1
|
Woods C, Wang G, Milner TA, Glass MJ. Tumor necrosis factor alpha induces NOX2-dependent reactive oxygen species production in hypothalamic paraventricular nucleus neurons following angiotensin II infusion. Neurochem Int 2024; 179:105825. [PMID: 39097233 DOI: 10.1016/j.neuint.2024.105825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
There is evidence that tumor necrosis factor alpha (TNFα) influences autonomic processes coordinated within the hypothalamic paraventricular nucleus (PVN), however, the signaling mechanisms subserving TNFα's actions in this brain area are unclear. In non-neuronal cell types, TNFα has been shown to play an important role in canonical NADPH oxidase (NOX2)-mediated production of reactive oxygen species (ROS), molecules also known to be critically involved in hypertension. However, little is known about the role of TNFα in NOX2-dependent ROS production in the PVN within the context of hypertension. Using dual labeling immunoelectron microscopy and dihydroethidium (DHE) microfluorography, we provide structural and functional evidence for interactions between TNFα and NOX2 in the PVN. The TNFα type 1 receptor (TNFR1), the major mediator of TNFα signaling in the PVN, was commonly co-localized with the catalytic gp91phox subunit of NOX2 in postsynaptic sites of PVN neurons. Additionally, there was an increase in dual labeled dendritic profiles following fourteen-day slow-pressor angiotensin II (AngII) infusion. Using DHE microfluorography, it was also shown that TNFα application resulted in a NOX2-dependent increase in ROS in isolated PVN neurons projecting to the spinal cord. Further, TNFα-mediated ROS production was heightened after AngII infusion. The finding that TNFR1 and gp91phox are positioned for rapid interactions, particularly in PVN-spinal cord projection neurons, provides a molecular substrate by which inflammatory signaling and oxidative stress may jointly contribute to AngII hypertension.
Collapse
Affiliation(s)
- Clara Woods
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA; Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Ave, New York, NY, 10065, USA
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Modestino L, Tumminelli M, Mormile I, Cristinziano L, Ventrici A, Trocchia M, Ferrara AL, Palestra F, Loffredo S, Marone G, Rossi FW, de Paulis A, Galdiero MR. Neutrophil exhaustion and impaired functionality in psoriatic arthritis patients. Front Immunol 2024; 15:1448560. [PMID: 39308858 PMCID: PMC11412820 DOI: 10.3389/fimmu.2024.1448560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Background Neutrophils (polymorphonuclear leukocytes, PMNs) are the most abundant subtype of white blood cells and are among the main actors in the inflammatory response. Psoriatic arthritis (PsA) is a chronic inflammatory disease affecting both the axial and peripheral joints. Typically associated with psoriasis, PsA can also affect multiple systems and organs, including the nails and entheses. Despite the involvement of PMNs in PsA, their specific role in the disease remains poorly understood. This study aimed to characterize the biological functions of PMNs and neutrophil-related mediators in PsA patients. Materials and methods 31 PsA patients and 22 healthy controls (HCs) were prospectively recruited. PMNs were isolated from peripheral blood and subjected to in vitro stimulation with lipopolysaccharide (LPS), N-Formylmethionyl-leucyl-phenylalanine (fMLP), tumor necrosis factor (TNF), phorbol 12-myristate 13-acetate (PMA), or control medium. Highly purified peripheral blood PMNs (>99%) were evaluated for activation status, reactive oxygen species (ROS) production, phagocytic activity, granular enzyme and neutrophil extracellular traps (NETs) release. Serum levels of matrix metalloproteinase-9 (MMP-9), myeloperoxidase (MPO), TNF, interleukin 23 (IL-23), and interleukin 17 (IL-17) were measured by ELISA. Serum Citrullinated histone H3 (CitH3) was measured as a NET biomarker. Results Activated PMNs from PsA patients displayed reduced activation, decreased ROS production, and impaired phagocytic activity upon stimulation with TNF, compared to HCs. PMNs from PsA patients also displayed reduced granular enzyme (MPO) and NET release. Serum analyses revealed elevated levels of MMP-9, MPO, TNF, IL-23, IL-17, and CitH3 in PsA patients compared to HCs. Serum CitH3 levels positively correlated with MPO and TNF concentrations, and IL-17 concentrations were positively correlated with IL-23 levels in PsA patients. These findings indicate that PMNs from PsA patients show reduced in vitro activation and function, and an increased presence of neutrophil-derived mediators (MMP-9, MPO, TNF, IL-23, IL-17, and CitH3) in their serum. Conclusions Taken together, our findings suggest that PMNs from PsA patients exhibit an "exhausted" phenotype, highlighting their plasticity and multifaceted roles in PsA pathophysiology.
Collapse
Affiliation(s)
- Luca Modestino
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
| | - Manuela Tumminelli
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
| | - Ilaria Mormile
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Naples, Italy
| | - Francesca Wanda Rossi
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Pallotta L, Cammisotto V, Castellani V, Gioia A, Spigaroli M, Carlomagno D, Bartimoccia S, Nocella C, Cappelletti M, Pontone S, Carnevale R, Violi F, Vona R, Giordano C, Pignatelli P, Severi C. Diverticular Disease Worsening Is Associated with Increased Oxidative Stress and Gut Permeability: New Insights by Circulating Biomarkers. Antioxidants (Basel) 2023; 12:1537. [PMID: 37627532 PMCID: PMC10451802 DOI: 10.3390/antiox12081537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Diverticular disease (DD) management is impaired by its pathogenesis, which is still not completely defined, with an unmet clinical need for improved therapies. Ex vivo DD human models demonstrated the presence of a transmural oxidative imbalance that supports an ischemic pathogenesis. This study aimed to assess, with the use of circulating biomarkers, insights into DD pathogenesis and possible therapeutic targets. Nox2-derived peptide, H2O2, antioxidant capacity, isoprostanes, thromboxanes, TNF-α, LPS and zonulin were evaluated by ELISA in healthy subjects (HS) and asymptomatic and symptomatic DD patients. Compared to HS, DD patients presented low antioxidant capacity and increase in sNox2-dp, H2O2 and isoprostanes paralleled to a TNFα increase, lower than that of oxidative markers. TxB2 production correlated to Nox2 and isoprostanes, suggesting platelet activation. An increase in zonulin and LPS highlighted the role of gut permeability and LPS translocation in DD pathogenesis. The increase of all the markers statistically correlated with DD severity. The present study confirmed the presence of a main oxidative imbalance in DD and provides evidence of platelet activation driven by LPS translocation. The use of circulating biomarkers could represent a new clinical tool for monitoring disease progression and validate therapeutic strategies never tested in DD as antioxidant supplementation.
Collapse
Affiliation(s)
- Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (A.G.); (M.S.); (D.C.); (M.C.); (C.S.)
| | - Vittoria Cammisotto
- Department of Clinical, Internal Medicine, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (V.C.); (S.B.); (C.N.); (F.V.); (P.P.)
| | - Valentina Castellani
- Department of General Surgery and Surgical Specialty, Sapienza University of Rome, Viale del Policlinico, 00161 Rome, Italy;
| | - Alessia Gioia
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (A.G.); (M.S.); (D.C.); (M.C.); (C.S.)
| | - Margherita Spigaroli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (A.G.); (M.S.); (D.C.); (M.C.); (C.S.)
| | - Dominga Carlomagno
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (A.G.); (M.S.); (D.C.); (M.C.); (C.S.)
| | - Simona Bartimoccia
- Department of Clinical, Internal Medicine, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (V.C.); (S.B.); (C.N.); (F.V.); (P.P.)
| | - Cristina Nocella
- Department of Clinical, Internal Medicine, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (V.C.); (S.B.); (C.N.); (F.V.); (P.P.)
| | - Martina Cappelletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (A.G.); (M.S.); (D.C.); (M.C.); (C.S.)
| | - Stefano Pontone
- Department of Surgery, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy;
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 04100 Latina, Italy;
- IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - Francesco Violi
- Department of Clinical, Internal Medicine, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (V.C.); (S.B.); (C.N.); (F.V.); (P.P.)
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Rosa Vona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy;
| | - Pasquale Pignatelli
- Department of Clinical, Internal Medicine, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (V.C.); (S.B.); (C.N.); (F.V.); (P.P.)
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (A.G.); (M.S.); (D.C.); (M.C.); (C.S.)
| |
Collapse
|
4
|
Carnevale R, Cammisotto V, Bartimoccia S, Nocella C, Castellani V, Bufano M, Loffredo L, Sciarretta S, Frati G, Coluccia A, Silvestri R, Ceccarelli G, Oliva A, Venditti M, Pugliese F, Maria Mastroianni C, Turriziani O, Leopizzi M, D'Amati G, Pignatelli P, Violi F. Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in SARS-CoV-2 Infection. Circ Res 2023; 132:290-305. [PMID: 36636919 DOI: 10.1161/circresaha.122.321541] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND SARS-CoV-2 is associated with an increased risk of venous and arterial thrombosis, but the underlying mechanism is still unclear. METHODS We performed a cross-sectional analysis of platelet function in 25 SARS-CoV-2 and 10 healthy subjects by measuring Nox2 (NADPH oxidase 2)-derived oxidative stress and thromboxane B2, and investigated if administration of monoclonal antibodies against the S protein (Spike protein) of SARS-CoV-2 affects platelet activation. Furthermore, we investigated in vitro if the S protein of SARS-CoV-2 or plasma from SARS-CoV-2 enhanced platelet activation. RESULTS Ex vivo studies showed enhanced platelet Nox2-derived oxidative stress and thromboxane B2 biosynthesis and under laminar flow platelet-dependent thrombus growth in SARS-CoV-2 compared with controls; both effects were lowered by Nox2 and TLR4 (Toll-like receptor 4) inhibitors. Two hours after administration of monoclonal antibodies, a significant inhibition of platelet activation was observed in patients with SARS-CoV-2 compared with untreated ones. In vitro study showed that S protein per se did not elicit platelet activation but amplified the platelet response to subthreshold concentrations of agonists and functionally interacted with platelet TLR4. A docking simulation analysis suggested that TLR4 binds to S protein via three receptor-binding domains; furthermore, immunoprecipitation and immunofluorescence showed S protein-TLR4 colocalization in platelets from SARS-CoV-2. Plasma from patients with SARS-CoV-2 enhanced platelet activation and Nox2-related oxidative stress, an effect blunted by TNF (tumor necrosis factor) α inhibitor; this effect was recapitulated by an in vitro study documenting that TNFα alone promoted platelet activation and amplified the platelet response to S protein via p47phox (phagocyte oxidase) upregulation. CONCLUSIONS The study identifies 2 TLR4-dependent and independent pathways promoting platelet-dependent thrombus growth and suggests inhibition of TLR4. or p47phox as a tool to counteract thrombosis in SARS-CoV-2.
Collapse
Affiliation(s)
- Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (R.C., S.S., G.F., M.L.).,IRCCS Neuromed, Località Camerelle, Pozzilli (IS), Italy (R.C., S.S., G.F.)
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy
| | - Simona Bartimoccia
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy
| | - Valentina Castellani
- Department of General Surgery and Surgical Speciality (V. Castellani, F.P.), Sapienza University of Rome, Italy
| | - Marianna Bufano
- Laboratory affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies (M.B., A.C., R.S.), Sapienza University of Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (R.C., S.S., G.F., M.L.).,IRCCS Neuromed, Località Camerelle, Pozzilli (IS), Italy (R.C., S.S., G.F.)
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (R.C., S.S., G.F., M.L.).,IRCCS Neuromed, Località Camerelle, Pozzilli (IS), Italy (R.C., S.S., G.F.)
| | - Antonio Coluccia
- Laboratory affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies (M.B., A.C., R.S.), Sapienza University of Rome, Italy
| | - Romano Silvestri
- Laboratory affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies (M.B., A.C., R.S.), Sapienza University of Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases (G.C., A.O., M.V., C.M.M.), Sapienza University of Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases (G.C., A.O., M.V., C.M.M.), Sapienza University of Rome, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases (G.C., A.O., M.V., C.M.M.), Sapienza University of Rome, Italy
| | - Francesco Pugliese
- Department of General Surgery and Surgical Speciality (V. Castellani, F.P.), Sapienza University of Rome, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases (G.C., A.O., M.V., C.M.M.), Sapienza University of Rome, Italy
| | - Ombretta Turriziani
- Laboratory of Virology, Department of Molecular Medicine (O.T.), Sapienza University of Rome, Italy
| | - Martina Leopizzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (R.C., S.S., G.F., M.L.)
| | - Giulia D'Amati
- Department of Radiological, Oncological and Pathological Sciences (G.D.), Sapienza University of Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences (V. Cammisotto, S.B., C.N., L.L., P.P.), Sapienza University of Rome, Italy.,Mediterranea Cardiocentro- Napoli, Italy (P.P., F.V.)
| | | |
Collapse
|
5
|
Eun Baek S, Jeong Jang E, Min Choi J, Whan Choi Y, Dae Kim C. α-Iso-cubebene attenuates neointima formation by inhibiting HMGB1-induced monocyte to macrophage differentiation via suppressing ROS production. Int Immunopharmacol 2022; 111:109121. [PMID: 35940074 DOI: 10.1016/j.intimp.2022.109121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
Abstract
α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis, a medicinal herb used to improve cardiovascular symptoms. To investigate the mechanisms involved, the effects of ICB on cellular production of reactive oxygen species (ROS) was determined using cultured human THP-1 cells. When THP-1 cells were stimulated with HMGB1, cellular concentration of ROS was increased in dose- and time-dependent manners. These increases were significantly attenuated in cells pretreated with NADPH oxidase inhibitors, diphenyleneiodonium chloride and apocynin, but not by other inhibitors related to ROS generation in monocytes. The expression of constitutively expressed NADPH oxidase (NOX) subunits including NOX1, NOX2, NOX4 and NOX5 was not affected by HMGB1, but HMGB1-induced ROS production was exclusively attenuated in NOX2-deficient cells using siRNA, suggesting an enhanced NOX2 complex assembly. When cells were stimulated with HMGB1, p47phox phosphorylation at ser345, ser359 and ser370 was increased in dose- and time-dependent manners, which were significantly attenuated in ICB (3-10 μg/mL)-pretreated cells. In addition, HMGB1-induced monocyte-macrophage differentiation (MMD) in bone marrow-derived cells isolated from mice were significantly attenuated in cells treated with apocynin and ICB. Also, macrophage infiltration and intimal hyperplasia in the wire-injured femoral artery were significantly attenuated in ICB-treated mice compared to wild-type control mice. The results of this study show that ICB inhibits HMGB1-induced MMD by suppressing ROS production in monocytes, thus suggest that ICB has therapeutic potential for vascular inflammation with subsequent intimal hyperplasia related to vascular injury.
Collapse
Affiliation(s)
- Seung Eun Baek
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Eun Jeong Jang
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Jong Min Choi
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Young Whan Choi
- College of Natural Resources & Life Sciences, Pusan National University, Milyang, Gyeongnam 627-706, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.
| |
Collapse
|
6
|
Bagchi A, Ghosh P, Ghosh A, Chatterjee M. Role of oxidative stress in induction of trans-differentiation of neutrophils in patients with rheumatoid arthritis. Free Radic Res 2022; 56:290-302. [PMID: 35730185 DOI: 10.1080/10715762.2022.2089567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder whose etiopathology involves an interplay between genetic and environmental factors, with oxidative stress being a key contributory factor. This study aimed to establish the impact, if any, of an oxidative, pro-inflammatory milieu upon trans-differentiation of neutrophils and disease progression. In the synovial fluid (SF) and peripheral blood sourced from patients with RA (n = 40) along with healthy controls (n = 25), the proportion of neutrophil-dendritic (N-DC) cell hybrids, i.e. CD66b+/CD83+ was characterized in terms of their antigen presentation (HLA-DR, CD80, andCD86) and cell adhesion and migration (ICAM-1, VCAM-1, and CD62L) properties, along with their ability to generate reactive oxygen species (ROS). In the SF of RA cases, the raised levels of circulating and intra-neutrophilic pro-inflammatory cytokines/chemokines were accompanied by an enhanced proportion of CD66b+ neutrophils, that co-expressed features of antigen presenting cells (APCs) namely CD83, HLA-DR, CD80, CD86, ICAM-1, VCAM-1, and decreased CD62L. These N-DCs as compared to canonical neutrophils demonstrated a higher generation of ROS, and their frequency positively correlated with disease activity score (DAS28). An ex-vivo functional assay validated that oxidative stress supported trans-differentiation and could be attenuated by a free radical scavenger. Taken together, the pro-inflammatory microenvironment in the SF of patients with RA coupled with a higher generation of ROS promoted the trans-differentiation of neutrophils into N-DCs, suggesting the inclusion of anti-oxidants as an add-on therapeutic strategy to limit trans-differentiation.
Collapse
Affiliation(s)
- Aniruddha Bagchi
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Parasar Ghosh
- Rheumatology and Clinical Immunology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Alakendu Ghosh
- Rheumatology and Clinical Immunology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
7
|
Impaired p47phox phosphorylation in neutrophils from patients with p67phox-deficient chronic granulomatous disease. Blood 2022; 139:2512-2522. [PMID: 35108370 DOI: 10.1182/blood.2021011134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
Superoxide production by the phagocyte reduced NAD phosphate (NADPH) oxidase is essential for innate immunity as shown in chronic granulomatous disease (CGD), an immunodeficiency disease resulting from mutations in 1 of its genes. The NADPH oxidase is composed of 2 membrane proteins (gp91phox/NOX2 and p22phox) and 4 cytosolic proteins (p47phox, p67phox, p40phox, and Rac1/2). The phosphorylation of p47phox is required for NADPH oxidase activation in cells. As p47phox and p67phox can form a tight complex in cells, we hypothesized that p67phox could regulate p47phox phosphorylation. To investigate this hypothesis, we used phospho-specific antibodies against 5 major p47phox-phosphorylated sites (Ser304, Ser315, Ser320, Ser328, and Ser345) and neutrophils from healthy donors and from p67phox-/- CGD patients. Results showed that formyl-methionyl-leucyl-phenylalanine and phorbol myristate acetate induced a time- and a concentration-dependent phosphorylation of p47phox on Ser304, Ser315, Ser320, and Ser328 in healthy human neutrophils. Interestingly, in neutrophils and Epstein-Barr virus-transformed B lymphocytes from p67phox-/- CGD patients, phosphorylation of p47phox on serine residues was dramatically reduced. In COSphox cells, the presence of p67phox led to increased phosphorylation of p47phox. In vitro studies showed that recombinant p47phox was phosphorylated on Ser304, Ser315, Ser320, and Ser328 by different PKC isoforms and the addition of recombinant p67phox alone or in combination with p40phox potentiated this process. Thus, p67phox and p40phox are required for optimal p47phox phosphorylation on Ser304, Ser315, Ser320, and Ser328 in intact cells. Therefore, p67phox and p40phox are novel regulators of p47phox-phosphorylation.
Collapse
|
8
|
Nassif RM, Chalhoub E, Chedid P, Hurtado-Nedelec M, Raya E, Dang PMC, Marie JC, El-Benna J. Metformin Inhibits ROS Production by Human M2 Macrophages via the Activation of AMPK. Biomedicines 2022; 10:biomedicines10020319. [PMID: 35203528 PMCID: PMC8869356 DOI: 10.3390/biomedicines10020319] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Metformin (1,1-dimethylbiguanide hydrochloride) is the most commonly used drug to treat type II diabetic patients. It is believed that this drug has several other beneficial effects, such as anti-inflammatory and anticancer effects. Here, we wanted to evaluate the effect of metformin on the production of reactive oxygen species (ROS) by human macrophages. Macrophages are generated in vivo from circulating monocytes depending on the local tissue environment. In vitro proinflammatory macrophages (M1) and anti-inflammatory macrophages (M2) can be generated by culturing monocytes in the presence of different cytokines, such as GM-CSF or M-CSF, respectively. We show that metformin selectively inhibited human monocyte differentiation into proinflammatory macrophages (M1) without inhibiting their differentiation into anti-inflammatory macrophages (M2). Moreover, we demonstrate that, in response to LPS, M2 macrophages produced ROS, which could be very harmful for nearby tissues, and metformin inhibited this process. Interestingly, metformin with LPS induced activation of the adenosine-monophosphate-activated protein kinase (AMPK) and pharmacological activation of AMPK by AICAR, a known AMPK activator, decreased ROS production, whereas the deletion of AMPK in mice dramatically enhanced ROS production in different types of immune cells. These results suggest that metformin exhibits anti-inflammatory effects by inhibiting the differentiation of human monocytes into M1 macrophages and by limiting ROS production by macrophages via the activation of AMPK.
Collapse
Affiliation(s)
- Rana M. Nassif
- Faculty of Health Sciences, University of Balamand, P.O. Box 55251 Sin El Fil, Beirut 1100-2807, Lebanon; (R.M.N.); (E.C.); (P.C.); (E.R.)
- Centre de Recherche sur l’Inflammation (CRI), Laboratoire d’Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris, INSERM-U1149, CNRS-ERL8252, 75018 Paris, France; (M.H.-N.); (P.M.-C.D.); (J.-C.M.)
| | - Elias Chalhoub
- Faculty of Health Sciences, University of Balamand, P.O. Box 55251 Sin El Fil, Beirut 1100-2807, Lebanon; (R.M.N.); (E.C.); (P.C.); (E.R.)
| | - Pia Chedid
- Faculty of Health Sciences, University of Balamand, P.O. Box 55251 Sin El Fil, Beirut 1100-2807, Lebanon; (R.M.N.); (E.C.); (P.C.); (E.R.)
| | - Margarita Hurtado-Nedelec
- Centre de Recherche sur l’Inflammation (CRI), Laboratoire d’Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris, INSERM-U1149, CNRS-ERL8252, 75018 Paris, France; (M.H.-N.); (P.M.-C.D.); (J.-C.M.)
| | - Elia Raya
- Faculty of Health Sciences, University of Balamand, P.O. Box 55251 Sin El Fil, Beirut 1100-2807, Lebanon; (R.M.N.); (E.C.); (P.C.); (E.R.)
| | - Pham My-Chan Dang
- Centre de Recherche sur l’Inflammation (CRI), Laboratoire d’Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris, INSERM-U1149, CNRS-ERL8252, 75018 Paris, France; (M.H.-N.); (P.M.-C.D.); (J.-C.M.)
| | - Jean-Claude Marie
- Centre de Recherche sur l’Inflammation (CRI), Laboratoire d’Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris, INSERM-U1149, CNRS-ERL8252, 75018 Paris, France; (M.H.-N.); (P.M.-C.D.); (J.-C.M.)
| | - Jamel El-Benna
- Centre de Recherche sur l’Inflammation (CRI), Laboratoire d’Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris, INSERM-U1149, CNRS-ERL8252, 75018 Paris, France; (M.H.-N.); (P.M.-C.D.); (J.-C.M.)
- Correspondence: ; Tel.: +33-1-57-27-77-23; Fax: +33-1-57-27-74-61
| |
Collapse
|
9
|
Romero-Pinedo S, Barros DIR, Ruiz-Magaña MJ, Maganto-García E, Moreno de Lara L, Abadía-Molina F, Terhorst C, Abadía-Molina AC. SLAMF8 Downregulates Mouse Macrophage Microbicidal Mechanisms via PI3K Pathways. Front Immunol 2022; 13:910112. [PMID: 35837407 PMCID: PMC9273976 DOI: 10.3389/fimmu.2022.910112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Signaling lymphocytic activation molecule family 8 (SLAMF8) is involved in the negative modulation of NADPH oxidase activation. However, the impact of SLAMF8 downregulation on macrophage functionality and the microbicide mechanism remains elusive. To study this in depth, we first analyzed NADPH oxidase activation pathways in wild-type and SLAMF8-deficient macrophages upon different stimulus. Herein, we describe increased phosphorylation of the Erk1/2 and p38 MAP kinases, as well as increased phosphorylation of NADPH oxidase subunits in SLAMF8-deficient macrophages. Furthermore, using specific inhibitors, we observed that specific PI3K inhibition decreased the differences observed between wild-type and SLAMF8-deficient macrophages, stimulated with either PMA, LPS, or Salmonella typhimurium infection. Consequently, SLAMF8-deficient macrophages also showed increased recruitment of small GTPases such as Rab5 and Rab7, and the p47phox subunit to cytoplasmic Salmonella, suggesting an impairment of Salmonella-containing vacuole (SCV) progression in SLAMF8-deficient macrophages. Enhanced iNOS activation, NO production, and IL-6 expression were also observed in the absence of SLAMF8 upon Salmonella infection, either in vivo or in vitro, while overexpression of SLAMF8 in RAW264.7 macrophages showed the opposite phenotype. In addition, SLAMF8-deficient macrophages showed increased activation of Src kinases and reduced SHP-1 phosphate levels upon IFNγ and Salmonella stimuli in comparison to wild-type macrophages. In agreement with in vitro results, Salmonella clearance was augmented in SLAMF8-deficient mice compared to that in wild-type mice. Therefore, in conclusion, SLAMF8 intervention upon bacterial infection downregulates mouse macrophage activation, and confirmed that SLAMF8 receptor could be a potential therapeutic target for the treatment of severe or unresolved inflammatory conditions.
Collapse
Affiliation(s)
- Salvador Romero-Pinedo
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Domingo I Rojas Barros
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - María José Ruiz-Magaña
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Elena Maganto-García
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Laura Moreno de Lara
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Francisco Abadía-Molina
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Instituto de Nutrición Y Tecnología de los Alimentos "José Mataix", (INYTIA), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ana C Abadía-Molina
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.,Departamento de Bioqu´ımica y Biolog´ıa Molecular III e Inmunolog´ıa, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|
10
|
Owusu SB, Hudik E, Férard C, Dupré-Crochet S, Addison ECDK, Preko K, Bizouarn T, Houée-Levin C, Baciou L. Radiation-induced reactive oxygen species partially assemble neutrophil NADPH oxidase. Free Radic Biol Med 2021; 164:76-84. [PMID: 33387605 DOI: 10.1016/j.freeradbiomed.2020.12.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Neutrophils are key cells from the innate immune system that destroy invading bacteria or viruses, thanks mainly to the non-mitochondrial reactive oxygen species (ROS) generated by the enzyme NADPH oxidase. Our aim was to study the response of neutrophils to situations of oxidative stress with emphasis on the impact on the NADPH oxidase complex. To mimic oxidative stress, we used gamma irradiation that generated ROS (OH•, O2•- and H2O2) in a quantitative controlled manner. We showed that, although irradiation induces shorter half-lives of neutrophil (reduced by at least a factor of 2), it triggers a pre-activation of surviving neutrophils. This is detectable by the production of a small but significant amount of superoxide anions, proportional to the dose (about 3 times that of sham). Investigations at the molecular level showed that this ROS increase was generated by the NADPH oxidase enzyme after neutrophils irradiation. The NADPH oxidase complex undergoes an incomplete assembly which includes p47phox and p67phox but excludes the G-protein Rac. Importantly, this irradiation-induced pre-activation is capable of considerably improving neutrophil reactivity. Indeed, we have observed that this leads to an increase in the production of ROS and the capacity of phagocytosis, leading to the conclusion that radiation induced ROS clearly behave as neutrophil primers.
Collapse
Affiliation(s)
- Stephenson B Owusu
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France; Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Elodie Hudik
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Céline Férard
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Sophie Dupré-Crochet
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Eric C D K Addison
- Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; Medical Physics Department, Oncology Directorate, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Kwasi Preko
- Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tania Bizouarn
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Chantal Houée-Levin
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Laura Baciou
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France.
| |
Collapse
|
11
|
Kuhikar R, Khan N, Khare SP, Fulzele A, Melinkeri S, Kale V, Limaye L. Neutrophils generated in vitro from hematopoietic stem cells isolated from apheresis samples and umbilical cord blood form neutrophil extracellular traps. Stem Cell Res 2020; 50:102150. [PMID: 33450673 DOI: 10.1016/j.scr.2020.102150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/05/2020] [Accepted: 12/27/2020] [Indexed: 11/22/2022] Open
Abstract
Neutrophils release neutrophil extracellular traps (NET) comprising of decondensed chromatin that immobilizes and kills pathogens. In vitro generation of neutrophils on a large scale from hematopoietic stem cells (HSCs) may be a useful strategy for treating neutropenic patients in future, though it is not in clinical practice yet. Microbial infections lead to major cause of morbidity and mortality in these patients. Despite the importance of NET in preventing infection, efficacy of in vitro-generated neutrophils from HSCs to form NET is not tested. We show that functional neutrophils could be generated in vitro from HSCs/MNCs isolated from umbilical cord blood (UCB) and apheresis-derived peripheral blood (APBL). Neutrophils generated from UCB showed properties comparable to those isolated from peripheral blood. We also show that isolation of HSCs is not absolutely essential for in vitro neutrophil generation. Further, we show that neutrophils generated from HSCs express PADI4 enzyme and their NET-forming ability is comparable to peripheral blood neutrophils. Taken together, our data show that fully functional neutrophils can be generated in vitro from HSCs. NET-forming ability of in vitro-generated neutrophils is an important parameter to determine their functionality and thus, should be studied along with other standard functional assays.
Collapse
Affiliation(s)
- Rutuja Kuhikar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Nikhat Khan
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Satyajeet P Khare
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Amit Fulzele
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Sameer Melinkeri
- Blood and Marrow Transplant Unit, Deenanath Mangeshkar Hospital, Erandawne, Pune 411004, India
| | - Vaijayanti Kale
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis Knowledge Village, Lavale, Pune 412115, India
| | - Lalita Limaye
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India.
| |
Collapse
|
12
|
Bernut A, Dupont C, Ogryzko NV, Neyret A, Herrmann JL, Floto RA, Renshaw SA, Kremer L. CFTR Protects against Mycobacterium abscessus Infection by Fine-Tuning Host Oxidative Defenses. Cell Rep 2020; 26:1828-1840.e4. [PMID: 30759393 DOI: 10.1016/j.celrep.2019.01.071] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/17/2018] [Accepted: 01/17/2019] [Indexed: 01/03/2023] Open
Abstract
Infection by rapidly growing Mycobacterium abscessus is increasingly prevalent in cystic fibrosis (CF), a genetic disease caused by a defective CF transmembrane conductance regulator (CFTR). However, the potential link between a dysfunctional CFTR and vulnerability to M. abscessus infection remains unknown. Herein, we exploit a CFTR-depleted zebrafish model, recapitulating CF immuno-pathogenesis, to study the contribution of CFTR in innate immunity against M. abscessus infection. Loss of CFTR increases susceptibility to infection through impaired NADPH oxidase-dependent restriction of intracellular growth and reduced neutrophil chemotaxis, which together compromise granuloma formation and integrity. As a consequence, extracellular multiplication of M. abscessus expands rapidly, inducing abscess formation and causing lethal infections. Because these phenotypes are not observed with other mycobacteria, our findings highlight the crucial and specific role of CFTR in the immune control of M. abscessus by mounting effective oxidative responses.
Collapse
Affiliation(s)
- Audrey Bernut
- CNRS, UMR9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; Bateson Centre, University of Sheffield, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.
| | - Christian Dupont
- CNRS, UMR9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Nikolay V Ogryzko
- Bateson Centre, University of Sheffield, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Aymeric Neyret
- CNRS, UMR9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | | | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Stephen A Renshaw
- Bateson Centre, University of Sheffield, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Laurent Kremer
- CNRS, UMR9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France.
| |
Collapse
|
13
|
Differential effects of Th17 cytokines during the response of neutrophils to Burkholderia cenocepacia outer membrane protein A. Cent Eur J Immunol 2020; 44:403-413. [PMID: 32140053 PMCID: PMC7050059 DOI: 10.5114/ceji.2019.92800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
T helper 17 cells are involved in the immunopathology of cystic fibrosis. They play a key role in recruitment of neutrophils, which is the first line of defence against bacteria. Additionally, Burkholderia cenocepacia outer membrane protein A (OmpA) BCAL2958 is considered a potential protective epitope for vaccine development. The present study aimed to investigate the neutrophil response to OmpA in the presence of Th17 cytokines, IL-17 and IL-22 at different times of activation. Neutrophils were isolated from whole blood of healthy volunteers and activated with OmpA in the presence of IL-17, IL-22 or both cytokines together. Supernatant was collected after 1 h, 2 h, 4 h, 8 h, and 12 h. Neutrophil activation was assessed by measuring MPO, TNF-α, elastase, hydrogen peroxide, catalase and NO. The results revealed that the combination of IL-17 and IL-22 cytokines induced the release of NE, catalase, H2O2 and TNF-α from neutrophils activated with Burkholderia OmpA at late stages of activation. However, IL-22 alone or IL-17 alone decreased the myeloperoxidase (MPO), catalase and NE levels at early stages of neutrophil activation. The presence of IL-17 alone led to a significant increase in TNF-α level after 1 h and 12 h. However, the presence of IL-22 alone led to a significant increase in TNF-α level after only 1 h but a significant decrease after 8 h of activation was observed as compared to OmpA stimulated neutrophils. In conclusion, Th17 cytokines IL-17 and IL-22, have differential effects during the neutrophil response to Burkholderia OmpA.
Collapse
|
14
|
Andrographolide Ameliorates Rheumatoid Arthritis by Regulating the Apoptosis-NETosis Balance of Neutrophils. Int J Mol Sci 2019; 20:ijms20205035. [PMID: 31614480 PMCID: PMC6834122 DOI: 10.3390/ijms20205035] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by symmetric polyarthritis with swelling and pain at synovial joints. In RA patients, delayed neutrophil apoptosis amplifies the inflammatory response and massively released neutrophil extracellular traps (NETs) induce tissue damage and provide self-antigens. Andrographolide (AD) is the major active labdane diterpenoid derived from Andrographis paniculata, which has multiple pharmacological effects, including hepatoprotection, anti-angiogenesis, anti-thrombosis, and anti-inflammation. In the present study, we investigated the effect of AD on an adjuvant-induced arthritis (AA) murine model of RA and found that AD alleviated murine arthritis by reducing neutrophil infiltration and NETosis in the ankle joints and relieved the systematic inflammation. In vitro experiments showed that AD accelerated the apoptosis of lipopolysaccharide-activated neutrophils and inhibited autophagy-dependent extracellular traps formation of neutrophils. These findings suggest that AD has considerable potential for RA therapy.
Collapse
|
15
|
Wal P, Saraswat N, Pal RS, Wal A, Chaubey M. A Detailed Insight of the Anti-inflammatory Effects of Curcumin with the Assessment of Parameters, Sources of ROS and Associated Mechanisms. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874220301906010064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background:Curcumin is an active constituent ofCurcuma longa,which belongs to Zingiberaceae family. It is derived from the Rhizome of a perennial plant having molecular formula C21H20O6and chemically it is (1, 7- bis (4- hydroxy - 3 methoxyphenyl) -1, 6 - heptadine - 3, 5 - diene), also known as diferuloylmethane. Curcumin has been extensively used as a herbal constituent for curing several diseases and is scientifically proven to show major effects as an anti-inflammatory agent.Objective:Inflammation is an important factor for numerous diseases including diabetes neuropathy, cancer, asthma, arthritis, and other diseases. Prophylaxis of inflammatory diseases through synthetic medications tends to have major toxicity and side effects on a large number of population. The foremost aim of this review paper is to assess the natural anti-inflammatory effect of curcumin, source, and mechanism of action, potential therapeutic effect and models associated. Additionally, this paper aims to scrutinize inflammation, sources of reactive oxygen species, and pathways of reactive oxygen species generation and potential side effects of curcumin.Methods:Selection of data has been done by studying the combination of research and review papers from different databases like PubMed, Medline and Web of science from the year 1985- 2018 by using search keywords like “curcumin”, “anti-inflammatory”, “ROS”, “Curcuma longa”, “medicinal uses of curcumin”, “assessing parameters”, “inflammation”, “anti-oxidant”Results:On the basis of our interpretation, we have concluded that curcumin has potential therapeutic effects in different inflammatory diseases, it inhibits the inflammatory mediators, oxidation processes, and oxidative stress and has no severe toxicity on animals and humans.Conclusion:Oxidative stress is a major cause of inflammation and curcumin has a good potential for blocking it. Curcumin is also easily accessible herbal source and should be consumed in the form of food, antioxidant, anti-inflammatory agents and further observation should be done on its therapeutic parameters, risk factors, and toxicity studies and oral viability.
Collapse
|
16
|
Emmi G, Becatti M, Bettiol A, Hatemi G, Prisco D, Fiorillo C. Behçet's Syndrome as a Model of Thrombo-Inflammation: The Role of Neutrophils. Front Immunol 2019; 10:1085. [PMID: 31139195 PMCID: PMC6527740 DOI: 10.3389/fimmu.2019.01085] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/29/2019] [Indexed: 01/26/2023] Open
Abstract
Behçet's syndrome (BS) is a systemic vasculitis, clinically characterized by different organ involvement and often complicated by thrombosis which occurs in vessels of all sizes. Thrombosis is more frequent in male patients with active disease and represents an important cause of morbidity and mortality. Neutrophil involvement in BS has been repeatedly suggested in the last few years. Indeed, neutrophils have been shown to be hyperactivated in BS patients, probably with a HLAB51 related contribution, and represent the main cells infiltrating not only oral and genital ulcers or erythema nodosum, but also other sites. Besides being deputed to host defense against micro-organisms, neutrophils display fundamental roles both in inflammation and tissue damage becoming inappropriately activated by cytokines, chemokines and autoantibodies and subsequently producing large amounts of superoxide anion (O2.) via NADPH oxidase (NOX2). The strict relationship between inflammation and hemostasis has been already demonstrated. Indeed, inflammation and immune-mediated disorders increase the risk of thrombosis, but the pathways that link these processes have not been completely elucidated. In this regard, we recently demonstrated, in a large population of BS patients, a new neutrophil-dependent pathogenetic mechanism of thrombosis. In particular, it was shown that neutrophils, mainly through NADPH oxidase, produce excessive amounts of reactive oxygen species (ROS), which are able to markedly modify the secondary structure of fibrinogen and hence the overall architecture of the fibrin clot that becomes less susceptible to plasmin-induced lysis. These data point out that BS represents “per se” a model of inflammation-induced thrombosis and suggest that neutrophils specifically contribute to thrombo-inflammation in this rare disease. In particular, it is suggested that an alteration in fibrinogen structure and function are associated with enhanced ROS production via neutrophil NADPH oxidase. Altogether, these findings improve our understanding of the intricate pathogenetic mechanisms of thrombo-inflammation and may indicate potential new therapeutic targets.
Collapse
Affiliation(s)
- Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy.,Department of Neurosciences, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Gülen Hatemi
- Division of Rheumatology, Department of Internal Medicine, Istanbul University - Cerrahpaşa, Istanbul, Turkey
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| |
Collapse
|
17
|
The Significant Reduction or Complete Eradication of Subcutaneous and Metastatic Lesions in a Pheochromocytoma Mouse Model after Immunotherapy Using Mannan-BAM, TLR Ligands, and Anti-CD40. Cancers (Basel) 2019; 11:cancers11050654. [PMID: 31083581 PMCID: PMC6562455 DOI: 10.3390/cancers11050654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
Therapeutic options for metastatic pheochromocytoma/paraganglioma (PHEO/PGL) are limited. Here, we tested an immunotherapeutic approach based on intratumoral injections of mannan-BAM with toll-like receptor ligands into subcutaneous PHEO in a mouse model. This therapy elicited a strong innate immunity-mediated antitumor response and resulted in a significantly lower PHEO volume compared to the phosphate buffered saline (PBS)-treated group and in a significant improvement in mice survival. The cytotoxic effect of neutrophils, as innate immune cells predominantly infiltrating treated tumors, was verified in vitro. Moreover, the combination of mannan-BAM and toll-like receptor ligands with agonistic anti-CD40 was associated with increased mice survival. Subsequent tumor re-challenge also supported adaptive immunity activation, reflected primarily by long-term tumor-specific memory. These results were further verified in metastatic PHEO, where the intratumoral injections of mannan-BAM, toll-like receptor ligands, and anti-CD40 into subcutaneous tumors resulted in significantly less intense bioluminescence signals of liver metastatic lesions induced by tail vein injection compared to the PBS-treated group. Subsequent experiments focusing on the depletion of T cell subpopulations confirmed the crucial role of CD8+ T cells in inhibition of bioluminescence signal intensity of liver metastatic lesions. These data call for a new therapeutic approach in patients with metastatic PHEO/PGL using immunotherapy that initially activates innate immunity followed by an adaptive immune response.
Collapse
|
18
|
Du ZD, Yu S, Qi Y, Qu TF, He L, Wei W, Liu K, Gong SS. NADPH oxidase inhibitor apocynin decreases mitochondrial dysfunction and apoptosis in the ventral cochlear nucleus of D-galactose-induced aging model in rats. Neurochem Int 2018; 124:31-40. [PMID: 30578839 DOI: 10.1016/j.neuint.2018.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/01/2018] [Accepted: 12/17/2018] [Indexed: 01/17/2023]
Abstract
Presbycusis has become a common sensory deficit in humans. Oxidative damage to mitochondrial DNA and mitochondrial dysfunction is strongly associated with the aging of the auditory system. A previous study established a mimetic rat model of aging using D-galactose (D-gal) and first reported that NADPH oxidase-dependent mitochondrial oxidative damage and apoptosis in the ventral cochlear nucleus (VCN) might contribute to D-gal-induced central presbycusis. In this study, we investigated the effects of apocynin, an NADPH oxidase inhibitor, on mitochondrial dysfunction and mitochondria-dependent apoptosis in the VCN of D-gal-induced aging model in rats. Our data showed that apocynin decreased NADPH oxidase activity, H2O2 levels, mitochondrial DNA common deletion, and 8-hydroxy-2-deoxyguanosine (8-OHdG) expression and increased total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activity in the VCN of D-gal-induced aging model in rats. Moreover, apocynin also decreased the protein levels of phospho-p47phox (p-p47phox), tumor necrosis factor alpha (TNFα), and uncoupling protein 2 (UCP2) in the VCN of D-gal-induced aging model in rats. Meanwhile, apocynin alleviated mitochondrial ultrastructure damage and enhanced ATP production and mitochondrial membrane potential (MMP) levels in the VCN of D-gal-induced aging model in rats. Furthermore, apocynin inhibited cytochrome c (Cyt c) translocation from mitochondria to the cytoplasm and suppressed caspase 3-dependent apoptosis in the VCN of D-gal-induced aging model in rats. Consequently, our findings suggest that neuronal survival promoted by an NADPH oxidase inhibitor is a potentially effective method to enhance the resistance of neurons to central presbycusis.
Collapse
Affiliation(s)
- Zheng-De Du
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Shukui Yu
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Yue Qi
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Teng-Fei Qu
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Lu He
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Wei Wei
- Department of Otology, Shengjing Hospital, China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Ke Liu
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China.
| | - Shu-Sheng Gong
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
19
|
Belambri SA, Rolas L, Raad H, Hurtado-Nedelec M, Dang PMC, El-Benna J. NADPH oxidase activation in neutrophils: Role of the phosphorylation of its subunits. Eur J Clin Invest 2018; 48 Suppl 2:e12951. [PMID: 29757466 DOI: 10.1111/eci.12951] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
Neutrophils are key cells of innate immunity and during inflammation. Upon activation, they produce large amounts of superoxide anion (O2 -. ) and ensuing reactive oxygen species (ROS) to kill phagocytized microbes. The enzyme responsible for O2 -. production is called the phagocyte NADPH oxidase. This is a multicomponent enzyme system that becomes active after assembly of four cytosolic proteins (p47phox , p67phox , p40phox and Rac2) with the transmembrane proteins (p22phox and gp91phox , which form the cytochrome b558 ). gp91phox represents the catalytic subunit of the NADPH oxidase and is also called NOX2. NADPH oxidase-derived ROS are essential for microbial killing and innate immunity; however, excessive ROS production induces tissue injury and prolonged inflammatory reactions that contribute to inflammatory diseases. Thus, NADPH oxidase activation must be tightly regulated in time and space to limit ROS production. NADPH oxidase activation is regulated by several processes such as phosphorylation of its components, exchange of GDP/GTP on Rac2 and binding of p47phox and p40phox to phospholipids. This review aims to provide new insights into the role of the phosphorylation of the NADPH oxidase components, that is gp91phox , p22phox , p47phox , p67phox and p40phox , in the activation of this enzyme.
Collapse
Affiliation(s)
- Sahra A Belambri
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.,Laboratoire de Biochimie Appliquée, Équipe de Recherche: Stress Oxydatif et Inflammation, Département de Biochimie, Faculté des Sciences De la Nature et de la Vie, Université Ferhat Abbes 1, Sétif, Algérie
| | - Loïc Rolas
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Houssam Raad
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Margarita Hurtado-Nedelec
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Pham My-Chan Dang
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Jamel El-Benna
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| |
Collapse
|
20
|
Cecchi I, Arias de la Rosa I, Menegatti E, Roccatello D, Collantes-Estevez E, Lopez-Pedrera C, Barbarroja N. Neutrophils: Novel key players in Rheumatoid Arthritis. Current and future therapeutic targets. Autoimmun Rev 2018; 17:1138-1149. [PMID: 30217550 DOI: 10.1016/j.autrev.2018.06.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
Rheumatoid Arthritis (RA) is a complex systemic autoimmune disease in which various cell types are involved. Among them, neutrophils have been recognized as important players in the onset and the progression of RA. The pathogenic role of neutrophils in RA lies in the alteration of several processes, including increased cell survival and migratory capacity, abnormal inflammatory activity, elevated oxidative stress and an exacerbated release of neutrophil extracellular traps. Through these mechanisms, neutrophils can activate other immune cells, thus perpetuating inflammation and leading to the destruction of the cartilage and bone of the affected joint. Given the considerable contribution of neutrophils to the pathophysiology of RA, several studies have attempted to clarify the effects of various therapeutic agents on this subtype of leukocyte. To date, recent studies have envisaged the role of new molecules on the pathogenic profile of neutrophils in RA, which could represent novel targets in future therapies. In this review, we aim to review the pathogenic role of neutrophils in RA, the effect of conventional treatments and biologic therapies, and the new, potential targets of neutrophil-derived molecules for the treatment of RA.
Collapse
Affiliation(s)
- Irene Cecchi
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases - Coordinating Center of Piemonte and Valle d'Aosta Network for Rare Diseases, Turin, Italy
| | - Ivan Arias de la Rosa
- Rheumatology Service, Reina Sofia Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMBIC), University of Cordoba, Cordoba, Spain
| | - Elisa Menegatti
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases - Coordinating Center of Piemonte and Valle d'Aosta Network for Rare Diseases, Turin, Italy
| | - Dario Roccatello
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases - Coordinating Center of Piemonte and Valle d'Aosta Network for Rare Diseases, Turin, Italy
| | - Eduardo Collantes-Estevez
- Rheumatology Service, Reina Sofia Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMBIC), University of Cordoba, Cordoba, Spain
| | - Chary Lopez-Pedrera
- Rheumatology Service, Reina Sofia Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMBIC), University of Cordoba, Cordoba, Spain
| | - Nuria Barbarroja
- Rheumatology Service, Reina Sofia Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMBIC), University of Cordoba, Cordoba, Spain.
| |
Collapse
|
21
|
Glennon-Alty L, Hackett AP, Chapman EA, Wright HL. Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic Biol Med 2018; 125:25-35. [PMID: 29605448 DOI: 10.1016/j.freeradbiomed.2018.03.049] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022]
Abstract
Polymorphonuclear leukocytes, or neutrophils, are specialist phagocytic cells of the innate immune system. Their primary role is host defence against micro-organisms, which they kill via phagocytosis, followed by release of reactive oxygen species (ROS) and proteolytic enzymes within the phagosome. ROS are generated via the action of the NADPH oxidase (also known as NOX2), in a process termed the 'Respiratory Burst'. This process consumes large amounts of oxygen, which is converted into the highly-reactive superoxide radical O2- and H2O2. Subsequent activation of myeloperoxidase (MPO) generates secondary oxidants and chloroamines that are highly microbiocidal in nature, which together with proteases such as elastase and gelatinase provide a toxic intra-phagosomal environment able to kill a broad range of micro-organisms. However, under certain circumstances such as during an auto-immune response, neutrophils can be triggered to release ROS and proteases extracellularly causing damage to host tissues, modification of host proteins, lipids and DNA and dysregulation of oxidative homeostasis. This review describes the range of ROS species produced by human neutrophils with a focus on the implications of neutrophil redox products in autoimmune inflammation.
Collapse
Affiliation(s)
- Laurence Glennon-Alty
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, L7 8TX Liverpool, UK; Liverpool Health Partners, University of Liverpool, Liverpool, UK
| | - Angela P Hackett
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, L7 8TX Liverpool, UK
| | - Elinor A Chapman
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, L7 8TX Liverpool, UK
| | - Helen L Wright
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, L7 8TX Liverpool, UK.
| |
Collapse
|
22
|
Garcia CC, Tavares LP, Dias ACF, Kehdy F, Alvarado-Arnez LE, Queiroz-Junior CM, Galvão I, Lima BH, Matos AR, Gonçalves APF, Soriani FM, Moraes MO, Marques JT, Siqueira MM, Machado AMV, Sousa LP, Russo RC, Teixeira MM. Phosphatidyl Inositol 3 Kinase-Gamma Balances Antiviral and Inflammatory Responses During Influenza A H1N1 Infection: From Murine Model to Genetic Association in Patients. Front Immunol 2018; 9:975. [PMID: 29867955 PMCID: PMC5962662 DOI: 10.3389/fimmu.2018.00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/19/2018] [Indexed: 01/07/2023] Open
Abstract
Influenza A virus (IAV) infection causes severe pulmonary disease characterized by intense leukocyte infiltration. Phosphoinositide-3 kinases (PI3Ks) are central signaling enzymes, involved in cell growth, survival, and migration. Class IB PI3K or phosphatidyl inositol 3 kinase-gamma (PI3Kγ), mainly expressed by leukocytes, is involved in cell migration during inflammation. Here, we investigated the contribution of PI3Kγ for the inflammatory and antiviral responses to IAV. PI3Kγ knockout (KO) mice were highly susceptible to lethality following infection with influenza A/WSN/33 H1N1. In the early time points of infection, infiltration of neutrophils was higher than WT mice whereas type-I and type-III IFN expression and p38 activation were reduced in PI3Kγ KO mice resulting in higher viral loads when compared with WT mice. Blockade of p38 in WT macrophages infected with IAV reduced levels of interferon-stimulated gene 15 protein to those induced in PI3Kγ KO macrophages, suggesting that p38 is downstream of antiviral responses mediated by PI3Kγ. PI3Kγ KO-derived fibroblasts or macrophages showed reduced type-I IFN transcription and altered pro-inflammatory cytokines suggesting a cell autonomous imbalance between inflammatory and antiviral responses. Seven days after IAV infection, there were reduced infiltration of natural killer cells and CD8+ T lymphocytes, increased concentration of inflammatory cytokines in bronchoalveolar fluid, reduced numbers of resolving macrophages, and IL-10 levels in PI3Kγ KO. This imbalanced environment in PI3Kγ KO-infected mice culminated in enhanced lung neutrophil infiltration, reactive oxygen species release, and lung damage that together with the increased viral loads, contributed to higher mortality in PI3Kγ KO mice compared with WT mice. In humans, we tested the genetic association of disease severity in influenza A/H1N1pdm09-infected patients with three potentially functional PIK3CG single-nucleotide polymorphisms (SNPs), rs1129293, rs17847825, and rs2230460. We observed that SNPs rs17847825 and rs2230460 (A and T alleles, respectively) were significantly associated with protection from severe disease using the recessive model in patients infected with influenza A(H1N1)pdm09. Altogether, our results suggest that PI3Kγ is crucial in balancing antiviral and inflammatory responses to IAV infection.
Collapse
Affiliation(s)
- Cristiana C Garcia
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Carolina F Dias
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Kehdy
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Lucia Elena Alvarado-Arnez
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Coordinación Nacional de Investigación, UNIFRANZ, La Paz, Bolivia
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Braulio H Lima
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Inflamação e Dor, Departamento de Farmacologia, Prédio Central, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Aline R Matos
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Paula F Gonçalves
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Frederico M Soriani
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milton O Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - João T Marques
- Laboratório de RNA de Interferência, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marilda M Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Alexandre M V Machado
- Laboratório de Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo C Russo
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
23
|
Caisová V, Uher O, Nedbalová P, Jochmanová I, Kvardová K, Masáková K, Krejčová G, Paďouková L, Chmelař J, Kopecký J, Ženka J. Effective cancer immunotherapy based on combination of TLR agonists with stimulation of phagocytosis. Int Immunopharmacol 2018; 59:86-96. [PMID: 29635103 DOI: 10.1016/j.intimp.2018.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/22/2018] [Accepted: 03/30/2018] [Indexed: 01/03/2023]
Abstract
Immunotherapy emerges as a fundamental approach in cancer treatment. Up to date, the efficacy of numerous different immunotherapies has been evaluated. The use of microorganisms or their parts for immune cell activation, referred to as Pathogen-Associated Molecular Patterns (PAMPs), represents highly promising concept. The therapeutic effect of PAMPs can be further amplified by suitable combination of different types of PAMPs such as Toll like receptor (TLR) agonists and phagocytosis activating ligands. Previously, we used the combination of phagocytosis activating ligand (mannan) and mixture of TLR agonists (resiquimod (R-848), poly(I:C), inactivated Listeria monocytogenes) for successful treatment of melanoma in murine B16-F10 model. In the present study, we optimized the composition and timing of previously used mixture. Therapeutic mixture based on well-defined chemical compounds consisted of mannan anchoring to tumor cell surface by biocompatible anchor for membranes (BAM) and TLR agonists resiquimod, poly(I:C), and lipoteichoic acid (LTA). The optimization resulted in (1) eradication of advanced stage progressive melanoma in 83% of mice, (2) acquisition of resistance to tumor re-transplantation, and (3) potential anti-metastatic effect. After further investigation of mechanisms, underlying anti-tumor responses, we concluded that both innate and adaptive immunity are activated and involved in these processes. We tested the efficacy of our treatment in Panc02 murine model of aggressive pancreatic tumor as well. Simultaneous application of agonistic anti-CD40 antibody was necessary to achieve effective therapeutic response (80% recovery) in this model. Our results suggest that herein presented immunotherapeutic approach is a promising cancer treatment strategy with the ability to eradicate not only primary tumors but also metastases.
Collapse
Affiliation(s)
- Veronika Caisová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Ondřej Uher
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavla Nedbalová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Ivana Jochmanová
- 1st Department of Internal Medicine, Medical Faculty of P. J. Šafárik University in Košice, Košice, Slovakia
| | - Karolína Kvardová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Kamila Masáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Gabriela Krejčová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Lucie Paďouková
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jan Kopecký
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, v.v.i., České Budějovice, Czech Republic
| | - Jan Ženka
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
24
|
Vokalova L, van Breda SV, Ye XL, Huhn EA, Than NG, Hasler P, Lapaire O, Hoesli I, Rossi SW, Hahn S. Excessive Neutrophil Activity in Gestational Diabetes Mellitus: Could It Contribute to the Development of Preeclampsia? Front Endocrinol (Lausanne) 2018; 9:542. [PMID: 30298053 PMCID: PMC6161643 DOI: 10.3389/fendo.2018.00542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022] Open
Abstract
Gestational diabetes mellitus is a transient form of glucose intolerance occurring during pregnancy. Pregnancies affected by gestational diabetes mellitus are at risk for the development of preeclampsia, a severe life threatening condition, associated with significant feto-maternal morbidity and mortality. It is a risk factor for long-term health in women and their offspring. Pregnancy has been shown to be associated with a subliminal degree of neutrophil activation and tightly regulated generation of neutrophil extracellular traps (NETs). This response is excessive in cases with preeclampsia, leading to the presence of large numbers of NETs in affected placentae. We have recently observed that circulatory neutrophils in cases with gestational diabetes mellitus similarly exhibit an excessive pro-NETotic phenotype, and pronounced placental presence, as detected by expression of neutrophil elastase. Furthermore, exogenous neutrophil elastase liberated by degranulating neutrophils was demonstrated to alter trophoblast physiology and glucose metabolism by interfering with key signal transduction components. In this review we examine whether additional evidence exists suggesting that altered neutrophil activity in gestational diabetes mellitus may contribute to the development of preeclampsia.
Collapse
Affiliation(s)
- Lenka Vokalova
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Shane V. van Breda
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Department of Rheumatology, Kantonsspital Aarau, Aarau, Switzerland
| | - Xi Lun Ye
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Evelyn A. Huhn
- Department of Obstetrics, University Women's Hospital Basel, Basel, Switzerland
| | - Nandor G. Than
- Systems Biology of Reproduction Momentum Research Group, Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Paul Hasler
- Department of Rheumatology, Kantonsspital Aarau, Aarau, Switzerland
| | - Olav Lapaire
- Department of Obstetrics, University Women's Hospital Basel, Basel, Switzerland
| | - Irene Hoesli
- Department of Obstetrics, University Women's Hospital Basel, Basel, Switzerland
| | - Simona W. Rossi
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- *Correspondence: Simona W. Rossi
| | - Sinuhe Hahn
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Sinuhe Hahn
| |
Collapse
|
25
|
Belarbi K, Cuvelier E, Destée A, Gressier B, Chartier-Harlin MC. NADPH oxidases in Parkinson's disease: a systematic review. Mol Neurodegener 2017; 12:84. [PMID: 29132391 PMCID: PMC5683583 DOI: 10.1186/s13024-017-0225-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive movement neurodegenerative disease associated with a loss of dopaminergic neurons in the substantia nigra of the brain. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, is thought to play an important role in dopaminergic neurotoxicity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are multi-subunit enzymatic complexes that generate reactive oxygen species as their primary function. Increased immunoreactivities for the NADPH oxidases catalytic subunits Nox1, Nox2 and Nox4 have been reported in the brain of PD patients. Furthermore, knockout or genetic inactivation of NADPH oxidases exert a neuroprotective effect and reduce detrimental aspects of pathology in experimental models of the disease. However, the connections between NADPH oxidases and the biological processes believed to contribute to neuronal death are not well known. This review provides a comprehensive summary of our current understanding about expression and physiological function of NADPH oxidases in neurons, microglia and astrocytes and their pathophysiological roles in PD. It summarizes the findings supporting the role of both microglial and neuronal NADPH oxidases in cellular disturbances associated with PD such as neuroinflammation, alpha-synuclein accumulation, mitochondrial and synaptic dysfunction or disruption of the autophagy-lysosome system. Furthermore, this review highlights different steps that are essential for NADPH oxidases enzymatic activity and pinpoints major obstacles to overcome for the development of effective NADPH oxidases inhibitors for PD.
Collapse
Affiliation(s)
- Karim Belarbi
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Elodie Cuvelier
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Alain Destée
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Bernard Gressier
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Marie-Christine Chartier-Harlin
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France. .,Inserm UMR S-1172 Team "Early stages of Parkinson's Disease", 1 Place de Verdun, 59006, Lille, France.
| |
Collapse
|
26
|
The Effect of Sepsis on the Erythrocyte. Int J Mol Sci 2017; 18:ijms18091932. [PMID: 28885563 PMCID: PMC5618581 DOI: 10.3390/ijms18091932] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/25/2022] Open
Abstract
Sepsis induces a wide range of effects on the red blood cell (RBC). Some of the effects including altered metabolism and decreased 2,3-bisphosphoglycerate are preventable with appropriate treatment, whereas others, including decreased erythrocyte deformability and redistribution of membrane phospholipids, appear to be permanent, and factors in RBC clearance. Here, we review the effects of sepsis on the erythrocyte, including changes in RBC volume, metabolism and hemoglobin's affinity for oxygen, morphology, RBC deformability (an early indicator of sepsis), antioxidant status, intracellular Ca2+ homeostasis, membrane proteins, membrane phospholipid redistribution, clearance and RBC O₂-dependent adenosine triphosphate efflux (an RBC hypoxia signaling mechanism involved in microvascular autoregulation). We also consider the causes of these effects by host mediated oxidant stress and bacterial virulence factors. Additionally, we consider the altered erythrocyte microenvironment due to sepsis induced microvascular dysregulation and speculate on the possible effects of RBC autoxidation. In future, a better understanding of the mechanisms involved in sepsis induced erythrocyte pathophysiology and clearance may guide improved sepsis treatments. Evidence that small molecule antioxidants protect the erythrocyte from loss of deformability, and more importantly improve septic patient outcome suggest further research in this area is warranted. While not generally considered a critical factor in sepsis, erythrocytes (and especially a smaller subpopulation) appear to be highly susceptible to sepsis induced injury, provide an early warning signal of sepsis and are a factor in the microvascular dysfunction that has been associated with organ dysfunction.
Collapse
|
27
|
El-Benna J, Hurtado-Nedelec M, Marzaioli V, Marie JC, Gougerot-Pocidalo MA, Dang PMC. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev 2017; 273:180-93. [PMID: 27558335 DOI: 10.1111/imr.12447] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophils are the major circulating white blood cells in humans. They play an essential role in host defense against pathogens. In healthy individuals, circulating neutrophils are in a dormant state with very low efficiency of capture and arrest on the quiescent endothelium. Upon infection and subsequent release of pro-inflammatory mediators, the vascular endothelium signals to circulating neutrophils to roll, adhere, and cross the endothelial barrier. Neutrophils migrate toward the infection site along a gradient of chemo-attractants, then recognize and engulf the pathogen. To kill this pathogen entrapped inside the vacuole, neutrophils produce and release high quantities of antibacterial peptides, proteases, and reactive oxygen species (ROS). The robust ROS production is also called 'the respiratory burst', and the NADPH oxidase or NOX2 is the enzyme responsible for the production of superoxide anion, leading to other ROS. In vitro, several soluble and particulate agonists induce neutrophil ROS production. This process can be enhanced by prior neutrophil treatment with 'priming' agents, which alone do not induce a respiratory burst. In this review, we will describe the priming process and discuss the beneficial role of controlled neutrophil priming in host defense and the detrimental effect of excessive neutrophil priming in inflammatory diseases.
Collapse
Affiliation(s)
- Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Margarita Hurtado-Nedelec
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Viviana Marzaioli
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Jean-Claude Marie
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Marie-Anne Gougerot-Pocidalo
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| |
Collapse
|
28
|
Creed TM, Tandon S, Ward RA, McLeish KR. Endocytosis is required for exocytosis and priming of respiratory burst activity in human neutrophils. Inflamm Res 2017. [PMID: 28638979 DOI: 10.1007/s00011-017-1070-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE AND DESIGN Neutrophil generation of reactive oxygen species (ROS) is enhanced by exposure to pro-inflammatory agents in a process termed priming. Priming is depending on exocytosis of neutrophil granules and p47phox phosphorylation-dependent translocation of cytosolic NADPH oxidase components. Clathrin-mediated endocytosis was recently reported to be necessary for priming, but the mechanism linking endocytosis to priming was not identified. The present study examined the hypothesis that endocytosis regulates neutrophil priming by controlling granule exocytosis. MATERIALS AND METHODS Clathrin-mediated endocytosis by isolated human neutrophils was inhibited by chlorpromazine, monodansylcadaverine, and sucrose. Exocytosis of granule subsets was measured as release of granule components by ELISA or chemiluminescence. ROS generation was measured as extracellular release of superoxide as reduction of ferrocytochrome c. p38 MAPK activation and p47phox phosphorylation were measured by immunoblot analysis. Statistical analysis was performed using a one-way ANOVA with the Tukey-Kramer multiple-comparison test. RESULTS Inhibition of endocytosis prevented priming of superoxide release by TNFα and inhibited TNFα stimulation and priming of exocytosis of all four granule subsets. Inhibition of endocytosis did not reduce TNFα-stimulated p38 MAPK activation or p47phox phosphorylation. Inhibition of NADPH oxidase activity blocked TNFα stimulation of secretory vesicle and gelatinase granule exocytosis. CONCLUSIONS Endocytosis is linked to priming of respiratory burst activity through ROS-mediated control of granule exocytosis.
Collapse
Affiliation(s)
- T Michael Creed
- Department of Medicine, University of Louisville School of Medicine, Baxter I Research Building, Room 102, 570 South Preston Street, Louisville, KY, 40202, USA
| | - Shweta Tandon
- Department of Medicine, University of Louisville School of Medicine, Baxter I Research Building, Room 102, 570 South Preston Street, Louisville, KY, 40202, USA
| | - Richard A Ward
- Department of Medicine, University of Louisville School of Medicine, Baxter I Research Building, Room 102, 570 South Preston Street, Louisville, KY, 40202, USA
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville School of Medicine, Baxter I Research Building, Room 102, 570 South Preston Street, Louisville, KY, 40202, USA. .,Robley Rex VAMC, Louisville, KY, 40206, USA.
| |
Collapse
|
29
|
Tumor Necrosis Factor α-Dependent Neutrophil Priming Prevents Intestinal Ischemia/Reperfusion-Induced Bacterial Translocation. Dig Dis Sci 2017; 62:1498-1510. [PMID: 28144894 DOI: 10.1007/s10620-017-4468-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/20/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Intestinal ischemia/reperfusion (I/R) causes barrier impairment and bacterial influx. Protection against I/R injury in sterile organs by hypoxic preconditioning (HPC) had been attributed to erythropoietic and angiogenic responses. Our previous study showed attenuation of intestinal I/R injury by HPC for 21 days in a neutrophil-dependent manner. AIM To investigate the underlying mechanisms of neutrophil priming by HPC, and explore whether adoptive transfer of primed neutrophils is sufficient to ameliorate intestinal I/R injury. METHODS Rats raised in normoxia (NM) and HPC for 3 or 7 days were subjected to sham operation or superior mesenteric artery occlusion for I/R challenge. Neutrophils isolated from rats raised in NM or HPC for 21 days were intravenously injected into naïve controls prior to I/R. RESULTS Similar to the protective effect of HPC-21d, I/R-induced mucosal damage was attenuated by HPC-7d but not by HPC-3d. Naïve rats reconstituted with neutrophils of HPC-21d rats showed increase in intestinal phagocytic infiltration and myeloperoxidase activity, and barrier protection against I/R insult. Elevated free radical production, and higher bactericidal and phagocytic activity were observed in HPC neutrophils compared to NM controls. Moreover, increased serum levels of tumor necrosis factor α (TNFα) and cytokine-induced neutrophil chemoattractant-1 (CINC-1) were seen in HPC rats. Naïve neutrophils incubated with HPC serum or recombinant TNFα, but not CINC-1, exhibited heightened respiratory burst and bactericidal activity. Lastly, neutrophil priming effect was abolished by neutralization of TNFα in HPC serum. CONCLUSIONS TNFα-primed neutrophils by HPC act as effectors cells for enhancing barrier integrity under gut ischemia.
Collapse
|
30
|
Miralda I, Uriarte SM, McLeish KR. Multiple Phenotypic Changes Define Neutrophil Priming. Front Cell Infect Microbiol 2017; 7:217. [PMID: 28611952 PMCID: PMC5447094 DOI: 10.3389/fcimb.2017.00217] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
Exposure to pro-inflammatory cytokines, chemokines, mitochondrial contents, and bacterial and viral products induces neutrophils to transition from a basal state into a primed one, which is currently defined as an enhanced response to activating stimuli. Although, typically associated with enhanced generation of reactive oxygen species (ROS) by the NADPH oxidase, primed neutrophils show enhanced responsiveness of exocytosis, NET formation, and chemotaxis. Phenotypic changes associated with priming also include activation of a subset of functions, including adhesion, transcription, metabolism, and rate of apoptosis. This review summarizes the breadth of phenotypic changes associated with priming and reviews current knowledge of the molecular mechanisms behind those changes. We conclude that the current definition of priming is too restrictive. Priming represents a combination of enhanced responsiveness and activated functions that regulate both adaptive and innate immune responses.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Microbiology, University of Louisville School of MedicineLouisville, KY, United States
| | - Silvia M Uriarte
- Department of Microbiology, University of Louisville School of MedicineLouisville, KY, United States.,Department of Medicine, University of Louisville School of MedicineLouisville, KY, United States
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville School of MedicineLouisville, KY, United States.,Robley Rex VA Medical CenterLouisville, KY, United States
| |
Collapse
|
31
|
Na M, Wang W, Fei Y, Josefsson E, Ali A, Jin T. Both anti-TNF and CTLA4 Ig treatments attenuate the disease severity of staphylococcal dermatitis in mice. PLoS One 2017; 12:e0173492. [PMID: 28264025 PMCID: PMC5338833 DOI: 10.1371/journal.pone.0173492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
Background RA patients being treated with biologics are known to have an increased risk of infections. We recently demonstrated that both CTLA4 Ig and anti-TNF treatment aggravate systemic Staphylococcus aureus (S. aureus) infection in mice, but with distinct clinical manifestations. However, the effects of CTLA4 Ig and anti-TNF treatments on a local S. aureus infection (e.g., skin infection) might differ from their effects on a systemic infection. Aims The aim of this study was to examine the differential effects of anti-TNF versus CTLA4 Ig treatment on S. aureus skin infections in mice. Method Abatacept (CTLA4 Ig), etanercept (anti-TNF treatment) or PBS was given to NMRI mice subcutaneously inoculated with S. aureus strain SH1000. The clinical signs of dermatitis, along with histopathological changes due to skin infection, were compared between the groups. Results Both CTLA4 Ig and anti-TNF treatment resulted in less severe skin infections and smaller post-infectious hyperpigmentation compared with controls. Consistent with the clinical signs of dermatitis, smaller lesion size, more epithelial hyperplasia and more granulation were found in skin biopsies from mice receiving anti-TNF compared with PBS controls. However, both CTLA4 Ig and anti-TNF therapy tended to prolong the healing time, although this finding was not statistically significant. Serum MCP-1 levels were elevated in the anti-TNF group relative to the CTLA4 Ig and PBS groups, whereas IL-6 levels were higher in PBS controls than in the other two groups. Both anti-TNF and CTLA4 Ig treatments tended to down-regulate the necrosis/apoptosis ratio in the locally infected skin tissue. Importantly, no tangible difference was found in the bacterial burden among groups. Conclusion Both CTLA4 Ig and anti-TNF therapies attenuate disease severity but may prolong the healing time required for S. aureus skin infections. Neither treatment has an impact on bacterial clearance in skin tissues.
Collapse
Affiliation(s)
- Manli Na
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, S-41346 Göteborg, Sweden
| | - Wanzhong Wang
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Ying Fei
- Department of Microbiology and Immunology, The Affiliated Hospital of GuiZhou Medical University, Guiyang, P.R. China
| | - Elisabet Josefsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, S-41346 Göteborg, Sweden
| | - Abukar Ali
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, S-41346 Göteborg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, S-41346 Göteborg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
32
|
Deguine J, Wei J, Barbalat R, Gronert K, Barton GM. Local TNFR1 Signaling Licenses Murine Neutrophils for Increased TLR-Dependent Cytokine and Eicosanoid Production. THE JOURNAL OF IMMUNOLOGY 2017; 198:2865-2875. [PMID: 28219890 DOI: 10.4049/jimmunol.1601465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/24/2017] [Indexed: 01/01/2023]
Abstract
Neutrophils are generally the first immune cells recruited during the development of sterile or microbial inflammation. As these cells express many innate immune receptors with the potential to directly recognize microbial or endogenous signals, we set out to assess whether their functions are locally influenced by the signals present at the onset of inflammation. Using a mouse model of peritonitis, we demonstrate that neutrophils elicited in the presence of C-type lectin receptor ligands have an increased ability to produce cytokines, chemokines, and lipid mediators in response to subsequent TLR stimulation. Importantly, we found that licensing of cytokine production was mediated by paracrine TNF-α-TNFR1 signaling rather than direct ligand sensing, suggesting a form of quorum sensing among neutrophils. Mechanistically, licensing was largely imparted by changes in the posttranscriptional regulation of inflammatory cytokines, whereas production of IL-10 was regulated at the transcriptional level. Altogether, our data suggest that neutrophils rapidly adapt their functions to the local inflammatory milieu. These phenotypic changes may promote rapid neutrophil recruitment in the presence of pathogens but limit inflammation in their absence.
Collapse
Affiliation(s)
- Jacques Deguine
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720; and
| | - Jessica Wei
- Vision Science Program, School of Optometry, University of California Berkeley, Berkeley, CA 94598
| | - Roman Barbalat
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720; and
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California Berkeley, Berkeley, CA 94598
| | - Gregory M Barton
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720; and
| |
Collapse
|
33
|
Salei N, Hellberg L, Köhl J, Laskay T. Enhanced survival of Leishmania major in neutrophil granulocytes in the presence of apoptotic cells. PLoS One 2017; 12:e0171850. [PMID: 28187163 PMCID: PMC5302790 DOI: 10.1371/journal.pone.0171850] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Neutrophil granulocytes are the first leukocytes that encounter and phagocytose Leishmania major (L. major) parasites in the infected skin. The parasites can nonetheless survive within neutrophils. However, the mechanisms enabling the survival of Leishmania within neutrophils are still elusive. Previous findings indicated that human neutrophils can engulf apoptotic cells. Since apoptotic neutrophils are abundant in infected tissues, we hypothesized that the uptake of apoptotic cells results in diminished anti-leishmanial activity and, consequently, contributes to enhanced survival of the parasites at the site of infection. In the present study, we demonstrated that L. major-infected primary human neutrophils acquire enhanced capacity to engulf apoptotic cells. This was associated with increased expression of the complement receptors 1 and 3 involved in phagocytosis of apoptotic cells. Next, we showed that ingestion of apoptotic cells affects neutrophil antimicrobial functions. We observed that phagocytosis of apoptotic cells by neutrophils downregulates the phosphorylation of p38 MAPK and PKCδ, the kinases involved in activation of NADPH oxidase and hence reactive oxygen species (ROS) production. In line, uptake of apoptotic cells inhibits TNF- and L. major-induced ROS production by neutrophils. Importantly, we found that the survival of Leishmania in neutrophils is strongly enhanced in neutrophils exposed to apoptotic cells. Together, our findings reveal that apoptotic cells promote L. major survival within neutrophils by downregulating critical antimicrobial functions. This suggests that the induction of enhanced uptake of apoptotic cells represents a novel evasion mechanism of the parasites that facilitates their survival in neutrophil granulocytes.
Collapse
Affiliation(s)
- Natallia Salei
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Lars Hellberg
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
34
|
Caisová V, Vieru A, Kumžáková Z, Glaserová S, Husníková H, Vácová N, Krejčová G, Paďouková L, Jochmanová I, Wolf KI, Chmelař J, Kopecký J, Ženka J. Innate immunity based cancer immunotherapy: B16-F10 murine melanoma model. BMC Cancer 2016; 16:940. [PMID: 27927165 PMCID: PMC5142338 DOI: 10.1186/s12885-016-2982-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 11/30/2016] [Indexed: 01/10/2023] Open
Abstract
Background Using killed microorganisms or their parts to stimulate immunity for cancer treatment dates back to the end of 19th century. Since then, it undergone considerable development. Our novel approach binds ligands to the tumor cell surface, which stimulates tumor phagocytosis. The therapeutic effect is further amplified by simultaneous application of agonists of Toll-like receptors. We searched for ligands that induce both a strong therapeutic effect and are safe for humans. Methods B16-F10 murine melanoma model was used. For the stimulation of phagocytosis, mannan or N-formyl-methionyl-leucyl-phenylalanine, was covalently bound to tumor cells or attached using hydrophobic anchor. The following agonists of Toll-like receptors were studied: monophosphoryl lipid A (MPLA), imiquimod (R-837), resiquimod (R-848), poly(I:C), and heat killed Listeria monocytogenes. Results R-848 proved to be the most suitable Toll-like receptor agonist for our novel immunotherapeutic approach. In combination with covalently bound mannan, R-848 significantly reduced tumor growth. Adding poly(I:C) and L. monocytogenes resulted in complete recovery in 83% of mice and in their protection from the re-transplantation of melanoma cells. Conclusion An efficient cancer treatment results from the combination of Toll-like receptor agonists and phagocytosis stimulating ligands bound to the tumor cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2982-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Veronika Caisová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Andra Vieru
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Zuzana Kumžáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Simona Glaserová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Hana Husníková
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Nikol Vácová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Gabriela Krejčová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Lucie Paďouková
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Ivana Jochmanová
- 1st Department of Internal Medicine, Medical Faculty of P. J. Šafárik University in Košice, Košice, Slovakia
| | | | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jan Kopecký
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, v.v.i., České Budějovice, Czech Republic
| | - Jan Ženka
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
35
|
Waldmannová E, Caisová V, Fáberová J, Sváčková P, Kovářová M, Sváčková D, Kumžáková Z, Jačková A, Vácová N, Nedbalová P, Horká M, Kopecký J, Ženka J. The use of Zymosan A and bacteria anchored to tumor cells for effective cancer immunotherapy: B16-F10 murine melanoma model. Int Immunopharmacol 2016; 39:295-306. [DOI: 10.1016/j.intimp.2016.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022]
|
36
|
Potera RM, Jensen MJ, Hilkin BM, South GK, Hook JS, Gross EA, Moreland JG. Neutrophil azurophilic granule exocytosis is primed by TNF-α and partially regulated by NADPH oxidase. Innate Immun 2016; 22:635-646. [PMID: 27655046 DOI: 10.1177/1753425916668980] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neutrophil (polymorphonuclear leukocyte) activation with release of granule contents plays an important role in the pathogenesis of acute lung injury, prompting clinical trials of inhibitors of neutrophil elastase. Despite mounting evidence for neutrophil-mediated host tissue damage in a variety of disease processes, mechanisms regulating azurophilic granule exocytosis at the plasma membrane, and thus release of elastase and other proteases, are poorly characterized. We hypothesized that azurophilic granule exocytosis would be enhanced under priming conditions similar to those seen during acute inflammatory events and during chronic inflammatory disease, and selected the cytokine TNF-α to model this in vitro. Neutrophils stimulated with TNF-α alone elicited intracellular reactive oxygen species (ROS) generation and mobilization of secretory vesicles, specific, and gelatinase granules. p38 and ERK1/2 MAPK were involved in these components of priming. TNF-α priming alone did not mobilize azurophilic granules to the cell surface, but did markedly increase elastase release into the extracellular space in response to secondary stimulation with N-formyl-Met-Leu-Phe (fMLF). Priming of fMLF-stimulated elastase release was further augmented in the absence of NADPH oxidase-derived ROS. Our findings provide a mechanism for host tissue damage during neutrophil-mediated inflammation and suggest a novel anti-inflammatory role for the NADPH oxidase.
Collapse
Affiliation(s)
- Renee M Potera
- 1 Department of Pediatrics, University of Texas Southwestern Medical Center, USA
| | - Melissa J Jensen
- 2 Department of Pediatrics, The University of Iowa, USA.,3 The Inflammation Program, The University of Iowa and Veterans Affairs Medical Center, USA
| | - Brieanna M Hilkin
- 2 Department of Pediatrics, The University of Iowa, USA.,3 The Inflammation Program, The University of Iowa and Veterans Affairs Medical Center, USA
| | - Gina K South
- 2 Department of Pediatrics, The University of Iowa, USA
| | - Jessica S Hook
- 1 Department of Pediatrics, University of Texas Southwestern Medical Center, USA.,4 Department of Microbiology, University of Texas Southwestern Medical Center, USA
| | - Emily A Gross
- 2 Department of Pediatrics, The University of Iowa, USA.,3 The Inflammation Program, The University of Iowa and Veterans Affairs Medical Center, USA
| | - Jessica G Moreland
- 1 Department of Pediatrics, University of Texas Southwestern Medical Center, USA.,4 Department of Microbiology, University of Texas Southwestern Medical Center, USA
| |
Collapse
|
37
|
Yamaguchi N, Sekine S, Naguro I, Sekine Y, Ichijo H. KLHDC10 Deficiency Protects Mice against TNFα-Induced Systemic Inflammation. PLoS One 2016; 11:e0163118. [PMID: 27631783 PMCID: PMC5025154 DOI: 10.1371/journal.pone.0163118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/03/2016] [Indexed: 12/30/2022] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a form of fatal acute inflammation for which there is no effective treatment. Here, we revealed that the ablation of Kelch domain containing 10 (KLHDC10), which we had originally identified as an activator of Apoptosis Signal-regulating Kinase 1 (ASK1), protects mice against TNFα-induced SIRS. The disease development of SIRS is mainly divided into two stages. The early stage is characterized by TNFα-induced systemic necroptosis, a regulated form of necrosis mediated by Receptor-interacting protein (RIP) 1/3 kinases. The later stage presents with an over-production of inflammatory cytokines induced by damage-associated molecular patterns (DAMPs), which are immunogenic cellular contents released from cells that underwent necroptosis. Analysis of TNFα-challenged mice revealed that KLHDC10-deficient mice show a reduction in the inflammatory response, but not in early systemic necroptosis. In vitro analysis suggested that the reduced inflammatory response observed in KLHDC10-deficient mice might be caused, in part, by enhanced necroptosis of inflammatory cells encountering DAMPs. Interestingly, the enhancement of necroptosis induced by KLHDC10 deficiency was selectively observed in inflammatory cells. Our results suggest that KLHDC10 is a cell-type specific regulator of necroptosis that ultimately contributes to the development of TNFα-induced SIRS.
Collapse
Affiliation(s)
- Namiko Yamaguchi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shiori Sekine
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Sekine
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
38
|
Ferreira LF, Laitano O. Regulation of NADPH oxidases in skeletal muscle. Free Radic Biol Med 2016; 98:18-28. [PMID: 27184955 PMCID: PMC4975970 DOI: 10.1016/j.freeradbiomed.2016.05.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/31/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022]
Abstract
The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates in insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions.
Collapse
Affiliation(s)
- Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| |
Collapse
|
39
|
Taheri M, Mehrzad J, Afshari R, Saleh-Moghaddam M, Mahmudy Gharaie MH. Inorganic arsenic can be potent granulotoxin in mammalian neutrophils in vitro. J Immunotoxicol 2016; 13:686-93. [PMID: 27416995 DOI: 10.3109/1547691x.2016.1159625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
An important outcome arising out of occupational/environmental exposure to arsenic (As) is immunotoxicity. To determine the impact of inorganic As on innate immune cells, effects of a low dose of NaAsO2 (i.e. 20 ng As/ml) on select parameters associated with human and bovine neutrophils (PMN) were evaluated in vitro. PMN isolated from the blood of healthy individuals and cows (n = 8/treatment) were pre-incubated with NaAsO2 for 12 h before effects on PMN phagocytosis, transcription of TLR2, TLR4 and CD64 in human PMN - as well as on phagocytosis-dependent/-independent cell chemiluminescence (CL), phagocytosis and killing of Staphylococcus aureus and Escherichia coli, PMN H2O2 production and necrosis and TLR4 transcription in bovine PMN - were assessed. Relative to control (no As) PMN, treatment with As significantly decreased phagocytic capacity and CD64 mRNA, but increased TLR2 and TLR4 mRNA, in human PMN. In bovine PMN, while As also led to increased TLR4 mRNA abundance, it resulted in decreases in phagocytosis-dependent and -independent CL, PMN H2O2 production, PMN phagocytosis and killing of both E. coli and S. aureus by PMN. Considering the broad roles of PMN in immunology, the results of these studies increase our understanding of functional consequences of As exposure in inducing immunotoxicity and increasing susceptibility to (infectious) diseases in mammals.
Collapse
Affiliation(s)
- Masumeh Taheri
- a Biochemistry Section, Department of Biology , Payame Noor University of Mashhad , Mashhad , Iran
| | - Jalil Mehrzad
- b Department of Pathobiology , Immunology and Biotechnology Sections, Institute of Biotechnology, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Reza Afshari
- c Medical Toxicology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Massoud Saleh-Moghaddam
- a Biochemistry Section, Department of Biology , Payame Noor University of Mashhad , Mashhad , Iran
| | | |
Collapse
|
40
|
Chiewchengchol D, Wright HL, Thomas HB, Lam CW, Roberts KJ, Hirankarn N, Beresford MW, Moots RJ, Edwards SW. Differential changes in gene expression in human neutrophils following TNF-α stimulation: Up-regulation of anti-apoptotic proteins and down-regulation of proteins involved in death receptor signaling. IMMUNITY INFLAMMATION AND DISEASE 2015; 4:35-44. [PMID: 27042300 PMCID: PMC4768069 DOI: 10.1002/iid3.90] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/14/2023]
Abstract
Responses of human neutrophils to TNF‐α are complex and multifactorial. Exposure of human neutrophils to TNF‐α in vitro primes the respiratory burst, delays apoptosis and induces the expression of several genes including chemokines, and TNF‐α itself. This study aimed to determine the impact of TNF‐α exposure on the expression of neutrophil genes and proteins that regulate apoptosis. Quantitative PCR and RNA‐Seq, identified changes in expression of several apoptosis regulating genes in response to TNF‐α exposure. Up‐regulated genes included TNF‐α itself, and several anti‐apoptotic genes, including BCL2A1, CFLAR (cFLIP) and TNFAIP3, whose mRNA levels increased above control values by between 4‐20 fold (n = 3, P < 0.05). In contrast, the expression of pro‐apoptotic genes, including CASP8, FADD and TNFRSF1A and TNFRSF1B, were significantly down‐regulated following TNF‐α treatment. These changes in mRNA levels were paralleled by decreases in protein levels of caspases 8 and 10, TRADD, FADD, TNFRSF1A and TNFRSF1B, and increased cFLIP protein levels, as detected by western blotting. These data indicate that when neutrophils are triggered by TNF‐α exposure, they undergo molecular changes in transcriptional expression to up‐regulate expression of specific anti‐apoptotic proteins and concomitantly decrease expression of specific proteins involved in death receptor signaling which will alter their function in TNF‐α rich environments.
Collapse
Affiliation(s)
- Direkrit Chiewchengchol
- Institutes of Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom; Immunology Unit & Center of Excellence in Immunology and Immune-mediated DiseaseDepartment of Microbiology, Faculty of Medicine, Chulalongkorn UniversityBangkokThailand
| | - Helen L Wright
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| | - Huw B Thomas
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| | - Connie W Lam
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| | - Kate J Roberts
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| | - Nattiya Hirankarn
- Immunology Unit & Center of Excellence in Immunology and Immune-mediated Disease Department of Microbiology, Faculty of Medicine, Chulalongkorn University Bangkok Thailand
| | | | - Robert J Moots
- Ageing and Chronic Disease University of Liverpool Liverpool United Kingdom
| | - Steven W Edwards
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| |
Collapse
|
41
|
Swindle EJ, Brown JM, Rådinger M, DeLeo FR, Metcalfe DD. Interferon-γ enhances both the anti-bacterial and the pro-inflammatory response of human mast cells to Staphylococcus aureus. Immunology 2015; 146:470-85. [PMID: 26288256 DOI: 10.1111/imm.12524] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 12/24/2022] Open
Abstract
Human mast cells (huMCs) are involved in both innate and adaptive immune responses where they release mediators including amines, reactive oxygen species (ROS), eicosanoids and cytokines. We have reported that interferon-γ (IFN-γ) enhances FcγR-dependent ROS production. The aim of this study was to extend these observations by investigating the effect of IFN-γ on the biological responses of huMCs to Staphylococcus aureus. We found that exposure of huMCs to S. aureus generated intracellular and extracellular ROS, which were enhanced in the presence of IFN-γ. IFN-γ also promoted bacteria killing, β-hexosaminidase release and eicosanoid production. Interferon-γ similarly increased expression of mRNAs encoding CCL1 to CCL4, granulocyte-macrophage colony-stimulating factor (GM-CSF), tumour necrosis factor-α and CXCL8 in S. aureus-stimulated huMCs. The ability of IFN-γ to increase CXCL8 and GM-CSF protein levels was confirmed by ELISA. Fibronectin or a β1 integrin blocking antibody completely abrogated IFN-γ-dependent S. aureus binding and reduced S. aureus-dependent CXCL8 secretion. These data demonstrate that IFN-γ primes huMCs for enhanced anti-bacterial and pro-inflammatory responses to S. aureus, partially mediated by β1 integrin.
Collapse
Affiliation(s)
- Emily J Swindle
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Göteborg, Sweden
| | - Frank R DeLeo
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MA, USA
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab 2015; 35:888-901. [PMID: 25806703 PMCID: PMC4640255 DOI: 10.1038/jcbfm.2015.45] [Citation(s) in RCA: 397] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/08/2023]
Abstract
Neutrophils have key roles in ischemic brain injury, thrombosis, and atherosclerosis. As such, neutrophils are of great interest as targets to treat and prevent ischemic stroke. After stroke, neutrophils respond rapidly promoting blood-brain barrier disruption, cerebral edema, and brain injury. A surge of neutrophil-derived reactive oxygen species, proteases, and cytokines are released as neutrophils interact with cerebral endothelium. Neutrophils also are linked to the major processes that cause ischemic stroke, thrombosis, and atherosclerosis. Thrombosis is promoted through interactions with platelets, clotting factors, and release of prothrombotic molecules. In atherosclerosis, neutrophils promote plaque formation and rupture by generating oxidized-low density lipoprotein, enhancing monocyte infiltration, and degrading the fibrous cap. In experimental studies targeting neutrophils can improve stroke. However, early human studies have been met with challenges, and suggest that selective targeting of neutrophils may be required. Several properties of neutrophil are beneficial and thus may important to preserve in patients with stroke including antimicrobial, antiinflammatory, and neuroprotective functions.
Collapse
Affiliation(s)
- Glen C Jickling
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - DaZhi Liu
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Xinhua Zhan
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| |
Collapse
|
43
|
Paracatu LC, de Faria CMQG, Zeraik ML, Quinello C, Rennó C, Palmeira P, da Fonseca LM, Ximenes VF. Hydrophobicity and antioxidant activity acting together for the beneficial health properties of nordihydroguaiaretic acid. Food Funct 2015; 6:1818-31. [PMID: 25927268 DOI: 10.1039/c5fo00091b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Nordihydroguaiaretic acid (NDGA) and rosmarinic acid (RA), phenolic compounds found in various plants and functional foods, have known antioxidant and anti-inflammatory properties. In the present study, we comparatively investigated the importance of hydrophobicity and oxidisability of NDGA and RA, regarding their antioxidant and pharmacological activities. Using a panel of cell-free antioxidant protocols, including electrochemical measurements, we demonstrated that the anti-radical capacities of RA and NDGA were similar. However, the relative capacity of NDGA as an inhibitor of NADPH oxidase (ex vivo assays) was significantly higher compared to RA. The inhibitory effect on NADPH oxidase was not related to simple scavengers of superoxide anions, as confirmed by oxygen consumption by the activated neutrophils. The higher hydrophobicity of NDGA was also a determinant for the higher efficacy of NDGA regarding the inhibition of the release of hypochlorous acid by PMA-activated neutrophil and cytokine (TNF-α and IL-10) production by Staphylococcus aureus-stimulated peripheral blood mononuclear cells. In conclusion, although there have been extensive studies about the pharmacological properties of NDGA, our study showed, for the first time, the importance not only of its antioxidant activity, but also its hydrophobicity as a crucial factor for pharmacological action.
Collapse
Affiliation(s)
- Luana Chiquetto Paracatu
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14801-902, Araraquara, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Makni-Maalej K, Marzaioli V, Boussetta T, Belambri SA, Gougerot-Pocidalo MA, Hurtado-Nedelec M, Dang PMC, El-Benna J. TLR8, but not TLR7, induces the priming of the NADPH oxidase activation in human neutrophils. J Leukoc Biol 2015; 97:1081-7. [DOI: 10.1189/jlb.2a1214-623r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/19/2015] [Indexed: 12/18/2022] Open
|
45
|
Yao Y, Matsushima H, Ohtola JA, Geng S, Lu R, Takashima A. Neutrophil priming occurs in a sequential manner and can be visualized in living animals by monitoring IL-1β promoter activation. THE JOURNAL OF IMMUNOLOGY 2014; 194:1211-24. [PMID: 25527787 DOI: 10.4049/jimmunol.1402018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rapid enhancement of phagocyte functionality is a hallmark of neutrophil priming. GeneChip analyses unveiled elevated CD54, dectin-2, and IL-1β mRNA expression by neutrophils isolated from inflammatory sites. In fact, CD54 and dectin-2 protein expression was detected on neutrophils recovered from skin, peritoneal, and lung inflammation lesions but not on those in bone marrow or peripheral blood. Neutrophils increased CD54 and dectin-2 mRNA during migration in Boyden chambers and acquired CD54 and dectin-2 surface expression after subsequent exposure to GM-CSF. Neutrophils purified from IL-1β promoter-driven DsRed-transgenic mice acquired DsRed signals during cell migration or exposure to GM-CSF. CD54 and dectin-2 were expressed by DsRed(+) (but not DsRed(-)) neutrophils in GM-CSF-supplemented cultures, and neutrophils recovered from inflammatory sites exhibited strong DsRed signals. The dynamic process of neutrophil priming was studied in chemically induced inflammatory skin lesions by monitoring DsRed expression using confocal microscopy. A majority (>80%) of Ly6G(+) neutrophils expressed DsRed, and those DsRed(+)/Ly6G(+) cells exhibited crawling motion with a higher velocity compared with their DsRed(-)/Ly6G(+) counterparts. This report unveils motile behaviors of primed neutrophils in living animals. We propose that neutrophil priming occurs in a sequential manner with rapid enhancement of phagocyte functionality, followed by CD54 and dectin-2 mRNA and protein expression, IL-1β promoter activation, and accelerated motility. Not only do these findings provide a new conceptual framework for our understanding of the process of neutrophil priming, they also unveil new insights into the pathophysiology of many inflammatory disorders that are characterized by neutrophil infiltration.
Collapse
Affiliation(s)
- Yi Yao
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| | - Hironori Matsushima
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| | - Jennifer A Ohtola
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| | - Shuo Geng
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| | - Ran Lu
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| | - Akira Takashima
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| |
Collapse
|
46
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76:208-26. [PMID: 25157786 DOI: 10.1016/j.freeradbiomed.2014.07.046] [Citation(s) in RCA: 495] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS). Numerous homologue-specific mechanisms control the activity of this enzyme family involving calcium, free fatty acids, protein-protein interactions, intracellular trafficking, and posttranslational modifications such as phosphorylation, acetylation, or sumoylation. After a brief review on the classic pathways of Nox activation, this article will focus on novel mechanisms of homologue-specific activity control and on cell-specific aspects which govern Nox activity. From these findings of the recent years it must be concluded that the activity control of Nox enzymes is much more complex than anticipated. Moreover, depending on the cellular activity state, Nox enzymes are selectively activated or inactivated. The complex upstream signaling aspects of these events make the development of "intelligent" Nox inhibitors plausible, which selectively attenuate disease-related Nox-mediated ROS formation without altering physiological signaling ROS. This approach might be of relevance for Nox-mediated tissue injury in ischemia-reperfusion and inflammation and also for chronic Nox overactivation as present in cancer initiation and cardiovascular disease.
Collapse
Affiliation(s)
- Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- ECCPS, Justus-Liebig-Universität, Member of the DZL, Giessen, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
47
|
Peluso I, Miglio C, Morabito G, Ioannone F, Serafini M. Flavonoids and Immune Function in Human: A Systematic Review. Crit Rev Food Sci Nutr 2014; 55:383-95. [DOI: 10.1080/10408398.2012.656770] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Caffeic Acid phenethyl ester: consequences of its hydrophobicity in the oxidative functions and cytokine release by leukocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:793629. [PMID: 25254058 PMCID: PMC4164378 DOI: 10.1155/2014/793629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/02/2022]
Abstract
Numerous anti-inflammatory properties have been attributed to caffeic acid phenethyl ester (CAPE), an active component of propolis. NADPH oxidases are multienzymatic complexes involved in many inflammatory diseases. Here, we studied the importance of the CAPE hydrophobicity on cell-free antioxidant capacity, inhibition of the NADPH oxidase and hypochlorous acid production, and release of TNF-α and IL-10 by activated leukocytes. The comparison was made with the related, but less hydrophobic, caffeic and chlorogenic acids. Cell-free studies such as superoxide anion scavenging assay, triene degradation, and anodic peak potential (Epa) measurements showed that the alterations in the hydrophobicity did not provoke significant changes in the oxidation potential and antiradical potency of the tested compounds. However, only CAPE was able to inhibit the production of superoxide anion by activated leukocytes. The inhibition of the NADPH oxidase resulted in the blockage of production of hypochlorous acid. Similarly, CAPE was the more effective inhibitor of the release of TNF-α and IL-10 by Staphylococcus aureus stimulated cells. In conclusion, the presence of the catechol moiety and the higher hydrophobicity were essential for the biological effects. Considering the involvement of NADPH oxidases in the genesis and progression of inflammatory diseases, CAPE should be considered as a promising anti-inflammatory drug.
Collapse
|
49
|
Chen CY, Liaw CC, Chen YH, Chang WY, Chung PJ, Hwang TL. A novel immunomodulatory effect of ugonin U in human neutrophils via stimulation of phospholipase C. Free Radic Biol Med 2014; 72:222-31. [PMID: 24747490 DOI: 10.1016/j.freeradbiomed.2014.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 11/19/2022]
Abstract
Neutrophils have a crucial role in the immune system and are the first line of defense against pathogenic invaders. Neutrophil activation is required for their defensive function and can be induced by diverse stimuli, through either binding to cell surface receptors or direct intracellular target molecule stimulation. In this study, we found that 4″a,5″,6″,7″,8″,8″a-hexahydro-5,3',4'-trihydroxy-5″,5″,8″a-trimethyl-4H-chromeno [2″,3″:7,6]flavone (ugonin U), a flavonoid isolated from Helminthostachys zeylanica (L) Hook, significantly induced superoxide production and release in a time- and concentration-dependent manner. A series of experiments was performed to dissect the mechanism of ugonin U-induced respiratory burst in human neutrophils. Our results demonstrated that ugonin U induced a slow increase in intracellular Ca(2+), which was necessary for ugonin U-stimulated superoxide release. Use of a formyl peptide receptor (FPR) blocker, G protein inhibitor, and protein tyrosine kinase (PTK) inhibitor proved that FPR, G proteins, and PTKs were not associated with ugonin U-induced respiratory burst. Additionally, immunoblotting results revealed that ugonin U did not affect the phosphorylation of mitogen-activated protein kinases and protein tyrosine. Nevertheless, a phospholipase C (PLC) inhibitor and an inositol triphosphate (IP3) receptor antagonist considerably suppressed ugonin U-stimulated Ca(2+) mobilization and subsequent superoxide release. Ugonin U also induced an increase in intracellular IP3 formation, which could be blocked using a PLC inhibitor. In conclusion, our study reveals that ugonin U represents the first identified natural flavonoid compound to directly stimulate PLC. Moreover, ugonin U induces respiratory burst via the PLC/IP3/Ca(2+) pathway in human neutrophils.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Kweishan 333, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kweishan 333, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yi-Hsuan Chen
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Kweishan 333, Taoyuan, Taiwan
| | - Wen-Yi Chang
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Kweishan 333, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan 333, Taoyuan, Taiwan
| | - Pei-Jen Chung
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Kweishan 333, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Kweishan 333, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan 333, Taoyuan, Taiwan.
| |
Collapse
|
50
|
To EE, Broughton BRS, Hendricks KS, Vlahos R, Selemidis S. Influenza A virus and TLR7 activation potentiate NOX2 oxidase-dependent ROS production in macrophages. Free Radic Res 2014; 48:940-7. [DOI: 10.3109/10715762.2014.927579] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|