1
|
Xu WD, Wang DC, Zhao M, Huang AF. An updated advancement of bifunctional IL-27 in inflammatory autoimmune diseases. Front Immunol 2024; 15:1366377. [PMID: 38566992 PMCID: PMC10985211 DOI: 10.3389/fimmu.2024.1366377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Interleukin-27 (IL-27) is a member of the IL-12 family. The gene encoding IL-27 is located at chromosome 16p11. IL-27 is considered as a heterodimeric cytokine, which consists of Epstein-Barr virus (EBV)-induced gene 3 (Ebi3) and IL-27p28. Based on the function of IL-27, it binds to receptor IL-27rα or gp130 and then regulates downstream cascade. To date, findings show that the expression of IL-27 is abnormal in different inflammatory autoimmune diseases (including systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, Behcet's disease, inflammatory bowel disease, multiple sclerosis, systemic sclerosis, type 1 diabetes, Vogt-Koyanagi-Harada, and ankylosing spondylitis). Moreover, in vivo and in vitro studies demonstrated that IL-27 is significantly in3volved in the development of these diseases by regulating innate and adaptive immune responses, playing either an anti-inflammatory or a pro-inflammatory role. In this review, we comprehensively summarized information about IL-27 and autoimmunity based on available evidence. It is hoped that targeting IL-27 will hold great promise in the treatment of inflammatory autoimmune disorders in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Jayaraman S, Jayaraman A. Impact of histone modifier-induced protection against autoimmune encephalomyelitis on multiple sclerosis treatment. Front Neurol 2022; 13:980758. [PMID: 36313502 PMCID: PMC9614082 DOI: 10.3389/fneur.2022.980758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis is a progressive demyelinating central nervous system disorder with unknown etiology. The condition has heterogeneous presentations, including relapsing-remitting multiple sclerosis and secondary and primary progressive multiple sclerosis. The genetic and epigenetic mechanisms underlying these various forms of multiple sclerosis remain elusive. Many disease-modifying therapies approved for multiple sclerosis are broad-spectrum immunomodulatory drugs that reduce relapses but do not halt the disease progression or neuroaxonal damage. Some are also associated with many severe side effects, including fatalities. Improvements in disease-modifying treatments especially for primary progressive multiple sclerosis remain an unmet need. Several experimental animal models are available to decipher the mechanisms involved in multiple sclerosis. These models help us decipher the advantages and limitations of novel disease-modifying therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Sundararajan Jayaraman
- Department of Surgery, University of Illinois College of Medicine, Peoria, IL, United States
| | | |
Collapse
|
3
|
Clénet ML, Laurent C, Lemaitre F, Farzam-Kia N, Tastet O, Devergne O, Lahav B, Girard M, Duquette P, Prat A, Larochelle C, Arbour N. The IL-27/IL-27R axis is altered in CD4 + and CD8 + T lymphocytes from multiple sclerosis patients. Clin Transl Immunology 2021; 10:e1262. [PMID: 33728050 PMCID: PMC7934284 DOI: 10.1002/cti2.1262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 11/07/2022] Open
Abstract
Objectives Pro‐ and anti‐inflammatory properties have been attributed to interleukin‐27 (IL‐27). Nevertheless, the impact of this cytokine on chronic inflammatory diseases such as multiple sclerosis (MS) remains ill‐defined. We investigated the biology of IL‐27 and its specific receptor IL‐27Rα in MS patients. Methods Levels of IL‐27 and its natural antagonist (IL‐27‐Rα) were measured by ELISA in biological fluids. CD4+ and CD8+ T lymphocytes were isolated from untreated relapsing–remitting MS patients and healthy donors. Transcriptome‐wide analysis compared T‐cell subsets stimulated or not with IL‐27. Expression of the IL‐27Rα, key immune factors, STAT phosphorylation and cytokine production was assessed by flow cytometry. Results We observed elevated levels of IL‐27 in the serum and cerebrospinal fluid of MS patients compared with controls. Moreover, we show that specific IL‐27‐mediated effects on T lymphocytes are reduced in MS patients including the induction of PD‐L1. IL‐27‐triggered STAT3 signalling pathway is enhanced in CD4+ and CD8+ T lymphocytes from MS patients. Elevated IL‐27Rα levels in serum from MS patients are sufficient to impair the capacity of IL‐27 to act on immune cells. We demonstrate that shedding of IL‐27Rα by activated CD4+ T lymphocytes from MS patients contributes to the increased IL‐27Rα peripheral levels and consequently can dampen the IL‐27 responsiveness. Conclusion Our work identifies several mechanisms that are altered in the IL‐27/IL‐27R axis in MS patients, especially in T lymphocytes. Our results underline the importance of characterising the biology of cytokines in human patients prior to design new therapeutics.
Collapse
Affiliation(s)
- Marie-Laure Clénet
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada
| | - Cyril Laurent
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada
| | - Florent Lemaitre
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada
| | - Negar Farzam-Kia
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada
| | - Olivier Tastet
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada
| | - Odile Devergne
- INSERM CNRS Centre d'Immunologie et des Maladies Infectieuses Sorbonne Université Paris France
| | | | - Marc Girard
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada.,MS-CHUM Clinic Montreal QC Canada
| | - Pierre Duquette
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada.,MS-CHUM Clinic Montreal QC Canada
| | - Alexandre Prat
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada.,MS-CHUM Clinic Montreal QC Canada
| | - Catherine Larochelle
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada.,MS-CHUM Clinic Montreal QC Canada
| | - Nathalie Arbour
- Department of Neurosciences Université de Montréal and CRCHUM Montreal QC Canada
| |
Collapse
|
4
|
Beizavi Z, Zohouri M, Asadipour M, Ghaderi A. IL-27, a pleiotropic cytokine for fine-tuning the immune response in cancer. Int Rev Immunol 2020; 40:319-329. [PMID: 33146571 DOI: 10.1080/08830185.2020.1840565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Interleukin (IL)-27, a member of the IL-6/IL-12 family, has an important role in modulating inflammation in partnership with innate and adaptive immune cells. IL-27 binding to IL-27R starts downstream signaling based on the target cells. It can instigate inflammation by inducing CD4+ T cell proliferation, Th1 polarization, cytotoxic T cell activation, generation of the natural killer cell, and macrophage and dendritic cell activation. However, by inducing programmed cell death and suppression of effector cells, IL-27 can suppress inflammation and return the immune response to hemostasis. Altogether, IL-27 displays multifaceted dual functions, which may result in either pro- or anti-inflammatory effects. Recent investigations indicated the antitumor activity of IL-27 via inducing Th1, and CTL responses and generating NK cells. On the other hand, IL-27 also can promote tumor cells' proliferation, survival, and angiogenesis. In the present review, we'll discuss recent advances concerning the role of IL-27 in inflammatory diseases such as infections, autoimmune diseases with a focus on cancer.
Collapse
Affiliation(s)
- Zahra Beizavi
- Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Zohouri
- Shiraz Institute for Cancer Research, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morvarid Asadipour
- Shiraz Institute for Cancer Research, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Engineering a potent receptor superagonist or antagonist from a novel IL-6 family cytokine ligand. Proc Natl Acad Sci U S A 2020; 117:14110-14118. [PMID: 32522868 DOI: 10.1073/pnas.1922729117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Interleukin-6 (IL-6) family cytokines signal through multimeric receptor complexes, providing unique opportunities to create novel ligand-based therapeutics. The cardiotrophin-like cytokine factor 1 (CLCF1) ligand has been shown to play a role in cancer, osteoporosis, and atherosclerosis. Once bound to ciliary neurotrophic factor receptor (CNTFR), CLCF1 mediates interactions to coreceptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). By increasing CNTFR-mediated binding to these coreceptors we generated a receptor superagonist which surpassed the potency of natural CNTFR ligands in neuronal signaling. Through additional mutations, we generated a receptor antagonist with increased binding to CNTFR but lack of binding to the coreceptors that inhibited tumor progression in murine xenograft models of nonsmall cell lung cancer. These studies further validate the CLCF1-CNTFR signaling axis as a therapeutic target and highlight an approach of engineering cytokine activity through a small number of mutations.
Collapse
|
6
|
Tait Wojno ED, Hunter CA, Stumhofer JS. The Immunobiology of the Interleukin-12 Family: Room for Discovery. Immunity 2019; 50:851-870. [PMID: 30995503 PMCID: PMC6472917 DOI: 10.1016/j.immuni.2019.03.011] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
The discovery of interleukin (IL)-6 and its receptor subunits provided a foundation to understand the biology of a group of related cytokines: IL-12, IL-23, and IL-27. These family members utilize shared receptors and cytokine subunits and influence the outcome of cancer, infection, and inflammatory diseases. Consequently, many facets of their biology are being therapeutically targeted. Here, we review the landmark discoveries in this field, the combinatorial biology inherent to this family, and how patient datasets have underscored the critical role of these pathways in human disease. We present significant knowledge gaps, including how similar signals from these cytokines can mediate distinct outcomes, and discuss how a better understanding of the biology of the IL-12 family provides new therapeutic opportunities.
Collapse
Affiliation(s)
- Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, 235 Hungerford Hill Rd., Ithaca, NY 14853, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Ave., Philadelphia, PA 19104-4539, USA.
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.
| |
Collapse
|
7
|
Chen Y, Zhang R, Zeng L, Wei H, Chen Y, Zeng J. IL-27 genetic variation and susceptibility of dilated cardiomyopathy in Chinese Han population. Per Med 2017; 14:401-408. [PMID: 29754565 DOI: 10.2217/pme-2017-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIM Accumulating data showed that IL-27 polymorphisms are linked to the susceptibility of some autoimmune diseases. We assessed whether there was an association between two single nucleotide polymorphisms (SNPs) of IL-27 gene and dilated cardiomyopathy (DCM). MATERIALS & METHODS Two SNPs (rs153109 and rs17855750) of IL-27 gene were genotyped by PCR-restriction fragment length polymorphism in 261 DCM patients and 303 unrelated healthy subjects in Chinese Han population. RESULTS Compared with controls, our results showed that SNP rs153109 displayed significant associations with DCM in Chinese Han population, whereas no differences in genotype or allele frequencies were found between DCM patients and controls at SNP rs17855750. CONCLUSION Our study showed that, for the first time, the association of the IL-27 gene SNP with the patients with DCM.
Collapse
Affiliation(s)
- Yu Chen
- Department of Cardiology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China.,Department of Cardiology, Hospital of the University of Electronic Science & Technology of China, Chengdu, China
| | - Rui Zhang
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu, China.,Department of Cardiovascular Surgery, The Seventh People's Hospital of Chengdu, Chengdu, China
| | - Linjun Zeng
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Wei
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Chen
- Department of Cardiology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China.,Department of Cardiology, Hospital of the University of Electronic Science & Technology of China, Chengdu, China
| | - Jianhui Zeng
- Department of Cardiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
8
|
The effect of interleukins 27 and 35 and their role on mediating the action of insulin Like Growth Factor -1 on the inflammation and blood flow of chronically inflamed rat knee joint. Cytokine 2016; 81:117-26. [DOI: 10.1016/j.cyto.2016.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/16/2016] [Accepted: 03/11/2016] [Indexed: 11/23/2022]
|
9
|
Hennerici T, Pollmann R, Schmidt T, Seipelt M, Tackenberg B, Möbs C, Ghoreschi K, Hertl M, Eming R. Increased Frequency of T Follicular Helper Cells and Elevated Interleukin-27 Plasma Levels in Patients with Pemphigus. PLoS One 2016; 11:e0148919. [PMID: 26872212 PMCID: PMC4752242 DOI: 10.1371/journal.pone.0148919] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/24/2016] [Indexed: 01/24/2023] Open
Abstract
Pemphigus is an autoimmune disease in which IgG auto-antibodies (auto-ab) against the desmosomal cadherins desmoglein (Dsg) 3 and Dsg1 cause loss of epidermal keratinocyte adhesion. Aim of this study was to investigate cytokines derived from antigen-presenting cells (APC) and their relation to CD4+ T cell subpopulations and to the auto-ab response in pemphigus. In this regard, patients with pemphigus were compared to patients with myasthenia gravis (MG), an unrelated auto-ab–mediated autoimmune disease, and healthy controls. In pemphigus and MG, the plasma concentrations of the APC-derived immunomodulatory cytokine IL-27 were highly increased. Strikingly, IL-27 strongly correlated with Dsg-specific IgG auto-ab titers. T helper (Th) 17 cells were augmented in both pemphigus and MG patients while T follicular helper (Tfh) cells, which are essential in providing B cell help, were increased only in pemphigus along with increasing plasma concentrations of IL-21, a cytokine produced by Th17 and Tfh cells. Moreover, we could detect Dsg3-specific autoreactive T cells producing IL-21 upon ex vivo stimulation with Dsg3. These findings suggest that IL-27 and IL-21-producing T cells, are involved in the pathogenesis of pemphigus. The further characterization of IL-21-producing T cells and of the role of IL-27 will lead to a more defined understanding of the auto-ab response in pemphigus.
Collapse
Affiliation(s)
- Tina Hennerici
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Robert Pollmann
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Thomas Schmidt
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Maria Seipelt
- Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Björn Tackenberg
- Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Christian Möbs
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
10
|
Sénécal V, Deblois G, Beauseigle D, Schneider R, Brandenburg J, Newcombe J, Moore CS, Prat A, Antel J, Arbour N. Production of IL-27 in multiple sclerosis lesions by astrocytes and myeloid cells: Modulation of local immune responses. Glia 2015; 64:553-69. [PMID: 26649511 DOI: 10.1002/glia.22948] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 01/22/2023]
Abstract
The mechanisms whereby human glial cells modulate local immune responses are not fully understood. Interleukin-27 (IL-27), a pleiotropic cytokine, has been shown to dampen the severity of experimental autoimmune encephalomyelitis, but it is still unresolved whether IL-27 plays a role in the human disease multiple sclerosis (MS). IL-27 contribution to local modulation of immune responses in the brain of MS patients was investigated. The expression of IL-27 subunits (EBI3 and p28) and its cognate receptor IL-27R (the gp130 and TCCR chains) was elevated within post-mortem MS brain lesions compared with normal control brains. Moreover, astrocytes (GFAP(+) cells) as well as microglia and macrophages (Iba1(+) cells) were important sources of IL-27. Brain-infiltrating CD4 and CD8 T lymphocytes expressed the IL-27R specific chain (TCCR) implying that these cells could respond to local IL-27 sources. In primary cultures of human astrocytes inflammatory cytokines increased IL-27 production, whereas myeloid cell inflammatory M1 polarization and inflammatory cytokines enhanced IL-27 expression in microglia and macrophages. Astrocytes in postmortem tissues and in vitro expressed IL-27R. Moreover, IL-27 triggered the phosphorylation of the transcription regulator STAT1, but not STAT3 in human astrocytes; indeed IL-27 up-regulated MHC class I expression on astrocytes in a STAT1-dependent manner. These findings demonstrated that IL-27 and its receptor were elevated in MS lesions and that local IL-27 can modulate immune properties of astrocytes and infiltrating immune cells. Thus, therapeutic strategies targeting IL-27 may influence not only peripheral but also local inflammatory responses within the brain of MS patients.
Collapse
Affiliation(s)
- Vincent Sénécal
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Gabrielle Deblois
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Diane Beauseigle
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Raphael Schneider
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jonas Brandenburg
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jia Newcombe
- NeuroResource, UCL Institute of Neurology, University College London, London, WC1N 1PJ, England
| | - Craig S Moore
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Alexandre Prat
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Nathalie Arbour
- Department of Neurosciences, Université De Montréal and CRCHUM Montreal, Quebec, Canada, H2X 0A9
| |
Collapse
|
11
|
Meka RR, Venkatesha SH, Dudics S, Acharya B, Moudgil KD. IL-27-induced modulation of autoimmunity and its therapeutic potential. Autoimmun Rev 2015; 14:1131-1141. [PMID: 26253381 PMCID: PMC4628569 DOI: 10.1016/j.autrev.2015.08.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/01/2015] [Indexed: 11/26/2022]
Abstract
Interleukin-27 (IL-27) is a new member of the IL-12 family. It is produced by activated antigen-presenting cells and plays an important role in the regulation of CD4+ T cell differentiation and immune response. IL-27 activates multiple signaling cascades, including the JAK-STAT and p38 MAPK pathways. Several studies have revealed that IL-27 promotes the differentiation of Th1 and Tr1, but inhibits Th2, Th17, and Treg cells. However, a few studies have shown an opposite effect on certain T cell subsets, such as Treg. IL-27 displays both pro- and anti- inflammatory activities in different autoimmune diseases. Here, we have discussed the role of IL-27 in rheumatoid arthritis, multiple sclerosis, colitis, lupus, psoriasis, type 1 diabetes, and uveitis. Most of this information is derived from experimental models of these autoimmune diseases. The mechanistic basis of the dual role of IL-27 in inflammation and autoimmunity is still not fully defined. In general, the pro-/anti-inflammatory activity of IL-27 is influenced by the underlying immune effector pathways, the phase of the disease, the presence or absence of counter-regulatory cytokines/T cell subsets, and the tissue/cell type under study. Despite a spectrum of outcomes in various autoimmune diseases, mostly anti-inflammatory and immunomodulatory effects of IL-27 have been observed in this category of diseases. Accordingly, IL-27 represents a novel, promising target/agent for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Rakeshchandra R. Meka
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Shivaprasad H. Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Steven Dudics
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Bodhraj Acharya
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Aparicio-Siegmund S, Garbers C. The biology of interleukin-27 reveals unique pro- and anti-inflammatory functions in immunity. Cytokine Growth Factor Rev 2015. [PMID: 26195434 DOI: 10.1016/j.cytogfr.2015.07.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin (IL)-27 is a multifaceted heterodimeric cytokine with pronounced pro- and anti-inflammatory as well as immunoregulatory functions. It consists of the two subunits p28/IL-30 and Epstein Bar virus-induced protein 3 (EBI3). EBI3 functions as a soluble α-receptor, and IL-27 can therefore directly activate its target cells through a heterodimer of glycoprotein 130 (gp130) and WSX-1. Being a heterodimeric cytokine that signals through gp130, IL-27 is either grouped into the IL-6 or the IL-12 family of cytokines. Originally identified as an IL-12-like cytokine that induces proliferation of CD4+ T cells and production of IFN-γ more than ten years ago, subsequent research revealed a much broader role of IL-27 in inflammation, cancer development and regulation and differentiation of immune cells. In this review, we summarize the current biochemical and molecular knowledge about the signal transduction of IL-27. Based on this, we highlight functional overlaps and plasticity with other cytokines and cytokine receptors of the IL-6/IL-12 superfamily, and describe the important role of IL-27 with regard to the differentiation of T cells, infections and cancer development. We further discuss IL-27 as a therapeutic target and how specific blockade of this cytokine could be achieved.
Collapse
Affiliation(s)
| | - Christoph Garbers
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel 24098, Germany.
| |
Collapse
|
13
|
Kochetkova I, Thornburg T, Callis G, Holderness K, Maddaloni M, Pascual DW. Oral Escherichia coli colonization factor antigen I fimbriae ameliorate arthritis via IL-35, not IL-27. THE JOURNAL OF IMMUNOLOGY 2013; 192:804-16. [PMID: 24337375 DOI: 10.4049/jimmunol.1302018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A Salmonella therapeutic expressing enterotoxigenic Escherichia coli colonization factor Ag I (CFA/I) fimbriae protects against collagen-induced arthritis (CIA) by eliciting two regulatory T cell (Treg) subsets: TGF-β-producing Foxp3(-)CD39(+)CD4(+) T cells and IL-10-producing Foxp3(+)CD39(+)CD4(+) T cells. However, it is unclear whether CFA/I fimbriae alone are protective and whether other regulatory cytokines are involved, especially in the context for the EBI3-sharing cytokines, Treg-derived IL-35 and APC-derived IL-27, both capable of suppressing Th17 cells and regulating autoimmune diseases. Subsequent evaluation revealed that a single oral dose of purified, soluble CFA/I fimbriae protected against CIA as effectively as did Salmonella-CFA/I and found that Foxp3(+)CD39(+)CD4(+) T cells were the source of secreted IL-35, whereas IL-27 production by CD11c(+) cells was inhibited. Inquiring into their relevance, CFA/I fimbriae-treated IL-27R-deficient (WSX-1(-/-)) mice were equally protected against CIA as were wild-type mice, suggesting a limited role for IL-27. In contrast, CFA/I fimbriae-mediated protection was abated in EBI3(-/-) mice, accompanied by the loss of TGF-β- and IL-10-producing Tregs. Adoptive transfer of C57BL/6 CD39(+)CD4(+) T cells to EBI3(-/-) mice with concurrent CFA/I plus IL-35 treatment effectively stimulated Tregs suppressing proinflammatory collagen II-specific Th cells. In contrast, recipients cotransferred with C57BL/6 and EBI3(-/-) CD39(+)CD4(+) T cells and treated with CFA/I plus IL-35 were not protected, implicating the importance of endogenous IL-35 for conferring CFA/I-mediated protection. Thus, CFA/I fimbriae stimulate IL-35 required for the coinduction of TGF-β and IL-10.
Collapse
Affiliation(s)
- Irina Kochetkova
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59717
| | | | | | | | | | | |
Collapse
|
14
|
Park JS, Jung YO, Oh HJ, Park SJ, Heo YJ, Kang CM, Kwok SK, Ju JH, Park KS, Cho ML, Sung YC, Park SH, Kim HY. Interleukin-27 suppresses osteoclastogenesis via induction of interferon-γ. Immunology 2013; 137:326-35. [PMID: 22812379 DOI: 10.1111/j.1365-2567.2012.03622.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/04/2012] [Accepted: 07/03/2012] [Indexed: 11/29/2022] Open
Abstract
Interleukin (IL)-27 is a heterodimeric cytokine that is known to have both stimulatory and inhibitory functions during immune responses. We investigated the effects of IL-27 on arthritis and bone erosion in the murine collagen-induced arthritis (CIA) model. We demonstrate that the inhibitory effect of IL-27 on osteoclastogenesis is associated with interferon-γ (IFN-γ) production by using an IFN-γ knockout mouse model. The IL-27-Fc was injected into both CIA and IFN-γ-deficient mice. The effects of IL-27-Fc on osteoclast differentiation were evaluated both in vitro and in vivo. The IL-27-Fc-injected mice showed significantly lower arthritis indices and fewer tartrate-resistant acid-phosphatase-positive osteoclasts in their joint tissues than untreated mice. Interleukin-27 inhibited osteoclastogenesis from bone marrow-derived mononuclear cells in vitro, which was counteracted by the addition of anti-IFN-γ antibody. The IL-27-Fc did not affect arthritis in IFN-γ knockout mice. Interleukin-27 also suppressed osteoclast differentiation in human and intriguingly, it could promote the expression of IFN-γ on priming osteoclasts. These results imply that IL-27 suppressed the generation of CIA and osteoclastogenesis, which were mediated by the induction of IFN-γ.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Centre, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Immunoregulatory function of IL-27 and TGF-β1 in cardiac allograft transplantation. Transplantation 2012; 94:226-33. [PMID: 22790384 DOI: 10.1097/tp.0b013e31825b0c38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Deciphering the mechanisms of tolerance represents a crucial aim of research in transplantation. We previously identified by DNA chip interleukin (IL)-27 p28 and transforming growth factor (TGF)-β1 as overexpressed in a model of rat cardiac allograft tolerance mediated by regulatory CD4CD25 T cells. The role of these two molecules on the control of the inflammatory response remains controversial. However, both are involved in the regulation of the T helper 17/Treg axis, suggesting their involvement in tolerance. METHODS We analyzed regulation of IL-27 and TGF-β1 expression in allograft response and their role in tolerance by using blocking anti-TGF-β antibody and by generating an adeno-associated virus encoding IL-27. RESULTS Here, we confirmed the overexpression of IL-27 and TGF-β1 in tolerated cardiac allografts in two different rodent models. We observed that their expression correlates with inhibition of T helper 17 differentiation and with expansion of regulatory CD4CD25 T cells. We showed in a rat model that anti-TGF-β treatment abrogates infectious tolerance mediated by the transfer of regulatory CD4CD25 T cells. Moreover, overexpression of IL-27 by adeno-associated virus administration in combination with a short-term immunosuppression allows prolongation of cardiac allograft survival and one tolerant recipient. We found that IL-27 overexpression did not induce Foxp3CD4CD25 T-cell expansion but rather IL-10-expressing CD4 T cells in the tolerant recipient. CONCLUSIONS Taken together, these data suggest that both TGF-β1 and IL-27 play a role in the mechanisms of tolerance. However, in contrast to TGF-β1, IL-27 seems not to be involved in regulatory CD4CD25 T-cell expansion but rather in their mode of action.
Collapse
|
16
|
Shachar I, Karin N. The dual roles of inflammatory cytokines and chemokines in the regulation of autoimmune diseases and their clinical implications. J Leukoc Biol 2012; 93:51-61. [PMID: 22949334 DOI: 10.1189/jlb.0612293] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytokines and chemokines are secreted, small cell-signaling protein molecules, whose receptors are expressed on immune cells. These factors play a critical role in immune cell differentiation, migration, and polarization into functional subtypes and in directing their biological functions. Much attention has been devoted to exploring the role of key inflammatory cytokines and promigratory chemokines in autoimmune, autoinflammatory, and allergic diseases, leading to development of therapeutic strategies that are based on their targeted neutralization. Recent studies, including those coming from our groups, show that several major proinflammatory cytokines and chemokines, including IFN-γ, IL-2, CCL2, and CXCL12, may also function as anti-inflammatory mediators and therefore, may have potential as anti-inflammatory drugs. Likewise, major anti-inflammatory mediators, such as TGF-β, may under certain conditions, in combination with other cytokines, exhibit proinflammatory function and direct the polarization of the highly inflammatory CD4(+) Th17 cells. We show here that the biological function of pro- and anti-inflammatory cytokines is dependent on three key parameters: the local concentration of a given cytokine, the stage of disease in which it is administered, and its combination with other cytokines. The therapeutic implications of these findings are discussed, including two very recent studies summarizing clinical trials, in which low-dose administration of IL-2 was used to successfully suppress HCV and GVHD.
Collapse
Affiliation(s)
- Idit Shachar
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
17
|
Shen H, Xia L, Lu J. Pilot study of interleukin-27 in pathogenesis of dermatomyositis and polymyositis: associated with interstitial lung diseases. Cytokine 2012; 60:334-7. [PMID: 22863719 DOI: 10.1016/j.cyto.2012.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 07/04/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To determine whether interleukin (IL)-27 is involved in dermatomyositis (DM) and polymyositis (PM). METHODS Serum IL-27, IL-18 and interferon-γ (IFN-γ) levels in 37 DM and 15 PM were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS Serum IL-27, IL-18 and IFN-γ levels were significantly higher in DM and PM patients than in healthy controls. Significant higher levels of IL-27 were found in high creatine kinase (CK) level group and in patients with interstitial lung disease (ILD). Level of IL-27 was correlated with global 100-mm visual analog scales (VASs) score in patients with PM. CONCLUSION These data supports the hypothesis that IL-27 maybe involved in DM and PM pathogenesis.
Collapse
Affiliation(s)
- Hui Shen
- Department of Rheumatology, 1st Affiliated Hospital of China Medical University, Shen Yang 110001, China.
| | | | | |
Collapse
|
18
|
|
19
|
Tanida S, Yoshitomi H, Ishikawa M, Kasahara T, Murata K, Shibuya H, Ito H, Nakamura T. IL-27-producing CD14(+) cells infiltrate inflamed joints of rheumatoid arthritis and regulate inflammation and chemotactic migration. Cytokine 2011; 55:237-44. [PMID: 21592822 DOI: 10.1016/j.cyto.2011.04.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/22/2011] [Accepted: 04/25/2011] [Indexed: 01/29/2023]
Abstract
Interleukin (IL)-27, a heterodimeric cytokine, has been reported to be involved in the pathogenesis of autoimmune diseases through mediating differentiation of Th1 or Th17 cells and immune cell activity or survival. However, the origin and effects of IL-27 in joints of rheumatoid arthritis (RA) remain unclear. In this study, we investigated the distribution and anti-inflammatory roles of IL-27 in RA synovium. The IL-27 levels in plasma of RA patients, osteoarthritis (OA) patients, or healthy volunteers (n=15 per group) were equivalent and were at most 1 ng/ml, but the IL-27 level in synovial fluid of RA patients (n=15, mean 0.13 ng/ml; range 0.017-0.37 ng/ml) was significantly higher than that in synovial fluid of OA patients (n=15, mean 0.003 ng/ml; range 0-0.033 ng/ml) and potentially lower than in plasma. We analyzed the protein level of IL-27 produced by RA fibroblast-like synoviocytes (FLSs) or mononuclear cells (MNCs) from RA or OA synovial fluid or peripheral blood and showed that IL-27 in RA joints was derived from MNCs but not from FLSs. We also found by flow cytometry that IL-27-producing MNCs were CD14(+), and that these CD14(+)IL-27(+) cells were clearly detected in RA synovium but rarely in OA synovium by immunohistochemistry. Furthermore, we demonstrated that a relatively physiological concentration of IL-27 below 10 ng/ml suppressed the production of IL-6 and CCL20 from RA FLSs induced by proinflammatory cytokines through the IL-27/IL-27R axis. In the synovial fluid of RA, the IL-27 level interestingly had positive correlation with the IFN-γ level (r=0.56, p=0.03), but weak negative correlation with the IL-17A level (r=-0.30, p=0.27), implying that IL-27 in inflammatory joints of RA induces Th1 differentiation and suppresses the development or the migration of Th17 cells. These findings indicate that circulating IL-27-producing CD14(+) cells significantly infiltrate into inflamed regions such as RA synovium and have anti-inflammatory effects in several ways: both directly through the reduction of IL-6 production, and possibly through the induction of Th1 development and the suppression of Th17 development; and indirectly by regulation of recruitment of CCR6(+) cells, such as Th17 cells, through the suppression of CCL20 production. Our results suggest that such a serial negative feedback system could be applied to RA therapy.
Collapse
Affiliation(s)
- Shimei Tanida
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sapir Y, Vitenshtein A, Barsheshet Y, Zohar Y, Wildbaum G, Karin N. A Fusion Protein Encoding the Second Extracellular Domain of CCR5 Arrests Chemokine-Induced Cosignaling and Effectively Suppresses Ongoing Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2010; 185:2589-99. [DOI: 10.4049/jimmunol.1000666] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Wong CK, Chen DP, Tam LS, Li EK, Yin YB, Lam CWK. Effects of inflammatory cytokine IL-27 on the activation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res Ther 2010; 12:R129. [PMID: 20604932 PMCID: PMC2945019 DOI: 10.1186/ar3067] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/14/2010] [Accepted: 07/06/2010] [Indexed: 12/24/2022] Open
Abstract
Introduction Interleukin (IL)-27 is a novel member of the IL-6/IL-12 family cytokines that are produced early by antigen-presenting cells in T helper (Th)1-mediated inflammation. Elevated expression of IL-27 has been detected in the synovial membranes and fluid of rheumatoid arthritis (RA). Methods We investigated the in vitro effects of IL-27, alone or in combination with inflammatory cytokine tumor necrosis factor (TNF)-α or IL-1 β on the pro-inflammatory activation of human primary fibroblast-like synoviocytes (FLS) from RA patients and normal control subjects, and the underlying intracellular signaling molecules were determined by intracellular staining using flow cytometry. Results Significantly higher plasma concentration of IL-27 was found in RA patients (n = 112) than control subjects (n = 46). Both control and RA-FLS constitutively express functional IL-27 receptor heterodimer, gp130 and WSX-1, with more potent IL-27-mediated activation of signal transducers and activators of transcription (STAT)1 in RA-FLS. IL-27 was found to induce significantly higher cell surface expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 and release of inflammatory chemokine IL-6, CCL2, CXCL9, CXCL10 and matrix metalloproteinase-1 of RA-FLS than that of control FLS (all P < 0.05). Moreover, an additive or synergistic effect was observed in the combined treatment of IL-27 and TNF-α or IL-1 β on the surface expression of ICAM-1 and VCAM-1 and the release of CXCL9 and CXCL10 of RA-FLS. Further investigations showed that the expression of ICAM-1, VCAM-1 and chemokines stimulated by IL-27 was differentially regulated by intracellular activation of phosphatidylinositol 3-OH kinase-AKT, c-Jun amino-terminal kinase and Janus kinase pathways. Conclusions Our results therefore provide a new insight into the IL-27-activated immunopathological mechanisms mediated by distinct intracellular signal transductions in joint inflammation of RA.
Collapse
Affiliation(s)
- Chun K Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | | | | | | | | | | |
Collapse
|
22
|
Karin N. The multiple faces of CXCL12 (SDF-1alpha) in the regulation of immunity during health and disease. J Leukoc Biol 2010; 88:463-73. [PMID: 20501749 DOI: 10.1189/jlb.0909602] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemokines are a group of small, structurally related molecules that regulate the trafficking of various types of leukocytes through interactions with a subset of 7-transmembrane G-protein-coupled receptors. As key chemoattractants of inflammatory leukocytes, chemokines have been marked as potential targets for neutralization in autoimmune diseases. Cancer cells also express chemokines, where they function as survival/growth factors and/or angiogenic factors that promote tumor development and angiogenesis. Accordingly, these functions make them attractive targets for therapy of these diseases. Recently, we reported that one of these chemokines CXCL12 (SDF-1alpha) functions as an anti-inflammatory chemokine during autoimmune inflammatory responses and explored the mechanistic basis of this function. As a pleiotropic chemokine, CXCL12 participates in the regulation of tissue homeostasis, immune surveillance, autoimmunity, and cancer. This chemokine is constitutively expressed in the BM and various tissues, which enables it to regulate the trafficking and localization of immature and maturing leukocytes, including BM stem cells, neutrophils, T cells, and monocytic cells. We have shown recently that CXCL12 increases immunological tolerance in autoimmune diseases by polarizing Tregs and by doing so, restrains the progression of these diseases. This finding suggests a possible use of stabilized rCXCL12 as a potential drug for therapy of these diseases and targeted neutralization of CXCL12 for therapy of cancer diseases. The current review explores the different biological properties of CXCL12 and discusses the implications of CXCL12-based therapies for autoimmunity and cancer diseases.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Bruce Rappaport Faculty of Medicine and Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 1 Efron St., Haifa 31096, Israel.
| |
Collapse
|
23
|
Kochetkova I, Golden S, Holderness K, Callis G, Pascual DW. IL-35 stimulation of CD39+ regulatory T cells confers protection against collagen II-induced arthritis via the production of IL-10. THE JOURNAL OF IMMUNOLOGY 2010; 184:7144-53. [PMID: 20483737 DOI: 10.4049/jimmunol.0902739] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IL-35 is produced by regulatory T cells, and this novel cytokine can downregulate Th17 cell development and inhibit autoimmune inflammation. In this work, an rIL-35, as a single-chain fusion between murine IL-12p35 and EBV-induced gene 3, was expressed in yeast. This rIL-35 inhibited OVA-specific cellular and Ab responses in OVA-challenged recipients of DO11.10 CD4+ T cells. Likewise, IL-35 inhibited clinical manifestation of collagen-induced arthritis or could cease further disease exacerbation upon initiation of IL-35 treatment. Exogenous IL-35 treatments suppressed Th1 and Th17 cells and promoted CD39 expression by CD4+ T cells. Sorted CD25-CD39+CD4+ T cells from IL-35-treated mice produced IL-10 and, upon adoptive transfer, were sufficiently potent to inhibit subsequent development of inflammation in mice with collagen-induced arthritis, whereas sorted CD25+CD39+CD4+ T cells showed reduced potency. IL-35 treatments of IL-10-/- mice failed to induce protective CD39+CD4+ T cells, demonstrating the effector role of IL-10 by IL-35 immunosuppression.
Collapse
Affiliation(s)
- Irina Kochetkova
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | |
Collapse
|
24
|
Zhu S, Lee DA, Li S. IL-12 and IL-27 sequential gene therapy via intramuscular electroporation delivery for eliminating distal aggressive tumors. THE JOURNAL OF IMMUNOLOGY 2010; 184:2348-54. [PMID: 20139275 DOI: 10.4049/jimmunol.0902371] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Eradication of residual malignancies and metastatic tumors via a systemic approach is the key for successfully treating cancer and increasing cancer patient survival. Systemic administration of IL-12 protein in an acute large dose is effective but toxic. Systemic administration of IL-12 gene by persistently expressing a low level of IL-12 protein may reduce the systemic toxicity but only eradicates IL-12-sensitive tumors. In this study, we discovered that sequential administration of IL-12- and IL-27-encoding DNA, referred to as sequential IL-12-->IL-27 (IL-12 administration followed by IL-27 administration 10 d after) gene therapy, not only eradicated IL-12-sensitive CT26 tumors from 100% of mice but also eradicated the highly malignant 4T1 tumors from 33% of treated mice in multiple independent experiments. This IL-12-->IL-27 sequential gene therapy is not only superior to IL-12-encoding plasmid DNA given a total of two times at a 10-d interval sequential gene therapy for eliminating tumors but also for inducing CTL activity, increasing T cell infiltration into tumors, and yielding a large number of tumor-specific IFN-gamma-positive CD8 T cells. Notably, depletion of either T or NK cells during the IL-27 treatment phase reverses tumor eradication, suggesting an NK cell requirement for this sequential gene therapy-mediated tumor eradication. Both reversal of the administration sequence and coadministration of IL-12 and IL-27 impaired tumor eradication in 4T1 tumor-bearing mice. This IL-12-->IL-27 sequential gene therapy, via sequential administration of IL-12- and IL-27-encoding plasmid DNA into tumor-bearing mice through i.m. electroporation, provides a simple but effective approach for eliminating inaccessible residual tumors.
Collapse
Affiliation(s)
- Shiguo Zhu
- School of Medicine, Institute of Medical Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | |
Collapse
|
25
|
Shimozato O, Sato A, Kawamura K, Chiyo M, Ma G, Li Q, Tagawa M. The secreted form of p28 subunit of interleukin (IL)-27 inhibits biological functions of IL-27 and suppresses anti-allogeneic immune responses. Immunology 2009; 128:e816-25. [PMID: 19740343 DOI: 10.1111/j.1365-2567.2009.03088.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interleukin-27 (IL-27) is a new IL-12-related heterodimeric cytokine comprising a novel p28 molecule and the Epstein-Barr-virus-induced gene 3 (EBI3) molecules. It augments initiation of T helper type 1-mediated immunity by enhancing the proliferation and cytokine production of T cells. In this study, we examined whether a secreted form of IL-27 subunits would inhibit IL-27-mediated immunological responses. COS-7 cells transduced with the mouse (m) p28 gene secreted a monomeric mp28 protein; however, those transduced with the mEBI3 gene did not detect a mEBI3 protein in the culture supernatants. The secreted mp28 prevented the IL-27-mediated signal transduction and activator of transcription 1 phosphorylation and subsequently inhibited the IL-27-mediated intercellular adhesion molecule-1 induction and interferon-gamma production in CD4(+) T cells. We generated mp28-expressing murine carcinoma Colon 26 cells and inoculated a mixture of the mp28- and mIL-27-expressing Colon 26 cells into syngeneic BALB/c mice. Simultaneous production of mp28 and mIL-27 from Colon 26 cells suppressed IL-27-mediated anti-tumour effects in the mice. We examined the p28-mediated immune suppression by inoculating mp28-expressing myoblasts into allogeneic mice. Forced production of mp28 suppressed the allogeneic cytotoxic T-lymphocyte induction and subsequently retarded the graft rejection. Furthermore, production of both mp28 and mp40, which inhibits the functions of IL-12 and IL-23, prolonged the graft survival longer than the grafts expressing either mp28 or mp40. We propose that p28 can be a regulatory subunit for IL-27-mediated cellular immune responses and a possible therapeutic agent to suppress unfavourable immune responses.
Collapse
Affiliation(s)
- Osamu Shimozato
- Division of Pathology, Chiba Cancer Centre Research Institute, Nitona, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Advances in cytokine biology have helped us understand the complex communication that takes place between antigen-presenting cells and cells of the adaptive immune system, such as T cells, which collectively mediate an appropriate immune response to a plethora of pathogens while maintaining tolerance to self-antigens. The interleukin-12 (IL-12) cytokine family remains one of the most important and includes IL-12, IL-23, IL-27, and the recently identified IL-35. All four are heterodimeric cytokines, composed of an alpha chain (p19, p28, or p35) and a beta chain (p40 or Ebi3), and signal through unique pairings of five receptor chains (IL-12Rbeta1, IL-12Rbeta2, IL-23R, gp130, and WSX-1). Despite the interrelationship between the cytokines themselves and their receptors, their source, activity, and kinetics of expression are quite different. Studies using genetically deficient mice have greatly enhanced our understanding of the biology of these cytokines. However, interpretation of these data has been complicated by the recent realization that p40(-/-), p35(-/-), and Ebi3(-/-) mice all lack more than one cytokine (IL-12/IL-23, IL-12/IL-35, and IL-27/IL-35, respectively). In this review, we compare and contrast the biology of this expanded IL-12 family and re-evaluate data derived from the analysis of these dual cytokine-deficient mice. We also discuss how the opposing characteristics of the IL-12 family siblings may help to promote a balanced immune response.
Collapse
Affiliation(s)
- Lauren W Collison
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
27
|
de Lemos Rieper C, Galle P, Hansen MB. Characterization and potential clinical applications of autoantibodies against cytokines. Cytokine Growth Factor Rev 2009; 20:61-75. [DOI: 10.1016/j.cytogfr.2009.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Delavallée L, Assier E, Semerano L, Bessis N, Boissier MC. Emerging applications of anticytokine vaccines. Expert Rev Vaccines 2009; 7:1507-17. [PMID: 19053207 DOI: 10.1586/14760584.7.10.1507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most chronic inflammatory diseases have an unknown etiology but all involve cytokine cascade in their development. Several cytokines have been identified as major targets in various autoimmune diseases, resulting in the development of monoclonal antibodies against those cytokines. Even if monoclonal antibodies are indeed efficient, passive immunotherapies present some disadvantages and are expensive. To counter this, several strategies have been developed, including active immunotherapy, based on vaccination principles. The aim of such a strategy is to induce a B-cell response and to obtain autoantibodies able to neutralize the interaction of the self-cytokine to its receptor. Efficient vaccines have to induce a short-term response to avoid permanent inhibition of a given cytokine. This review focuses on the different therapeutic vaccination strategies with cytokines in preclinical studies; the benefit-risk ratio of such a strategy and the present development of clinical trials in some autoimmune diseases are also discussed.
Collapse
Affiliation(s)
- Laure Delavallée
- Institut National de la Santé et de la Recherche Médicale (INSERM) ERI-18, EA4222, Université Paris 13, Physiopathologie et Biothérapies de la Polyarthrite Rhumatoïde, 74 rue Marcel Cachin, 93017 Bobigny Cedex, France.
| | | | | | | | | |
Collapse
|
29
|
Meiron M, Zohar Y, Anunu R, Wildbaum G, Karin N. CXCL12 (SDF-1alpha) suppresses ongoing experimental autoimmune encephalomyelitis by selecting antigen-specific regulatory T cells. ACTA ACUST UNITED AC 2008; 205:2643-55. [PMID: 18852294 PMCID: PMC2571938 DOI: 10.1084/jem.20080730] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a T cell–mediated autoimmune disease of the central nervous system induced by antigen-specific effector Th17 and Th1 cells. We show that a key chemokine, CXCL12 (stromal cell–derived factor 1α), redirects the polarization of effector Th1 cells into CD4+CD25−Foxp3−interleukin (IL) 10high antigen-specific regulatory T cells in a CXCR4-dependent manner, and by doing so acts as a regulatory mediator restraining the autoimmune inflammatory process. In an attempt to explore the therapeutic implication of these findings, we have generated a CXCL12-immunoglobulin (Ig) fusion protein that, when administered during ongoing EAE, rapidly suppresses the disease in wild-type but not IL-10–deficient mice. Anti–IL-10 neutralizing antibodies could reverse this suppression. The beneficial effect included selection of antigen-specific T cells that were CD4+CD25−Foxp3−IL-10high, which could adoptively transfer disease resistance, and suppression of Th17 selection. However, in vitro functional analysis of these cells suggested that, even though CXCL12-Ig–induced tolerance is IL-10 dependent, IL-10–independent mechanisms may also contribute to their regulatory function. Collectively, our results not only demonstrate, for the first time, that a chemokine functions as a regulatory mediator, but also suggest a novel way for treating multiple sclerosis and possibly other inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Moran Meiron
- Department of Immunology, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
30
|
Yang J, Yang M, Htut TM, Ouyang X, Hanidu A, Li X, Sellati R, Jiang H, Zhang S, Li H, Zhao J, Ting AT, Mayer L, Unkeless JC, Labadia ME, Hodge M, Li J, Xiong H. Epstein-Barr virus-induced gene 3 negatively regulates IL-17, IL-22 and RORgamma t. Eur J Immunol 2008; 38:1204-14. [PMID: 18412165 PMCID: PMC2989250 DOI: 10.1002/eji.200838145] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epstein-Barr virus-induced gene 3 (EBI3) associates with p28 to form IL-27 and with IL-12p35 to form IL-35. IL-27Ralpha(-/-) mice studies indicate that IL-27 negatively regulates Th17 cell differentiation. However, no EBI3, p28 or p35-deficiency studies that directly address the role of EBI3, p28 or p35 on Th17 cells have been done. Here, we demonstrate that spleen cells derived from EBI3(-/-) mice produce significantly higher levels of IL-17 as well as IL-22 upon stimulation with OVA. In vitro derived EBI3(-/-) Th17 cells also produced significantly higher levels of IL-17 and IL-22 than WT cells. The frequency of IL-17-producing cells was also elevated when EBI3(-/-) cells were cultured under Th17 conditions. In addition, spleen cells from EBI3(-/-) mice immunized with Listeria monocytogenes produced significantly elevated levels of IL-17 and IL-22. Furthermore, the Th17 transcription factor RORgamma t was significantly enhanced in EBI3(-/-) cells. Finally, EBI3(-/-) mice exhibited a reduced bacterial load following an acute challenge with L. monocytogenes or a re-challenge of previously immunized mice, suggesting that EBI3 negatively regulates both innate and adaptive immunity. Taken together, these data provide direct evidence that EBI3 negatively regulates the expression of IL-17, IL-22 and RORgamma t as well as protective immunity against L. monocytogenes.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/metabolism
- Cell Differentiation/immunology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression/genetics
- Gene Expression Regulation
- Interferon-gamma/blood
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Interleukin-17/blood
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Interleukins/genetics
- Interleukins/metabolism
- Listeria monocytogenes/immunology
- Listeriosis/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Minor Histocompatibility Antigens
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Ovalbumin/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Retinoic Acid/genetics
- Receptors, Thyroid Hormone/genetics
- Spleen/cytology
- Spleen/microbiology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Jianfei Yang
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Min Yang
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Tin Min Htut
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Xinshou Ouyang
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Adedayo Hanidu
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Xiang Li
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Rosemarie Sellati
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Huiping Jiang
- Department of Translational Science, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Shu Zhang
- Deperatment of Pediatrics, Mount Sinai School of Medicine, New York, NY 10029
| | - Hongxing Li
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Jie Zhao
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Adrian T. Ting
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Lloyd Mayer
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Jay C. Unkeless
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Mark E. Labadia
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Martin Hodge
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Jun Li
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877
| | - Huabao Xiong
- Immunobiology Center, Mount Sinai School of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
31
|
Xu J, Racke MK, Drew PD. Peroxisome proliferator-activated receptor-alpha agonist fenofibrate regulates IL-12 family cytokine expression in the CNS: relevance to multiple sclerosis. J Neurochem 2008; 103:1801-10. [PMID: 17727629 PMCID: PMC2288776 DOI: 10.1111/j.1471-4159.2007.04875.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The interleukin-12 (IL-12) family of cytokines which includes IL-12, IL-23, and IL-27 play critical roles in T cell differentiation and are important modulators of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Previously, we demonstrated that peroxisome proliferator-activated receptor (PPAR) -alpha agonists suppress the development of EAE. The present studies demonstrated that the PPAR-alpha agonist fenofibrate inhibited the secretion of IL-12p40, IL-12p70 (p35/p40), IL-23 (p19/p40), and IL-27p28 by lipopolysaccharide-stimulated microglia. The cytokines interferon-gamma and tumor necrosis factor-alpha also stimulated IL-12 p40 and IL-27 p28 expression by microglia, which was suppressed by fenofibrate. Furthermore, fenofibrate inhibited microglial expression of CD14 which plays a critical role in TLR signaling, suggesting a mechanism by which this PPAR-alpha agonist regulates the production of these pro-inflammatory molecules. In addition, fenofibrate suppressed the secretion of IL-12p40, IL-23, and IL-27p28 by lipopolysaccharide-stimulated astrocytes. Importantly, fenofibrate suppression of EAE was associated with decreased expression of IL-12 family cytokine mRNAs as well as mRNAs encoding TLR4, CD14, and MyD88 known to play critical roles in MyD88-dependent TLR signaling. These novel observations suggest that PPAR-alpha agonists including fenofibrate may modulate the development of EAE, at least in part, by suppressing the production of IL-12 family cytokines and MyD88-dependent signaling.
Collapse
Affiliation(s)
- Jihong Xu
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michael K. Racke
- Department of Neurology, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
32
|
Cytokines in Demyelinating Diseases. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1567-7443(07)10022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Neufert C, Becker C, Wirtz S, Fantini MC, Weigmann B, Galle PR, Neurath MF. IL-27 controls the development of inducible regulatory T cells and Th17 cells via differential effects on STAT1. Eur J Immunol 2007; 37:1809-16. [PMID: 17549733 DOI: 10.1002/eji.200636896] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
IL-27 is an IL-12-related cytokine frequently present at sites of inflammation that can promote both anti- and pro-inflammatory immune responses. Here, we have analyzed the mechanisms how IL-27 may drive such divergent immune responses. While IL-27 suppressed the development of proinflammatory Th17 cells, a novel role for this cytokine in inhibiting the development of anti-inflammatory, inducible regulatory T cells (iTreg) was identified. In fact, IL-27 suppressed the development of adaptive, TGF-beta-induced Forkhead box transcription factor p3-positive (Foxp3(+)) Treg. Whereas the blockade of Th17 development was dependent on the transcription factor STAT1, the suppression of iTreg development was STAT1 independent, suggesting that IL-27 utilizes different signaling pathways to shape T cell-driven immune responses. Our data thus demonstrate that IL-27 controls the development of Th17 and iTreg cells via differential effects on STAT1.
Collapse
Affiliation(s)
- Clemens Neufert
- Laboratory of Immunology, I Medical Clinic, University of Mainz, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The immune system has evolved to protect the host from microbial infection; nevertheless, a breakdown in the immune system often results in infection, cancer, and autoimmune diseases. Multiple sclerosis, rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease, myocarditis, thyroiditis, uveitis, systemic lupus erythromatosis, and myasthenia gravis are organ-specific autoimmune diseases that afflict more than 5% of the population worldwide. Although the etiology is not known and a cure is still wanting, the use of herbal and dietary supplements is on the rise in patients with autoimmune diseases, mainly because they are effective, inexpensive, and relatively safe. Curcumin is a polyphenolic compound isolated from the rhizome of the plant Curcuma longa that has traditionally been used for pain and wound-healing. Recent studies have shown that curcumin ameliorates multiple sclerosis, rheumatoid arthritis, psoriasis, and inflammatory bowel disease in human or animal models. Curcumin inhibits these autoimmune diseases by regulating inflammatory cytokines such as IL-1beta, IL-6, IL-12, TNF-alpha and IFN-gamma and associated JAK-STAT, AP-1, and NF-kappaB signaling pathways in immune cells. Although the beneficial effects of nutraceuticals are traditionally achieved through dietary consumption at low levels for long periods of time, the use of purified active compounds such as curcumin at higher doses for therapeutic purposes needs extreme caution. A precise understanding of effective dose, safe regiment, and mechanism of action is required for the use of curcumin in the treatment of human autoimmune diseases.
Collapse
Affiliation(s)
- John J Bright
- Neuroscience Research Laboratory, Methodist Research Institute, Clarian Health, Indianapolis, IN 46202, USA.
| |
Collapse
|
35
|
Hause L, Al-Salleeh FM, Petro TM. Expression of IL-27 p28 by Theiler's virus-infected macrophages depends on TLR3 and TLR7 activation of JNK-MAP-kinases. Antiviral Res 2007; 76:159-67. [PMID: 17675254 DOI: 10.1016/j.antiviral.2007.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 06/19/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) causes a demyelinating disease (DD) due to infection of macrophages, stimulation of macrophage Toll-like receptor (TLR)3 and TLR7 pathways, activation of Mitogen-activated protein kinases (MAPK)s, and production of macrophages cytokines. Because expression of IL-27, a macrophage cytokine composed of p28 and EBI3 subunits, has been implicated in DD, we examined IL-27 subunit mRNA expression during TMEV infection of RAW264.7 cells, a macrophage cell line. TMEV infection of RAW264.7 cells did not affect cell viability, resulted in viral RNA replication, as well as p28 and EBI3 expression. Expression of p28 in TMEV-infected RAW264.7 cells depended on TLR3 and TLR7, as well as JNK but not p38 or ERK MAPKs. Since TMEV causes DD in SJL/J but not B10.S mice we determined the difference in expression of IL-27 subunit mRNA in SJL/J compared to B10.S macrophages. SJL/J macrophages expressed significantly more p28 mRNA after TMEV infection and after stimulation with TLR3 and TLR7 agonists compared with B10.S macrophages. Therefore, macrophages expression of IL-27 p28 mRNA in response to TMEV is due to activation of TLR3, TLR7, and JNK MAPKs pathways.
Collapse
Affiliation(s)
- Lara Hause
- Department of Oral Biology and the Nebraska Center for Virology, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | | | | |
Collapse
|
36
|
Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007; 25:221-42. [PMID: 17291186 DOI: 10.1146/annurev.immunol.22.012703.104758] [Citation(s) in RCA: 584] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Long-term resistance to many infections depends on the innate ability of the immune system to coordinate the development of antigen-specific adaptive responses. Deficiencies in these events can result in increased susceptibility to pathogens, whereas an inability to regulate an appropriate response can lead to devastating pathological conditions. For over a decade, interleukin (IL)-12 has been recognized as the canonical cytokine that links innate and adaptive immunity, and with the discovery of IL-23 and IL-27 as cytokines related to IL-12, there has been a concerted effort to understand the relationship between these factors. The results emerging from these studies have provided fundamental new insights into the developmental pathways that promote the differentiation and function of CD4(+) T helper cells and offer a dramatically altered perspective on the cause and prevention of autoimmune disease. In this review, we aim to highlight the discoveries that have led to our current understanding of the biology of IL-23 and IL-27 in the context of their role in resistance to infection, immune-mediated inflammation, and cancer.
Collapse
Affiliation(s)
- Robert A Kastelein
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California 94304-1104, USA.
| | | | | |
Collapse
|
37
|
Xu J, Drew PD. Peroxisome proliferator-activated receptor-gamma agonists suppress the production of IL-12 family cytokines by activated glia. THE JOURNAL OF IMMUNOLOGY 2007; 178:1904-13. [PMID: 17237441 PMCID: PMC2288778 DOI: 10.4049/jimmunol.178.3.1904] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The IL-12 family of cytokines, which include IL-12, IL-23, and IL-27, play critical roles in the differentiation of Th1 cells and are believed to contribute to the development of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Relatively little is known concerning the expression of IL-12 family cytokines by cells of the CNS, the affected tissue in MS. Previously, we and others demonstrated that peroxisome proliferator-activated receptor (PPAR)-gamma agonists suppress the development of EAE, alter T cell proliferation and phenotype, and suppress the activation of APCs. The present studies demonstrated that PPAR-gamma agonists, including the naturally occurring 15-deoxy-Delta(12,14)-PGJ(2) and the synthetic thiazoladinedione rosiglitazone, inhibited the induction of IL-12p40, IL-12p70 (p35/p40), IL-23 (p19/p40), and IL-27p28 proteins by LPS-stimulated primary microglia. In primary astrocytes, LPS induced the production of IL-12p40, IL-23, and IL-27p28 proteins. However, IL-12p70 production was not detected in these cells. The 15-deoxy-Delta(12,14)-PGJ(2) potently suppressed IL-12p40, IL-23, and IL-27p28 production by primary astrocytes, whereas rosiglitazone suppressed IL-23 and IL-27p28, but not IL-12p40 in these cells. These novel observations suggest that PPAR-gamma agonists modulate the development of EAE, at least in part, by inhibiting the production of IL-12 family cytokines by CNS glia. In addition, we demonstrate that PPAR-gamma agonists inhibit TLR2, MyD88, and CD14 expression in glia, suggesting a possible mechanism by which these agonists modulate IL-12 family cytokine expression. Collectively, these studies suggest that PPAR-gamma agonists may be beneficial in the treatment of MS.
Collapse
Affiliation(s)
| | - Paul D. Drew
- Address correspondence and reprint requests to Dr. Paul D. Drew, University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, Slot 846, Biomedical Research Building II, Room 563-2, 4301 West Markham Street, Little Rock, AR 72205. E-mail address:
| |
Collapse
|
38
|
Batten M, Ghilardi N. The biology and therapeutic potential of interleukin 27. J Mol Med (Berl) 2007; 85:661-72. [PMID: 17294231 DOI: 10.1007/s00109-007-0164-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 12/22/2006] [Accepted: 01/08/2007] [Indexed: 02/05/2023]
Abstract
Interleukin (IL-) 27 is a helical cytokine of the greater IL-6/IL-12 family with a broad range of pro- and anti-inflammatory properties. It can skew T helper cell development, suppress T cell proliferation, stimulate cytotoxic T cell activity, induce isotype switching in B cells, and has diverse effects on innate immune cells. In vivo, its most important role appears to be that of immune regulation, as mice with defects in IL-27 or its receptor display enhanced immune responses in a range of infectious and noninfectious situations. In this review, we discuss the body of knowledge on IL-27 and its potential therapeutic utility.
Collapse
Affiliation(s)
- Marcel Batten
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | |
Collapse
|
39
|
Schif-Zuck S, Wildbaum G, Karin N. Coadministration of plasmid DNA constructs encoding an encephalitogenic determinant and IL-10 elicits regulatory T cell-mediated protective immunity in the central nervous system. THE JOURNAL OF IMMUNOLOGY 2007; 177:8241-7. [PMID: 17114502 DOI: 10.4049/jimmunol.177.11.8241] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have previously shown that Ag-specific IL-10-producing regulatory T cells (Tr1) participate in the regulation of experimental autoimmune encephalomyelitis and that their specificity undergoes determinant spread in a reciprocal manner to effector T cell specificity. The current study shows that coadministration of plasmid DNA vaccines encoding IL-10 together with a plasmid encoding a myelin basic protein (MBP) encephalitogenic determinant during an ongoing disease rapidly amplifies this Tr1-mediated response, in a disease-specific manner. Thus, coadministration of both plasmids, but not the plasmid DNA encoding MBP alone, rapidly suppresses an ongoing disease. Tolerance included elevation in Ag-specific T cells producing IL-10 and an increase in apoptosis of cells around high endothelial venules in the CNS after successful therapy. Tolerance could be transferred by MBP-specific primary T cells isolated from protected donors and reversed by neutralizing Abs to IL-10 but not to IL-4. Due to the nature of determinant spread in this model, we could bring about evidence implying that rapid and effective induction of Tr1-induced active tolerance is dependent on redirecting the Tr1 response to the epitope to which the effector function dominates the response at a given time. The consequences of these findings to multiple sclerosis, and possibly other inflammatory autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Sagie Schif-Zuck
- Department of Immunology, Bruce Rappaport Faculty of Medicine and Rappaport Family Institute for Research in the Medical Sciences, Haifa 31096, Israel
| | | | | |
Collapse
|
40
|
Mensah-Brown EPK, Shahin A, Al-Shamsi M, Lukic ML. New members of the interleukin-12 family of cytokines: IL-23 and IL-27 modulate autoimmune diabetes. Ann N Y Acad Sci 2007; 1079:157-60. [PMID: 17130548 DOI: 10.1196/annals.1375.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multiple low doses of streptozotocin (5 x 40 mg/kg) given to susceptible male C57BL6 mice induced delayed and sustained hyperglycemia accompanied by body weight loss, mononuclear cell infiltration in the islet, and apoptosis of beta cells. Shorter regimes (4 x 40 mg/kg) did not have such effect. Administration of IL-23 at a dose of 400 ng/mL for 10 consecutive days concomitantly with this subdiabetogenic regimen of STZ, however, induced significant hyperglycemia, weight loss, and mononuclear cellular infiltration. The same regimen of IL-27 induced milder effect on glycemia and no weight loss inspite of a massive peri-islet and intra-islet infiltration of mononuclear cells. The molecular mechanisms underlying the actions of these cytokines on diabetogenesis is under study.
Collapse
Affiliation(s)
- E P K Mensah-Brown
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, United Arab Emirates
| | | | | | | |
Collapse
|
41
|
Chung EY, Kim SJ, Ma XJ. Regulation of cytokine production during phagocytosis of apoptotic cells. Cell Res 2006; 16:154-61. [PMID: 16474428 DOI: 10.1038/sj.cr.7310021] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Loss of self-tolerance and expansion of auto-reactive lymphocytes are the basis for autoimmunity. Apoptosis and the rapid clearance of apoptotic cells by phagocytes usually occur as coordinated processes that ensure regulated cellularity and stress response with non-pathological outcomes. Defects in clearance of apoptotic cells would contribute to the generation of self-reactive lymphocytes, which drive autoimmune disorders such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). The IL-12 family of cytokines (IL-12, IL-23, and IL-27) and IL-10 are produced by phagocytic macrophages and play critical roles in the regulation of antigen-presenting cells (APCs) and effector lymphocytes during an immune response to pathogens. Inappropriate expression of these cytokines and their dysregulated activities have been strongly implicated in the pathogenesis of several autoimmune diseases. The production of pro- and anti-inflammatory cytokines by phagocytic APCs is delicately regulated during the ingestion of apoptotic cells as part of an intrinsic mechanism to prevent inflammatory autoimmune reactions. How apoptotic cell-derived signals regulate cytokine production is poorly understood. A recent study by our group demonstrated that phagocytosis of apoptotic cells by activated macrophages results in strong inhibition of IL-12 p35 gene expression by activating a novel transcription repressor, which we named GC-binding protein (GC-BP), through tyrosine dephosphorylation. We are also beginning to understand the molecular mechanisms underlying apoptotic cell-triggered production of IL-10 by phagocytes. These studies will help to elucidate some novel immune regulatory mechanisms and explore the regulation of immune responses to autoantigens with potentials to discover new therapeutic targets for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Elaine Y Chung
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
42
|
Yoshimura T, Takeda A, Hamano S, Miyazaki Y, Kinjyo I, Ishibashi T, Yoshimura A, Yoshida H. Two-Sided Roles of IL-27: Induction of Th1 Differentiation on Naive CD4+T Cells versus Suppression of Proinflammatory Cytokine Production Including IL-23-Induced IL-17 on Activated CD4+T Cells Partially Through STAT3-Dependent Mechanism. THE JOURNAL OF IMMUNOLOGY 2006; 177:5377-85. [PMID: 17015723 DOI: 10.4049/jimmunol.177.8.5377] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent lines of evidence have demonstrated that IL-27, a newly identified IL-12-related cytokine, has two apparently conflicting roles in immune responses: one as an initiator of Th1 responses and the other as an attenuator of inflammatory cytokine production. Although the IL-27-mediated Th1 initiation mechanism has been elucidated, little is known about the molecular basis for the suppression of cytokine production. In the present study, we demonstrated that IL-27 suppressed the production of various proinflammatory cytokines by fully activated CD4+ T cells while it had no effect on the cytokine production by CD4+ T cells at early phases of activation. IL-27 also suppressed IL-17 production by activated CD4+ T cells, thereby counteracting IL-23, another IL-12-related cytokine with proinflammatory effects. In fully activated CD4+ T cells, STAT3 was preferentially activated by IL-27 stimulation, whereas both STAT1 and 3 were activated by IL-27 in early activated CD4+ T cells. Lack of STAT3 in fully activated cells impaired the suppressive effects of IL-27. These data indicated that the preferential activation of STAT3 in fully activated CD4+ T cells plays an important role in the cytokine suppression by IL-27/WSX-1.
Collapse
Affiliation(s)
- Takeru Yoshimura
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation and Department of Opthalmology, Graduate School of Medical Sciences; Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Anderson EJR, McGrath MA, Thalhamer T, McInnes IB. Interleukin-12 to interleukin ‘infinity’: the rationale for future therapeutic cytokine targeting. ACTA ACUST UNITED AC 2006; 27:425-42. [PMID: 16738954 DOI: 10.1007/s00281-006-0011-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 03/23/2006] [Indexed: 12/28/2022]
Affiliation(s)
- E J R Anderson
- Division of Immunology, Infection and Inflammation, Centre for Rheumatic Diseases, University of Glasgow, Glasgow, Scotland, UK
| | | | | | | |
Collapse
|
44
|
Larousserie F, Charlot P, Bardel E, Froger J, Kastelein RA, Devergne O. Differential Effects of IL-27 on Human B Cell Subsets. THE JOURNAL OF IMMUNOLOGY 2006; 176:5890-7. [PMID: 16670296 DOI: 10.4049/jimmunol.176.10.5890] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-27 is a novel heterodimeric cytokine of the IL-12 family that plays an important role in the regulation of T cell responses. Its role on human B cells has not been previously studied. In this study, we show that both chains of the IL-27 receptor complex, IL-27R and gp130, are constitutively expressed at the surface of naive and memory human tonsillar B cells, and are induced on germinal center B cells following CD40 stimulation. In naive B cells, IL-27 induced strong STAT1 and STAT3 phosphorylation, whereas it induced moderate STAT1 and low STAT3 activation in memory B cells. IL-27 induced T-bet expression in naive and memory B cells stimulated by CD40 or surface Ig engagement, but induced significant IL-12Rbeta2 surface expression in anti-Ig-stimulated naive B cells only. In anti-Ig-stimulated naive or memory B cells, IL-27 also induced CD54, CD86, and CD95 surface expression. In addition, IL-27 increased proliferation of anti-Ig-activated naive B cells and of anti-CD40-activated naive and germinal center B cells, but not of CD40-activated memory B cells. These data indicate that the B cell response to IL-27 is modulated during B cell differentiation and varies depending on the mode of B cell activation.
Collapse
Affiliation(s)
- Frédérique Larousserie
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8147, Université Paris V, Institut Fédératif de Recherche Necker, 161 rue de Sèvres, 75-015 Paris, France
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The innate immune system provides sophisticated defense mechanisms to protect complex macroorganisms from the attack of microorganisms. Among those, the complement system and Toll-like receptors are of paramount importance to discriminate between infectious non-self and non-infectious self and to provide critical danger signals instructing adaptive immune responses. Here, we will discuss recent advances in our understanding of the mechanisms underlying complement and TLR-mediated regulation of adaptive immunity. We will focus on the regulation of T cell immunity and discuss recent findings on the cross-talk between complement receptor and TLR signaling pathways. Such cross-talk is likely to affect the outcome of infections with intracellular pathogens, as well as the initiation and maintenance of aberrant immune responses leading to autoimmunity and atopy.
Collapse
Affiliation(s)
- Heiko Hawlisch
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | |
Collapse
|
46
|
Chen Q, Carroll HP, Gadina M. The newest interleukins: recent additions to the ever-growing cytokine family. VITAMINS AND HORMONES 2006; 74:207-28. [PMID: 17027516 DOI: 10.1016/s0083-6729(06)74008-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokines play a critical role in the control of the innate and adaptive immune responses. The most recent additions to the ever-growing family of cytokines include interleukin (IL)-27, IL-28A, IL-28B, IL-29, IL-31, IL-32, and IL-33. Many of the newly identified cytokines and/or their specific receptors have been identified using bioinformatics. The coming of age of this discipline has coincided with completion of the sequencing of the human genome thus enabling the identification of new uncharacterized proteins. The latest additions to the interleukin family have shed new light on the intricacies of immune system regulation. These novel cytokines have pleiotrophic actions ranging from antiviral immunity to the regulation of Th2 immune responses. For example, the discovery of IL-27 has greatly improved our understanding of the factors regulating the polarization of the T helper cell responses and IL-31 appears to be an important regulator of Th2 responses. On the other hand, IL-28 and IL-29 are considered to be critical for mounting an efficient antiviral response and IL-32 and IL-33, which are yet to be fully characterized, are emerging as important components of the inflammatory response in allergy and autoimmunity. These new cytokine/receptor combinations may therefore serve as novel targets for the treatment and control of allergy, autoimmune diseases, and some cancers.
Collapse
Affiliation(s)
- Qian Chen
- Division of Infection and Immunity, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | | | | |
Collapse
|
47
|
Marusic S, Leach MW, Pelker JW, Azoitei ML, Uozumi N, Cui J, Shen MWH, DeClercq CM, Miyashiro JS, Carito BA, Thakker P, Simmons DL, Leonard JP, Shimizu T, Clark JD. Cytosolic phospholipase A2 alpha-deficient mice are resistant to experimental autoimmune encephalomyelitis. ACTA ACUST UNITED AC 2005; 202:841-51. [PMID: 16172261 PMCID: PMC2212947 DOI: 10.1084/jem.20050665] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE), a Th1-mediated inflammatory disease of the central nervous system (CNS), is a model of human multiple sclerosis. Cytosolic phospholipase A2alpha (cPLA2alpha), which initiates production of prostaglandins, leukotrienes, and platelet-activating factor, is present in EAE lesions. Using myelin oligodendrocyte glycoprotein (MOG) immunization, as well as an adoptive transfer model, we showed that cPLA2alpha-/- mice are resistant to EAE. Histologic examination of the CNS from MOG-immunized mice revealed extensive inflammatory lesions in the cPLA2alpha+/- mice, whereas the lesions in cPLA2alpha-/- mice were reduced greatly or completely absent. MOG-specific T cells generated from WT mice induced less severe EAE in cPLA2alpha-/- mice compared with cPLA2alpha+/- mice, which indicates that cPLA2alpha plays a role in the effector phase of EAE. Additionally, MOG-specific T cells from cPLA2alpha-/- mice, transferred into WT mice, induced EAE with delayed onset and lower severity compared with EAE that was induced by control cells; this indicates that cPLA2alpha also plays a role in the induction phase of EAE. MOG-specific T cells from cPLA2alpha-/- mice were deficient in production of Th1-type cytokines. Consistent with this deficiency, in vivo administration of IL-12 rendered cPLA2alpha-/- mice susceptible to EAE. Our data indicate that cPLA2alpha plays an important role in EAE development and facilitates differentiation of T cells toward the Th1 phenotype.
Collapse
Affiliation(s)
- Suzana Marusic
- Department of Inflammation, Wyeth Research, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Saito F, Ohno Y, Morisawa K, Kamakura M, Fukushima A, Taniguchi T. Role of IL-27-producing dendritic [corrected] cells in Th1-immunity polarization in Lewis rats. Biochem Biophys Res Commun 2005; 338:1773-8. [PMID: 16288719 DOI: 10.1016/j.bbrc.2005.10.149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 10/24/2005] [Indexed: 11/26/2022]
Abstract
Lewis and Brown Norway rats are entirely different with respect to the polarization of their immune responses (Th1 and Th2, respectively). We found that naive Lewis rat splenocytes treated in vitro with heat-killed Mycobacterium tuberculosis (Mtb) upregulate the expression of both subunits of IL-27 (IL-27p28 and EBI3). Mtb treatment caused naive Lewis rat splenocytes to express 4.6-fold more IL-27p28 than Mtb-treated Brown Norway rat splenocytes 6h after the treatment. Although WSX-1, the IL-27 receptor, was not induced by Mtb treatment in splenocytes from either rat strain, Lewis rats expressed significantly higher levels of the IL-27 signal transducers T-bet and IL-12Rbeta2 than Brown Norway rats. Flow cytometric analysis of dendritic cells from bone marrow cells revealed Lewis rats had more IL-27p28-positive cells. Thus, early in the immune response, Lewis rats appear to produce higher levels of IL-27 than Brown Norway rats, resulting in polarization towards Th1-immunity.
Collapse
Affiliation(s)
- Fumiji Saito
- Laboratory of Molecular Biology, Medical Research Center, Kochi Medical School, Kochi, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Jelinsky SA, Miyashiro JS, Saraf KA, Tunkey C, Reddy P, Newcombe J, Oestreicher JL, Brown E, Trepicchio WL, Leonard JP, Marusic S. Exploiting genotypic differences to identify genes important for EAE development. J Neurol Sci 2005; 239:81-93. [PMID: 16214174 DOI: 10.1016/j.jns.2005.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 07/08/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of the human autoimmune disease multiple sclerosis (MS) and is primarily driven by T helper type 1 (Th1) cells. Interleukin (IL)-12 and interferon (IFN)-gamma are important cytokines involved in the differentiation and amplification of Th1 cells, however mice deficient in either IFN-gamma or IL-12 still develop EAE. We have used microarray analysis of EAE-affected CNS tissues in wild-type, IFN-gamma -/- and IL-12 -/- animals to identify genes critical for development of EAE. Over 500 genes were regulated in at least one genotype and over 94 genes were regulated in all three. Of those, 17 were also upregulated in spleen during the disease. We show that a majority of the genes regulated in EAE are also regulated in diseased regions of human MS tissues. The genes in the pool of 94 are more likely to be found regulated in MS patients than the genes regulated in only one or two of the mouse strains suggesting that analyzing gene expression under these multiple genetic conditions may lead to better identification of the genes critical for disease development.
Collapse
Affiliation(s)
- Scott A Jelinsky
- Molecular Profiling and Biomarker Discover, Biological Technologies Department, Wyeth Research, 87 Cambridge Park Drive, Cambridge MA 02140, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Petrarca C, Frydas S, Donelan J, Boucher W, Papadopoulou N, Cao J, Castellani ML, Conti P, Toniato E, Robuffo I, Vecchiet J, Iezzi T, Madhappan B, Kempuraj D. Interleukin 27 (IL-27): A novel pleiotropic cytokine involved in T cell differentiation and T cell response modulation. Int J Immunopathol Pharmacol 2005; 18:191-4. [PMID: 15888242 DOI: 10.1177/039463200501800201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|