zhuravlev
- Lomonosov Institute of Fine Chemical Technologies, MIREA─Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| | - Alejandro Cruz
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Vladislav Aksenov
- Lomonosov Institute of Fine Chemical Technologies, MIREA─Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| | - Rania Shafiullina
- Lomonosov Institute of Fine Chemical Technologies, MIREA─Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| | - Kumar R. Kakularam
- Department of Biochemistry, Charite─University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - José M. Lluch
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Hartmut Kuhn
- Department of Biochemistry, Charite─University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Àngels González-Lafont
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA─Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| |
Collapse
|
27
|
Geng Y, Lu C, Jin G, Li S, Cui Y, Han C, Shi W, Bao Y. Study on the mechanism of Salvia miltiorrhiza polysaccharides in relieving liver injury of broilers induced by florfenicol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3372-3385. [PMID: 34389946 DOI: 10.1007/s11356-021-15687-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
In order to explore the transcriptomics and proteomics targets and pathways of Salvia miltiorrhiza polysaccharides (SMPs) alleviating florfenicol (FFC)-induced liver injury in broilers, 60 1-day-old broilers were randomly divided into 3 groups: control group ( GP1) was fed tap water, FFC model (GP2) was given tap water containing FFC 0.15 g/L, and SMPs treatment group (GP3) was given tap water containing FFC 0.15 g/L and SMPs 5 g/L. Starting from 1 day of age, the drug was administered continuously for 5 days. On the 6th day, blood was collected from the heart and the liver was taken. Then 3 chickens were randomly taken from each group, and their liver tissues were aseptically removed and placed in an enzyme-free tube. Using high-throughput mRNA sequencing and TMT-labeled quantitative proteomics technology, the transcriptome and proteome of the three groups of broiler liver were analyzed, respectively. The results of the study showed that the liver tissue morphology of the chicks in the GP1 and GP3 groups was complete and there were no obvious necrotic cells in the liver cells. The liver tissue cells in the GP2 group showed obvious damage, the intercellular space increased, and the liver cells showed extensive vacuolation and steatosis. Compared with the GP1 group, the daily gain of chicks in the GP2 group was significantly reduced (P < 0.0 5 or P < 0.01). Compared with the GP2 group, the GP3 group significantly increased the daily gain of chicks (P <0.0 5 or P <0.01). Compared with the GP1 group, the serum levels of ALT, AST, liver LPO, ROS, and IL-6 in the GP2 group were significantly increased (P < 0.0 5 or P < 0.01), and the contents of T-AOC, GSH-PX, IL-4, and IL-10 in the liver were significantly decreased (P < 0.0 5 or P < 0.01). After SMPs treatment, the serum levels of ALT, AST, liver LPO, ROS, and IL-6 were significantly reduced (P < 0.0 5 or P < 0.01), and the contents of T-AOC, GSH-PX, IL-4, and IL-10 in the liver were significantly increased (P < 0.0 5 or P < 0.01). There were 380 mRNA and 178 protein differentially expressed between GP2 group and GP3 group. Part of DEGs was randomly selected for QPCR verification, and the expression results of randomly selected FABP1, SLC16A1, GPT2, AACS, and other genes were verified by QPCR to be consistent with the sequencing results, which demonstrated the accuracy of transcriptation-associated proteomics sequencing. The results showed that SMPs could alleviate the oxidative stress and inflammatory damage caused by FFC in the liver of chicken and restore the normal function of the liver. SMPs may alleviate the liver damage caused by FFC by regulating the drug metabolism-cytochrome P450, PPAR signaling pathway, MAPK signaling pathway, glutathione metabolism, and other pathways.
Collapse
Affiliation(s)
- Yumeng Geng
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, China
| | - Chunyu Lu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, China
| | - Guozhong Jin
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, China
| | - Shuying Li
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, China
| | - Yuqing Cui
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, China
| | - Chao Han
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, China.
- Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China.
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China
| |
Collapse
|
28
|
Assessment of Polyunsaturated Fatty Acids on COVID-19-Associated Risk Reduction. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 32:50-64. [PMID: 34876760 PMCID: PMC8638948 DOI: 10.1007/s43450-021-00213-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Pooled evidence conveys the association between polyunsaturated fatty acids and infectious disease. SARS-CoV-2, an enveloped mRNA virus, was also reported to interact with polyunsaturated fatty acids. The present review explores the possible mode of action, immunology, and consequences of these polyunsaturated fatty acids during the viral infection. Polyunsaturated fatty acids control protein complex formation in lipid rafts associated with the function of two SARS-CoV-2 entry gateways: angiotensin-converting enzyme-2 and cellular protease transmembrane protease serine-2. Therefore, the viral entry can be mitigated by modulating polyunsaturated fatty acids contents in the body. α-Linolenic acid is the precursor of two clinically important eicosanoids eicosapentaenoic acid and docosahexaenoic acid, the members of ω-3 fats. Resolvins, protectins, and maresins derived from docosahexaenoic acid suppress inflammation and augment phagocytosis that lessens microbial loads. Prostaglandins of 3 series, leukotrienes of 5 series, and thromboxane A3 from eicosapentaenoic acid exhibit anti-inflammatory, vasodilatory, and platelet anti-aggregatory effects that may also contribute to the control of pre-existing pulmonary and cardiac diseases. In contrast, ω-6 linoleic acid-derived arachidonic acid increases the prostaglandin G2, lipoxins A4 and B4, and thromboxane A2. These cytokines are pro-inflammatory and enhance the immune response but aggravate the COVID-19 severity. Therefore, the rational intake of ω-3-enriched foods or supplements might lessen the complications in COVID-19 and might be a preventive measure. Graphic Abstract
Collapse
|
29
|
Cai W, Marouf N, Said KN, Tamimi F. Nature of the Interplay Between Periodontal Diseases and COVID-19. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.735126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is mostly a mild condition, however, in some patients, it could progress into a severe and even fatal disease. Recent studies have shown that COVID-19 infection and severity could be associated with the presence of periodontitis, one of the most prevalent chronic diseases. This association could be explained by the fact that periodontitis and COVID-19 share some common risk factors that included chronic diseases, such as diabetes and hypertension as well as conditions such as age, sex, and genetic variants. Another possible explanation could be the systemic inflammation and the aspiration of periodontopathogens seen in patients with periodontitis, which could have a synergism with the virus or compromise the reaction of the body against COVID-19. This narrative review explores the nature of these associations, the evidence behind them, and their implications.
Collapse
|
30
|
Vaernewyck V, Arzi B, Sanders NN, Cox E, Devriendt B. Mucosal Vaccination Against Periodontal Disease: Current Status and Opportunities. Front Immunol 2021; 12:768397. [PMID: 34925337 PMCID: PMC8675580 DOI: 10.3389/fimmu.2021.768397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Approximately 9 out of 10 adults have some form of periodontal disease, an infection-induced inflammatory disease of the tooth-supporting tissues. The initial form, gingivitis, often remains asymptomatic, but this can evolve into periodontitis, which is typically associated with halitosis, oral pain or discomfort, and tooth loss. Furthermore, periodontitis may contribute to systemic disorders like cardiovascular disease and type 2 diabetes mellitus. Control options remain nonspecific, time-consuming, and costly; largely relying on the removal of dental plaque and calculus by mechanical debridement. However, while dental plaque bacteria trigger periodontal disease, it is the host-specific inflammatory response that acts as main driver of tissue destruction and disease progression. Therefore, periodontal disease control should aim to alter the host's inflammatory response as well as to reduce the bacterial triggers. Vaccines may provide a potent adjunct to mechanical debridement for periodontal disease prevention and treatment. However, the immunopathogenic complexity and polymicrobial aspect of PD appear to complicate the development of periodontal vaccines. Moreover, a successful periodontal vaccine should induce protective immunity in the oral cavity, which proves difficult with traditional vaccination methods. Recent advances in mucosal vaccination may bridge the gap in periodontal vaccine development. In this review, we offer a comprehensive overview of mucosal vaccination strategies to induce protective immunity in the oral cavity for periodontal disease control. Furthermore, we highlight the need for additional research with appropriate and clinically relevant animal models. Finally, we discuss several opportunities in periodontal vaccine development such as multivalency, vaccine formulations, and delivery systems.
Collapse
Affiliation(s)
- Victor Vaernewyck
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, United States
- Veterinary Institute for Regenerative Cures (VIRC) School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Niek N. Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
31
|
Ko KI, Sculean A, Graves DT. Diabetic wound healing in soft and hard oral tissues. Transl Res 2021; 236:72-86. [PMID: 33992825 PMCID: PMC8554709 DOI: 10.1016/j.trsl.2021.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
There is significant interest in understanding the cellular mechanisms responsible for expedited healing response in various oral tissues and how they are impacted by systemic diseases. Depending upon the types of oral tissue, wound healing may occur by predominantly re-eptihelialization, by re-epithelialization with substantial new connective tissue formation, or by a a combination of both plus new bone formation. As a result, the cells involved differ and are impacted by systemic diaseses in various ways. Diabetes mellitus is a prevalent metabolic disorder that impairs barrier function and healing responses throughout the human body. In the oral cavity, diabetes is a known risk factor for exacerbated periodontal disease and delayed wound healing, which includes both soft and hard tissue components. Here, we review the mechanisms of diabetic oral wound healing, particularly on impaired keratinocyte proliferation and migration, altered level of inflammation, and reduced formation of new connective tissue and bone. In particular, diabetes inhibits the expression of mitogenic growth factors whereas that of pro-inflammatory cytokines is elevated through epigenetic mechanisms. Moreover, hyperglycemia and oxidative stress induced by diabetes prevents the expansion of mesengenic cells that are involved in both soft and hard tissue oral wounds. A better understanding of how diabetes influences the healing processes is crucial for the prevention and treatment of diabetes-associated oral complications.
Collapse
Affiliation(s)
- Kang I Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, 19104
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, 19104.
| |
Collapse
|
32
|
Haas AN, Furlaneto F, Gaio EJ, Gomes SC, Palioto DB, Castilho RM, Sanz M, Messora MR. New tendencies in non-surgical periodontal therapy. Braz Oral Res 2021; 35:e095. [PMID: 34586209 DOI: 10.1590/1807-3107bor-2021.vol35.0095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review was to update the evidence of new approaches to non-surgical therapy (NSPT) in the treatment of periodontitis. Preclinical and clinical studies addressing the benefits of adjunctive antimicrobial photodynamic therapy, probiotics, prebiotics/synbiotics, statins, pro-resolving mediators, omega-6 and -3, ozone, and epigenetic therapy were scrutinized and discussed. Currently, the outcomes of these nine new approaches, when compared with subgingival debridement alone, did not demonstrate a significant added clinical benefit. However, some of these new alternative interventions may have the potential to improve the outcomes of NSPT alone. Future evidence based on randomized controlled clinical trials would help clinicians and patients in the selection of different adjunctive therapies.
Collapse
Affiliation(s)
- Alex Nogueira Haas
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Flavia Furlaneto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Eduardo José Gaio
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Sabrina Carvalho Gomes
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Daniela Bazan Palioto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Rogerio Moraes Castilho
- Michigan University, School of Dentistry, Department of Periodontics and Oral Medicine, Ann Arbor, MI, USA
| | - Mariano Sanz
- Complutense University of Madrid, Etiology and Therapy of Periodontal and Peri-implant Diseases Research Group, Madrid, Spain
| | - Michel Reis Messora
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| |
Collapse
|
33
|
Zaninelli TH, Fattori V, Verri WA. Harnessing Inflammation Resolution in Arthritis: Current Understanding of Specialized Pro-resolving Lipid Mediators' Contribution to Arthritis Physiopathology and Future Perspectives. Front Physiol 2021; 12:729134. [PMID: 34539449 PMCID: PMC8440959 DOI: 10.3389/fphys.2021.729134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
The concept behind the resolution of inflammation has changed in the past decades from a passive to an active process, which reflects in novel avenues to understand and control inflammation-driven diseases. The time-dependent and active process of resolution phase is orchestrated by the endogenous biosynthesis of specialized pro-resolving lipid mediators (SPMs). Inflammation and its resolution are two forces in rheumatic diseases that affect millions of people worldwide with pain as the most common experienced symptom. The pathophysiological role of SPMs in arthritis has been demonstrated in pre-clinical and clinical studies (no clinical trials yet), which highlight their active orchestration of disease control. The endogenous roles of SPMs also give rise to the opportunity of envisaging these molecules as novel candidates to improve the life quality of rhematic diseases patients. Herein, we discuss the current understanding of SPMs endogenous roles in arthritis as pro-resolutive, protective, and immunoresolvent lipids.
Collapse
Affiliation(s)
- Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| |
Collapse
|
34
|
Elashiry M, Morandini AC, Cornelius Timothius CJ, Ghaly M, Cutler CW. Selective Antimicrobial Therapies for Periodontitis: Win the "Battle and the War". Int J Mol Sci 2021; 22:ijms22126459. [PMID: 34208697 PMCID: PMC8235535 DOI: 10.3390/ijms22126459] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial therapies for periodontitis (PD) have long focused on non-selective and direct approaches. Professional cleaning of the subgingival biofilm by instrumentation of dental root surfaces, known as scaling and root planning (SRP), is the mainstay of periodontal therapy and is indisputably effective. Non-physical approaches used as adjuncts to SRP, such as chemical and biological agents, will be the focus of this review. In this regard, traditional agents such as oral antiseptics and antibiotics, delivered either locally or systemically, were briefly reviewed as a backdrop. While generally effective in winning the “battle” against PD in the short term, by reducing its signs and symptoms, patients receiving such therapies are more susceptible to recurrence of PD. Moreover, the long-term consequences of such therapies are still in question. In particular, concern about chronic use of systemic antibiotics and their influence on the oral and gut microbiota is warranted, considering antibiotic resistance plasmids, and potential transfer between oral and non-oral microbes. In the interest of winning the “battle and the war”, new more selective and targeted antimicrobials and biologics for PD are being studied. These are principally indirect, blocking pathways involved in bacterial colonization, nutrient acquisition, inflammation or cellular invasion without directly killing the pathogens. This review will focus on current and prospective antimicrobial therapies for PD, emphasizing therapies that act indirectly on the microbiota, with clearly defined cellular and molecular targets.
Collapse
|
35
|
Specialized Pro-Resolving Lipid Mediators in Neonatal Cardiovascular Physiology and Diseases. Antioxidants (Basel) 2021; 10:antiox10060933. [PMID: 34201378 PMCID: PMC8229722 DOI: 10.3390/antiox10060933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease remains a leading cause of mortality worldwide. Unresolved inflammation plays a critical role in cardiovascular diseases development. Specialized Pro-Resolving Mediators (SPMs), derived from long chain polyunsaturated fatty acids (LCPUFAs), enhances the host defense, by resolving the inflammation and tissue repair. In addition, SPMs also have anti-inflammatory properties. These physiological effects depend on the availability of LCPUFAs precursors and cellular metabolic balance. Most of the studies have focused on the impact of SPMs in adult cardiovascular health and diseases. In this review, we discuss LCPUFAs metabolism, SPMs, and their potential effect on cardiovascular health and diseases primarily focusing in neonates. A better understanding of the role of these SPMs in cardiovascular health and diseases in neonates could lead to the development of novel therapeutic approaches in cardiovascular dysfunction.
Collapse
|
36
|
Chu Y, Liu Y, Guo N, Lou Q, Wang L, Huang W, Wu L, Wang J, Zhang M, Yin F, Gao Y, Yang Y. Association between ALOX15 gene polymorphism and brick-tea type skeletal fluorosis in Tibetans, Kazaks and Han, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:421-432. [PMID: 31565963 DOI: 10.1080/09603123.2019.1666972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
To evaluate the association between ALOX15 gene polymorphism and skeletal fluorosis (SF), a case-control study was conducted. A total of 1023 individuals, including 308 Tibetans, 290 Kazaks and 425 Han, were enrolled in this study, in which cases and controls were 278 and 745, respectively. SF was diagnosed by X-ray absorptiometry. SNPs were genotyped using the Sequenom Mass ARRAY system. The genotypes of ALOX15 rs7220870, rs2664593 and rs1107852 were not associated with the risk of SF. After reconstructing the haplotype of rs7220870 and rs11078528, the risk effect of haplotype CA was found in Han participants aged ≤45 years or with moderate fluoride intake. Diplotype of CC/CC had a protective effect on SF risk in Han participants; whereas, CA/CC diplotype showed a risk effect on SF risk in participants aged ≥65; Our results provide the first evidence of an association between ALOX15 gene polymorphism and SF risk in Han participants.Abbreviation: SF: Skeletal fluorosis; SNP: Single Nucleotide polymorphism.
Collapse
Affiliation(s)
- Yanru Chu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Limei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Liaowei Wu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jian Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Fanshuo Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
37
|
Bielawiec P, Harasim-Symbor E, Sztolsztener K, Konstantynowicz-Nowicka K, Chabowski A. Attenuation of Oxidative Stress and Inflammatory Response by Chronic Cannabidiol Administration Is Associated with Improved n-6/n-3 PUFA Ratio in the White and Red Skeletal Muscle in a Rat Model of High-Fat Diet-Induced Obesity. Nutrients 2021; 13:nu13051603. [PMID: 34064937 PMCID: PMC8151284 DOI: 10.3390/nu13051603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 12/28/2022] Open
Abstract
The consumption of fatty acids has increased drastically, exceeding the nutritional requirements of an individual and leading to numerous metabolic disorders. Recent data indicate a growing interest in using cannabidiol (CBD) as an agent with beneficial effects in the treatment of obesity. Therefore, our aim was to investigate the influence of chronic CBD administration on the n-6/n-3 polyunsaturated fatty acids (PUFAs) ratio in different lipid fractions, inflammatory pathway and oxidative stress parameters in the white and red gastrocnemius muscle. All the designed experiments were performed on Wistar rats fed a high-fat diet (HFD) or a standard rodent diet for seven weeks and subsequently injected with CBD (10 mg/kg once daily for two weeks) or its vehicle. Lipid content and oxidative stress parameters were assessed using gas-liquid chromatography (GLC), colorimetric and/or immunoenzymatic methods, respectively. The total expression of proteins of an inflammatory pathway was measured by Western blotting. Our results revealed that fatty acids (FAs) oversupply is associated with an increasing oxidative stress and inflammatory response, which results in an excessive accumulation of FAs, especially of n-6 PUFAs, in skeletal muscles. We showed that CBD significantly improved the n-6/n-3 PUFA ratio and shifted the equilibrium towards anti-inflammatory n-3 PUFAs, particularly in the red gastrocnemius muscle. Additionally, CBD prevented generation of lipid peroxidation products and attenuated inflammatory response in both types of skeletal muscle. In summary, the results mentioned above indicate that CBD presents potential therapeutic properties with respect to the treatment of obesity and related disturbances.
Collapse
|
38
|
Jaén RI, Sánchez-García S, Fernández-Velasco M, Boscá L, Prieto P. Resolution-Based Therapies: The Potential of Lipoxins to Treat Human Diseases. Front Immunol 2021; 12:658840. [PMID: 33968061 PMCID: PMC8102821 DOI: 10.3389/fimmu.2021.658840] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammation is an a physiological response instead an essential response of the organism to injury and its adequate resolution is essential to restore homeostasis. However, defective resolution can be the precursor of severe forms of chronic inflammation and fibrosis. Nowadays, it is known that an excessive inflammatory response underlies the most prevalent human pathologies worldwide. Therefore, great biomedical research efforts have been driven toward discovering new strategies to promote the resolution of inflammation with fewer side-effects and more specificity than the available anti-inflammatory treatments. In this line, the use of endogenous specialized pro-resolving mediators (SPMs) has gained a prominent interest. Among the different SPMs described, lipoxins stand out as one of the most studied and their deficiency has been widely associated with a wide range of pathologies. In this review, we examined the current knowledge on the therapeutic potential of lipoxins to treat diseases characterized by a severe inflammatory background affecting main physiological systems, paying special attention to the signaling pathways involved. Altogether, we provide an updated overview of the evidence suggesting that increasing endogenously generated lipoxins may emerge as a new therapeutic approach to prevent and treat many of the most prevalent diseases underpinned by an increased inflammatory response.
Collapse
Affiliation(s)
- Rafael I. Jaén
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | | | - María Fernández-Velasco
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de investigación del Hospital la Paz, IdiPaz, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Prieto
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
39
|
Yamamoto M, Aizawa R. Maintaining a protective state for human periodontal tissue. Periodontol 2000 2021; 86:142-156. [PMID: 33690927 DOI: 10.1111/prd.12367] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Periodontitis, caused by infection with periodontal pathogens, is primarily characterized by inflammatory bone resorption and destruction of connective tissue. Simply describing periodontitis as a specific bacterial infection cannot completely explain the various periodontal tissue destruction patterns observed. Periodontal tissue damage is thought to be caused by various factors. In recent years, research goals for periodontal pathogens have shifted from searching for specific pathogens to investigating mechanisms that damage periodontal tissues. Bacteria interact directly with the host in several ways, influencing expression and activity of molecules that evade host defenses, and destroying local tissues and inhibiting their repair. The host's innate and acquired immune systems are important defense mechanisms that protect periodontal tissues from attack and invasion of periodontal pathogens, thus preventing infection. Innate and acquired immunity have evolved to confront the microbial challenge, forming a seamless defense network in periodontal tissues. In the innate immune response, host cells quickly detect, via specialized receptors, macromolecules and nucleic acids present on bacterial cell walls, and this triggers a protective, inflammatory response. The work of this subsystem of host immunity is performed mainly by phagocytes, beta-defensin, and the complement system. In addition, the first line of defense in oral innate immunity is the junctional epithelium, which acts as a physical barrier to the entry of oral bacteria and other nonself substances. In the presence of a normal flora, junctional epithelial cells differentiate actively and proliferate apically, with concomitant increase in chemotactic factor expression recruiting neutrophils. These immune cells play an important role in maintaining homeostasis and the protective state in periodontal tissue because they eliminate unwanted bacteria over time. Previous studies indicate a mechanism for attracting immune cells to periodontal tissue with the purpose of maintaining a protective state; although this mechanism can function without bacteria, it is enhanced by the normal flora. A better understanding of the relationship between the protective state and its disruption in periodontal disease could lead to the development of new treatment strategies for periodontal disease.
Collapse
Affiliation(s)
- Matsuo Yamamoto
- Department of Periodontology, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryo Aizawa
- Department of Periodontology, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
40
|
Önal MA, Fentoğlu Ö, Aksoy F, Calapoğlu M, Varol E, Orhan H. Salivary levels of last generation specific pro-resolving lipid mediators (SPMs) (protectin and maresin) in patients with cardiovascular and periodontal disease: A case-control study. J Periodontal Res 2021; 56:606-615. [PMID: 33650687 DOI: 10.1111/jre.12861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal disease and cardiovascular disease (CVD), which are both deemed to be triggered by inflammation, are recognized as public health problems. Evidence of host modulation via pro-resolving lipid shown in previous studies supports a two-way relationship between periodontitis and CVD. Last generation endogenous specific pro-resolution lipid mediators (SPMs) such as protectins (PDs) and maresins (MaRs) may have potential effects on inflammatory pathogenesis via activation and resolution mechanisms. Currently, there are no data on SPM levels in patients with CVD and periodontal disease. We aimed to evaluate salivary levels of PD and MaR in patients with CVD and periodontal disease. MATERIALS AND METHODS At total of 181 individuals comprising of 79 healthy controls (C) and 102 patients with diagnosed CVD were included cross-sectionally. Unstimulated total salivary samples were obtained, and clinical periodontal parameters were determined. Salivary levels of PD and MaR were evaluated by ELISA. The periodontal status of the study population was classified as gingivitis (g) or periodontitis (p). RESULTS Patients with CVD showed lower sociodemographic characteristics, increased clinical periodontal parameters (p < .05), decreased salivary PD (p < .001), and increased salivary MaR levels (p > .05). In the CVDg group, leukocyte, hemoglobin, hematocrit, and high-density lipoprotein values were higher (p < .05). The CVDp group had a higher neutrophil-to-lymphocyte ratio (p < .05). While the PD level was highest in the Cg group, MaR was highest in the CVDp group. The salivary levels of PD and MaR were independent of other confounders in CVD and periodontal disease (p > .05). CONCLUSION(S) PDs and MaRs may play effective roles in pathogenesis associated with worsening cardiometabolic and periodontal status. These SPMs could also be predictors for conversion from a healthy (systemically and periodontally) to diseased state (CVD and/or periodontitis). Elucidation of the role of SPMs in the relationship between periodontal disease and CVD will enable the development of new host modulation strategies in the prevention and treatment of both diseases, and may also constitute an important public health step by increasing the quality of life of patients with CVD and periodontal disease.
Collapse
Affiliation(s)
- Mehmet Artuğ Önal
- Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | - Özlem Fentoğlu
- Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | - Fatih Aksoy
- Department of Cardiology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Mustafa Calapoğlu
- Department of Biochemistry, Faculty of Science, Süleyman Demirel University, Isparta, Turkey
| | - Ercan Varol
- Department of Cardiology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Hikmet Orhan
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
41
|
Dai Y, Ding Y, Li L. Nanozymes for regulation of reactive oxygen species and disease therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Tian Y, Gou J, Zhang H, Lu J, Jin Z, Jia S, Bai L. The anti-inflammatory effects of 15-HETE on osteoarthritis during treadmill exercise. Life Sci 2021; 273:119260. [PMID: 33636171 DOI: 10.1016/j.lfs.2021.119260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 01/01/2023]
Abstract
AIMS Investigate the involvement of 15-hydroxyeicosatetraenoic acid (15-HETE), an anti-inflammatory molecule, on the beneficial effects of exercise therapy for osteoarthritis (OA). MAIN METHODS 15-HETE (10 μM, twice a week) and monosodium iodoacetate (MIA) (1 mg) were injected into rat knee joints. Treadmill exercise was applied on OA rat. Primary rat chondrocytes were treated with 15-HETE, LY294002 and interleukin (IL)-1β. Rats undergo a 1 hour single session treadmill exercise once. 15-HETE levels in the knee joint were evaluated using ELISA after a single session of treadmill exercise on healthy and OA rats. Matrix metalloproteinase (MMP)3, MMP-13, a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5, p-Akt, Akt, and collagen type 2 (COL2) expression were evaluated using RT-PCR and western blotting. OA degree was evaluated using X-ray, scored by Osteoarthritis Research Society International (OARSI) and Mankin scores. COL2 and MMP-13 expression in articular was evaluated using immunohistochemistry. KEY FINDINGS Medium intensity exercise alleviated OA. 15-HETE levels after exercise was increased. 15-HETE inhibited IL-1β-induced inflammation in primary chondrocytes and increased p-Akt levels. LY294002 blocked the effect of 15-HETE in vitro. Finally, 15-HETE alleviated cartilage damage, inhibited MMP-13 expression, and increased COL2 expression in joint cartilage tissue. SIGNIFICANCE Treadmill exercise alleviates OA and increases 15-HETE levels in the knee joint, which suppresses inflammation in chondrocytes via PI3k-Akt signalling in vitro and in vivo.
Collapse
Affiliation(s)
- Yicheng Tian
- Department of Orthopedic Surgery, Shengjing Hospital Affiliated China Medical University, Shenyang, China; Shengjing Hospital, Sanhao Street 36#, Heping Area, Shenyang, Liaoning Province, China
| | - Jian Gou
- Department of Nursing, Shengjing Hospital Affiliated China Medical University, Shenyang, China; Shengjing Hospital, Sanhao Street 36#, Heping Area, Shenyang, Liaoning Province, China
| | - He Zhang
- Department of Orthopedic Surgery, Shengjing Hospital Affiliated China Medical University, Shenyang, China; Shengjing Hospital, Sanhao Street 36#, Heping Area, Shenyang, Liaoning Province, China
| | - Jinghan Lu
- Department of Orthopedic Surgery, Shengjing Hospital Affiliated China Medical University, Shenyang, China; Shengjing Hospital, Sanhao Street 36#, Heping Area, Shenyang, Liaoning Province, China
| | - Zhuangzhuang Jin
- Department of Orthopedic Surgery, Shengjing Hospital Affiliated China Medical University, Shenyang, China; Shengjing Hospital, Sanhao Street 36#, Heping Area, Shenyang, Liaoning Province, China
| | - Shuangshuo Jia
- Department of Orthopedic Surgery, Shengjing Hospital Affiliated China Medical University, Shenyang, China; Shengjing Hospital, Sanhao Street 36#, Heping Area, Shenyang, Liaoning Province, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital Affiliated China Medical University, Shenyang, China; Shengjing Hospital, Sanhao Street 36#, Heping Area, Shenyang, Liaoning Province, China.
| |
Collapse
|
43
|
Martyniak K, Wei F, Ballesteros A, Meckmongkol T, Calder A, Gilbertson T, Orlovskaya N, Coathup MJ. Do polyunsaturated fatty acids protect against bone loss in our aging and osteoporotic population? Bone 2021; 143:115736. [PMID: 33171312 DOI: 10.1016/j.bone.2020.115736] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Age-related bone loss is inevitable in both men and women and there will soon be more people of extreme old age than ever before. Osteoporosis is a common chronic disease and as the proportion of older people, rate of obesity and the length of life increases, a rise in age-related degenerating bone diseases, disability, and prolonged dependency is projected. Fragility fractures are one of the most severe complications associated with both primary and secondary osteoporosis and current treatment strategies target weight-bearing exercise and pharmacological intervention, both with limited long-term success. Obesity and osteoporosis are intimately interrelated, and diet is a variable that plays a significant role in bone regeneration and repair. The Western Diet is characterized by its unhealthy components, specifically excess amounts of saturated fat intake. This review examines the impact of saturated and polyunsaturated fatty acid consumption on chronic inflammation, osteogenesis, bone architecture, and strength and explores the hypothesis that dietary polyunsaturated fats have a beneficial effect on osteogenesis, reducing bone loss by decreasing chronic inflammation, and activating bone resorption through key cellular and molecular mechanisms in our aging population. We conclude that aging, obesity and a diet high in saturated fatty acids significantly impairs bone regeneration and repair and that consumption of ω-3 polyunsaturated fatty acids is associated with significantly increased bone regeneration, improved microarchitecture and structural strength. However, ω-6 polyunsaturated fatty acids were typically pro-inflammatory and have been associated with an increased fracture risk. This review suggests a potential role for ω-3 fatty acids as a non-pharmacological dietary method of reducing bone loss in our aging population. We also conclude that contemporary amendments to the formal nutritional recommendations made by the Food and Nutrition Board may be necessary such that our aging population is directly considered.
Collapse
Affiliation(s)
- Kari Martyniak
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Amelia Ballesteros
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Teerin Meckmongkol
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of General Surgery, Nemours Children's Hospital, Orlando, FL, United States
| | - Ashley Calder
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Timothy Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Nina Orlovskaya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States
| | - Melanie J Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
44
|
Morozkina SN, Nhung Vu TH, Generalova YE, Snetkov PP, Uspenskaya MV. Mangiferin as New Potential Anti-Cancer Agent and Mangiferin-Integrated Polymer Systems-A Novel Research Direction. Biomolecules 2021; 11:79. [PMID: 33435313 PMCID: PMC7827323 DOI: 10.3390/biom11010079] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
For a long time, the pharmaceutical industry focused on natural biologically active molecules due to their unique properties, availability and significantly less side-effects. Mangiferin is a naturally occurring C-glucosylxantone that has substantial potential for the treatment of various diseases thanks to its numerous biological activities. Many research studies have proven that mangiferin possesses antioxidant, anti-infection, anti-cancer, anti-diabetic, cardiovascular, neuroprotective properties and it also increases immunity. It is especially important that it has no toxicity. However, mangiferin is not being currently applied to clinical use because its oral bioavailability as well as its absorption in the body are too low. To improve the solubility, enhance the biological action and bioavailability, mangiferin integrated polymer systems have been developed. In this paper, we review molecular mechanisms of anti-cancer action as well as a number of designed polymer-mangiferin systems. Taking together, mangiferin is a very promising anti-cancer molecule with excellent properties and the absence of toxicity.
Collapse
Affiliation(s)
- Svetlana N. Morozkina
- Institute BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia; (T.H.N.V.); (P.P.S.); (M.V.U.)
| | - Thi Hong Nhung Vu
- Institute BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia; (T.H.N.V.); (P.P.S.); (M.V.U.)
| | - Yuliya E. Generalova
- Department of Analytical Chemistry, Faculty of Industrial Technology of Dosage Forms, Saint Petersburg State Chemical Pharmaceutical University, Prof. Popova Street 14A, 197022 Saint-Petersburg, Russia;
| | - Petr P. Snetkov
- Institute BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia; (T.H.N.V.); (P.P.S.); (M.V.U.)
| | - Mayya V. Uspenskaya
- Institute BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia; (T.H.N.V.); (P.P.S.); (M.V.U.)
| |
Collapse
|
45
|
Sandhaus S, Swick AG. Specialized proresolving mediators in infection and lung injury. Biofactors 2021; 47:6-18. [PMID: 33249673 PMCID: PMC7744833 DOI: 10.1002/biof.1691] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Specialized proresolving mediators (SPMs) are endogenous lipid metabolites of long-chain polyunsaturated fatty acids that are involved in promoting the resolution of inflammation. Many disease conditions characterized by excessive inflammation have impaired or altered SPM biosynthesis, which may lead to chronic, unresolved inflammation. Exogenous administration of SPMs in infectious conditions has been shown to be effective at improving infection clearance and survival in preclinical models. SPMs have also shown tremendous promise in the context of inflammatory lung conditions, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease, mostly in preclinical settings. To date, SPMs have not been studied in the context of the novel Coronavirus, severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), however their preclinical efficacy in combatting infections and improving acute respiratory distress suggest they may be a valuable resource in the fight against Coronavirus disease-19 (COVID-19). Overall, while the research on SPMs is still evolving, they may offer a novel therapeutic option for inflammatory conditions.
Collapse
MESH Headings
- Anti-Inflammatory Agents/therapeutic use
- COVID-19/metabolism
- COVID-19/pathology
- COVID-19/virology
- Docosahexaenoic Acids/therapeutic use
- Herpes Simplex/drug therapy
- Herpes Simplex/metabolism
- Herpes Simplex/pathology
- Humans
- Influenza, Human/drug therapy
- Influenza, Human/metabolism
- Influenza, Human/pathology
- Lipoxins/therapeutic use
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Lung Injury/drug therapy
- Lung Injury/metabolism
- Lung Injury/pathology
- Lung Injury/virology
- Periodontitis/drug therapy
- Periodontitis/metabolism
- Periodontitis/pathology
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Pulmonary Disease, Chronic Obstructive/virology
- Respiratory Distress Syndrome/drug therapy
- Respiratory Distress Syndrome/metabolism
- Respiratory Distress Syndrome/pathology
- Respiratory Distress Syndrome/virology
- SARS-CoV-2/pathogenicity
- Sepsis/drug therapy
- Sepsis/metabolism
- Sepsis/pathology
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/pathology
- COVID-19 Drug Treatment
Collapse
|
46
|
Regidor PA, Mueller A, Sailer M, Gonzalez Santos F, Rizo JM, Moreno Egea F. Chronic Inflammation in PCOS: The Potential Benefits of Specialized Pro-Resolving Lipid Mediators (SPMs) in the Improvement of the Resolutive Response. Int J Mol Sci 2020; 22:ijms22010384. [PMID: 33396555 PMCID: PMC7795660 DOI: 10.3390/ijms22010384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
PCOS as the most common endocrine disorder of women in their reproductive age affects between 5–15% of the female population. Apart from its cardinal symptoms, like irregular and anovulatory cycles, hyperandrogenemia and a typical ultrasound feature of the ovary, obesity, and insulin resistance are often associated with the disease. Furthermore, PCOS represents a status of chronic inflammation with permanently elevated levels of inflammatory markers including IL-6 and IL-18, TNF-α, and CRP. Inflammation, as discovered only recently, consists of two processes occurring concomitantly: active initiation, involving “classical” mediators including prostaglandins and leukotrienes, and active resolution processes based on the action of so-called specialized pro-resolving mediators (SPMs). These novel lipid mediator molecules derive from the essential ω3-poly-unsaturated fatty acids (PUFAs) DHA and EPA and are synthesized via specific intermediates. The role and benefits of SPMs in chronic inflammatory diseases like obesity, atherosclerosis, and Diabetes mellitus has become a subject of intense research during the last years and since PCOS features several of these pathologies, this review aims at summarizing potential roles of SPMs in this disease and their putative use as novel therapeutics.
Collapse
Affiliation(s)
| | - Anna Mueller
- Exeltis Germany GmbH, Adalperostr. 84, 85737 Ismaning, Germany; (A.M.); (M.S.)
| | - Manuela Sailer
- Exeltis Germany GmbH, Adalperostr. 84, 85737 Ismaning, Germany; (A.M.); (M.S.)
| | | | | | - Fernando Moreno Egea
- Solutex SA. Avenida de la Transición Española 24, 28108 Alcobendas, Spain; (F.G.S.); (F.M.E.)
| |
Collapse
|
47
|
Abstract
Transgenic rabbits have contributed to the progress of biomedical science as human disease models because of their unique features, such as the lipid metabolism system similar to humans and medium body size that facilitates handling and experimental manipulation. In fact, many useful transgenic rabbits have been generated and used in research fields such as lipid metabolism and atherosclerosis, cardiac failure, immunology, and oncogenesis. However, there have been long-term problems, namely that the transgenic efficiency when using pronuclear microinjection is low compared with transgenic mice and production of knockout rabbits is impossible owing to the lack of embryonic stem cells for gene targeting in rabbits. Despite these limitations, the emergence of novel genome editing technology has changed the production of genetically modified animals including the rabbit. We are finally able to produce both transgenic and knockout rabbit models to analyze gain- and loss-of-functions of specific genes. It is expected that the use of genetically modified rabbits will extend to various research fields. In this review, we describe the unique features of rabbits as laboratory animals, the current status of their development and use, and future perspectives of transgenic rabbit models for human diseases.
Collapse
|
48
|
Carion TW, Ebrahim AS, Alluri S, Ebrahim T, Parker T, Burns J, Sosne G, Berger EA. Antimicrobial Effects of Thymosin Beta-4 and Ciprofloxacin Adjunctive Therapy in Pseudomonas aeruginosa Induced Keratitis. Int J Mol Sci 2020; 21:E6840. [PMID: 32961846 PMCID: PMC7555736 DOI: 10.3390/ijms21186840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/29/2022] Open
Abstract
Prior work has indicated that thymosin beta 4 (Tβ4) administered with ciprofloxacin markedly improves disease outcome for Pseudomonas aeruginosa (PA)-induced keratitis. As a result, the goal of the current study was to elucidate mechanisms by which Tβ4 mitigates the corneal response; specifically, regarding its bactericidal influence and potential synergy with ciprofloxacin. An in vitro approach was carried out using minimum inhibitory concentration (MIC) assays to assess bactericidal activity against PA. In addition, antimicrobial peptide (AMP) production was evaluated at the mRNA levels using human corneal epithelial cells in response to lipopolysaccharide (LPS) challenge. The results of the MIC assays did not show direct bactericidal activity with Tβ4 alone, although ciprofloxacin exhibited significant killing at concentrations far lower than clinically dosed. Tβ4, however, displayed an indirect effect on bacterial killing, as shown by an upregulation of AMPs and related molecules. The cumulative data from this study indicate an indirect bactericidal role of Tβ4, as well as a synergistic relationship with ciprofloxacin. Furthermore, ciprofloxacin alone was found to influence cellular functions that otherwise have yet to be reported. These results highlight a mechanism of intracellular communication for Tβ4 and further strengthen its development as an adjunct therapy with antibiotics for corneal infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elizabeth A. Berger
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; (T.W.C.); (A.S.E.); (S.A.); (T.E.); (T.P.); (J.B.); (G.S.)
| |
Collapse
|
49
|
Lin L, Yu W, Zhang W, Li S, Hu S, Jiang B, Gu Y, Lu E. Expression profile of lipoxygenases in gingival tissues of human periodontitis. Oral Dis 2020; 27:567-576. [PMID: 32677134 DOI: 10.1111/odi.13558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 05/18/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES This study aimed to clarify the expression profile and significance of lipoxygenases in periodontitis. MATERIALS AND METHODS The mRNA levels of lipoxygenases in gingival tissues from 14 patients with periodontitis and 14 healthy individuals were determined by real-time PCR, and validated in datasets, GSE16134 and GSE10334, and by Western blotting. Correlation of differentially expressed lipoxygenases with clinical parameters and expression of tumor necrosis factor-α (TNF-α), interleukin-1β, matrix metalloproteinase (MMP)-8, MMP-9, and receptor activator of nuclear factor-κB ligand (RANKL) was investigated in patients with periodontitis by Spearman's correlation analysis. RESULTS The expression of ALOX5 (2.1-fold, p < .05), ALOX12B (2.9-fold, p < .001), and ALOX15B (9.4-fold, p < .001) was upregulated in gingival tissues from patients with periodontitis, which was validated by dataset analysis and Western blotting. Positive correlations were observed between ALOX5 and probing depth, and ALOX15B and probing depth and clinical attachment loss. Furthermore, ALOX5 expression was positively correlated with TNF-α, MMP-8, MMP-9, and RANKL expression, and ALOX15B was positively correlated with MMP-8 and RANKL. CONCLUSIONS Our findings indicated the upregulation of ALOX5 and ALOX15B in periodontitis and suggested that ALOX5 and ALOX15B may be involved in periodontitis pathogenesis, including inflammation, connective tissue destruction, and abnormal bone metabolism.
Collapse
Affiliation(s)
- Lu Lin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Weijun Yu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Weiqi Zhang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shuang Li
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shucheng Hu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Bin Jiang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuting Gu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
50
|
Jara CP, Mendes NF, Prado TPD, de Araújo EP. Bioactive Fatty Acids in the Resolution of Chronic Inflammation in Skin Wounds. Adv Wound Care (New Rochelle) 2020; 9:472-490. [PMID: 32320357 DOI: 10.1089/wound.2019.1105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Significance: Optimal skin wound healing is crucial for maintaining tissue homeostasis, particularly in response to an injury. The skin immune system is under regulation of mediators such as bioactive lipids and cytokines that can initiate an immune response with controlled inflammation, followed by efficient resolution. However, nutritional deficiency impacts wound healing by hindering fibroblast proliferation, collagen synthesis, and epithelialization, among other crucial functions. In this way, the correct nutritional support of bioactive lipids and of other essential nutrients plays an important role in the outcome of the wound healing process. Recent Advances and Critical Issues: Several studies have revealed the potential role of lipids as a treatment for the healing of skin wounds. Unsaturated fatty acids such as linoleic acid, α-linolenic acid, oleic acid, and most of their bioactive products have shown an effective role as a topical treatment of chronic skin wounds. Their effect, when the treatment starts at day 0, has been observed mainly in the inflammatory phase of the wound healing process. Moreover, some of them were associated with different dressings and were tested for clinical purposes, including pluronic gel, nanocapsules, collagen films and matrices, and polymeric bandages. Therefore, future research is still needed to evaluate these dressing technologies in association with different bioactive fatty acids in a wound healing context. Future Directions: This review summarizes the main results of the available clinical trials and basic research studies and provides evidence-based conclusions. Together, current data encourage the use of bioactive fatty acids for an optimal wound healing resolution.
Collapse
Affiliation(s)
- Carlos Poblete Jara
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Natália Ferreira Mendes
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Thais Paulino do Prado
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Eliana Pereira de Araújo
- Faculty of Nursing, University of Campinas, Campinas, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| |
Collapse
|