1
|
Stepanova K, Toman M, Sinkorova J, Sinkora S, Pfeiferova S, Kupcova Skalnikova H, Abuhajiar S, Moutelikova R, Salat J, Stepanova H, Nechvatalova K, Leva L, Hermanova P, Kratochvilova M, Dusankova B, Sinkora M, Horak V, Hudcovic T, Butler JE, Sinkora M. Modified live vaccine strains of porcine reproductive and respiratory syndrome virus cause immune system dysregulation similar to wild strains. Front Immunol 2024; 14:1292381. [PMID: 38283357 PMCID: PMC10811158 DOI: 10.3389/fimmu.2023.1292381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) emerged about 30 years ago and continues to cause major economic losses in the pork industry. The lack of effective modified live vaccines (MLV) allows the pandemic to continue. Background and objective We have previously shown that wild strains of PRRSV affect the nascent T cell repertoire in the thymus, deplete T cell clones recognizing viral epitopes essential for neutralization, while triggering a chronic, robust, but ineffective antibody response. Therefore, we hypothesized that the current MLV are inappropriate because they cause similar damage and fail to prevent viral-induced dysregulation of adaptive immunity. Methods We tested three MLV strains to demonstrate that all have a comparable negative effect on thymocytes in vitro. Further in vivo studies compared the development of T cells in the thymus, peripheral lymphocytes, and antibody production in young piglets. These three MLV strains were used in a mixture to determine whether at least some of them behave similarly to the wild virus type 1 or type 2. Results Both the wild and MLV strains cause the same immune dysregulations. These include depletion of T-cell precursors, alteration of the TCR repertoire, necrobiosis at corticomedullary junctions, low body weight gain, decreased thymic cellularity, lack of virus-neutralizing antibodies, and production of non-neutralizing anti-PRRSV antibodies of different isotypes. Discussion and conclusion The results may explain why the use of current MLV in young animals may be ineffective and why their use may be potentially dangerous. Therefore, alternative vaccines, such as subunit or mRNA vaccines or improved MLV, are needed to control the PRRSV pandemic.
Collapse
Affiliation(s)
- Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Miroslav Toman
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Sarka Pfeiferova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Salim Abuhajiar
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Romana Moutelikova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Hana Stepanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Katerina Nechvatalova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Mirka Kratochvilova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Blanka Dusankova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Vratislav Horak
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - John E. Butler
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
2
|
Sinkora M, Toman M, Stepanova K, Stepanova H, Leva L, Sinkorova J, Moutelikova R, Salat J, Srutkova D, Schwarzer M, Sinkora S, Skalnikova HK, Nechvatalova K, Hudcovic T, Hermanova P, Pfeiferova S, Kratochvilova M, Kavanova L, Dusankova B, Sinkora MJ. The mechanism of immune dysregulation caused by porcine reproductive and respiratory syndrome virus (PRRSV). Microbes Infect 2023; 25:105146. [PMID: 37142116 DOI: 10.1016/j.micinf.2023.105146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
PRRSV is capable of evading the effective immune response, thus persisting in piglets and throughout the swine herd. We show here that PRRSV invades the thymus and causes depletion of T-cell precursors and alteration of the TCR repertoire. Developing thymocytes are affected during negative selection when they transit from the triple-negative to triple-positive stages at the corticomedullary junction just before entering the medulla. The restriction of repertoire diversification occurs in both helper and cytotoxic αβ-T cells. As a result, critical viral epitopes are tolerated, and infection becomes chronic. However, not all viral epitopes are tolerated. Infected piglets develop antibodies capable of recognizing PRRSV, but these are not virus neutralizing. Further analysis showed that the lack of an effective immune response against the critical viral structures results in the absence of a germinal center response, overactivation of T and B cells in the periphery, robust production of useless antibodies of all isotypes, and the inability to eliminate the virus. Overall, the results show how a respiratory virus that primarily infects and destroys myelomonocytic cells has evolved strategies to disrupt the immune system. These mechanisms may be a prototype for how other viruses can similarly modulate the host immune system.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Miroslav Toman
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Hana Stepanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Romana Moutelikova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Katerina Nechvatalova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Sarka Pfeiferova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Mirka Kratochvilova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Lenka Kavanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Blanka Dusankova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Marek Jr Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
3
|
Li W, Sun Y, Zhao S, Cui Z, Chen Y, Xu P, Chen J, Zhang Y, Xia P. Differences in Humoral Immune Response against the Type 2 Porcine Reproductive and Respiratory Syndrome Virus via Different Immune Pathways. Viruses 2022; 14:v14071435. [PMID: 35891415 PMCID: PMC9316826 DOI: 10.3390/v14071435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The intramuscular vaccine is the principal strategy to protect pigs from porcine reproductive and respiratory syndrome virus (PRRSV), However, it is still difficult to control PRRSV effectively. This study infected piglets with PRRSV through intramuscular and intranasal inoculation. Subsequently, viral loads, anti-PRRSV antibody levels, and neutralizing antibodies (NAs) titers in both serum and saliva were monitored for 43 days. Meanwhile, tissues were obtained through necropsy at 43 days post-inoculation (dpi) to detect viral loads. The results indicated that viremia lasted from 3 to 31 dpi in both the inoculation groups, but the viruses survived in the lungs and lymph nodes after viremia clearance. The antibody response was detected from 11 dpi, but the response of NAs was delayed until 3–4 weeks. Furthermore, intranasal inoculation induced lower viral load levels than injection inoculation. In addition, positive SIgA and NAs levels were produced early, with higher levels through intranasal inoculation. Therefore, our data indicated that a more robust antibody response and lower virus loads could be induced by intranasal inoculation, and mucosal inoculation could be a suitable pathway for PRRSV vaccines.
Collapse
Affiliation(s)
- Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Yangyang Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Zhiying Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Yu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Pengli Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Jinshui District, Zhengzhou 450002, China
- Correspondence: (J.C.); (Y.Z.)
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
- Correspondence: (J.C.); (Y.Z.)
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| |
Collapse
|
4
|
Chen N, Li S, Tian Y, Li X, Li S, Li J, Qiu M, Sun Z, Xiao Y, Yan X, Lin H, Yu X, Tian K, Shang S, Zhu J. Chimeric HP-PRRSV2 containing an ORF2-6 consensus sequence induces antibodies with broadly neutralizing activity and confers cross protection against virulent NADC30-like isolate. Vet Res 2021; 52:74. [PMID: 34044890 PMCID: PMC8161975 DOI: 10.1186/s13567-021-00944-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/03/2021] [Indexed: 11/10/2022] Open
Abstract
Due to the substantial genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV), commercial PRRS vaccines fail to provide sufficient cross protection. Previous studies have confirmed the existence of PRRSV broadly neutralizing antibodies (bnAbs). However, bnAbs are rarely induced by either natural infection or vaccination. In this study, we designed and synthesized a consensus sequence of PRRSV2 ORF2-6 genes (ORF2-6-CON) encoding all envelope proteins based on 30 representative Chinese PRRSV isolates. The ORF2-6-CON sequence shared > 90% nucleotide identities to all four lineages of PRRSV2 isolates in China. A chimeric virus (rJS-ORF2-6-CON) containing the ORF2-6-CON was generated using the avirulent HP-PRRSV2 JSTZ1712-12 infectious clone as a backbone. The rJS-ORF2-6-CON has similar replication efficiency as the backbone virus in vitro. Furthermore, pig inoculation and challenge studies showed that rJS-ORF2-6-CON is not pathogenic to piglets and confers better cross protection against the virulent NADC30-like isolate than a commercial HP-PRRS modified live virus (MLV) vaccine. Noticeably, the rJS-ORF2-6-CON strain could induce bnAbs while the MLV strain only induced homologous nAbs. In addition, the lineages of VDJ repertoires potentially associated with distinct nAbs were also characterized. Overall, our results demonstrate that rJS-ORF2-6-CON is a promising candidate for the development of a PRRS genetic engineered vaccine conferring cross protection.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, Jiangsu, China. .,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yunfei Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang, 471003, Henan, China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xilin Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang, 471003, Henan, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, 471003, Henan, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, Jiangsu, China. .,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, Jiangsu, China. .,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Hou FH, Chia MY, Liao JW, Chung HP, Lee WC. Efficacy of fungal immunomodulatory protein to promote swine immune responses against porcine reproductive and respiratory syndrome virus infection. Vet Immunol Immunopathol 2020; 224:110056. [PMID: 32380309 DOI: 10.1016/j.vetimm.2020.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 11/27/2022]
Abstract
Fungal immunomodulatory protein (FIP) is one of the bioactive compounds of edible mushrooms, which has been shown to trigger type 1 T helper (Th1) pathway activation in research with mice. This study was designated to assess immunomodulatory effects of recombinant FIP-Flammulina velutipes (rFIP-fve) on swine and the protective efficacy against PRRSV infection. In the in vitro evaluations, rFIP-fve significantly triggered up-regulation of IL-2 and IFN-γ mRNA in porcine PBMCs and stimulated natural killer cytotoxicity. Porcine pulmonary alveolar macrophages (PAMs) treated with rFIP-fve showed prolonged life times, up-regulation of both MHC I and II molecules and enhanced abilities to present antigen. In the in vivo trial, two doses of 2 mg rFIP-fve significantly reduced drops in the CD4/CD8 ratio after PRRSV challenge, and the cytokine mRNA profile of PBMC revealed a tendency of IFN-γ up-regulation and a decrease in IL-10 in the rFIP-treated group. Moreover, administration of rFIP-fve also decreased the PRRSV viremia with 1 log10 in titer (p = 0.07) and alleviated the severity of clinical signs after PRRSV challenge. Conclusively, these results illustrate the in vitro and in vivo immunological changes of rFIP-fve administered to pigs and reveal its potential to be used as an immunomodulatory therapeutic against PRRSV infection.
Collapse
Affiliation(s)
- Fu-Hsiang Hou
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC
| | - Min-Yuan Chia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC
| | - Han-Ping Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC
| | - Wei-Cheng Lee
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC.
| |
Collapse
|
6
|
Lee CYP, Carissimo G, Chen Z, Lum FM, Abu Bakar F, Rajarethinam R, Teo TH, Torres-Ruesta A, Renia L, Ng LF. Type I interferon shapes the quantity and quality of the anti-Zika virus antibody response. Clin Transl Immunology 2020; 9:e1126. [PMID: 32346479 PMCID: PMC7184064 DOI: 10.1002/cti2.1126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives Zika virus (ZIKV) is a mosquito-borne flavivirus that re-emerged in 2015. The association between ZIKV and neurological complications initiated the development of relevant animal models to understand the mechanisms underlying ZIKV-induced pathologies. Transient inhibition of the type I interferon (IFN) pathway through the use of an IFNAR1-blocking antibody, MAR1-5A3, could efficiently permit active virus replication in immunocompetent animals. Type I IFN signalling is involved in the regulation of humoral responses, and thus, it is crucial to investigate the potential effects of type I IFN blockade towards B-cell responses. Methods In this study, comparative analysis was conducted using serum samples collected from ZIKV-infected wild-type (WT) animals either administered with or without MAR1-5A3. Results Serological assays revealed a more robust ZIKV-specific IgG response and subtype switching upon inhibition of type I IFN due to the abundance of antigen availability. This observation was corroborated by an increase in germinal centres, plasma cells and germinal centre B cells. Interestingly, although both groups of animals recognised different B-cell linear epitopes in the E and NS1 regions, there was no difference in neutralising capacity. Further characterisation of these epitopes in the E protein revealed a detrimental role of antibodies that were generated in the absence of type I IFN. Conclusion This study highlights the role of type I IFN in shaping the anti-ZIKV antibody response to generate beneficial antibodies and will help guide development of better vaccine candidates triggering efficient neutralising antibodies and avoiding detrimental ones.
Collapse
Affiliation(s)
- Cheryl Yi-Pin Lee
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,NUS Graduate School for Integrative Sciences and Engineering National University of Singapore Singapore
| | - Guillaume Carissimo
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore
| | - Zheyuan Chen
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,School of Medicine Dentistry & Biomedical Sciences Queen's University Belfast Belfast UK
| | - Fok-Moon Lum
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore
| | - Farhana Abu Bakar
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,School of Biological Sciences Nanyang Technological University Singapore Singapore
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology Agency of Science, Technology and Research (ASTAR) Singapore
| | - Teck-Hui Teo
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,Present address: Institut Pasteur Unite de Pathogenie Microbienne Moleculaire Paris France
| | - Anthony Torres-Ruesta
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Laurent Renia
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore
| | - Lisa Fp Ng
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore Singapore.,Institute of Infection and Global Health University of Liverpool Liverpool UK
| |
Collapse
|
7
|
Butler JE, Sinkora M, Wang G, Stepanova K, Li Y, Cai X. Perturbation of Thymocyte Development Underlies the PRRS Pandemic: A Testable Hypothesis. Front Immunol 2019; 10:1077. [PMID: 31156633 PMCID: PMC6529568 DOI: 10.3389/fimmu.2019.01077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes immune dysregulation during the Critical Window of Immunological Development. We hypothesize that thymocyte development is altered by infected thymic antigen presenting cells (TAPCs) in the fetal/neonatal thymus that interact with double-positive thymocytes causing an acute deficiency of T cells that produces "holes" in the T cell repertoire allowing for poor recognition of PRRSV and other neonatal pathogens. The deficiency may be the result of random elimination of PRRSV-specific T cells or the generation of T cells that accept PRRSV epitopes as self-antigens. Loss of helper T cells for virus neutralizing (VN) epitopes can result in the failure of selection for B cells in lymph node germinal centers capable of producing high affinity VN antibodies. Generation of cytotoxic and regulatory T cells may also be impaired. Similar to infections with LDV, LCMV, MCMV, HIV-1 and trypanosomes, the host responds to the deficiency of pathogen-specific T cells and perhaps regulatory T cells, by "last ditch" polyclonal B cell activation. In colostrum-deprived PRRSV-infected isolator piglets, this results in hypergammaglobulinemia, which we believe to be a "red herring" that detracts attention from the thymic atrophy story, but leads to our second independent hypothesis. Since hypergammaglobulinemia has not been reported in PRRSV-infected conventionally-reared piglets, we hypothesize that this is due to the down-regulatory effect of passive maternal IgG and cytokines in porcine colostrum, especially TGFβ which stimulates development of regulatory T cells (Tregs).
Collapse
Affiliation(s)
- John E. Butler
- Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Yuming Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
8
|
Abstract
We describe the domestication of the species, explore its value to agriculture and bioscience, and compare its immunoglobulin (Ig) genes to those of other vertebrates. For encyclopedic information, we cite earlier reviews and chapters. We provide current gene maps for the heavy and light chain loci and describe their polygeny and polymorphy. B-cell and antibody repertoire development is a major focus, and we present findings that challenge several mouse-centric paradigms. We focus special attention on the role of ileal Peyer's patches, the largest secondary lymphoid tissues in newborn piglets and a feature of all artiodactyls. We believe swine fetal development and early class switch evolved to provide natural secretory IgA antibodies able to prevent translocation of bacteria from the gut while the bacterial PAMPs drive development of adaptive immunity. We discuss the value of using the isolator piglet model to address these issues.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Marek Sinkora
- Laboratory of Gnotobiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
9
|
Chen N, Trible BR, Rowland RRR. Amplification and selection of PRRSV-activated VDJ repertoires in pigs secreting distinct neutralizing antiboidies. Vet Immunol Immunopathol 2017; 189:53-57. [PMID: 28669387 DOI: 10.1016/j.vetimm.2017.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/25/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Neutralizing antibodies (nAbs) play an important role in protective immunity against porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, the characterization of PRRSV nAb repertoires is rarely investigated. In this study, we developed a swine VDJ amplification method and selection criteria for the characterization of PRRSV-activated VDJ repertoires. According to clonal expansion theory, two separated aliquots of lymph nodes from pigs producing different PRRSV nAbs were utilized to determine the activated B-cell repertoires. Swine VDJ repertoires from a mock-infected pig and PRRSV-infected pigs secreting no detectable nAbs, only homologous nAbs, and broad nAbs were amplified by a single pair of primers that could detect all seven major VDJ genes. The amplicons were cloned and sequenced to generate 385 VDJ sequences. Sequence alignment showed that the diversification of VDJ genes was mainly due to the variation in complementarity determining regions (CDRs), especially CDR3. Based on selection criteria, shared and abundant sequences were identified in two separated aliquots from PRRSV-infected pigs but not from the mock-infected pig, suggesting they were secreted from PRRSV-activated B cells. Thus, the amplification and selection method provide a potential alternative for the characterization of swine VDJ repertoires. However, additional experiments are required to determine whether the shared and abundant VDJ lineages identified in this study are PRRSV-specific or distinct neutralizing-antibodies-associated.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Jiangsu 225009, PR China; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| | - Benjamin R Trible
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| |
Collapse
|
10
|
Rahe MC, Murtaugh MP. Mechanisms of Adaptive Immunity to Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2017; 9:v9060148. [PMID: 28608816 PMCID: PMC5490824 DOI: 10.3390/v9060148] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023] Open
Abstract
The adaptive immune response is necessary for the development of protective immunity against infectious diseases. Porcine reproductive and respiratory syndrome virus (PRRSV), a genetically heterogeneous and rapidly evolving RNA virus, is the most burdensome pathogen of swine health and wellbeing worldwide. Viral infection induces antigen-specific immunity that ultimately clears the infection. However, the resulting immune memory, induced by virulent or attenuated vaccine viruses, is inconsistently protective against diverse viral strains. The immunological mechanisms by which primary and memory protection are generated and used are not well understood. Here, we summarize current knowledge regarding cellular and humoral components of the adaptive immune response to PRRSV infection that mediate primary and memory immune protection against viruses.
Collapse
Affiliation(s)
- Michael C Rahe
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
11
|
Sinkora M, Butler JE. Progress in the use of swine in developmental immunology of B and T lymphocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:1-17. [PMID: 26708608 DOI: 10.1016/j.dci.2015.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
The adaptive immune system of higher vertebrates is believed to have evolved to counter the ability of pathogens to avoid expulsion because their high rate of germline mutations. Vertebrates developed this adaptive immune response through the evolution of lymphocytes capable of somatic generation of a diverse repertoire of their antigenic receptors without the need to increase the frequency of germline mutation. The focus of our research and this article is on the ontogenetic development of the lymphocytes, and the repertoires they generate in swine. Several features are discussed including (a) the "closed" porcine placenta means that de novo fetal development can be studied for 114 days without passive influence from the mother, (b) newborn piglets are precocial permitting them to be reared without their mothers in germ-free isolators, (c) swine are members of the γδ-high group of mammals and thus provides a greater opportunity to characterize the role of γδ T cells and (d) because swine have a simplified variable heavy and light chain genome they offer a convenient system to study antibody repertoire development.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic.
| | - John E Butler
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
12
|
Lee Y, Lin CM, Jeng CR, Chang HW, Chang CC, Pang VF. The pathogenic role of torque teno sus virus 1 and 2 and their correlations with various viral pathogens and host immunocytes in wasting pigs. Vet Microbiol 2015; 180:186-95. [PMID: 26390821 DOI: 10.1016/j.vetmic.2015.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 11/28/2022]
Abstract
The pathogenic role of torque teno sus virus (TTSuV) in swine is controversial among different studies. The present study intended to evaluate the potential pathogenicity of TTSuV based on its correlations with the histopathological changes, various common concurrently infected viral pathogens including porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine parvovirus (PPV), as well as changes in the distribution and population of host immunocytes such as B lymphocytes, T lymphocytes, and macrophages by using the superficial inguinal lymph nodes (siLNs) of wasting pigs. A tissue microarray consisting of 270 available siLNs collected from 262 clinically wasting and 8 healthy pigs, respectively, were used for the detection of TTSuV1, TTSuV2, PCV2, PRRSV, and PPV by either in situ hybridization (ISH) or immunohistochemical (IHC) staining, and for the detection of various subsets of immunocytes by IHC staining with monoclonal antibodies to CD3, CD79a, and lysozyme. The slides were then subject to digital scanning followed by a semi-quantitative positive pixel evaluation for further statistical analysis. Although a high prevalence of TTSuV1 and/or TTSuV2 infection was noted in both wasting and healthy pigs, the wasting pigs had a significantly higher intensity in both TTSuV1 and TTSuV2 ISH-positive signals than healthy ones did. In the wasting pigs, a significant positive correlation in the tissue viral load was noted between TTSuV1 and TTSuV2 and between TTSuV2 and PCV2, but not between TTSuV1 and PCV2. Conversely, a significant negative correlation in the tissue viral load was revealed between TTSuV2, but not TTSuV1, and PRRSV. The tissue viral load of TTSuV1 was significantly correlated with B cell hyperplasia, while the tissue viral load of TTSuV2 was significantly correlated with increased macrophage population. The ISH positivity of TTSuV2 was significantly correlated with lymphoid depletion and granulomatous inflammation, which are the characteristic histopathological findings in postweaning multisystemic wasting syndrome-affected pigs. These findings suggest that both TTSuV species may have the potential involving the development of porcine circovirus-associated lymphoid lesions via alternating the host immune system.
Collapse
Affiliation(s)
- Yao Lee
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan, ROC; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Chun-Ming Lin
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Chih-Cheng Chang
- Department of Veterinary Medicine, National Chiayi University, Chiayi 60054, Taiwan, ROC.
| | - Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan, ROC.
| |
Collapse
|
13
|
Abstract
Porcine reproductive and respiratory disease syndrome (PRRS) is a viral pandemic that especially affects neonates within the “critical window” of immunological development. PRRS was recognized in 1987 and within a few years became pandemic causing an estimated yearly $600,000 economic loss in the USA with comparative losses in most other countries. The causative agent is a single-stranded, positive-sense enveloped arterivirus (PRRSV) that infects macrophages and plasmacytoid dendritic cells. Despite the discovery of PRRSV in 1991 and the publication of >2,000 articles, the control of PRRS is problematic. Despite the large volume of literature on this disease, the cellular and molecular mechanisms describing how PRRSV dysregulates the host immune system are poorly understood. We know that PRRSV suppresses innate immunity and causes abnormal B cell proliferation and repertoire development, often lymphopenia and thymic atrophy. The PRRSV genome is highly diverse, rapidly evolving but amenable to the generation of many mutants and chimeric viruses for experimental studies. PRRSV only replicates in swine which adds to the experimental difficulty since no inbred well-defined animal models are available. In this article, we summarize current knowledge and apply it toward developing a series of provocative and testable hypotheses to explain how PRRSV immunomodulates the porcine immune system with the goal of adding new perspectives on this disease.
Collapse
|
14
|
Hodgins DC, Chattha K, Vlasova A, Parreño V, Corbeil LB, Renukaradhya GJ, Saif LJ. Mucosal Veterinary Vaccines. Mucosal Immunol 2015. [PMCID: PMC7149859 DOI: 10.1016/b978-0-12-415847-4.00068-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Sinkora M, Butler JE, Lager KM, Potockova H, Sinkorova J. The comparative profile of lymphoid cells and the T and B cell spectratype of germ-free piglets infected with viruses SIV, PRRSV or PCV2. Vet Res 2014; 45:91. [PMID: 25186625 PMCID: PMC4156959 DOI: 10.1186/s13567-014-0091-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/18/2014] [Indexed: 12/16/2022] Open
Abstract
Lymphocyte subsets isolated from germ-free piglets experimentally infected with swine influenza virus (SIV), porcine reproductive and respiratory syndrome virus (PRRSV) or porcine circovirus type 2 (PCV2) were studied and the profile of these subsets among these three infections was monitored. Germ-free piglets were used since their response could be directly correlated to the viral infection. Because SIV infections are resolved even by colostrum-deprived neonates whereas PRRSV and PCV2 infections are not, SIV was used as a benchmark for an effectively resolved viral infection. PRRSV caused a large increase in the proportion of lymphocytes at the site of infection and rapid differentiation of B cells leading to a high level of Ig-producing cells but a severe reduction in CD2—CD21+ primed B cells. Unlike SIV and PCV2, PRRSV also caused an increase in terminally differentiated subset of CD2+CD8α+ γδ cells and polyclonal expansion of major Vβ families suggesting that non-specific helper T cells drive swift B cell activation. Distinct from infections with SIV and PRRSV, PCV2 infection led to the: (a) prevalence of MHC-II+ T cytotoxic cells, (b) restriction of the T helper compartment in the respiratory tract, (c) generation of a high proportion of FoxP3+ T cells in the blood and (d) selective expansion of IgA and IgE suggesting this virus elicits a mucosal immune response. Our findings suggest that PRRSV and PCV2 may negatively modulate the host immune system by different mechanisms which may explain their persistence.
Collapse
|
16
|
Binjawadagi B, Dwivedi V, Manickam C, Ouyang K, Wu Y, Lee LJ, Torrelles JB, Renukaradhya GJ. Adjuvanted poly(lactic-co-glycolic) acid nanoparticle-entrapped inactivated porcine reproductive and respiratory syndrome virus vaccine elicits cross-protective immune response in pigs. Int J Nanomedicine 2014; 9:679-94. [PMID: 24493925 PMCID: PMC3908835 DOI: 10.2147/ijn.s56127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is an economically devastating disease, causing daily losses of approximately $3 million to the US pork industry. Current vaccines have failed to completely prevent PRRS outbreaks. Recently, we have shown that poly(lactic-co-glycolic) acid (PLGA) nanoparticle-entrapped inactivated PRRSV vaccine (NP-KAg) induces a cross-protective immune response in pigs. To further improve its cross-protective efficacy, the NP-KAg vaccine formulation was slightly modified, and pigs were coadministered the vaccine twice intranasally with a potent adjuvant: Mycobacterium tuberculosis whole-cell lysate. In vaccinated virulent heterologous PRRSV-challenged pigs, the immune correlates in the blood were as follows: 1) enhanced PRRSV-specific antibody response with enhanced avidity of both immunoglobulin (Ig)-G and IgA isotypes, associated with augmented virus-neutralizing antibody titers; 2) comparable and increased levels of virus-specific IgG1 and IgG2 antibody subtypes and production of high levels of both T-helper (Th)-1 and Th2 cytokines, indicative of a balanced Th1–Th2 response; 3) suppressed immunosuppressive cytokine response; 4) increased frequency of interferon-γ+ lymphocyte subsets and expanded population of antigen-presenting cells; and most importantly 5) complete clearance of detectable replicating challenged heterologous PRRSV and close to threefold reduction in viral ribonucleic acid load detected in the blood. In conclusion, intranasal delivery of adjuvanted NP-KAg vaccine formulation to growing pigs elicited a broadly cross-protective immune response, showing the potential of this innovative vaccination strategy to prevent PRRS outbreaks in pigs. A similar approach to control other respiratory diseases in food animals and humans appears to be feasible.
Collapse
Affiliation(s)
- Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| | - Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Cordelia Manickam
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| | - Kang Ouyang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Yun Wu
- NanoScale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Columbus, OH, USA
| | - Ly James Lee
- NanoScale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Columbus, OH, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| |
Collapse
|
17
|
Guo B, Lager KM, Schlink SN, Kehrli ME, Brockmeier SL, Miller LC, Swenson SL, Faaberg KS. Chinese and Vietnamese strains of HP-PRRSV cause different pathogenic outcomes in United States high health swine. Virology 2013; 446:238-50. [PMID: 24074587 DOI: 10.1016/j.virol.2013.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/24/2013] [Accepted: 08/09/2013] [Indexed: 01/12/2023]
Abstract
An infectious clone of a highly pathogenic PRRSV strain from Vietnam (rSRV07) was prepared and was demonstrated to contain multiple amino acid differences throughout the genome when compared to Chinese highly pathogenic PRRSV strain rJXwn06. Virus rescued from the rSRV07 infectious clone was compared to rJXwn06 and US Type 2 prototype strain VR-2332 to examine the effects of virus genotype and phenotype on in vitro growth, and virus challenge dose on in vivo pathogenicity and host response. After swine inoculation at high- and low-doses of virus, rSRV07 was shown to replicate to an approximately 10-fold lower level in serum than rJXwn06, produced lower body temperatures than rJXwn06 and resulted in decreased mortality. Furthermore, a 9-plex cytokine panel revealed that the cytokine responses varied between different strains of PRRSV, as well as between tissues examined and by inoculum dose.
Collapse
Affiliation(s)
- Baoqing Guo
- Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Butler JE, Sun X, Wertz N, Vincent AL, Zanella EL, Lager KM. Antibody repertoire development in fetal and neonatal piglets. XVI. Influenza stimulates adaptive immunity, class switch and diversification of the IgG repertoire encoded by downstream Cγ genes. Immunology 2013; 138:134-44. [PMID: 23320646 PMCID: PMC3575766 DOI: 10.1111/imm.12018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 09/27/2012] [Accepted: 10/02/2012] [Indexed: 12/15/2022] Open
Abstract
Infection of germ-free isolator piglets with swine influenza (S-FLU) that generates dsRNA during replication causes elevation of immunoglobulins in serum and bronchoalveolar lavage, a very weak response to trinitrophenyl conjugates but an immune response to S-FLU. The increased immunoglobulin levels result mainly from the polyclonal activation of B cells during the infection, but model antigen exposure may contribute. The 10-fold increase in local and serum IgG accompanies a 10-fold decrease in the transcription of IgG3 in the tracheal-bronchial lymph nodes and in the ileal Peyer's patches. Infection results in class switch recombination to downstream Cγ genes, which diversify their repertoire; both features are diagnostic of adaptive immunity. Meanwhile the repertoires of IgM and IgG3 remain undiversified suggesting that they encode innate, natural antibodies. Whereas IgG3 may play an initial protective role, antibodies encoded by downstream Cγ genes with diversified repertoires are predicted to be most important in long-term protection against S-FLU.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology, Carver College of Medicine, Iowa City, IA 52240, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Sun X, Wertz N, Lager KM, Butler JE. Antibody repertoire development in fetal and neonatal piglets. XV. Porcine circovirus type 2 infection differentially affects serum IgG levels and antibodies to ORF2 in piglets free from other environmental factors. Vaccine 2012; 31:141-8. [PMID: 23142304 DOI: 10.1016/j.vaccine.2012.10.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/16/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
Abstract
Porcine circovirus type 2 (PCV2) is an important pathogen in the porcine respiratory disease complex (PRDC) and its persistence may be due to dysregulation of systemic immunity. We examined this contention using isolator piglets. We present data on Ig levels in serum and bronchio-alveolar lavage (BAL), on antibody response to PCV2 and to TNP conjugates used as model antigens in 48 PCV2-infected isolator piglets. We compared these to data from TNP-immunized isolator piglets colonized with a probiotic flora, those infected with swine influenza (S-FLU) and those infected with porcine respiratory and reproductive syndrome virus (PRRSV). We found that PCV2 infection does not cause generalized hypergammaglobulinemia that characterizes PRRSV infections, but causes an unexplained increase in serum IgA. All animals had serum IgG to the ORF2 gene product of PCR2, but neither IgA nor IgG anti-ORF2 responses in BAL. PCV2 infection is a poor adjuvant since only natural anti-TNP antibodies were found. Unexpectedly, immunization appeared to result in lower Ig levels and lower anti-ORF2 responses. There was extreme variation in serum Ig levels in response to infection that could in part be traced to genetic and gender differences. These data suggest that non-replicating vaccines are unlikely to result in a significant primary antibody response but may prime the system for a secondary antibody and cytotoxic response following actual infection. In any case, developers may have to contend with significant genetic differences in the response of piglets to PCV2.
Collapse
Affiliation(s)
- XiuZhu Sun
- Department of Microbiology, Carver College of Medicine, Iowa City, IA, United States
| | | | | | | |
Collapse
|
20
|
Miller LC, Fleming D, Arbogast A, Bayles DO, Guo B, Lager KM, Henningson JN, Schlink SN, Yang HC, Faaberg KS, Kehrli ME. Analysis of the swine tracheobronchial lymph node transcriptomic response to infection with a Chinese highly pathogenic strain of porcine reproductive and respiratory syndrome virus. BMC Vet Res 2012; 8:208. [PMID: 23110781 PMCID: PMC3514351 DOI: 10.1186/1746-6148-8-208] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/15/2012] [Indexed: 01/14/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine worldwide. Emergence in 2006 of a novel highly pathogenic PRRSV (HP-PRRSV) isolate in China necessitated a comparative investigation into the host transcriptome response in tracheobronchial lymph nodes (TBLN) 13 days post-infection with HP-PRRSV rJXwn06, PRRSV strain VR-2332 or sham inocula. RNA from each was prepared for next-generation sequencing. Amplified library constructs were directly sequenced and a list of sequence transcripts and counts was generated using an RNAseq analysis pipeline to determine differential gene expression. Transcripts were annotated and relative abundance was calculated based upon the number of times a given transcript was represented in the library. Results Major changes in transcript abundance occurred in response to infection with either PRRSV strain, each with over 630 differentially expressed transcripts. The largest increase in transcript level for either virus versus sham-inoculated controls were three serum amyloid A2 acute-phase isoforms. However, the degree of up or down-regulation of transcripts following infection with HP-PRRSV rJXwn06 was greater than transcript changes observed with US PRRSV VR-2332. Also, of 632 significantly altered transcripts within the HP-PRRSV rJXwn06 library 55 were up-regulated and 69 were down-regulated more than 3-fold, whilst in the US PRRSV VR-2332 library only 4 transcripts were up-regulated and 116 were down-regulated more than 3-fold. Conclusions The magnitude of differentially expressed gene profiles detected in HP-PRRSV rJXwn06 infected pigs as compared to VR-2332 infected pigs was consistent with the increased pathogenicity of the HP-PRRSV in vivo.
Collapse
Affiliation(s)
- Laura C Miller
- Virus and Prion Research Unit, National Animal Disease Center-USDA-ARS, Ames, Iowa 50010, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Guo B, Lager KM, Henningson JN, Miller LC, Schlink SN, Kappes MA, Kehrli ME, Brockmeier SL, Nicholson TL, Yang HC, Faaberg KS. Experimental infection of United States swine with a Chinese highly pathogenic strain of porcine reproductive and respiratory syndrome virus. Virology 2012; 435:372-84. [PMID: 23079105 PMCID: PMC7111980 DOI: 10.1016/j.virol.2012.09.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/22/2012] [Accepted: 09/15/2012] [Indexed: 12/20/2022]
Abstract
The pathogenesis of Type 2 highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) in 10-week old swine in the United States was investigated. rJXwn06, rescued from an infectious clone of Chinese HP-PRRSV, replicated in swine with at least 100-fold increased kinetics over U.S. strain VR-2332. rJXwn06 caused significant weight loss, exacerbated disease due to bacterial sepsis and more severe histopathological lung lesions in pigs exposed to HP-PRRSV than to those infected with VR-2332. Novel findings include identification of bacterial species present, the degree of thymic atrophy seen, and the inclusion of contact animals that highlighted the ability of HP-PRRSV to rapidly transmit between animals. Furthermore, comprehensive detailed cytokine analysis of serum, bronchoalveolar lavage fluid, and tracheobronchial lymph node tissue homogenate revealed a striking elevation in levels of cytokines associated with both innate and adaptive immunity in HP-PRRSV infected swine, and showed that contact swine differed in the degree of cytokine response.
Collapse
Affiliation(s)
- Baoqing Guo
- Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Kelly M. Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | - Jamie N. Henningson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | - Laura C. Miller
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | - Sarah N. Schlink
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | - Matthew A. Kappes
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | - Marcus E. Kehrli
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | - Susan L. Brockmeier
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | - Tracy L. Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
| | | | - Kay S. Faaberg
- Virus and Prion Research Unit, National Animal Disease Center, USDA-Agricultural Research Service, Ames, IA, USA
- Correspondence to: USDA, Agricultural Research Service, Virus and Prion Research Unit, Mailstop 2S-209, National Animal Disease Center, 1920 Dayton Avenue, Ames, IA 50010. Fax: +1 515 337 7428.
| |
Collapse
|
22
|
Barranco I, Gómez-Laguna J, Rodríguez-Gómez I, Quereda J, Salguero F, Pallarés F, Carrasco L. Immunohistochemical expression of IL-12, IL-10, IFN-α and IFN-γ in lymphoid organs of porcine reproductive and respiratory syndrome virus-infected pigs. Vet Immunol Immunopathol 2012; 149:262-71. [DOI: 10.1016/j.vetimm.2012.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 07/18/2012] [Accepted: 07/24/2012] [Indexed: 12/29/2022]
|
23
|
Sun X, Wertz N, Lager K, Sinkora M, Stepanova K, Tobin G, Butler JE. Antibody repertoire development in fetal and neonatal piglets. XXII. λ Rearrangement precedes κ rearrangement during B-cell lymphogenesis in swine. Immunology 2012; 137:149-59. [PMID: 22724577 PMCID: PMC3461396 DOI: 10.1111/j.1365-2567.2012.03615.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 01/01/2023] Open
Abstract
VDJ and VJ rearrangements, expression of RAG-1, Tdt and VpreB, and the presence of signal joint circles (SJC) were used to identify sites of B-cell lymphogenesis. VDJ, VλJλ but not VκJκ rearrangements or SJC were recovered from yolk sac (YS) at 20 days of gestation (DG) along with strong expression of VpreB and RAG-1 but weak Tdt expression. VλJλ rearrangements but not VκJκ rearrangements were recovered from fetal liver at 30-50 DG. SJC were pronounced in bone marrow at 95 DG where VκJκ rearrangements were first recovered. The VλJλ rearrangements recovered at 20-50 DG used some of the same Vλ and Jλ segments seen in older fetuses and adult animals. Hence the textbook paradigm for the order of light-chain rearrangement does not apply to swine. Consistent with weak Tdt expression in early sites of lymphogenesis, N-region additions in VDJ rearrangements were more frequent at 95 DG. Junctional diversity in VλJλ rearrangement was limited at all stages of development. There was little evidence for B-cell lymphogenesis in the ileal Peyer's patches. The widespread recovery of VpreB transcripts in whole, non-lymphoid tissue was unexpected as was its recovery from bone marrow and peripheral blood monocytes. Based on recovery of SJC, B-cell lymphogenesis continues for at least 5 weeks postpartum.
Collapse
Affiliation(s)
- Xiuzhu Sun
- Department of Microbiology and Interdisciplinary Immunology Program, University of Iowa College of Medicine, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Butler JE, Wertz N, Sun XZ, Lunney JK, Muyldermans S. Resolution of an immunodiagnostic dilemma: heavy chain chimeric antibodies for species in which plasmocytomas are unknown. Mol Immunol 2012; 53:140-8. [PMID: 22922509 DOI: 10.1016/j.molimm.2012.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/10/2012] [Accepted: 07/21/2012] [Indexed: 01/30/2023]
Abstract
The immunoglobulin (Ig) genes of many vertebrates have been characterized but IgG subclasses, IgD and IgE proteins are only available for three species in which plasmacytomas occur. This creates a major problem in the production and specificity verification of diagnostic anti-Ig reagents for the vast majority of mammals. We describe a novel solution using the swine system with its eleven different variants of IgG. It involves the in vitro synthesis of chimeric porcine-camelid heavy chain antibodies (HCAbs) that do not require light chains and therefore only a single transfection vector. The expressed chimeric HCAbs are comprised of the camelid VHH domain encoding specificity for lysozyme and the hinge, CH2 and CH3 domains of the various porcine IgGs. These HCAb retain their antigenic integrity and their ability to recognize lysozyme. The engineered specificity assures that these HCAb can be immobilized in native configuration when used for testing the specificity of anti-swine IgG antibodies. Comparative data to illustrate the importance of this point are provided. These are now available for use in hybridoma selection and as reference standards for evaluating the specificity of currently available anti-swine IgG antibodies.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology and Interdisciplinary Immunology Program, University of Iowa, Iowa City, IA 52242, United States.
| | | | | | | | | |
Collapse
|
25
|
Butler JE, Wertz N. The porcine antibody repertoire: variations on the textbook theme. Front Immunol 2012; 3:153. [PMID: 22754553 PMCID: PMC3384076 DOI: 10.3389/fimmu.2012.00153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/24/2012] [Indexed: 11/13/2022] Open
Abstract
The genes encoding the heavy and light chains of swine antibodies are organized in the same manner as in other eutherian mammals. There are ∼30 VH genes, two functional DH genes and one functional JH gene, 14-60 Vκ genes, 5 Jκ segments, 12-13 functional Vλ genes, and two functional Jλ genes. The heavy chain constant regions encode the same repertoire of isotypes common to other eutherian mammals. The piglet models offers advantage over rodent models since the fetal repertoire develops without maternal influences and the precocial nature of their multiple offspring allows the experimenter to control the influences of environmental and maternal factors on repertoire development postnatally. B cell lymphogenesis in swine begins in the fetal yolk sac at 20 days of gestation (DG), moves to the fetal liver at 30 DG and eventually to the bone marrow which dominates until birth (114 DG) and to at least 5 weeks postpartum. There is no evidence that the ileal Peyers patches are a site of B cell lymphogenesis or are required for B cell maintenance. Unlike rodents and humans, light chain rearrangement begins first in the lambda locus; kappa rearrangements are not seen until late gestation. Dissimilar to lab rodents and more in the direction of the rabbit, swine utilize a small number of VH genes to form >90% of their pre-immune repertoire. Diversification in response to environmental antigen does not alter this pattern and is achieved by somatic hypermutation (SHM) of the same small number of VH genes. The situation for light chains is less well studied, but certain Vκ and Jκ and Vλ and Jλ are dominant in transcripts and in contrast to rearranged heavy chains, there is little junctional diversity, less SHM, and mutations are not concentrated in CDR regions. The transcribed and secreted pre-immune antibodies of the fetus include mainly IgM, IgA, and IgG3; this last isotype may provide a type of first responder mucosal immunity. Development of functional adaptive immunity is dependent on bacterial MAMPs or MAMPs provided by viral infections, indicating the importance of innate immunity for development of adaptive immunity. The structural analysis of Ig genes of this species indicate that especially the VH and Cγ gene are the result of tandem gene duplication in the context of genomic gene conversion. Since only a few of these duplicated VH genes substantially contribute to the antibody repertoire, polygeny may be a vestige from a time before somatic processes became prominently evolved to generate the antibody repertoire. In swine we believe such duplications within the genome have very limited functional significance and their occurrence is therefore overrated.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | | |
Collapse
|
26
|
Mucosal vaccines to prevent porcine reproductive and respiratory syndrome: a new perspective. Anim Health Res Rev 2012; 13:21-37. [PMID: 22717576 DOI: 10.1017/s1466252312000023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important infectious disease of swine. Constant emergence of variant strains of PRRS virus (PPRSV) and virus-mediated immune evasion followed by viral persistence result in increased incidence and recurrence of PRRS in swine herds. Current live and killed PRRSV vaccines administered by a parenteral route are ineffective in inducing complete protection. Thus, new approaches in design and delivery of PRRSV vaccines are needed to reduce the disease burden of the swine industry. Induction of an effective mucosal immunity to several respiratory pathogens by direct delivery of a vaccine to mucosal sites has proven to be effective in a mouse model. However, there are challenges in eliciting mucosal immunity to PRRS due to our limited understanding of safe and potent mucosal adjuvants, which could potentiate the mucosal immune response to PRRSV. The purpose of this review is to discuss methods for induction of protective mucosal immune responses in the respiratory tract of pigs. The manuscript also discusses how PRRSV modulates innate, adaptive and immunoregulatory responses at both mucosal and systemic sites of infected and/or vaccinated pigs. This information may help in the design of innovative mucosal vaccines to elicit superior cross-protective immunity against divergent field strains of PRRSV.
Collapse
|
27
|
Antibody repertoire development in fetal and neonatal piglets. XXIII: fetal piglets infected with a vaccine strain of PRRS Virus display the same immune dysregulation seen in isolator piglets. Vaccine 2012; 30:3646-52. [PMID: 22465749 DOI: 10.1016/j.vaccine.2012.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 01/22/2023]
Abstract
The Ig levels and antibody repertoire diversification in fetal piglets infected with an attenuated Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) were measured. Serum Ig levels were greatly elevated in PRRSV-infected fetuses; IgG was elevated >50-fold, IgM>5-15-fold and IgA>2-fold compared to control fetuses. Their IgM to IgG to IgA profile was the same as that in isolator piglets infected for the same period with wild-type PRRSV. Fetal animals showed less repertoire diversification than even isolator piglets that were maintained germfree (GF) while the repertoire diversification index (RDI) for PRRSV-infected isolator piglets was 10-fold higher and comparable to littermates infected with swine influenza (S-FLU). However, when expressed as the RDI:Ig ratio, infected fetuses appeared 10-fold less capable of repertoire diversification than uninfected littermates and GF isolator piglets. Compared to S-FLU isolator piglets that resolve the infection, the RDI:Ig of PRRSV-infected isolator piglets was 100-fold lower. Overall, infection of fetuses with an attenuated virus shows the same immune dysregulation seen postnatally in wild type infected isolator piglets, indicating that: (a) attenuation did not alter the ability of the virus to cause dysregulation and (b) the isolator infectious model reflects the fetal disease.
Collapse
|
28
|
Qiao S, Jiang Z, Tian X, Wang R, Xing G, Wan B, Bao D, Liu Y, Hao H, Guo J, Zhang G. Porcine FcγRIIb mediates enhancement of porcine reproductive and respiratory syndrome virus (PRRSV) infection. PLoS One 2011; 6:e28721. [PMID: 22220194 PMCID: PMC3248417 DOI: 10.1371/journal.pone.0028721] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/14/2011] [Indexed: 01/04/2023] Open
Abstract
Antibody-dependent enhancement (ADE) of virus infection caused by the uptake of virus-antibody complexes by FcγRs is a significant obstacle to the development of effective vaccines to control certain human and animal viral diseases. The activation FcγRs, including FcγRI and FcγRIIa have been shown to mediate ADE infection of virus. In the present paper, we showed that pocine FcγRIIb, an inhibitory FcγR, mediates ADE of PRRSV infection. Stable Marc-145 cell lines expressing poFcγRIIb (Marc-poFcγRII) were established. The relative yield of progeny virus was significantly increased in the presence of sub-neutralization anti-PRRSV antibody. The Fab fragment and normal porcine sera had no effect. Anti-poFcγRII antibody inhibited the enhancement of infection when cells were infected in the presence of anti-PRRSV antibody, but not when cells were infected in the absence of antibody. These results indicate that enhancement of infection in these cells by anti-PRRSV virus antibody is FcγRII-mediated. Identification of the inhibitory FcγR mediating ADE infection should expand our understanding of the mechanisms of pathogenesis for a broad range of infectious diseases and may open many approaches for improvements to the treatment and prevention of such diseases.
Collapse
Affiliation(s)
- Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhizheng Jiang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaohui Tian
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Rui Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bo Wan
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Dengke Bao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yonghui Liu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huifang Hao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Junqing Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail:
| |
Collapse
|
29
|
Butler JE, Sun X, Wertz N, Lager KM, Chaloner K, Urban J, Francis DL, Nara PL, Tobin GJ. Antibody repertoire development in fetal and neonatal piglets XXI. Usage of most VH genes remains constant during fetal and postnatal development. Mol Immunol 2011; 49:483-94. [PMID: 22018637 DOI: 10.1016/j.molimm.2011.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/22/2011] [Accepted: 09/24/2011] [Indexed: 01/15/2023]
Abstract
Usage of variable region gene segments during development of the antibody repertoire in mammals is unresolved in part because of the complexity of the locus in mice and humans and the difficulty of distinguishing intrinsic from extrinsic influences in these species. We present the first vertical studies on VH usage that spans the fetal and neonatal period using the piglet model. We tracked VH usage in DNA rearrangements and in VDJ transcripts throughout 75 days of gestation (DG) in outbred fetuses, thereafter in outbred germfree and colonized isolator piglets, isolator piglets infected with swine influenza and in conventionally reared nematode-infected adults. Seven VH genes account for >90% of the pre-immune repertoire which is the same among tissues and in both transcripts and DNA rearrangements. Statistical modeling supports the view that proportional usage of the major genes remains constant during fetal life and that postnatal usage ranking is similar to that during fetal life. Changes in usage ranking are developmental not antigen dependent. In this species exposure to environmental antigens results in diversification of the repertoire by somatic hypermutation of the same small number of VH genes that comprise the pre-immune repertoire, not by using other VH gene available in the germline. Therefore in swine a small number of VH genes shape the antibody repertoire throughout life questioning the need for extensive VH polygeny.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dwivedi V, Manickam C, Patterson R, Dodson K, Weeman M, Renukaradhya GJ. Intranasal delivery of whole cell lysate of Mycobacterium tuberculosis induces protective immune responses to a modified live porcine reproductive and respiratory syndrome virus vaccine in pigs. Vaccine 2011; 29:4067-76. [PMID: 21419164 PMCID: PMC7126640 DOI: 10.1016/j.vaccine.2011.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/15/2011] [Accepted: 03/02/2011] [Indexed: 12/28/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease to pork producers worldwide. Commercially, both live and killed PRRSV vaccines are available to control PRRS, but they are not always successful. Based on the results of mucosal immunization studies in other viral models, a good mucosal vaccine may be an effective way to elicit protective immunity to control PRRS outbreaks. In the present study, mucosal adjuvanticity of Mycobacterium tuberculosis whole cell lysate (Mtb WCL) was evaluated in pigs administered a modified live PRRS virus vaccine (PRRS-MLV) intranasally. A Mtb WCL mediated increase in the frequency of NK cells, CD8(+)and CD4(+) T cells, and γδ T cells in pig lungs were detected. Importantly, an increased and early generation of PRRSV specific neutralizing antibodies were detected in PRRS-MLV+ Mtb WCL compared to pigs inoculated with vaccine alone. In addition, there was an increased secretion of Th1 cytokines (IFNγ and IL-12) that correlated with a reciprocal reduction in the production of immunosuppressive cytokines (IL-10 and TGFβ) as well as T-regulatory cells in pigs vaccinated with PRRS-MLV+ Mtb WCL. Further, a complete rescue in arginase levels in the lungs mediated through Mtb WCL was observed in pigs inoculated with PRRS-MLV. In conclusion, Mtb WCL may be a potent mucosal adjuvant for PRRS-MLV in order to potentiate the anti-PRRSV specific immune responses to control PRRS effectively.
Collapse
Affiliation(s)
- Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | | | | | | | | | | |
Collapse
|
31
|
Immunopathological characterization of porcine circovirus type 2 infection-associated follicular changes in inguinal lymph nodes using high-throughput tissue microarray. Vet Microbiol 2010; 149:72-84. [PMID: 21126833 DOI: 10.1016/j.vetmic.2010.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/11/2010] [Accepted: 10/22/2010] [Indexed: 11/23/2022]
Abstract
The immunopathogenesis of porcine circovirus type 2 (PCV2) infection in conventional pigs is complicated by various environmental factors and individual variation and is difficult to be completely reproduced experimentally. In the present field-based study, a tissue microarray (TMA) consisting of a series of lymphoid follicles having different PCV2-loads was constructed using formalin-fixed and paraffin-embedded superficial inguinal lymph nodes (LNs) from 102 pigs. Using the TMA, a wide range of parameters, including co-infected viral pathogens, immune cell subsets, and cell apoptosis/proliferation activity by immunohistochemical (IHC) staining or in situ hybridization (ISH) were measured, characterized, and compared. The signal location and area extent of each parameter were interpreted by pathologists, semi-quantified by automated image analysis software, and analyzed statistically. The results herein demonstrated a significant negative correlation between PCV2 and CD79a (p<0.001) and a significant positive correlation between PCV2 and lysozyme (p<0.001) or TUNEL (p<0.001) using Pearson correlation analysis. The amount of porcine respiratory and reproductive syndrome virus (PRRSV) and porcine parvovirus antigens did not correlate with the tissue loads of PCV2 nucleic acid. Multiple regression analysis further predicted that PCV2 contributed major effects on CD79a, lysozyme, and TUNEL but PRRSV showed relatively less effects on these parameters. In addition, the total signal intensity of Ki67 (index of cell proliferation activity) did not change significantly among cases with different PCV2 loads; however, as the loading of PCV2 nucleic acid increased, the main contribution of Ki67 signal gradually shifted from B cells in the germinal center to T cells and macrophages in the interfollicular regions. In the present study, the use of TMA to establish a mathematical model with a wider range of statistical analysis can bring us a step forward to understand the immunopathogenesis of PCV2 infection-associated follicular changes in LNs.
Collapse
|
32
|
Thanawongnuwech R, Suradhat S. Taming PRRSV: revisiting the control strategies and vaccine design. Virus Res 2010; 154:133-40. [PMID: 20851723 DOI: 10.1016/j.virusres.2010.09.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 09/03/2010] [Accepted: 09/06/2010] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a threat, causing economically significant impacts on the swine industry worldwide. In this article, we share the information related to the Thai PRRSV and review the available options for PRRS control strategies. Unfortunately, the traditional control strategies and conventional vaccines fail to provide sustainable disease control, as they suffer from both antigenic heterogeneity and various immune evasion strategies of PRRSV. Induction of interleukin (IL)-10 following PRRSV infection is believed to be a focal mechanism leading to the unique immunological outcomes and interference of PRRS vaccine efficacy. It is likely that the nucleocapsid protein plays an important role in induction of IL-10 following PRRSV infection. We propose that removal or reduction of the PRRSV-induced, negative immunomodulatory effects especially during the first 2 weeks following infection is essential to establish proper anti-PRRSV immunity. In other word, incorporation of the "taming strategy" will be needed to reduce PRRSV-induced immunomodulatory effects, and to ensure maximal vaccine-induced immunity in the face of viral exposure. Any PRRSV vaccine that can induce cross-protective immunity and simultaneously eliminate the immunoinhibitory effects of PRRSV would be ideal. In addition, tracking of the inhibitory parameters, following the PRRSV challenge should be included in the vaccine testing protocol. Therefore, the future of PRRSV vaccine development relies tremendously on the basic knowledge of host-virus interactions and the communication between the basic and clinical PRRSV research fields.
Collapse
Affiliation(s)
- Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | | |
Collapse
|
33
|
Lunney JK, Fritz ER, Reecy JM, Kuhar D, Prucnal E, Molina R, Christopher-Hennings J, Zimmerman J, Rowland RRR. Interleukin-8, interleukin-1beta, and interferon-gamma levels are linked to PRRS virus clearance. Viral Immunol 2010; 23:127-34. [PMID: 20373993 DOI: 10.1089/vim.2009.0087] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infection with porcine reproductive and respiratory syndrome virus (PRRSV) results in a weak antiviral immune response that leads to a persistent infection in a subset of pigs. We investigated the intensity and timing of the early cytokine responses to PRRSV infection to determine their utility as a predictor of persistence. As part of the "Big Pig" project, we evaluated cytokine gene expression in lymphoid tissues collected from pigs for up 202 days post-infection (dpi); serum samples were collected biweekly. Cytokine mRNA levels were compared between pigs that cleared the viral infection from serum and tissues (non-persistent [NP] pigs) to those of persistent (P) pigs, that had viral RNA in their serum for up to 126 dpi. The gene expression studies in the tracheobronchial lymph nodes (TBLN) of all the pigs showed upregulation of interferon-gamma (IFN-gamma)-associated T-helper 1 (Th-1) markers from 14-84 dpi, and of T-regulatory interleukin-10 (IL-10), but no upregulation of innate markers (IFN-A, IL-1B, and IL-8). At later time points (>112 dpi) these genes were no longer differentially expressed and thus were uninformative for persistence studies. Statistical analyses of serum cytokine levels indicated that innate cytokine (IL-1beta and IL-8) levels were upregulated early after infection. Interestingly, serum IL-8 levels in NP pigs were significantly higher than in P pigs at 14 dpi. When analyzed together, variations in all three of the serum cytokines tested (IL-8, IL-1beta, and IFN-gamma) was significantly correlated with virus level, accounting for approximately 84% of the variations observed. These results indicate that while each cytokine individually has minor effects on the length of virus replication, the combination of cytokine activities should be considered when understanding the role of immunity in persistence.
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Faaberg KS, Kehrli ME, Lager KM, Guo B, Han J. In vivo growth of porcine reproductive and respiratory syndrome virus engineered nsp2 deletion mutants. Virus Res 2010; 154:77-85. [PMID: 20673840 PMCID: PMC7114397 DOI: 10.1016/j.virusres.2010.07.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/15/2010] [Accepted: 07/20/2010] [Indexed: 12/19/2022]
Abstract
Prior studies on PRRSV strain VR-2332 non-structural protein 2 (nsp2) had shown that as much as 403 amino acids could be removed from the hypervariable region without losing virus viability in vitro. We utilized selected nsp2 deletion mutants to examine in vivo growth. Young swine (4 pigs/group; 5 control swine) were inoculated intramuscularly with one of 4 nsp2 deletion mutants (rΔ727–813, rΔ543–726, rΔ324–523, rΔ324–726) or full-length recombinant virus (rVR-2332). Serum samples were collected on various days post-inoculation and analyzed by HerdChek* ELISA, PRRSV real time RT-PCR, gamma interferon (IFN-γ) ELISA, and nucleotide sequence analysis of the entire nsp2 coding region. Tracheobronchial lymph node weight compared to body weight was recorded for each animal and used as a clinical measurement of viral pathogenesis. Results showed that all deletion mutants grew less robustly than full-length recombinant virus, yet all but the large deletion virus (rΔ324–726) recovered to parental viral RNA levels by study end. Swine receiving the rΔ727–813 mutants had a significant decrease in lymph node enlargement compared to rVR-2332. While swine infection with rVR-2332 caused a rapid rise in serum IFN-γ levels, the IFN-γ protein produced by infection with 3 of the 4 deletion mutant viruses was significantly reduced, perhaps due to differences in viral growth kinetics. The rΔ543–726 nsp2 mutant virus, although growth impaired, mimicked rVR-2332 in inducing a host serum IFN-γ response but exhibited a 2-week delay. Targeted sequencing showed that all deletions were stable in the region coding for nsp2 after one swine passage. The data suggested that the selected nsp2 deletion mutants were growth attenuated in swine, altered the induction of serum IFN-γ, an innate cytokine of unknown function in PRRSV clearance, and pointed to a domain that may influence tracheobronchial lymph node size.
Collapse
Affiliation(s)
- Kay S Faaberg
- Virus and Prion Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA.
| | | | | | | | | |
Collapse
|
35
|
Yoo D, Song C, Sun Y, Du Y, Kim O, Liu HC. Modulation of host cell responses and evasion strategies for porcine reproductive and respiratory syndrome virus. Virus Res 2010; 154:48-60. [PMID: 20655963 PMCID: PMC7114477 DOI: 10.1016/j.virusres.2010.07.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/24/2010] [Accepted: 07/18/2010] [Indexed: 12/13/2022]
Abstract
The immune surveillance system protects host cells from viral infection, and viruses have evolved to escape this system for efficient proliferation in the host. Host cells produce cytokines and chemokines in response to viral infection, and among such effector molecules, type I interferons are the principal antiviral cytokines and therefore effective targets for viruses to disarm host surveillance. Porcine reproductive and respiratory syndrome virus (PRRSV) expresses proteins that circumvent the IFN response and other cellular processes, and to compensate the small coding capacity of PRRSV, these proteins are multifunctional. To date, at least four viral proteins have been identified and studied as viral antagonists of host defenses: N as a structural protein and three non-structural proteins, Nsp1 (Nsp1α and Nsp1β), Nsp2, and Nsp11. Among these, N and Nsp1 are nuclear-cytoplasmic proteins distributed in both the nucleus and cytoplasm of cells. Nsp1 and Nsp2 are viral proteases while Nsp11 is an endoribonuclease. This review describes the current understanding of the role of these proteins in modulating the host innate immune responses. Blocking against virus-mediated inhibition of the innate response may lead to the future development of effective vaccines. The understanding of viral mechanisms modulating the normal cellular processes will be a key to the design of an effective control strategy for PRRS.
Collapse
Affiliation(s)
- Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| | | | | | | | | | | |
Collapse
|
36
|
López A, Van Hoorebeke S, Maes D, Chiers K, Meyns T, Stuyven E, Nauwynck H, Welle M. Porcine ulcerative dermatitis syndrome in sows: a form of vesicular cutaneous lupus erythematosus? Vet Rec 2009; 165:501-6. [DOI: 10.1136/vr.165.17.501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | | | - D. Maes
- Department of Obstetrics; Reproduction and Herd Health
| | | | - T. Meyns
- Department of Pathology, Bacteriology and Poultry Diseases
| | | | - H. Nauwynck
- Department of Virology, Parasitology and Immunology; Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 9820 Merelbeke Belgium
| | - M. Welle
- Institute of Animal Pathology; Vetsuisse Faculty; University of Berne, Postfach; Länggassstrasse 122 3001 Berne Switzerland
| |
Collapse
|
37
|
Jung K, Renukaradhya GJ, Alekseev KP, Fang Y, Tang Y, Saif LJ. Porcine reproductive and respiratory syndrome virus modifies innate immunity and alters disease outcome in pigs subsequently infected with porcine respiratory coronavirus: implications for respiratory viral co-infections. J Gen Virol 2009; 90:2713-2723. [PMID: 19656969 DOI: 10.1099/vir.0.014001-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The innate immune response is critical for host defence against respiratory coronaviruses (CoVs). This study demonstrated that an ongoing respiratory virus infection compromises innate immune responses and affects the pathogenesis of a respiratory CoV co-infection. An innate immunosuppressive respiratory virus infection was established by infecting weaned pigs with porcine reproductive and respiratory syndrome virus (PRRSV); 10 days later, the pigs were exposed to porcine respiratory coronavirus (PRCV). The PRRSV/PRCV dual-infected pigs had reduced weight gains, a higher incidence of fever and more severe pneumonia compared with either single infection. Significant suppression of innate immune responses [reduced alpha interferon (IFN-alpha) levels in the lungs and reduced blood natural killer cell cytotoxicity] by the ongoing PRRSV infection was observed in dual-infected pigs, which coincided with exacerbated pneumonia during early PRCV infection. The subsequent PRCV infection led to enhanced PRRSV replication in the lungs and a trend towards increased serum T-helper type 1 (Th1) (IFN-gamma) but decreased Th2 [interleukin (IL)-4] responses, further exacerbating PRRSV pneumonia. Following PRCV infection, more severe PRRSV-related pulmonary alveolar macrophage (PAM) apoptosis occurred, as determined by an in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assay, suggesting increased PRRSV replication in PAMs. Collectively, these observations suggest interactive effects between PRCV and PRRSV via early innate (IFN-alpha) and later adaptive Th1 (IFN-gamma) and Th2 (IL-4) immune responses. These findings imply that an existing immunomodulating respiratory viral co-infection may be a contributing factor to more severe pneumonia in respiratory CoV disease. This study provides new insights into host-pathogen interactions related to co-infection by CoVs and other respiratory viruses.
Collapse
Affiliation(s)
- Kwonil Jung
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Konstantin P Alekseev
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Ying Fang
- Veterinary Science Department, South Dakota State University, Brookings, SD, USA
| | - Yuxin Tang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
38
|
Silva-Campa E, Flores-Mendoza L, Reséndiz M, Pinelli-Saavedra A, Mata-Haro V, Mwangi W, Hernández J. Induction of T helper 3 regulatory cells by dendritic cells infected with porcine reproductive and respiratory syndrome virus. Virology 2009; 387:373-9. [PMID: 19304305 DOI: 10.1016/j.virol.2009.02.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 12/31/2008] [Accepted: 02/21/2009] [Indexed: 11/16/2022]
Abstract
Delayed development of virus-specific immune response has been observed in pigs infected with the porcine reproductive and respiratory syndrome virus (PRRSV). Several studies support the hypothesis that the PRRSV is capable of modulating porcine immune system, but the mechanisms involved are yet to be defined. In this study, we evaluated the induction of T regulatory cells by PRRSV-infected dendritic cells (DCs). Our results showed that PRRSV-infected DCs significantly increased Foxp3(+)CD25(+) T cells, an effect that was reversible by IFN-alpha treatment, and this outcome was reproducible using two distinct PRRSV strains. Analysis of the expressed cytokines suggested that the induction of Foxp3(+)CD25(+) T cells is dependent on TGF-beta but not IL-10. In addition, a significant up-regulation of Foxp3 mRNA, but not TBX21 or GATA3, was detected. Importantly, our results showed that the induced Foxp3(+)CD25(+) T cells were able to suppress the proliferation of PHA-stimulated PBMCs. The T cells induced by the PRRSV-infected DCs fit the Foxp3(+)CD25(+) T helper 3 (Th3) regulatory cell phenotype described in the literature. The induction of this cell phenotype depended, at least in part, on PRRSV viability because IFN-alpha treatment or virus inactivation reversed these effects. In conclusion, this data supports the hypothesis that the PRRSV succeeds to establish and replicate in porcine cells early post-infection, in part, by inducing Th3 regulatory cells as a mechanism of modulating the porcine immune system.
Collapse
Affiliation(s)
- Erika Silva-Campa
- Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora, Mexico
| | | | | | | | | | | | | |
Collapse
|
39
|
Butler JE, Lager KM, Splichal I, Francis D, Kacskovics I, Sinkora M, Wertz N, Sun J, Zhao Y, Brown WR, DeWald R, Dierks S, Muyldermans S, Lunney JK, McCray PB, Rogers CS, Welsh MJ, Navarro P, Klobasa F, Habe F, Ramsoondar J. The piglet as a model for B cell and immune system development. Vet Immunol Immunopathol 2009; 128:147-70. [PMID: 19056129 PMCID: PMC2828348 DOI: 10.1016/j.vetimm.2008.10.321] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The ability to identify factors responsible for disease in all species depends on the ability to separate those factors which are environmental from those that are intrinsic. This is particularly important for studies on the development of the adaptive immune response of neonates. Studies on laboratory rodents or primates have been ambiguous because neither the effect of environmental nor maternal factors on the newborn can be controlled in mammals that: (i) transmit potential maternal immunoregulatory factors in utero and (ii) are altricial and cannot be reared after birth without their mothers. Employing the newborn piglet model can address each of these concerns. However, it comes at the price of having first to characterize the immune system of swine and its development. This review focuses on the porcine B cell system, especially on the methods used for its characterization in fetal studies and neonatal piglets. Understanding these procedures is important in the interpretation of the data obtained. Studies on neonatal piglets have (a) provided valuable information on the development of the adaptive immune system, (b) lead to important advances in evolutionary biology, (c) aided our understanding of passive immunity and (d) provided opportunities to use swine to address specific issues in veterinary and biomedical research and immunotherapy. This review summarizes the history of the development of the piglet as a model for antibody repertoire development, thus providing a framework to guide future investigators.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, University of Iowa, Iowa City, IA, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
PRRSV-induced immune dysregulation selects B cells with hydrophobic HCDR3s for expansion. Vet Immunol Immunopathol 2009. [DOI: 10.1016/j.vetimm.2008.10.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Butler JE, Zhao Y, Sinkora M, Wertz N, Kacskovics I. Immunoglobulins, antibody repertoire and B cell development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:321-333. [PMID: 18804488 DOI: 10.1016/j.dci.2008.06.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 05/26/2023]
Abstract
Swine share with most placental mammals the same five antibody isotypes and same two light chain types. Loci encoding lambda, kappa and Ig heavy chains appear to be organized as they are in other mammals. Swine differ from rodents and primates, but are similar to rabbits in using a single VH family (VH3) to encode their variable heavy chain domain, but not the family used by cattle, another artiodactyl. Distinct from other hoofed mammals and rodents, Ckappa:Clambda usage resembles the 1:1 ratio seen in primates. Since IgG subclasses diversified after speciation, same name subclass homologs do not exist among swine and other mammals unless very closely related. Swine possess six putative IgG subclasses that appear to have diversified by gene duplication and exon shuffle while retaining motifs that can bind to FcgammaRs, FcRn, C1q, protein A and protein G. The epithelial chorial placenta of swine and the precosial nature of their offspring have made piglets excellent models for studies on fetal antibody repertoire development and on the postnatal role of gut colonization, maternal colostrum and neonatal infection on the development of adaptive immunity during the "critical window" of immunological development. This chapter traces the study of the humoral immune system of this species through its various eras of discovery and compiles the results in tables and figures that should be a useful reference for educators and investigators.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, University of Iowa, Iowa City, IA, USA.
| | | | | | | | | |
Collapse
|
42
|
Isolator and other neonatal piglet models in developmental immunology and identification of virulence factors. Anim Health Res Rev 2009; 10:35-52. [DOI: 10.1017/s1466252308001618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe postnatal period is a ‘critical window’, a time when innate and passive immunity protect the newborn mammal while its own adaptive immune system is developing. Neonatal piglets, especially those reared in isolators, provide valuable tools for studying immunological development during this period, since environmental factors that cause ambiguity in studies with conventional animals are controlled by the experimenter. However, these models have limited value unless the swine immune system is first characterized and the necessary immunological reagents developed. Characterization has revealed numerous features of the swine immune system that did not fit mouse paradigms but may be more generally true for most mammals. These include fetal class switch recombination that is uncoupled from somatic hypermutation, the relative importance of the molecular mechanisms used to develop the antibody repertoire, the role of gut lymphoid tissue in that process, and the limited heavy chain repertoire but diverse IgG subclass repertoire. Knowledge gained from studies of adaptive immunity in isolator-reared neonatal pigs suggests that isolator piglets can be valuable in identification of virulence factors that are often masked in studies using conventional animals.
Collapse
|
43
|
Role of Toll-like receptors in activation of porcine alveolar macrophages by porcine reproductive and respiratory syndrome virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:360-5. [PMID: 19144789 DOI: 10.1128/cvi.00269-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Control of virus replication initially depends on rapid activation of the innate immune response. Toll-like receptor (TLR) ligands are potent inducers of innate immunity against viral infections. Porcine reproductive and respiratory syndrome virus (PRRSV), a positive-sense RNA virus, initiates infection in porcine alveolar macrophages (PAMs), elicits weak immune responses, and establishes a persistent infection. To understand the role of single-stranded RNA and double-stranded RNA (dsRNA) intermediates in eliciting host immunity, we sought to determine if TLRs, particularly those that respond to viral molecular patterns, are involved in PRRSV infection. Activation of TLR3 in PAMs with dsRNA increased gene expression for alpha interferon and suppressed PRRSV infectivity. In contrast, TLR4 activation by the treatment of PAMs with lipopolysaccharide did not influence PRRSV infectivity.
Collapse
|
44
|
Porcine IgG: structure, genetics, and evolution. Immunogenetics 2008; 61:209-30. [PMID: 19048248 DOI: 10.1007/s00251-008-0336-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
Eleven genomic porcine Cgamma gene sequences are described that represent six putative subclasses that appear to have originated by gene duplication and exon shuffle. The genes previously described as encoding porcine IgG1 and IgG3 were shown to be the IgG1(a) and IgG1(b) allelic variants of the IGHG1 gene, IgG2a and IgG2b are allelic variants of the IGHG2 gene, while "new" IgG3 is monomorphic, has an extended hinge, is structurally unique, and appears to encode the most evolutionarily conserved porcine IgG. IgG5(b) differs most from its putative allele, and its C(H)1 domain shares sequence homology with the C(H)1 of IgG3. Four animals were identified that lacked either IgG4 or IgG6. Alternative splice variants were also recovered, some lacking the C(H)1 domain and potentially encoding heavy chain only antibodies. Potentially, swine can transcribe >20 different Cgamma chains. A comparison of mammalian Cgamma gene sequences revealed that IgG diversified into subclasses after speciation. Thus, the effector functions for the IgG subclasses of each species should not be extrapolated from "same name subclasses" in other species. Sequence analysis identified motifs likely to interact with Fcgamma receptors, FcRn, protein A, protein G, and C1q. These revealed IgG3 to be most likely to activate complement and bind FcgammaRs. All except IgG5(a) and IgG6(a) should bind to FcgammaRs, while all except IgG6(a) and the putative IgG5 subclass proteins should bind well to porcine FcRn, protein A, and protein G.
Collapse
|
45
|
Butler JE, Sinkora M. The isolator piglet: a model for studying the development of adaptive immunity. Immunol Res 2008; 39:33-51. [PMID: 17917054 DOI: 10.1007/s12026-007-0062-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/28/2022]
Abstract
The period from late gestation to weaning in neonatal mammals is a critical window when the adaptive immune system develops and replaces the protection temporarily provided by passive immunity and pre-adaptive antibodies. It is also when oral tolerance to dietary antigen and the distinction between commensal and pathogenic gut bacteria becomes established resulting in immune homeostasis. The reproductive biology of swine provides a unique model for distinguishing the effects of different factors on immune development during this critical period because all extrinsic factors are controlled by the experimenter. This chapter reviews this early stage of development and the usefulness of the piglet model for understanding events during this transitional stage. The review also describes the major features of the porcine immune system and the immune stimulatory and dysregulatory factors that act during this period. The value of the model to medical science in such areas as food allergy, organ transplantation, cystic fibrosis and the production of humanized antibodies for immuno-therapy is discussed.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology and Interdisciplinary Graduate Immunology Program, University of Iowa, 3-550 BSB, 51 Newton Rd, Iowa City, IA 52242, USA.
| | | |
Collapse
|
46
|
Antigen-specific B-cell responses to porcine reproductive and respiratory syndrome virus infection. J Virol 2007; 82:358-70. [PMID: 17942527 DOI: 10.1128/jvi.01023-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes an acute, viremic infection of 4 to 6 weeks, followed by a persistent infection lasting for several months. We characterized antibody and B-cell responses to viral proteins in acute and persistent infection to better understand the immunological basis of the prolonged infection. The humoral immune response to PRRSV was robust overall and varied among individual viral proteins, with the important exception of a delayed and relatively weak response to envelope glycoprotein 5 (GP5). Memory B cells were in secondary lymphoid organs, not in bone marrow or Peyer's patches, in contrast to the case for many mammalian species. Potent anti-PRRSV memory responses were elicited to recall antigen in vitro, even though a second infection did not increase the B-cell response in vivo, suggesting that productive reinfection does not occur in vivo. Antibody titers to several viral proteins decline over time, even though abundant antigen is known to be present in lymphoid tissues, possibly indicating ineffective antigen presentation. The appearance of antibodies to GP5 is delayed relative to the resolution of viremia, suggesting that anti-GP5 antibodies are not crucial for resolving viremia. Lastly, viral infection had no immunosuppressive effect on the humoral response to a second, unrelated antigen. Taking these data together, the active effector and memory B-cell responses to PRRSV are robust, and over time the humoral immune response to PRRSV is effective. However, the delayed response against GP5 early in infection may contribute to the prolonged acute infection and the establishment of persistence.
Collapse
|
47
|
Butler JE, Wertz N. Antibody Repertoire Development in Fetal and Neonatal Piglets. XVII. IgG Subclass Transcription Revisited with Emphasis on New IgG3. THE JOURNAL OF IMMUNOLOGY 2006; 177:5480-9. [PMID: 17015734 DOI: 10.4049/jimmunol.177.8.5480] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fetal piglets offer an in vivo model for determining whether Ag-independent IgG subclass transcription proceeds in a manner that differs from subclass transcription in pigs exposed to environmental Ags and TLR ligands. Our data from approximately 12,000 Cgamma clones from > 60 piglets provide the first report on the relative usage of all known porcine Cgamma genes in fetal and young pigs. Studies revealed that among the six Cgamma genes, allelic variants of IgG1 comprised 50-80% of the repertoire, and IgG2 alleles comprised < 10% in nearly all tissues. However, relative transcription of allelic variants of IgG1 randomly deviate from the 1:1 ratio expected in heterozygotes. Most surprising was the finding that IgG3 accounted for half of all Cgamma transcripts in the ileal Peyer's patches (IPPs) and mesenteric lymph nodes but on average only approximately 5% of the clones from the thymus, tonsil, spleen, peripheral blood, and bone marrow of newborns. Lymphoid tissues from late term fetuses revealed a similar expression pattern. Except for IgG3 in the IPPs and mesenteric lymph nodes, no stochastic pattern of Cgamma expression during development was seen in animals from mid-gestation through 5 mo. The age and tissue dependence of IgG3 transcription paralleled the developmental persistence of the IPP, and its near disappearance corresponds to the diversification of the preimmune VDJ repertoire in young piglets. We hypothesize that long-hinged porcine IgG3 may be important in preadaptive responses to T cell-independent Ags similar to those described for its murine namesake.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology and Interdisciplinary Immunology Program, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
48
|
Barrette RW, Urbonas J, Silbart LK. Quantifying specific antibody concentrations by enzyme-linked immunosorbent assay using slope correction. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:802-5. [PMID: 16829619 PMCID: PMC1489577 DOI: 10.1128/cvi.00422-05] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Assessing the magnitude of an antibody response is important to many research and clinical endeavors; however, there are considerable differences in the experimental approaches used to achieve this end. Although the time-honored approach of end point titration has merit, the titer can often be misleading due to differences in how it is calculated or when samples contain high concentrations of low-avidity antibodies. One frequently employed alternative is to adapt commercially available enzyme-linked immunosorbent assay kits, designed to measure total antibody concentrations, to estimate antigen-specific antibody concentrations. This is accomplished by coating the specific antigen of interest in place of the capture antibody provided with the kit and then using the kit's standard curve to quantify the specific antibody concentration. This approach introduces considerable imprecision, due primarily to its reliance on a single sample dilution. This "single-point" approach fails to address differences in the slope of the sample titration curve compared to that of the standard curve. Here, we describe a general approach for estimating the effective concentration of specific antibodies, using antisera against foot-and-mouth disease virus VP1 peptide. This was accomplished by initially calculating the slope of the sample titration curve and then mathematically correcting the slope to that of a corresponding standard curve. A significantly higher degree of precision was attained using this approach rather than the single-point method.
Collapse
Affiliation(s)
- Roger W Barrette
- Center of Excellence for Vaccine Research, Department of Animal Science, CANR, 1390 Storrs Rd., ABL Room 302E, Unit 4163, University of Connecticut, Storrs, CT 06269-4163, USA
| | | | | |
Collapse
|
49
|
Butler JE, Sinkora M, Wertz N, Holtmeier W, Lemke CD. Development of the neonatal B and T cell repertoire in swine: implications for comparative and veterinary immunology. Vet Res 2006; 37:417-41. [PMID: 16611556 DOI: 10.1051/vetres:2006009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 10/18/2005] [Indexed: 12/12/2022] Open
Abstract
Birth in all higher vertebrates is at the center of the critical window of development in which newborns transition from dependence on innate immunity to dependence on their own adaptive immunity, with passive maternal immunity bridging this transition. Therefore we have studied immunological development through fetal and early neonatal life. In swine, B cells appear earlier in fetal development than T cells. B cell development begins in the yolk sac at the 20th day of gestation (DG20), progresses to fetal liver at DG30 and after DG45 continues in bone marrow. The first wave of developing T cells is gammadelta cells expressing a monomorphic Vdelta rearrangement. Thereafter, alphabeta T cells predominate and at birth, at least 19 TRBV subgroups are expressed, 17 of which appear highly homologous with those in humans. In contrast to the T cell repertoire and unlike humans and mice, the porcine pre-immune VH (IGHV-D-J) repertoire is highly restricted, depending primarily on CDR3 for diversity. The V-KAPPA (IGKV-J) repertoire and apparently also the V-LAMBDA (IGLV-J) repertoire, are also restricted. Diversification of the pre-immune B cell repertoire of swine and the ability to respond to both T-dependent and T-independent antigen depends on colonization of the gut after birth in which colonizing bacteria stimulate with Toll-like receptor ligands, especially bacterial DNA. This may explain the link between repertoire diversification and the anatomical location of primary lymphoid tissue like the ileal Peyers patches. Improper development of adaptive immunity can be caused by infectious agents like the porcine reproductive and respiratory syndrome virus that causes immune dysregulation resulting in immunological injury and autoimmunity.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology and Interdisciplinary Immunology Program, The University of Iowa, Iowa City, 52242, USA.
| | | | | | | | | |
Collapse
|
50
|
Marchalonis JJ, Adelman MK, Schluter SF, Ramsland PA. The antibody repertoire in evolution: chance, selection, and continuity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:223-47. [PMID: 16083959 DOI: 10.1016/j.dci.2005.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
All jawed vertebrates contain the genetic elements essential for the function of the adaptive/combinatorial immune response, have diverse sets of natural antibodies resulting from segmental gene recombination, express comparable functional repertoires and can produce specific antibodies following appropriate immunization. Profound variability occurs in the third hypervariable (CDR3) segments of light and heavy chains even within antibodies of the same ostensible specificity. Germline VH and VL elements, as well as the joining (J) segments are highly conserved among the distinct vertebrate species. Conservation is particularly noted among the VH3-like sequences of all jawed vertebrates in the FR2 and FR3 segments, as well as in the FGXGT(R or K)L J-segment characteristic of light chains and TCRs and the WGXGT(uncharged)VT JH segments. Human VH3-53 and Vlambda6 family orthologs may be present over the entire range of vertebrates. Models of the three-dimensional structures of shark VH/VL combining sites indicate similarity in framework structure and comparable CDR usage to those of man. Although carcharhine shark VH regions show greater than 50% identity to the human VH germline prototype, searches of lower deuterostome and invertebrate databases fail to detect molecules with significant relatedness. Overall, antibodies of jawed vertebrates show tremendous individual diversity, but are constructed incorporating design features that arose with the evolutionary emergence of the jawed vertebrates and have been conserved through at least 450 million years of evolutionary time.
Collapse
Affiliation(s)
- John J Marchalonis
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724-5049, USA.
| | | | | | | |
Collapse
|