1
|
La Cava A. Human T cell repertoire: what happens in thymus does not stay in thymus. J Clin Invest 2019; 129:2195-2197. [PMID: 31081801 DOI: 10.1172/jci128371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The T cell receptor (TCR) repertoire is diverse, thus allowing recognition of a wide range of pathogens by T cells. In humans, the study of the formation of TCR repertoires is problematic because of the difficulty in performing investigations in vivo. In this issue of the JCI, Khosravi-Maharlooei and colleagues describe a new humanized mouse model that allows direct investigations on this topic. Using high-throughput and single-cell TCR-complementarity-determining region 3 β (TCR-CDR3β) sequencing, the authors were able to demonstrate that human thymic selection is a major driver of TCR sequence sharing, also implicating a preferential selection of shared cross-reactive CDR3βs during repertoire formation.
Collapse
|
2
|
Rühl G, Niedl AG, Patronov A, Siewert K, Pinkert S, Kalemanov M, Friese MA, Attfield KE, Antes I, Hohlfeld R, Dornmair K. Multiple sclerosis: Molecular mimicry of an antimyelin HLA class I restricted T-cell receptor. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e241. [PMID: 27231714 PMCID: PMC4871805 DOI: 10.1212/nxi.0000000000000241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/01/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To identify target antigens presented by human leukocyte antigen (HLA)-A*02:01 to the myelin-reactive human T-cell receptor (TCR) 2D1, which was originally isolated from a CD8+ T-cell clone recognizing proteolipid protein (PLP) in the context of HLA-A*03:01, we employed a new antigen search technology. METHODS We used our recently developed antigen search technology that employs plasmid-encoded combinatorial peptide libraries and a highly sensitive single cell detection system to identify endogenous candidate peptides of mice and human origin. We validated candidate antigens by independent T-cell assays using synthetic peptides and refolded HLA:peptide complexes. A molecular model of HLA-A*02:01:peptide complexes was obtained by molecular dynamics simulations. RESULTS We identified one peptide from glycerolphosphatidylcholine phosphodiesterase 1, which is identical in mice and humans and originates from a protein that is expressed in many cell types. When bound to HLA-A*02:01, this peptide cross-stimulates the PLP-reactive HLA-A3-restricted TCR 2D1. Investigation of molecular details revealed that the peptide length plays a crucial role in its capacity to bind HLA-A*02:01 and to activate TCR 2D1. Molecular modeling illustrated the 3D structures of activating HLA:peptide complexes. CONCLUSIONS Our results show that our antigen search technology allows us to identify new candidate antigens of a presumably pathogenic, autoreactive, human CD8+ T-cell-derived TCR. They further illustrate how this TCR, which recognizes a myelin peptide bound to HLA-A*03:01, may cross-react with an unrelated peptide presented by the protective HLA class I allele HLA-A*02:01.
Collapse
Affiliation(s)
- Geraldine Rühl
- Institute of Clinical Neuroimmunology (G.R., A.G.N., K.S., R.H., K.D.) and Munich Cluster for Systems Neurology (SyNergy) (R.H., K.D.), Ludwig-Maximilian-University, Munich; Department of Life Sciences (A.P., M.K., I.A.), Technical University Munich, Freising; Max Planck Institute of Biochemistry (S.P.), Martinsried; Institute of Neuroimmunology and Multiple Sclerosis (M.A.F.), University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; MRC Human Immunology Unit (K.E.A.), Radcliffe Department of Medicine, Weatherall, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK; and Center for Integrated Protein Science Munich (CIPSM) (I.A.), Germany
| | - Anna G Niedl
- Institute of Clinical Neuroimmunology (G.R., A.G.N., K.S., R.H., K.D.) and Munich Cluster for Systems Neurology (SyNergy) (R.H., K.D.), Ludwig-Maximilian-University, Munich; Department of Life Sciences (A.P., M.K., I.A.), Technical University Munich, Freising; Max Planck Institute of Biochemistry (S.P.), Martinsried; Institute of Neuroimmunology and Multiple Sclerosis (M.A.F.), University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; MRC Human Immunology Unit (K.E.A.), Radcliffe Department of Medicine, Weatherall, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK; and Center for Integrated Protein Science Munich (CIPSM) (I.A.), Germany
| | - Atanas Patronov
- Institute of Clinical Neuroimmunology (G.R., A.G.N., K.S., R.H., K.D.) and Munich Cluster for Systems Neurology (SyNergy) (R.H., K.D.), Ludwig-Maximilian-University, Munich; Department of Life Sciences (A.P., M.K., I.A.), Technical University Munich, Freising; Max Planck Institute of Biochemistry (S.P.), Martinsried; Institute of Neuroimmunology and Multiple Sclerosis (M.A.F.), University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; MRC Human Immunology Unit (K.E.A.), Radcliffe Department of Medicine, Weatherall, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK; and Center for Integrated Protein Science Munich (CIPSM) (I.A.), Germany
| | - Katherina Siewert
- Institute of Clinical Neuroimmunology (G.R., A.G.N., K.S., R.H., K.D.) and Munich Cluster for Systems Neurology (SyNergy) (R.H., K.D.), Ludwig-Maximilian-University, Munich; Department of Life Sciences (A.P., M.K., I.A.), Technical University Munich, Freising; Max Planck Institute of Biochemistry (S.P.), Martinsried; Institute of Neuroimmunology and Multiple Sclerosis (M.A.F.), University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; MRC Human Immunology Unit (K.E.A.), Radcliffe Department of Medicine, Weatherall, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK; and Center for Integrated Protein Science Munich (CIPSM) (I.A.), Germany
| | - Stefan Pinkert
- Institute of Clinical Neuroimmunology (G.R., A.G.N., K.S., R.H., K.D.) and Munich Cluster for Systems Neurology (SyNergy) (R.H., K.D.), Ludwig-Maximilian-University, Munich; Department of Life Sciences (A.P., M.K., I.A.), Technical University Munich, Freising; Max Planck Institute of Biochemistry (S.P.), Martinsried; Institute of Neuroimmunology and Multiple Sclerosis (M.A.F.), University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; MRC Human Immunology Unit (K.E.A.), Radcliffe Department of Medicine, Weatherall, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK; and Center for Integrated Protein Science Munich (CIPSM) (I.A.), Germany
| | - Maria Kalemanov
- Institute of Clinical Neuroimmunology (G.R., A.G.N., K.S., R.H., K.D.) and Munich Cluster for Systems Neurology (SyNergy) (R.H., K.D.), Ludwig-Maximilian-University, Munich; Department of Life Sciences (A.P., M.K., I.A.), Technical University Munich, Freising; Max Planck Institute of Biochemistry (S.P.), Martinsried; Institute of Neuroimmunology and Multiple Sclerosis (M.A.F.), University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; MRC Human Immunology Unit (K.E.A.), Radcliffe Department of Medicine, Weatherall, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK; and Center for Integrated Protein Science Munich (CIPSM) (I.A.), Germany
| | - Manuel A Friese
- Institute of Clinical Neuroimmunology (G.R., A.G.N., K.S., R.H., K.D.) and Munich Cluster for Systems Neurology (SyNergy) (R.H., K.D.), Ludwig-Maximilian-University, Munich; Department of Life Sciences (A.P., M.K., I.A.), Technical University Munich, Freising; Max Planck Institute of Biochemistry (S.P.), Martinsried; Institute of Neuroimmunology and Multiple Sclerosis (M.A.F.), University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; MRC Human Immunology Unit (K.E.A.), Radcliffe Department of Medicine, Weatherall, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK; and Center for Integrated Protein Science Munich (CIPSM) (I.A.), Germany
| | - Kathrine E Attfield
- Institute of Clinical Neuroimmunology (G.R., A.G.N., K.S., R.H., K.D.) and Munich Cluster for Systems Neurology (SyNergy) (R.H., K.D.), Ludwig-Maximilian-University, Munich; Department of Life Sciences (A.P., M.K., I.A.), Technical University Munich, Freising; Max Planck Institute of Biochemistry (S.P.), Martinsried; Institute of Neuroimmunology and Multiple Sclerosis (M.A.F.), University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; MRC Human Immunology Unit (K.E.A.), Radcliffe Department of Medicine, Weatherall, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK; and Center for Integrated Protein Science Munich (CIPSM) (I.A.), Germany
| | - Iris Antes
- Institute of Clinical Neuroimmunology (G.R., A.G.N., K.S., R.H., K.D.) and Munich Cluster for Systems Neurology (SyNergy) (R.H., K.D.), Ludwig-Maximilian-University, Munich; Department of Life Sciences (A.P., M.K., I.A.), Technical University Munich, Freising; Max Planck Institute of Biochemistry (S.P.), Martinsried; Institute of Neuroimmunology and Multiple Sclerosis (M.A.F.), University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; MRC Human Immunology Unit (K.E.A.), Radcliffe Department of Medicine, Weatherall, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK; and Center for Integrated Protein Science Munich (CIPSM) (I.A.), Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology (G.R., A.G.N., K.S., R.H., K.D.) and Munich Cluster for Systems Neurology (SyNergy) (R.H., K.D.), Ludwig-Maximilian-University, Munich; Department of Life Sciences (A.P., M.K., I.A.), Technical University Munich, Freising; Max Planck Institute of Biochemistry (S.P.), Martinsried; Institute of Neuroimmunology and Multiple Sclerosis (M.A.F.), University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; MRC Human Immunology Unit (K.E.A.), Radcliffe Department of Medicine, Weatherall, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK; and Center for Integrated Protein Science Munich (CIPSM) (I.A.), Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology (G.R., A.G.N., K.S., R.H., K.D.) and Munich Cluster for Systems Neurology (SyNergy) (R.H., K.D.), Ludwig-Maximilian-University, Munich; Department of Life Sciences (A.P., M.K., I.A.), Technical University Munich, Freising; Max Planck Institute of Biochemistry (S.P.), Martinsried; Institute of Neuroimmunology and Multiple Sclerosis (M.A.F.), University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; MRC Human Immunology Unit (K.E.A.), Radcliffe Department of Medicine, Weatherall, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK; and Center for Integrated Protein Science Munich (CIPSM) (I.A.), Germany
| |
Collapse
|
3
|
Severa M, Rizzo F, Giacomini E, Salvetti M, Coccia EM. IFN-β and multiple sclerosis: cross-talking of immune cells and integration of immunoregulatory networks. Cytokine Growth Factor Rev 2014; 26:229-39. [PMID: 25498525 DOI: 10.1016/j.cytogfr.2014.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/05/2014] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is characterized by autoimmune inflammation affecting the central nervous system and subsequent neurodegeneration. Historically, damage was thought to be mediated exclusively by auto-antigen-activated pro-inflammatory T cells. However, more recently, we are gaining increasing knowledge on the pathogenic role played in MS by B cells, dendritic cells and monocytes. IFN-β therapy was one the first approved therapy for MS for its ability to reduce relapse rate and MRI lesion activity and to significantly decrease risk of disability progression. IFN-β-mediated mechanisms of action, even if not completely understood, mainly rely on its multifaceted pleiotropic effects resulting in sustained anti-inflammatory properties directed toward almost every immune cell type. Here, we will discuss in detail literature data characterizing the pathogenic activity of the different immune cell subsets involved in MS pathogenesis and how IFN-β therapy regulates their function by modulating bystander responses. We believe that the effectiveness of this drug in MS treatment, even if in use for a long time, can unveil new insights on this disease and still teach a lesson to researchers in the MS field.
Collapse
Affiliation(s)
- Martina Severa
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Fabiana Rizzo
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Giacomini
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Salvetti
- Centre for Experimental Neurological Therapies (CENTERS) - Neurology and Department of Neurosciences, Mental Health and Sensory Organs; Sapienza, University of Rome, S. Andrea Hospital Site, Italy
| | - Eliana M Coccia
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
4
|
Lucca LE, Desbois S, Ramadan A, Ben-Nun A, Eisenstein M, Carrié N, Guéry JC, Sette A, Nguyen P, Geiger TL, Mars LT, Liblau RS. Bispecificity for myelin and neuronal self-antigens is a common feature of CD4 T cells in C57BL/6 mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:3267-77. [PMID: 25135834 DOI: 10.4049/jimmunol.1400523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recognition of multiple ligands by a single TCR is an intrinsic feature of T cell biology, with important consequences for physiological and pathological processes. Polyspecific T cells targeting distinct self-antigens have been identified in healthy individuals as well as in the context of autoimmunity. We have previously shown that the 2D2 TCR recognizes the myelin oligodendrocyte glycoprotein epitope (MOG)35-55 as well as an epitope within the axonal protein neurofilament medium (NF-M15-35) in H-2(b) mice. In this study, we assess whether this cross-reactivity is a common feature of the MOG35-55-specific T cell response. To this end, we analyzed the CD4 T cell response of MOG35-55-immunized C57BL/6 mice for cross-reactivity with NF-M15-35. Using Ag recall responses, we established that an important proportion of MOG35-55-specific CD4 T cells also responded to NF-M15-35 in all mice tested. To study the clonality of this response, we analyzed 22 MOG35-55-specific T cell hybridomas expressing distinct TCR. Seven hybridomas were found to cross-react with NF-M15-35. Using an alanine scan of NF-M18-30 and an in silico predictive model, we dissected the molecular basis of cross-reactivity between MOG35-55 and NF-M15-35. We established that NF-M F24, R26, and V27 proved important TCR contacts. Strikingly, the identified TCR contacts are conserved within MOG38-50. Our data indicate that due to linear sequence homology, part of the MOG35-55-specific T cell repertoire of all C57BL/6 mice also recognizes NF-M15-35, with potential implications for CNS autoimmunity.
Collapse
Affiliation(s)
- Liliana E Lucca
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Sabine Desbois
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Abdulraouf Ramadan
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Avraham Ben-Nun
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Chemical Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miriam Eisenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Chemical Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nadège Carrié
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Jean-Charles Guéry
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92109
| | - Phuong Nguyen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Terrence L Geiger
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Lennart T Mars
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Roland S Liblau
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France; Département d'Immunologie, Centre Hospitalier Universitaire Toulouse, Hôpital Purpan, Toulouse F-31300, France
| |
Collapse
|
5
|
Muro M, Mondejar-López P, Moya-Quiles MR, Salgado G, Pastor-Vivero MD, Lopez-Hernandez R, Boix F, Campillo JA, Minguela A, Garcia-Alonso A, Sánchez-Solís M, Álvarez-López MR. HLA-DRB1 and HLA-DQB1 genes on susceptibility to and protection from allergic bronchopulmonary aspergillosis in patients with cystic fibrosis. Microbiol Immunol 2013; 57:193-7. [PMID: 23278646 DOI: 10.1111/1348-0421.12020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 01/17/2023]
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity pulmonary disease that affects both patients with cystic fibrosis (CF) and those with asthma. HLA-DRB1 alleles have previously been associated with ABPA-CF susceptibility; however, HLA-DQB1 allele associations have not been clearly established. The aim of the present study was to investigate HLA class II associations in patients with ABPA-CF and determine their roles in susceptibility or protection. Patients with ABPA-CF, patients with CF without ABPA, patients with asthma without ABPA (AST), and healthy controls were included in this study. DNA was extracted by automatic extractor. HLA-DRB1 and -DQB1 genotyping was performed by the Luminex PCR-SSOP method (One Lambda, Canoga Park, CA, USA). Allele specific PCR-SSP was also performed by high-resolution analysis (One Lambda). Statistical analysis was performed with SSPS and Arlequin software. Both HLA-DRB1*5:01 and -DRB1*11:04 alleles occurred with greater frequency in patients with ABPA-CF than in those with AST and CF and control subjects, corroborating previously published data. On the other hand, analysis of haplotypes revealed that almost all patients with ABPA-CF lacking DRB1*15:01 or DRB1*11:04 carry either DRB1*04, DRB1*11:01, or DRB1*07:01 alleles. In the HLA-DQB1 region, the HLA-DQB1*06:02 allele occurred more frequently in patients with ABPA-CF than in those with AST and CF and healthy controls, whereas HLA-DQB1*02:01 occurred less frequently in patients with ABPA-CF. These data confirm that there is a correlation between HLA-DRB1*15:01, -DRB1*11:04, DRB1*11:01, -DRB1*04 and -DRB1*07:01 alleles and ABPA-CF susceptibility and suggest that HLA-DQB1*02:01 is an ABPA-CF resistance allele.
Collapse
Affiliation(s)
- Manuel Muro
- Immunology Service, University Hospital Virgen Arrixaca, Madrid-Cartagena Rd, 30120, El Palmar, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shimato S, Maier LM, Maier R, Bruce JN, Anderson RCE, Anderson DE. Profound tumor-specific Th2 bias in patients with malignant glioma. BMC Cancer 2012. [PMID: 23186108 PMCID: PMC3537750 DOI: 10.1186/1471-2407-12-561] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Vaccination against tumor-associated antigens is one promising approach to immunotherapy against malignant gliomas. While previous vaccine efforts have focused exclusively on HLA class I-restricted peptides, class II-restricted peptides are necessary to induce CD4+ helper T cells and sustain effective anti-tumor immunity. In this report we investigated the ability of five candidate peptide epitopes derived from glioma-associated antigens MAGE and IL-13 receptor α2 to detect and characterize CD4+ helper T cell responses in the peripheral blood of patients with malignant gliomas. Methods Primary T cell responses were determined by stimulating freshly isolated PBMCs from patients with primary glioblastoma (GBM) (n = 8), recurrent GBM (n = 5), meningioma (n = 7), and healthy controls (n = 6) with each candidate peptide, as well as anti-CD3 monoclonal antibody (mAb) and an immunodominant peptide epitope derived from myelin basic protein (MBP) serving as positive and negative controls, respectively. ELISA was used to measure IFN-γ and IL-5 levels, and the ratio of IFN-γ/IL-5 was used to determine whether the response had a predominant Th1 or Th2 bias. Results We demonstrate that novel HLA Class-II restricted MAGE-A3 and IL-13Rα2 peptides can detect T cell responses in patients with GBMs as well as in healthy subjects. Stimulation with a variety of peptide antigens over-expressed by gliomas is associated with a profound reduction in the IFN-γ/IL-5 ratio in GBM patients relative to healthy subjects. This bias is more pronounced in patients with recurrent GBMs. Conclusions Therapeutic vaccine strategies to shift tumor antigen-specific T cell response to a more immunostimulatory Th1 bias may be needed for immunotherapeutic trials to be more successful clinically.
Collapse
Affiliation(s)
- Shinji Shimato
- Department of Neurosurgery, Gabriele Bartoli Brain Tumor Research Laboratory, Columbia University, New York City, NY, USA
| | | | | | | | | | | |
Collapse
|
7
|
Luo W, Su J, Zhang XB, Yang Z, Zhou MQ, Jiang ZM, Hao PP, Liu SD, Wen Q, Jin Q, Ma L. Limited T cell receptor repertoire diversity in tuberculosis patients correlates with clinical severity. PLoS One 2012; 7:e48117. [PMID: 23110186 PMCID: PMC3482216 DOI: 10.1371/journal.pone.0048117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 09/20/2012] [Indexed: 11/21/2022] Open
Abstract
Background The importance of CD4+ and CD8+ T cells in protection against tuberculosis (TB) is well known, however, the association between changes to the T cell repertoire and disease presentation has never been analyzed. Characterization of T-cells in TB patients in previous study only analyzed the TCR β chain and omitted analysis of the Vα family even though α chain also contribute to antigen recognition. Furthermore, limited information is available regarding the heterogeneity compartment and overall function of the T cells in TB patients as well as the common TCR structural features of Mtb antigen specific T cells among the vast numbers of TB patients. Methodology/Principal Findings CDR3 spectratypes of CD4+ and CD8+ T cells were analyzed from 86 patients with TB exhibiting differing degrees of disease severity, and CDR3 spectratype complexity scoring system was used to characterize TCR repertoire diversity. TB patients with history of other chronic disease and other bacterial or viral infections were excluded for the study to decrease the likely contribution of TCRs specific to non-TB antigens as far as possible. Each patient was age-matched with a healthy donor group to control for age variability. Results showed that healthy controls had a normally diversified TCR repertoire while TB patients represented with restricted TCR repertoire. Patients with mild disease had the highest diversity of TCR repertoire while severely infected patients had the lowest, which suggest TCR repertoire diversity inversely correlates with disease severity. In addition, TB patients showed preferred usage of certain TCR types and have a bias in the usage of variable (V) and joining (J) gene segments and N nucleotide insertions. Conclusions/Significance Results from this study promote a better knowledge about the public characteristics of T cells among TB patients and provides new insight into the TCR repertoire associated with clinic presentation in TB patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Amino Acid Sequence
- Analysis of Variance
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Complementarity Determining Regions/metabolism
- Female
- Genetic Variation/immunology
- Humans
- Male
- Middle Aged
- Molecular Sequence Data
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Severity of Illness Index
- Tuberculosis/immunology
- Tuberculosis/metabolism
- Tuberculosis/pathology
- Young Adult
Collapse
Affiliation(s)
- Wei Luo
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jin Su
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiao-Bing Zhang
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhi Yang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ming-Qian Zhou
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhen-Min Jiang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Pei-Pei Hao
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Su-Dong Liu
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qian Wen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qi Jin
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- * E-mail: (LM); (QJ)
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, People’s Republic of China
- * E-mail: (LM); (QJ)
| |
Collapse
|
8
|
Kumar A, Kantele A, Järvinen T, Chen T, Kavola H, Sadeghi M, Hedman K, Franssila R. Trichodysplasia spinulosa-associated polyomavirus (TSV) and Merkel cell polyomavirus: correlation between humoral and cellular immunity stronger with TSV. PLoS One 2012; 7:e45773. [PMID: 23029236 PMCID: PMC3454342 DOI: 10.1371/journal.pone.0045773] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 08/22/2012] [Indexed: 12/19/2022] Open
Abstract
Merkel Cell Polyomavirus (MCV) is a common infectious agent likely to be involved in the pathogenesis of most Merkel cell carcinomas (MCC). Trichodysplasia spinulosa-associated polyomavirus (TSV), which exhibit high seroprevalence in general population, has been detected in trichodysplasia spinulosa (TS) skin lesions suggesting an etiological role for this disease. Previous studies have shown strong MCV-specific T-cell responses, while no data exist on T-cell immunity against TSV. In order to characterize Th-cell immunity against TSV, and to allow comparisons with the MCV-specific Th-cell immunity, we studied TSV-specific proliferation, IFN-γ, IL-10 and IL-13, and MCV-specific IFN-γ and IL-10 responses in 51 healthy volunteers, and in one MCC patient. Recombinant TSV and MCV VP1 virus-like particles (VLPs) were used as antigens. A significant correlation was found between virus-specific Th-cell and antibody responses with TSV; with MCV it proved weaker. Despite significant homology in amino acid sequences, Th-cell crossreactivity was not evident between these viruses. Some subjects seronegative to both TSV and MCV exhibited Th-cell responses to both viruses. The agent initially priming these Th-cells remains an enigma. As CD8+ cells specific to MCV T-Ag oncoprotein clearly provide an important defense against established MCC, the MCV VP1-specific Th-cells may, by suppressing MCV replication with antiviral cytokines such as IFN-γ, significantly contribute to preventing the full process of oncogenesis.
Collapse
MESH Headings
- Adult
- Antigens, Fungal/immunology
- Antigens, Viral/immunology
- Candida albicans/immunology
- Capsid Proteins/immunology
- Carcinoma, Merkel Cell/immunology
- Carcinoma, Merkel Cell/virology
- Cell Proliferation
- Cells, Cultured
- Female
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunoglobulin G/blood
- Interferon-gamma/metabolism
- Interleukin-10/metabolism
- Male
- Merkel cell polyomavirus/immunology
- Merkel cell polyomavirus/physiology
- Middle Aged
- Polyomavirus Infections/blood
- Polyomavirus Infections/immunology
- Polyomavirus Infections/virology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/physiology
- T-Lymphocytes, Helper-Inducer/virology
- Tumor Virus Infections/blood
- Tumor Virus Infections/immunology
- Tumor Virus Infections/virology
- Virus Replication
- Young Adult
Collapse
Affiliation(s)
- Arun Kumar
- Departments of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Yousef S, Planas R, Chakroun K, Hoffmeister-Ullerich S, Binder TMC, Eiermann TH, Martin R, Sospedra M. TCR Bias and HLA Cross-Restriction Are Strategies of Human Brain-Infiltrating JC Virus-Specific CD4+T Cells during Viral Infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:3618-30. [DOI: 10.4049/jimmunol.1201612] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
T-helper cell-mediated proliferation and cytokine responses against recombinant Merkel cell polyomavirus-like particles. PLoS One 2011; 6:e25751. [PMID: 21991346 PMCID: PMC3185038 DOI: 10.1371/journal.pone.0025751] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/09/2011] [Indexed: 12/26/2022] Open
Abstract
The newly discovered Merkel Cell Polyomavirus (MCPyV) resides in approximately 80% of Merkel cell carcinomas (MCC). Causal role of MCPyV for this rare and aggressive skin cancer is suggested by monoclonal integration and truncation of large T (LT) viral antigen in MCC cells. The mutated MCPyV has recently been found in highly purified leukemic cells from patients with chronic lymphocytic leukemia (CLL), suggesting a pathogenic role also in CLL. About 50-80% of adults display MCPyV-specific antibodies. The humoral immunity does not protect against the development of MCC, as neutralizing MCPyV antibodies occur in higher levels among MCC patients than healthy controls. Impaired T-cell immunity has been linked with aggressive MCC behavior. Therefore, cellular immunity appears to be important in MCPyV infection surveillance. In order to elucidate the role of MCPyV-specific Th-cell immunity, peripheral blood mononuclear cells (PBMC) of healthy adults were stimulated with MCPyV VP1 virus-like particles (VLPs), using human bocavirus (HBoV) VLPs and Candida albicans antigen as positive controls. Proliferation, IFN-γ, IL-13 and IL-10 responses were examined in 15 MCPyV-seropositive and 15 seronegative volunteers. With the MCPyV antigen, significantly stronger Th-cell responses were found in MCPyV-seropositive than MCPyV-seronegative subjects, whereas with the control antigens, the responses were statistically similar. The most readily detectable cytokine was IFN-γ. The MCPyV antigen tended to induce stronger IFN-γ responses than HBoV VLP antigen. Taken together, MCPyV-specific Th-cells elicit vigorous IFN-γ responses. IFN-γ being a cytokine with major antiviral and tumor suppressing functions, Th-cells are suggested to be important mediators of MCPyV-specific immune surveillance.
Collapse
|
11
|
Phillips SM, Bhopale MK, Hilliard B, Zekavat SA, Ali MAR, Rostami A. Suppression of murine experimental autoimmune encephalomyelitis by interleukin-2 receptor targeted fusion toxin, DAB389IL-2. Cell Immunol 2010; 261:144-52. [DOI: 10.1016/j.cellimm.2009.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 12/16/2022]
|
12
|
Markovic-Plese S. Degenerate T-cell receptor recognition, autoreactive cells, and the autoimmune response in multiple sclerosis. Neuroscientist 2009; 15:225-31. [PMID: 19297658 DOI: 10.1177/1073858409332404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Multiple sclerosis (MS) is the leading cause of disability in the young adult population. While the immunopathogenetic mechanisms that drive the disease have been extensively studied, the autoantigens that trigger the chronic central nervous system inflammation are still not identified. Flexibility/ degeneracy of the T-cell receptor (TCR) in antigen recognition could have a physiological role in thymic selection and the development of comprehensive TCR repertoire and protection from infections. Here, the author explores the possibility that such flexibility/degeneracy may also play a role in the induction of autoimmune diseases. Major histocompatibility complex (MHC) class II alleles of the DR2 haplotype DR2a (DRB5*0101) and DR2b (DRB1*1501) are genes associated with an increased risk for MS in Caucasian populations. Peptide binding to the MHC molecule is a prerequisite for recognition by TCRs, whereby the CD4+ T-cell response is restricted by specific MHC class II DR molecules. To selectively expand and characterize DR2-restricted T-cells with degenerate TCR (TCR(deg)), the authors designed MHC class II DR2-anchored peptide mixtures, which preferentially bind to the DR2a and DR2b antigen-presenting molecules. Peptides in these mixtures have specific amino acids in the DR2 binding positions but have randomized amino acids at all other positions of the peptide. Due to the low concentration of individual peptides in these mixtures/libraries, the authors assume that only T-cells with TCR(deg) will proliferate in response to these mixtures. The authors have recently identified an increased DR2 restricted TCR(deg) T-cell frequency in MS patients in comparison to healthy controls, their cross-reactivity to myelin basic protein, and the secretion of proinflammatory cytokines, all of which suggest that these cells may play a role in the development of the autoimmune response in MS.
Collapse
|
13
|
|
14
|
Zhang X, Tang Y, Sujkowska D, Wang J, Ramgolam V, Sospedra M, Adams J, Martin R, Pinilla C, Markovic-Plese S. Degenerate TCR recognition and dual DR2 restriction of autoreactive T cells: implications for the initiation of the autoimmune response in multiple sclerosis. Eur J Immunol 2008; 38:1297-309. [PMID: 18412170 DOI: 10.1002/eji.200737519] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
TCR degeneracy may facilitate self-reactive T cell activation and the initiation of an autoimmune response in multiple sclerosis (MS). MHC class II alleles of the DR2 haplotype DR2a (DRB5*0101) and DR2b (DRB1*1501) are associated with an increased risk for MS in Caucasian populations. In order to selectively expand and characterize T cells with a high degree of TCR degeneracy that recognize peptides in the context of disease-associated DR2 alleles, we developed DR2-anchored peptide mixtures (APM). We report here that DR2-APM have a high stimulatory potency and can selectively expand T cells with a degenerate TCR (TCR(deg)). Due to the low concentration of individual peptides in the mixtures, T cell clones' proliferative response to DR2-APM implies that multiple peptides stimulate the TCR, which is a characteristic of TCR(deg). The frequency of DR2-APM-reactive T cells is significantly higher in MS patients than in healthy controls, suggesting that they may play a role in the development of the autoimmune response in MS. DR2-APM-reactive cells have a dual DR2 restriction: they recognize DR2-APM in the context of both DR2a and DR2b molecules. The DR2-APM-reactive cells' IL-17 secretion, together with cross-reactivity against myelin peptides, may contribute to their role in the development of autoimmune response in MS.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hansen BE, Rasmussen AH, Jakobsen BK, Ryder LP, Svejgaard A. Extraordinary cross-reactivity of an autoimmune T-cell receptor recognizing specific peptides both on autologous and on allogeneic HLA class II molecules. ACTA ACUST UNITED AC 2007; 70:42-52. [PMID: 17559580 DOI: 10.1111/j.1399-0039.2007.00849.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A T-cell receptor's (TCR) recognition of a human leukocyte antigen (HLA)-peptide complex (pHLA) is normally described as being restricted by the HLA molecule and specific for the peptide. This is, however, not always true. Several TCRs have been described, which cross-react with other peptides bound to the restricting HLA molecule. This phenomenon has been considered a variant of molecular mimicry and is suggested to be one of the mechanisms behind autoimmunity. The positive selection of T cells in the thymus imposes low-affinity recognition of the TCRs toward self-pHLA, which increases the probability of the TCR to be promiscuous by nature, and further implies that the T-cell repertoire contains TCRs prone to be autoreactive and thus able to induce autoimmunity. We present an autoimmune TCR showing extreme cross-reactivity to several pHLA comprising both own HLA class II restriction element and allogeneic HLA class II restriction elements in complex with both self-derived and microbially derived peptides. The existence of such a significant cross-reactivity in the context of distinct HLA-DR molecules might be more common among autoimmune TCRs than previously anticipated and potentially reveals a new way of designing altered peptide ligands for therapeutic use.
Collapse
MESH Headings
- Autoimmunity/immunology
- Cell Line, Transformed
- Cell Transformation, Viral
- Cross Reactions
- HLA Antigens/immunology
- HLA Antigens/metabolism
- Herpesvirus 4, Human/physiology
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Humans
- Hybridomas/immunology
- Molecular Mimicry/genetics
- Molecular Mimicry/immunology
- Peptides/genetics
- Peptides/immunology
- Peptides/isolation & purification
- Peptides/metabolism
- Protein Binding
- Receptors, Antigen, T-Cell/analysis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- B E Hansen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
16
|
Koehm S, Slavin RG, Hutcheson PS, Trejo T, David CS, Bellone CJ. HLA-DRB1 alleles control allergic bronchopulmonary aspergillosis-like pulmonary responses in humanized transgenic mice. J Allergy Clin Immunol 2007; 120:570-7. [PMID: 17561243 DOI: 10.1016/j.jaci.2007.04.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 03/23/2007] [Accepted: 04/24/2007] [Indexed: 11/18/2022]
Abstract
BACKGROUND Allergic bronchopulmonary aspergillosis (ABPA) is a lung hypersensitivity disease mediated in part by CD4(+) T(H)2 cells. There is a significant association between ABPA and the HLA-DR2 genotypes DRB1(*)1501 and DRB1(*)1503, whereas resistance might be associated with HLA-DRB1(*)1502. OBJECTIVE We sought to elucidate the role of HLA-DR alleles in allergic inflammation in lungs. METHODS HLA-DR humanized transgenic mice expressing either the susceptible or resistant alleles were analyzed for the nature and extent of pulmonary inflammation after exposure to Aspergillus species antigens. RESULTS Exposed DRB1(*)1501 and DRB1(*)1503 transgenic mice displayed infiltrates made up prominently of eosinophils, which is consistent with the inflammation found in ABPA. The resistant DRB1(*)1502 mice, on the other hand, displayed minimal to moderate inflammation, consisting mainly of T-cell infiltrates. Significantly more mucin was produced in the DRB1(*)1503 and DRB1(*)1501 mice, and their ability to limit the number of Aspergillus species conidia within the lung parenchyma was impaired. Despite their differences, both the DRB1(*)1503 and DRB1(*)1502 strains mounted comparable T cell-proliferative responses to Aspergillus species antigens. CONCLUSION The HLA-DR2 alleles DRB1(*)1501 and DRB1(*)1503 play a major role in the development of allergic pulmonary inflammation. In contrast, the HLA-DR2 allele DRB1(*)1502 mediates a nonallergic T(H)1-like response to the organism, possibly explaining an ABPA resistance factor. These results are in support of our published human studies in patients with cystic fibrosis and asthma. CLINICAL IMPLICATIONS HLA-DR typing in patients with cystic fibrosis and asthma will aid in the identification of individuals at risk for ABPA.
Collapse
Affiliation(s)
- Sherri Koehm
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
17
|
Franssila R, Hedman K. Infection and musculoskeletal conditions: Viral causes of arthritis. Best Pract Res Clin Rheumatol 2007; 20:1139-57. [PMID: 17127201 DOI: 10.1016/j.berh.2006.08.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several viruses cause postinfectious arthritis. The disease is a typical manifestation of arthritogenic alphaviruses, rubella virus and human parvovirus B19. In addition, arthritis is not uncommon after infection by HIV, cytomegalovirus, hepatitis B virus, hepatitis C virus, or Epstein-Barr virus (EBV). Also prolonged arthritis may result from viral infections, particularly with alphaviruses and human parvovirus B19. Viruses such as EBV and B19 may have significant roles in initiating chronic arthropathies, which in some cases may be indistinguishable from rheumatoid arthritis.
Collapse
Affiliation(s)
- Rauli Franssila
- Department of Virology, Haartman Institute, University of Helsinki and HUCH Laboratory Division, Haartmaninkatu 3, FI-00290 Helsinki, Finland.
| | | |
Collapse
|
18
|
Sospedra M, Muraro PA, Stefanová I, Zhao Y, Chung K, Li Y, Giulianotti M, Simon R, Mariuzza R, Pinilla C, Martin R. Redundancy in antigen-presenting function of the HLA-DR and -DQ molecules in the multiple sclerosis-associated HLA-DR2 haplotype. THE JOURNAL OF IMMUNOLOGY 2006; 176:1951-61. [PMID: 16424227 PMCID: PMC2746197 DOI: 10.4049/jimmunol.176.3.1951] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The three HLA class II alleles of the DR2 haplotype, DRB1*1501, DRB5*0101, and DQB1*0602, are in strong linkage disequilibrium and confer most of the genetic risk to multiple sclerosis. Functional redundancy in Ag presentation by these class II molecules would allow recognition by a single TCR of identical peptides with the different restriction elements, facilitating T cell activation and providing one explanation how a disease-associated HLA haplotype could be linked to a CD4+ T cell-mediated autoimmune disease. Using combinatorial peptide libraries and B cell lines expressing single HLA-DR/DQ molecules, we show that two of five in vivo-expanded and likely disease-relevant, cross-reactive cerebrospinal fluid-infiltrating T cell clones use multiple disease-associated HLA class II molecules as restriction elements. One of these T cell clones recognizes >30 identical foreign and human peptides using all DR and DQ molecules of the multiple sclerosis-associated DR2 haplotype. A T cell signaling machinery tuned for efficient responses to weak ligands together with structural features of the TCR-HLA/peptide complex result in this promiscuous HLA class II restriction.
Collapse
Affiliation(s)
- Mireia Sospedra
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Paolo A. Muraro
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Irena Stefanová
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yingdong Zhao
- Computational and System Biology Group, Biometric Research Branch, National Cancer Institute, National Institutes of Health, Rockville, MD 20852
| | - Katherine Chung
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Yili Li
- Center for Advanced Research in Biotechnology, University of Maryland, Rockville, MD 20850
| | | | - Richard Simon
- Computational and System Biology Group, Biometric Research Branch, National Cancer Institute, National Institutes of Health, Rockville, MD 20852
| | - Roy Mariuzza
- Center for Advanced Research in Biotechnology, University of Maryland, Rockville, MD 20850
| | - Clemencia Pinilla
- Mixture Sciences, San Diego, CA 92121
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121
| | - Roland Martin
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Address correspondence and reprint requests to Dr. Roland Martin at the current address: Institució Catalana de Recerca i Estudis Avançats, Unitat de Neuroimmunologia Clinica, Hospital Universitari Vall d’Hebron, Pg Vall d’Hebron 119-129, 08035 Barcelona, Spain.
| |
Collapse
|
19
|
Quintana FJ, Gerber D, Kent SC, Cohen IR, Shai Y. HIV-1 fusion peptide targets the TCR and inhibits antigen-specific T cell activation. J Clin Invest 2005; 115:2149-58. [PMID: 16007266 PMCID: PMC1172229 DOI: 10.1172/jci23956] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 05/17/2005] [Indexed: 01/15/2023] Open
Abstract
The fusion peptide (FP) in the N terminus of the HIV envelope glycoprotein, gp41, functions together with other gp41 domains to fuse the virion with the host cell membrane. We now report that FP colocalizes with CD4 and TCR molecules, coprecipitates with the TCR, and inhibits antigen-specific T cell proliferation and proinflammatory cytokine secretion in vitro. These effects are specific: T cell activation by PMA/ionomycin or mitogenic antibodies is not affected by FPs, and FPs do not interfere with antigen-presenting cell function. In vivo, FPs inhibit the activation of arthritogenic T cells in the autoimmune disease model of adjuvant arthritis and reduce the disease-associated IFN-gamma response. Hence, FPs might play 2 roles in HIV infection: mediating membrane fusion while downregulating T cell responses to itself that could block infection. Disassociated from HIV, however, the FP molecule provides a novel reagent for downregulating undesirable immune responses, exemplified here by adjuvant arthritis.
Collapse
|
20
|
Kent SC, Chen Y, Bregoli L, Clemmings SM, Kenyon NS, Ricordi C, Hering BJ, Hafler DA. Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 2005; 435:224-8. [PMID: 15889096 DOI: 10.1038/nature03625] [Citation(s) in RCA: 312] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 04/11/2005] [Indexed: 11/09/2022]
Abstract
In autoimmune type 1 diabetes, pathogenic T lymphocytes are associated with the specific destruction of insulin-producing beta-islet cells. Identification of the autoantigens involved in triggering this process is a central question. Here we examined T cells from pancreatic draining lymph nodes, the site of islet-cell-specific self-antigen presentation. We cloned single T cells in a non-biased manner from pancreatic draining lymph nodes of subjects with type 1 diabetes and from non-diabetic controls. A high degree of T-cell clonal expansion was observed in pancreatic lymph nodes from long-term diabetic patients but not from control subjects. The oligoclonally expanded T cells from diabetic subjects with DR4, a susceptibility allele for type 1 diabetes, recognized the insulin A 1-15 epitope restricted by DR4. These results identify insulin-reactive, clonally expanded T cells from the site of autoinflammatory drainage in long-term type 1 diabetics, indicating that insulin may indeed be the target antigen causing autoimmune diabetes.
Collapse
Affiliation(s)
- Sally C Kent
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|