1
|
Oldereid TS, Jiang X, Øgaard J, Schrumpf E, Bjørnholt JV, Rasmussen H, Melum E. Microbial exposure during early life regulates development of bile duct inflammation. Scand J Gastroenterol 2024; 59:192-201. [PMID: 37997753 DOI: 10.1080/00365521.2023.2278423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVES The early life microbiome has been linked to inflammatory diseases in adulthood and a role for the microbiome in bile duct inflammation is supported by both human and murine studies. We utilized the NOD.c3c4 mouse model that develops a spontaneous immune-driven biliary disease with a known contribution of the microbiome to evaluate the temporal effects of the early life microbiome. MATERIALS AND METHODS Germ-free (GF) NOD.c3c4 mice were conventionalized into a specific pathogen free environment at birth (conventionally raised, CONV-R) or at weaning (germ-free raised, GF-R) and compared with age and gender-matched GF and conventional (CONV) NOD.c3c4 mice. At 9 weeks of age, liver pathology was assessed by conventional histology and flow cytometry immunophenotyping. RESULTS Neonatal exposure to microbes (CONV-R) increased biliary inflammation to similar levels as regular conventional NOD.c3c4 mice, while delayed exposure to microbes (GF-R) restrained the biliary inflammation. Neutrophil infiltration was increased in all conventionalized mice compared to GF. An immunophenotype in the liver similar to CONV was restored in both CONV-R and GF-R compared to GF mice displaying a proportional increase of B cells and reduction of T cells in the liver. CONCLUSIONS Microbial exposure during early life has a temporal impact on biliary tract inflammation in the NOD.c3c4 mouse model suggesting that age-sensitive interaction with commensal microbes have long-lasting effects on biliary immunity that can be of importance for human cholangiopathies.
Collapse
Affiliation(s)
- Tine S Oldereid
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xiaojun Jiang
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jonas Øgaard
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Elisabeth Schrumpf
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Dermatology, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jørgen V Bjørnholt
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Henrik Rasmussen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Comparative Medicine, Division of Oslo Hospital Services, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Wang X, Wei Y, Yang Y, Yang Y, Li H, Li Y, Zhang F, Wang L. Animal models of primary biliary cholangitis: status and challenges. Cell Biosci 2023; 13:214. [PMID: 37993960 PMCID: PMC10664283 DOI: 10.1186/s13578-023-01170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is an autoimmune liver disease. The aetiology of PBC remains unclear, and its pathogenesis is complex. Animal models are essential to clarify the pathogenesis of PBC and explore the occurrence of early events. MAIN BODY Herein, we review recent research progress in PBC animal models, including genetically modified, chemically inducible, biologically inducible, and protein-immunised models. Although these animal models exhibit several immunological and pathological features of PBC, they all have limitations that constrain further research and weaken their connection with clinical practice. CONCLUSION The review will benefit efforts to understand and optimise animal models in order to further clarify PBC pathogenesis and molecular targets for therapeutic interventions.
Collapse
Affiliation(s)
- Xu Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yi Wei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yanlei Yang
- Clinical Biobank, Department Medical Research Central, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunjiao Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China.
| |
Collapse
|
3
|
Kishimoto TK, Fournier M, Michaud A, Rizzo G, Roy C, Capela T, Nukolova N, Li N, Doyle L, Fu FN, VanDyke D, Traber PG, Spangler JB, Leung SS, Ilyinskii PO. Rapamycin nanoparticles increase the therapeutic window of engineered interleukin-2 and drive expansion of antigen-specific regulatory T cells for protection against autoimmune disease. J Autoimmun 2023; 140:103125. [PMID: 37844543 DOI: 10.1016/j.jaut.2023.103125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Interleukin-2 (IL-2) therapies targeting the high affinity IL-2 receptor expressed on regulatory T cells (Tregs) have shown promising therapeutic benefit in autoimmune diseases through nonselective expansion of pre-existing Treg populations, but are potentially limited by the inability to induce antigen-specific Tregs, as well as by dose-limiting activation of effector immune cells in settings of inflammation. We recently developed biodegradable nanoparticles encapsulating rapamycin, called ImmTOR, which induce selective immune tolerance to co-administered antigens but do not increase total Treg numbers. Here we demonstrate that the combination of ImmTOR and an engineered Treg-selective IL-2 variant (termed IL-2 mutein) increases the number and durability of total Tregs, as well as inducing a profound synergistic increase in antigen-specific Tregs when combined with a target antigen. We demonstrate that the combination of ImmTOR and an IL-2 mutein leads to durable inhibition of antibody responses to co-administered AAV gene therapy capsid, even at sub-optimal doses of ImmTOR, and provides protection in autoimmune models of type 1 diabetes and primary biliary cholangitis. Importantly, ImmTOR also increases the therapeutic window of engineered IL-2 molecules by mitigating effector immune cell expansion and preventing exacerbation of disease in a model of graft-versus-host-disease. At the same time, IL-2 mutein shows potential for dose-sparing of ImmTOR. Overall, these results establish that the combination of ImmTOR and an IL-2 mutein show synergistic benefit on both safety and efficacy to provide durable antigen-specific immune tolerance to mitigate drug immunogenicity and to treat autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | - Gina Rizzo
- Selecta Biosciences, Watertown, MA, 02472, USA
| | | | | | | | - Ning Li
- Selecta Biosciences, Watertown, MA, 02472, USA
| | - Liam Doyle
- Selecta Biosciences, Watertown, MA, 02472, USA
| | - Fen-Ni Fu
- Selecta Biosciences, Watertown, MA, 02472, USA
| | - Derek VanDyke
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | | |
Collapse
|
4
|
Adams DE, Heuer LS, Rojas M, Zhang W, Ridgway WM. Mutated Pkhd1 alone is sufficient to cause autoimmune biliary disease on the nonobese diabetic (NOD) genetic background. Immunogenetics 2023; 75:27-37. [PMID: 36097289 PMCID: PMC9468241 DOI: 10.1007/s00251-022-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/27/2022] [Indexed: 01/21/2023]
Abstract
We previously reported that nonobese diabetic (NOD) congenic mice (NOD.c3c4 mice) developed an autoimmune biliary disease (ABD) with similarities to human primary biliary cholangitis (PBC), including anti-mitochondrial antibodies and organ-specific biliary lymphocytic infiltrates. We narrowed the possible contributory regions in a novel NOD.Abd3 congenic mouse to a B10 congenic region on chromosome 1 ("Abd3") and a mutated Pkhd1 gene (Pkhd1del36-67) upstream from Abd3, and we showed via backcrossing studies that the NOD genetic background was necessary for disease. Here, we show that NOD.Abd3 mice develop anti-PDC-E2 autoantibodies at high levels, and that placing the chromosome 1 interval onto a scid background eliminates disease, demonstrating the critical role of the adaptive immune system in pathogenesis. While the NOD genetic background is essential for disease, it was still unclear which of the two regions in the Abd3 locus were necessary and sufficient for disease. Here, using a classic recombinant breeding approach, we prove that the mutated Pkhd1del36-67 alone, on the NOD background, causes ABD. Further characterization of the mutant sequence demonstrated that the Pkhd1 gene is disrupted by an ETnII-beta retrotransposon inserted in intron 35 in an anti-sense orientation. Homozygous Pkhd1 mutations significantly affect viability, with the offspring skewed away from a Mendelian distribution towards NOD Pkhd1 homozygous or heterozygous genotypes. Cell-specific abnormalities, on a susceptible genetic background, can therefore induce an organ-specific autoimmunity directed to the affected cells. Future work will aim to characterize how mutant Pkhd1 can cause such an autoimmune response.
Collapse
Affiliation(s)
- David E Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Internal Medicine, Cincinnati VA Medical Center, Cincinnati, OH, 45267, USA
| | - Luke S Heuer
- Department of Internal Medicine, Sacramento VA Medical Center, VA Northern California Health Care System, Mather, CA, 95655, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Manuel Rojas
- School of Medicine and Health Sciences, Doctoral Program in Biological and Biomedical Sciences, Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogota, Colombia
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Weici Zhang
- Department of Internal Medicine, Sacramento VA Medical Center, VA Northern California Health Care System, Mather, CA, 95655, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - William M Ridgway
- Department of Internal Medicine, Sacramento VA Medical Center, VA Northern California Health Care System, Mather, CA, 95655, USA.
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Linking Human Betaretrovirus with Autoimmunity and Liver Disease in Patients with Primary Biliary Cholangitis. Viruses 2022; 14:v14091941. [PMID: 36146750 PMCID: PMC9502388 DOI: 10.3390/v14091941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by the production of diagnostic antimitochondrial antibodies (AMA) reactive to the pyruvate dehydrogenase complex. A human betaretrovirus (HBRV) resembling mouse mammary tumor virus has been characterized in patients with PBC. However, linking the viral infection with the disease is not a straight-forward process because PBC is a complex multifactorial disease influenced by genetic, hormonal, autoimmune, environmental, and other factors. Currently, PBC is assumed to have an autoimmune etiology, but the evidence is lacking to support this conjecture. In this review, we describe different approaches connecting HBRV with PBC. Initially, we used co-cultivation of HBRV with biliary epithelial cells to trigger the PBC-specific phenotype with cell surface expression of cryptic mitochondrial autoantigens linked with antimitochondrial antibody expression. Subsequently, we have derived layers of proof to support the role of betaretrovirus infection in mouse models of autoimmune biliary disease with spontaneous AMA production and in patients with PBC. Using Hill’s criteria, we provide an overview of how betaretrovirus infection may trigger autoimmunity and propagate biliary disease. Ultimately, the demonstration that disease can be cured with antiviral therapy may sway the argument toward an infectious disease etiology in an analogous fashion that was used to link H. pylori with peptic ulcer disease.
Collapse
|
6
|
Aubin AM, Lombard-Vadnais F, Collin R, Aliesky HA, McLachlan SM, Lesage S. The NOD Mouse Beyond Autoimmune Diabetes. Front Immunol 2022; 13:874769. [PMID: 35572553 PMCID: PMC9102607 DOI: 10.3389/fimmu.2022.874769] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Autoimmune diabetes arises spontaneously in Non-Obese Diabetic (NOD) mice, and the pathophysiology of this disease shares many similarities with human type 1 diabetes. Since its generation in 1980, the NOD mouse, derived from the Cataract Shinogi strain, has represented the gold standard of spontaneous disease models, allowing to investigate autoimmune diabetes disease progression and susceptibility traits, as well as to test a wide array of potential treatments and therapies. Beyond autoimmune diabetes, NOD mice also exhibit polyautoimmunity, presenting with a low incidence of autoimmune thyroiditis and Sjögren's syndrome. Genetic manipulation of the NOD strain has led to the generation of new mouse models facilitating the study of these and other autoimmune pathologies. For instance, following deletion of specific genes or via insertion of resistance alleles at genetic loci, NOD mice can become fully resistant to autoimmune diabetes; yet the newly generated diabetes-resistant NOD strains often show a high incidence of other autoimmune diseases. This suggests that the NOD genetic background is highly autoimmune-prone and that genetic manipulations can shift the autoimmune response from the pancreas to other organs. Overall, multiple NOD variant strains have become invaluable tools for understanding the pathophysiology of and for dissecting the genetic susceptibility of organ-specific autoimmune diseases. An interesting commonality to all autoimmune diseases developing in variant strains of the NOD mice is the presence of autoantibodies. This review will present the NOD mouse as a model for studying autoimmune diseases beyond autoimmune diabetes.
Collapse
Affiliation(s)
- Anne-Marie Aubin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Roxanne Collin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- CellCarta, Montreal, QC, Canada
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sylvie Lesage
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Zheng Y, Ran Y, Zhang H, Wang B, Zhou L. The Microbiome in Autoimmune Liver Diseases: Metagenomic and Metabolomic Changes. Front Physiol 2021; 12:715852. [PMID: 34690796 PMCID: PMC8531204 DOI: 10.3389/fphys.2021.715852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have identified the critical role of microbiota in the pathophysiology of autoimmune liver diseases (AILDs), including autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC). Metagenomic studies reveal significant decrease of gut bacterial diversity in AILDs. Although profiles of metagenomic vary widely, Veillonella is commonly enriched in AIH, PBC, and PSC. Apart from gut microbiome, the oral and bile microbiome seem to be associated with these diseases as well. The functional analysis of metagenomics suggests that metabolic pathways changed in the gut microbiome of the patients. Microbial metabolites, including short-chain fatty acids (SCFAs) and microbial bile acid metabolites, have been shown to modulate innate immunity, adaptive immunity, and inflammation. Taken together, the evidence of host–microbiome interactions and in-depth mechanistic studies needs further accumulation, which will offer more possibilities to clarify the mechanisms of AILDs and provide potential molecular targets for the prevention and treatment in the future.
Collapse
Affiliation(s)
- Yanping Zheng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Ran
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongxia Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gastroenterology and Hepatology, Hotan People's Hospital, Xinjiang, China
| |
Collapse
|
8
|
Gijbels E, Pieters A, De Muynck K, Vinken M, Devisscher L. Rodent models of cholestatic liver disease: A practical guide for translational research. Liver Int 2021; 41:656-682. [PMID: 33486884 PMCID: PMC8048655 DOI: 10.1111/liv.14800] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cholestatic liver disease denotes any situation associated with impaired bile flow concomitant with a noxious bile acid accumulation in the liver and/or systemic circulation. Cholestatic liver disease can be subdivided into different types according to its clinical phenotype, such as biliary atresia, drug-induced cholestasis, gallstone liver disease, intrahepatic cholestasis of pregnancy, primary biliary cholangitis and primary sclerosing cholangitis. Considerable effort has been devoted to elucidating underlying mechanisms of cholestatic liver injuries and explore novel therapeutic and diagnostic strategies using animal models. Animal models employed according to their appropriate applicability domain herein play a crucial role. This review provides an overview of currently available in vivo animal models, fit-for-purpose in modelling different types of cholestatic liver diseases. Moreover, a practical guide and workflow is provided which can be used for translational research purposes, including all advantages and disadvantages of currently available in vivo animal models.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium,Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Kevin De Muynck
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium,Hepatology Research UnitInternal Medicine and PaediatricsLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Lindsey Devisscher
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| |
Collapse
|
9
|
Kunst RF, Niemeijer M, van der Laan LJW, Spee B, van de Graaf SFJ. From fatty hepatocytes to impaired bile flow: Matching model systems for liver biology and disease. Biochem Pharmacol 2020; 180:114173. [PMID: 32717228 DOI: 10.1016/j.bcp.2020.114173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
A large variety of model systems are used in hepatobiliary research. In this review, we aim to provide an overview of established and emerging models for specific research questions. We specifically discuss the value and limitations of these models for research on metabolic associated fatty liver disease (MAFLD), (previously named non-alcoholic fatty liver diseases/non-alcoholic steatohepatitis (NAFLD/NASH)) and cholestasis-related diseases such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). The entire range of models is discussed varying from immortalized cell lines, mature or pluripotent stem cell-based models including organoids/spheroids, to animal models and human ex vivo models such as normothermic machine perfusion of livers and living liver slices. Finally, the pros and cons of each model are discussed as well as the need in the scientific community for continuous innovation in model development to better mimic the human (patho)physiology.
Collapse
Affiliation(s)
- Roni F Kunst
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Marije Niemeijer
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Maroni L, Ninfole E, Pinto C, Benedetti A, Marzioni M. Gut-Liver Axis and Inflammasome Activation in Cholangiocyte Pathophysiology. Cells 2020; 9:cells9030736. [PMID: 32192118 PMCID: PMC7140657 DOI: 10.3390/cells9030736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
The Nlrp3 inflammasome is a multiprotein complex activated by a number of bacterial products or danger signals and is involved in the regulation of inflammatory processes through caspase-1 activation. The Nlrp3 is expressed in immune cells but also in hepatocytes and cholangiocytes, where it appears to be involved in regulation of biliary damage, epithelial barrier integrity and development of fibrosis. Activation of the pathways of innate immunity is crucial in the pathophysiology of hepatobiliary diseases, given the strong link between the gut and the liver. The liver secretes bile acids, which influence the bacterial composition of the gut microbiota and, in turn, are heavily modified by microbial metabolism. Alterations of this balance, as for the development of dysbiosis, may deeply influence the composition of the bacterial products that reach the liver and are able to activate a number of intracellular pathways. This alteration may be particularly important in the pathogenesis of cholangiopathies and, in particular, of primary sclerosing cholangitis, given its strong association with inflammatory bowel disease. In the present review, we summarize current knowledge on the gut–liver axis in cholangiopathies and discuss the role of Nlrp3 inflammasome activation in cholestatic conditions.
Collapse
Affiliation(s)
- Luca Maroni
- Correspondence: ; Tel.: +39-071-220-6043; Fax: +39-071-220-6044
| | | | | | | | | |
Collapse
|
11
|
Sato K, Glaser S, Kennedy L, Liangpunsakul S, Meng F, Francis H, Alpini G. Preclinical insights into cholangiopathies: disease modeling and emerging therapeutic targets. Expert Opin Ther Targets 2019; 23:461-472. [PMID: 30990740 DOI: 10.1080/14728222.2019.1608950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The common predominant clinical features of cholangiopathies such as primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and biliary atresia (BA) are biliary damage/senescence and liver fibrosis. Curative therapies are lacking, and liver transplantation is the only option. An understanding of the mechanisms and pathogenesis is needed to develop novel therapies. Previous studies have developed various disease-based research models and have identified candidate therapeutic targets. Areas covered: This review summarizes recent studies performed in preclinical models of cholangiopathies and the current understanding of the pathophysiology representing potential targets for novel therapies. A literature search was conducted in PubMed using the combination of the searched term 'cholangiopathies' with one or two keywords including 'model', 'cholangiocyte', 'animal', or 'fibrosis'. Papers published within five years were obtained. Expert opinion: Access to appropriate research models is a key challenge in cholangiopathy research; establishing more appropriate models for PBC is an important goal. Several preclinical studies have demonstrated promising results and have led to novel therapeutic approaches, especially for PSC. Further studies on the pathophysiology of PBC and BA are necessary to identify candidate targets. Innovative therapeutic approaches such as stem cell transplantation have been introduced, and those therapies could be applied to PSC, PBC, and BA.
Collapse
Affiliation(s)
- Keisaku Sato
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Shannon Glaser
- c Department of Medical Physiology , Texas A&M University Collage of Medicine , Temple , TX , USA
| | - Lindsey Kennedy
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Suthat Liangpunsakul
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Fanyin Meng
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Heather Francis
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Gianfranco Alpini
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| |
Collapse
|
12
|
Tam PKH, Yiu RS, Lendahl U, Andersson ER. Cholangiopathies - Towards a molecular understanding. EBioMedicine 2018; 35:381-393. [PMID: 30236451 PMCID: PMC6161480 DOI: 10.1016/j.ebiom.2018.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Liver diseases constitute an important medical problem, and a number of these diseases, termed cholangiopathies, affect the biliary system of the liver. In this review, we describe the current understanding of the causes of cholangiopathies, which can be genetic, viral or environmental, and the few treatment options that are currently available beyond liver transplantation. We then discuss recent rapid progress in a number of areas relevant for decoding the disease mechanisms for cholangiopathies. This includes novel data from analysis of transgenic mouse models and organoid systems, and we outline how this information can be used for disease modeling and potential development of novel therapy concepts. We also describe recent advances in genomic and transcriptomic analyses and the importance of such studies for improving diagnosis and determining whether certain cholangiopathies should be viewed as distinct or overlapping disease entities.
Collapse
Affiliation(s)
- Paul K H Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, and Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, and The University of Hong Kong, Hong Kong.
| | - Rachel S Yiu
- Department of Surgery, Li Ka Shing Faculty of Medicine, and Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, and The University of Hong Kong, Hong Kong
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| |
Collapse
|
13
|
Tanaka A, Leung PSC, Gershwin ME. Evolution of our understanding of PBC. Best Pract Res Clin Gastroenterol 2018; 34-35:3-9. [PMID: 30343708 DOI: 10.1016/j.bpg.2018.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/10/2018] [Indexed: 01/31/2023]
Abstract
The discovery of mitochondrial autoantigens recognized by antimitochondrial antibodies (AMAs) in 1987 marked the dawn of a new era in primary biliary cholangitis (PBC) research. Since then, there has been substantial progress in our understanding of PBC partly bestowed by the development of innovative technologies in molecular biology, immunology, and genetics. Here, we review this evolutionary progress in understanding PBC. We now recognize that the epitopes of AMAs, CD4+, and CD8+ T cells are all mapped to the same region of the inner lipoyl domain of pyruvate dehydrogenase complex E2 subunit (PDC-E2), and that intrahepatic biliary epithelial cells (BECs) are exclusively targeted in PBC. BECs express PDC-E2 on apotopes in an immunologically intact form during apoptosis, but not other epithelial cells, which could explain the tissue specificity of PBC. In addition, genetic factors, environmental triggers, and epigenetic modifications play crucial roles in the development of PBC. Intact lipoylated PDC-E2, presumably after modification with xenobiotics such as 2-octynamide or 2-nonyamide that are abundantly present in the environment, is endocytosed by antigen-presenting cells and are presented to CD4+ or CD8+ T cells. An immune complex consisting of PDC-E2 and anti-PDC-E2 autoantibodies cross-present autoantigens in a more efficient manner. Finally, an adenylate uridine-rich element (ARE) Del -/- mouse model has been established, which presents a disease modeling human PBC, including female dominance as one of its most important features, and can be used to dissect the immunopathology of PBC. Expanding our knowledge of the pathology from a very early stage of the disease will provide the key to cure PBC.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | - Patrick S C Leung
- Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA, USA.
| | - M Eric Gershwin
- Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA, USA.
| |
Collapse
|
14
|
Tanaka A, Leung PS, Young HA, Gershwin ME. Therapeutic and immunological interventions in primary biliary cholangitis: from mouse models to humans. Arch Med Sci 2018; 14:930-940. [PMID: 30002712 PMCID: PMC6040118 DOI: 10.5114/aoms.2017.70995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/15/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Patrick S.C. Leung
- Division of Rheumatology Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Howard A. Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA
| | - M. Eric Gershwin
- Division of Rheumatology Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, USA
| |
Collapse
|
15
|
Schrumpf E, Jiang X, Zeissig S, Pollheimer MJ, Anmarkrud JA, Tan C, Exley MA, Karlsen TH, Blumberg RS, Melum E. The role of natural killer T cells in a mouse model with spontaneous bile duct inflammation. Physiol Rep 2017; 5:5/4/e13117. [PMID: 28219981 PMCID: PMC5328767 DOI: 10.14814/phy2.13117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/01/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022] Open
Abstract
Natural killer T (NKT) cells are activated by lipid antigens presented by CD1d molecules and represent a major lymphocyte subset of the liver. NODc3c4 mice spontaneously develop biliary inflammation in extra- and intrahepatic bile ducts. We demonstrated by flow cytometry that invariant NKT (iNKT) cells were more abundant in the thymus, spleen, and liver of NODc3c4 mice compared to NOD mice. iNKT cells in NODc3c4 mice displayed an activated phenotype. Further, NOD and NODCd1d-/- mice were irradiated and injected with NODc3c4 bone marrow, and injection of NODc3c4 bone marrow resulted in biliary infiltrates independently of CD1d expression in recipient mice. Activation or blocking of NKT cells with α-galactosylceramide or anti-CD1d antibody injections did not affect the biliary phenotype of NODc3c4 mice. NODc3c4.Cd1d-/- mice were generated by crossing NODCd1d-/- mice onto a NODc3c4 background. NODc3c4.Cd1d-/- and NODc3c4 mice developed the same extent of biliary disease. This study demonstrates that iNKT cells are more abundant and activated in the NODc3c4 model. The portal inflammation of NODc3c4 mice can be transferred to irradiated recipients, which suggests an immune-driven disease. Our findings imply that NKT cells can potentially participate in the biliary inflammation, but are not the primary drivers of disease in NODc3c4 mice.
Collapse
Affiliation(s)
- Elisabeth Schrumpf
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Xiaojun Jiang
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sebastian Zeissig
- Department of Medicine 1, University Medical Center Dresden Technical University Dresden, Dresden, Germany.,Center for Regenerative Therapies (CRTD), Technical University Dresden, Dresden, Germany
| | - Marion J Pollheimer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Research Unit for Experimental and Molecular Hepatology, Graz, Austria.,Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Jarl Andreas Anmarkrud
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Corey Tan
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Mark A Exley
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Medical & Human Sciences, University of Manchester, Manchester, United Kingdom.,Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tom H Karlsen
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Section of Gastroenterology, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Espen Melum
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Diseases and Transplantation Oslo University Hospital, Rikshospitalet, Oslo, Norway .,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Section of Gastroenterology, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
16
|
Huang W, Rainbow DB, Wu Y, Adams D, Shivakumar P, Kottyan L, Karns R, Aronow B, Bezerra J, Gershwin ME, Peterson LB, Wicker LS, Ridgway WM. A Novel Pkhd1 Mutation Interacts with the Nonobese Diabetic Genetic Background To Cause Autoimmune Cholangitis. THE JOURNAL OF IMMUNOLOGY 2017; 200:147-162. [PMID: 29158418 DOI: 10.4049/jimmunol.1701087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
We previously reported that NOD.c3c4 mice develop spontaneous autoimmune biliary disease (ABD) with anti-mitochondrial Abs, histopathological lesions, and autoimmune T lymphocytes similar to human primary biliary cholangitis. In this article, we demonstrate that ABD in NOD.c3c4 and related NOD ABD strains is caused by a chromosome 1 region that includes a novel mutation in polycystic kidney and hepatic disease 1 (Pkhd1). We show that a long terminal repeat element inserted into intron 35 exposes an alternative polyadenylation site, resulting in a truncated Pkhd1 transcript. A novel NOD congenic mouse expressing aberrant Pkhd1, but lacking the c3 and c4 chromosomal regions (NOD.Abd3), reproduces the immunopathological features of NOD ABD. RNA sequencing of NOD.Abd3 common bile duct early in disease demonstrates upregulation of genes involved in cholangiocyte injury/morphology and downregulation of immunoregulatory genes. Consistent with this, bone marrow chimera studies show that aberrant Pkhd1 must be expressed in the target tissue (cholangiocytes) and the immune system (bone marrow). Mutations of Pkhd1 produce biliary abnormalities in mice but have not been previously associated with autoimmunity. In this study, we eliminate clinical biliary disease by backcrossing this Pkhd1 mutation onto the C57BL/6 genetic background; thus, the NOD genetic background (which promotes autoimmunity) is essential for disease. We propose that loss of functional Pkhd1 on the NOD background produces early bile duct abnormalities, initiating a break in tolerance that leads to autoimmune cholangitis in NOD.Abd3 congenic mice. This model is important for understanding loss of tolerance to cholangiocytes and is relevant to the pathogenesis of several human cholangiopathies.
Collapse
Affiliation(s)
- Wenting Huang
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Daniel B Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Yuehong Wu
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - David Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Pranavkumar Shivakumar
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Leah Kottyan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Rebekah Karns
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Jorge Bezerra
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616; and
| | | | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267;
| |
Collapse
|
17
|
Ma WT, Liu QZ, Yang JB, Yang YQ, Zhao ZB, Ma HD, Gershwin ME, Lian ZX. A Mouse Model of Autoimmune Cholangitis via Syngeneic Bile Duct Protein Immunization. Sci Rep 2017; 7:15246. [PMID: 29127360 PMCID: PMC5681628 DOI: 10.1038/s41598-017-15661-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by the destruction of interlobular biliary ductules, which progressively leads to cholestasis, hepatic fibrosis, cirrhosis, and eventually liver failure. Several mouse models have been used to clarify the pathogenesis of PBC and are generally considered reflective of an autoimmune cholangitis. Most models focus on issues of molecular mimicry between the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), the major mitochondrial autoantigen of PBC and xenobiotic cross reactive chemicals. None have focused on the classic models of breaking tolerance, namely immunization with self-tissue. Here, we report a novel mouse model of autoimmune cholangitis via immunization with syngeneic bile duct protein (BDP). Our results demonstrate that syngeneic bile duct antigens efficiently break immune tolerance of recipient mice, capturing several key features of PBC, including liver-specific inflammation focused on portal tract areas, increased number and activation state of CD4 and CD8 T cells in the liver and spleen. Furthermore, the germinal center (GC) responses in the spleen were more enhanced in our mouse model. Finally, these mice were 100% positive for anti-mitochondrial antibodies (AMAs). In conclusion, we developed a novel mouse model of PBC that may help to elucidate the detailed mechanism of this complex disease.
Collapse
Affiliation(s)
- Wen-Tao Ma
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Qing-Zhi Liu
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Jing-Bo Yang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yan-Qing Yang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhi-Bin Zhao
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Zhe-Xiong Lian
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China. .,Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China. .,Innovation Center for Cell Signaling Network, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230027, China.
| |
Collapse
|
18
|
Tanakaa A, Leung PS, Young HA, Gershwin ME. Toward solving the etiological mystery of primary biliary cholangitis. Hepatol Commun 2017; 1:275-287. [PMID: 29057387 PMCID: PMC5646686 DOI: 10.1002/hep4.1044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary biliary cholangitis (PBC) is considered a model autoimmune disease due to its signature anti‐mitochondrial antibody (AMA) autoantibody, female predominance, and relatively specific portal infiltration and cholestasis. The identification and cloning of the major mitochondrial autoantigens recognized by AMA have served as an immunologic platform to identify the earliest events involved in loss of tolerance. Despite the relatively high concordance rate in identical twins, genome‐wide association studies have not proven clinically useful and have led to suggestions of epigenetic events. To understand the natural history and etiology of PBC, several murine models have been developed, including spontaneous models, models induced by chemical xenobiotic immunization, and by “designer” mice with altered interferon metabolism. Herein, we describe five such models, including 1) NOD.c3c4 mice, 2) dominant negative form of transforming growth factor receptor type II mice, 3) interleukin‐2R α−/− mice, 4) adenylate‐uridylate‐rich element Del−/− mice, and 5) 2‐octynoic acid‐conjugated bovine serum albumin immunized mice. Individually there is no perfect murine model, but collectively the models point to loss of tolerance to PDC‐E2, the major mitochondrial autoantigen, as the earliest event that occurs before clinical disease is manifest. Although there is no direct association of AMA titer and PBC disease progression, it is noteworthy that the triad of PBC monocytes, biliary apotopes, and AMA leads to an intense proinflammatory cytokine burst. Further, the recurrence of PBC after liver transplantation indicates that, due to major histocompatibility complex restriction, disease activity must include not only adaptive immunity but also innate immune mechanisms. We postulate that successful treatment of PBC may require a personalized approach with therapies designed for different stages of disease. (Hepatology Communications 2017;1:275–287)
Collapse
Affiliation(s)
- Atsushi Tanakaa
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Patrick Sc Leung
- Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA, USA
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA
| | - M Eric Gershwin
- Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA, USA
| |
Collapse
|
19
|
Briet C, Bourdenet G, Rogner UC, Becourt C, Tardivel I, Drouot L, Arnoult C, do Rego JC, Prevot N, Massaad C, Boyer O, Boitard C. The Spontaneous Autoimmune Neuromyopathy in ICOSL -/- NOD Mice Is CD4 + T-Cell and Interferon-γ Dependent. Front Immunol 2017; 8:287. [PMID: 28424681 PMCID: PMC5371727 DOI: 10.3389/fimmu.2017.00287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/28/2017] [Indexed: 01/07/2023] Open
Abstract
Abrogation of ICOS/ICOS ligand (ICOSL) costimulation prevents the onset of diabetes in the non-obese diabetic (NOD) mouse but, remarkably, yields to the development of a spontaneous autoimmune neuromyopathy. At the pathological level, ICOSL−/− NOD mice show stronger protection from insulitis than their ICOS−/− counterparts. Also, the ICOSL−/− NOD model carries a limited C57BL/6 region containing the Icosl nul mutation, but, in contrast to ICOS−/− NOD mice, no gene variant previously reported as associated to NOD diabetes. Therefore, we aimed at providing a detailed characterization of the ICOSL−/− NOD model. The phenotype observed in ICOSL−/− NOD mice is globally similar to that observed in ICOS−/− and ICOS−/−ICOSL−/− double-knockout NOD mice, manifested by a progressive locomotor disability first affecting the front paws as observed by catwalk analysis and a decrease in grip test performance. The pathology remains limited to peripheral nerve and striated muscle. The muscle disease is characterized by myofiber necrosis/regeneration and an inflammatory infiltrate composed of CD4+ T-cells, CD8+ T-cells, and myeloid cells, resembling human myositis. Autoimmune neuromyopathy can be transferred to NOD.scid recipients by CD4+ but not by CD8+ T-cells isolated from 40-week-old female ICOSL−/− NOD mice. The predominant role of CD4+ T-cells is further demonstrated by the observation that neuromyopathy does not develop in CIITA−/−ICOSL−/− NOD in contrast to β2microglobulin−/−ICOSL−/− NOD mice. Also, the cytokine profile of CD4+ T-cells infiltrating muscle and nerve of ICOSL−/− NOD mice is biased toward a Th1 pattern. Finally, adoptive transfer experiments show that diabetes development requires expression of ICOSL, in contrast to neuromyopathy. Altogether, the deviation of autoimmunity from the pancreas to skeletal muscles in the absence of ICOS/ICOSL signaling in NOD mice is strictly dependent on CD4+ T-cells, leads to myofiber necrosis and regeneration. It provides the first mouse model of spontaneous autoimmune myopathy akin to human myositis.
Collapse
Affiliation(s)
- Claire Briet
- INSERM U1016, Cochin Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Gwladys Bourdenet
- Normandie Université, UNIROUEN, INSERM, U1234, Rouen University Hospital, Department of Immunology, Rouen, France
| | | | | | | | - Laurent Drouot
- Normandie Université, UNIROUEN, INSERM, U1234, Rouen University Hospital, Department of Immunology, Rouen, France
| | | | | | - Nicolas Prevot
- Developmental Immunology, Department of Paediatrics, and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Olivier Boyer
- Normandie Université, UNIROUEN, INSERM, U1234, Rouen University Hospital, Department of Immunology, Rouen, France
| | - Christian Boitard
- INSERM U1016, Cochin Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
20
|
Schrumpf E, Kummen M, Valestrand L, Greiner TU, Holm K, Arulampalam V, Reims HM, Baines J, Bäckhed F, Karlsen TH, Blumberg RS, Hov JR, Melum E. The gut microbiota contributes to a mouse model of spontaneous bile duct inflammation. J Hepatol 2017; 66:382-389. [PMID: 27720803 PMCID: PMC5250551 DOI: 10.1016/j.jhep.2016.09.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 09/02/2016] [Accepted: 09/29/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS A strong association between human inflammatory biliary diseases and gut inflammation has led to the hypothesis that gut microbes and lymphocytes activated in the intestine play a role in biliary inflammation. The NOD.c3c4 mouse model develops spontaneous biliary inflammation in extra- and intrahepatic bile ducts. We aimed to clarify the role of the gut microbiota in the biliary disease of NOD.c3c4 mice. METHODS We sampled cecal content and mucosa from conventionally raised (CONV-R) NOD.c3c4 and NOD control mice, extracted DNA and performed 16S rRNA sequencing. NOD.c3c4 mice were rederived into a germ free (GF) facility and compared with CONV-R NOD.c3c4 mice. NOD.c3c4 mice were also co-housed with NOD mice and received antibiotics from weaning. RESULTS The gut microbial profiles of mice with and without biliary disease were different both before and after rederivation (unweighted UniFrac-distance). GF NOD.c3c4 mice had less distended extra-hepatic bile ducts than CONV-R NOD.c3c4 mice, while antibiotic treated mice showed reduction of biliary infarcts. GF animals also showed a reduction in liver weight compared with CONV-R NOD.c3c4 mice, and this was also observed in antibiotic treated NOD.c3c4 mice. Co-housing of NOD and NOD.c3c4 mice indicated that the biliary phenotype was neither transmissible nor treatable by co-housing with healthy mice. CONCLUSIONS NOD.c3c4 and NOD control mice show marked differences in the gut microbiota. GF NOD.c3c4 mice develop a milder biliary affection compared with conventionally raised NOD.c3c4 mice. Our findings suggest that the intestinal microbiota contributes to disease in this murine model of biliary inflammation. LAY SUMMARY Mice with liver disease have a gut microflora (microbiota) that differs substantially from normal mice. In a normal environment, these mice spontaneously develop disease in their bile ducts. However, when these mice, are raised in an environment devoid of bacteria, the disease in the bile ducts diminishes. Overall this clearly indicates that the bacteria in the gut (the gut microbiota) influences the liver disease in these mice.
Collapse
Affiliation(s)
- Elisabeth Schrumpf
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Centre and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Martin Kummen
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Centre and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Laura Valestrand
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Centre and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Gastroenterology, Division of Surgery, Inflammatory Medicine and Transplantation, Surgery, and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Thomas U Greiner
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Kristian Holm
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Centre and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Velmurugesan Arulampalam
- Core Facility for Germfree Research (CFGR), Department of Comparative Medicine and Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Henrik M Reims
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - John Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany; Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Fredrik Bäckhed
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Tom H Karlsen
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Centre and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Gastroenterology, Division of Surgery, Inflammatory Medicine and Transplantation, Surgery, and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes R Hov
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Centre and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Gastroenterology, Division of Surgery, Inflammatory Medicine and Transplantation, Surgery, and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Espen Melum
- Norwegian PSC Research Center, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Centre and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Gastroenterology, Division of Surgery, Inflammatory Medicine and Transplantation, Surgery, and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
21
|
A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis. PLoS One 2016; 11:e0159850. [PMID: 27441847 PMCID: PMC4956255 DOI: 10.1371/journal.pone.0159850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/09/2016] [Indexed: 12/21/2022] Open
Abstract
Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF) mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT) induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders.
Collapse
|
22
|
Abstract
Primary biliary cirrhosis (PBC) is characterized histologically by the presence of chronic non-suppurative destructive cholangitis of the small interlobular bile duct, leading to chronic progressive cholestasis. Most PBC patients are asymptomatic and have a reasonable prognosis, but a few develop esophageal varices or jaundice, rapidly leading to liver failure within a short period. As multiple factors appear to be involved in the onset of PBC, its clinical course may be complicated. Therefore, the use of an animal model would be valuable for clarifying the pathogenesis of PBC. Here, we review recent data of selected PBC models, particularly spontaneous models, xenobiotic immunized models, and infection-triggered models. There are a number of spontaneous models: the NOD.c3c4, dominant-negative TGF-β receptor II, IL-2Rα-/-, Scurfy, and Ae2a,b-/- mice. These animal models manifest distinct clinical and immunological features similar, but also often different, from those of human PBC. It is clear that a combination of genetic predisposition, environmental factors, and immunological dysfunction contribute to the pathogenesis of PBC. The diverse clinical course and complexity of the immunological mechanisms of PBC cannot be fully recapitulated solely any single animal model. The challenge remains to develop a progressive PBC disease model that exhibits fibrosis, and ultimately hepatic failure.
Collapse
|
23
|
Sharon D, Chen M, Zhang G, Girgis S, Sis B, Graham D, McDougall C, Wasilenko ST, Montano-Loza A, Mason AL. Impact of combination antiretroviral therapy in the NOD.c3c4 mouse model of autoimmune biliary disease. Liver Int 2015; 35:1442-50. [PMID: 25302564 PMCID: PMC4403978 DOI: 10.1111/liv.12699] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 10/02/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS The NOD.c3c4 mouse model develops autoimmune biliary disease characterized by spontaneous granulomatous cholangitis, antimitochondrial antibodies and liver failure. This model for primary biliary cirrhosis (PBC) has evidence of biliary infection with mouse mammary tumour virus (MMTV), suggesting that the virus may have a role in cholangitis development and progression of liver disease in this mouse model. We tested the hypothesis that MMTV infection is associated with cholangitis in the NOD.c3c4 mouse model by investigating whether antiretroviral therapy impacts on viral levels and liver disease. METHODS NOD.c3c4 mice were treated with combination antiretroviral therapy. Response to treatment was studied by measuring MMTV RNA in the liver, liver enzyme levels in serum and liver histology using a modified Ishak score. RESULTS Combination therapy with the reverse transcriptase inhibitors, tenofovir and emtricitabine, resulted in a significant reduction in serum liver enzyme levels, attenuation of cholangitis and decreased MMTV levels in the livers of NOD.c3c4 mice. Furthermore, treatment with the retroviral protease inhibitors, lopinavir and ritonavir, in addition to the reverse transcriptase inhibitors, resulted in further decrease in MMTV levels and attenuation of liver disease in this model. CONCLUSIONS The attenuation of cholangitis with regimens containing the reverse transcriptase inhibitors, tenofovir and emtricitabine, and the protease inhibitors, lopinavir and ritonavir, suggests that retroviral infection may play a role in the development of cholangitis in this model.
Collapse
Affiliation(s)
- David Sharon
- Department of Medicine, University of AlbertaEdmonton, AB, Canada
| | - Min Chen
- Department of Medicine, University of AlbertaEdmonton, AB, Canada
| | - Guangzhi Zhang
- Department of Medicine, University of AlbertaEdmonton, AB, Canada
| | - Safwat Girgis
- Department of Pathology, University of AlbertaEdmonton, AB, Canada
| | - Banu Sis
- Department of Pathology, University of AlbertaEdmonton, AB, Canada
| | - Don Graham
- Department of Medicine, University of AlbertaEdmonton, AB, Canada
| | | | | | | | - Andrew L Mason
- Department of Medicine, University of AlbertaEdmonton, AB, Canada,Correspondence Andrew L. Mason, Division of Gastroenterology, Center of Excellence in Gastrointestinal Inflammation and Immunity Research 7-142 KGR, University of Alberta, Edmonton, Alberta, T6G 2X8 Canada, Tel: (780) 492-8172, Fax: (780) 492-1655, e-mail:
| |
Collapse
|
24
|
Role of novel retroviruses in chronic liver disease: assessing the link of human betaretrovirus with primary biliary cirrhosis. Curr Infect Dis Rep 2015; 17:460. [PMID: 25754451 PMCID: PMC4353873 DOI: 10.1007/s11908-014-0460-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A human betaretrovirus resembling mouse mammary tumor virus has been characterized in patients with primary biliary cirrhosis. The agent triggers a disease-specific phenotype in vitro with aberrant cell-surface expression of mitochondrial antigens. The presentation of a usually sequestered self-protein is thought to lead to the loss of tolerance and the production of anti-mitochondrial antibodies associated with the disease. Similar observations have been made in mouse models, where mouse mammary tumor virus infection has been linked with the development of cholangitis and production of anti-mitochondrial antibodies. The use of combination antiretroviral therapy has been shown to impact on histological and biochemical disease in mouse models of autoimmune biliary disease and in clinical trials of patients with primary biliary cirrhosis. However, the HIV protease inhibitors are not well tolerated in patients with primary biliary cirrhosis, and more efficacious regimens will be required to clearly link reduction of viral load with improvement of cholangitis.
Collapse
|
25
|
Martínez AK, Maroni L, Marzioni M, Ahmed ST, Milad M, Ray D, Alpini G, Glaser SS. Mouse models of liver fibrosis mimic human liver fibrosis of different etiologies. CURRENT PATHOBIOLOGY REPORTS 2014; 2:143-153. [PMID: 25396098 DOI: 10.1007/s40139-014-0050-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The liver has the amazing capacity to repair itself after injury; however, the same processes that are involved in liver regeneration after acute injury can cause serious consequences during chronic liver injury. In an effort to repair damage, activated hepatic stellate cells trigger a cascade of events that lead to deposition and accumulation of extracellular matrix components causing the progressive replacement of the liver parenchyma by scar tissue, thus resulting in fibrosis. Although fibrosis occurs as a result of many chronic liver diseases, the molecular mechanisms involved depend on the underlying etiology. Since studying liver fibrosis in human subjects is complicated by many factors, mouse models of liver fibrosis that mimic the human conditions fill this void. This review summarizes the general mouse models of liver fibrosis and mouse models that mimic specific human disease conditions that result in liver fibrosis. Additionally, recent progress that has been made in understanding the molecular mechanisms involved in the fibrogenic processes of each of the human disease conditions is highlighted.
Collapse
Affiliation(s)
- Allyson K Martínez
- Department of Internal Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Syed T Ahmed
- Department of Internal Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, Texas ; Baylor Scott & White, Texas A&M Internal Medicine Residency Program, Temple, TX
| | - Mena Milad
- Baylor Scott & White, Texas A&M Internal Medicine Residency Program, Temple, TX
| | - Debolina Ray
- Department of Internal Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Gianfranco Alpini
- Department of Internal Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, Texas ; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas ; Research, Central Texas Veterans Health Care System, Temple, Texas
| | - Shannon S Glaser
- Department of Internal Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, Texas ; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas ; Research, Central Texas Veterans Health Care System, Temple, Texas
| |
Collapse
|
26
|
Animal Models in Primary Biliary Cirrhosis and Primary Sclerosing Cholangitis. Clin Rev Allergy Immunol 2014; 48:207-17. [DOI: 10.1007/s12016-014-8442-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Abstract
Primary biliary cirrhosis (PBC) is an autoimmune liver disease characterized by selective destruction of intrahepatic cholangiocytes. Mechanisms underlying the development and progression of the disease are still controversial and largely undefined. Evidence suggests that PBC results from an articulated immunologic response against an immunodominant mitochondrial autoantigen, the E2 component of the pyruvate dehydrogenase complex (PDC-E2); characteristics of the disease are also the presence of disease-specific antimitochondrial autoantibodies (AMAs) and autoreactive CD4 and CD8 T cells. Recent evidence suggests that cholangiocytes show specific immunobiological features that are responsible for the selective targeting of those cells by the immune system. The immune reaction in PBC selectively targets small sized, intrahepatic bile ducts; although a specific reason for that has not been defined yet, it has been established that the biliary epithelium displays a unique heterogeneity, for which the physiological and pathophysiological features of small and large cholangiocytes significantly differ. In this review article, the authors provide a critical overview of the current evidence on the role of cholangiocytes in the immune-mediated destruction of the biliary tree that characterizes PBC.
Collapse
Affiliation(s)
- Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Luca Maroni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas,Scott & White Digestive Disease Research Center, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas,Department of Medicine, Division Gastroenterology, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas,Scott & White Digestive Disease Research Center, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas,Department of Medicine, Division Gastroenterology, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
28
|
Kopec AK, Sullivan BP, Kassel KM, Joshi N, Luyendyk JP. Toxicogenomic analysis reveals profibrogenic effects of trichloroethylene in autoimmune-mediated cholangitis in mice. Toxicol Sci 2014; 141:515-23. [PMID: 25055964 DOI: 10.1093/toxsci/kfu148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies suggest that exposure to environmental chemicals increases the risk of developing autoimmune liver disease. However, the identity of specific chemical perpetrators and the mechanisms whereby environmental chemicals modify liver disease is unclear. Previous studies link exposure to trichloroethylene (TCE) with the development of autoimmune liver disease and exacerbation of autoimmunity in lupus-prone MRL mice. In this study, we utilized NOD.c3c4 mice, which spontaneously develop autoimmune cholangitis bearing resemblance to some features of primary biliary cirrhosis. Nine-week-old female NOD.c3c4 mice were given TCE (0.5 mg/ml) or its vehicle (1% Cremophor-EL) in drinking water for 4 weeks. TCE had little effect on clinical chemistry, biliary cyst formation, or hepatic CD3+ T-cell accumulation. Hepatic microarray profiling revealed a dramatic suppression of early growth response 1 (EGR1) mRNA in livers of TCE-treated mice, which was verified by qPCR and immunohistochemical staining. Consistent with a reported link between reduced EGR1 expression and liver fibrosis, TCE increased hepatic type I collagen (COL1A1) mRNA and protein levels in livers of NOD.c3c4 mice. In contrast, TCE did not increase COL1A1 expression in NOD.ShiLtJ mice, which do not develop autoimmune cholangitis. These results suggest that in the context of concurrent autoimmune liver disease with a genetic basis, modification of hepatic gene expression by TCE may increase profibrogenic signaling in the liver. Moreover, these studies suggest that NOD.c3c4 mice may be a novel model to study gene-environment interactions critical for the development of autoimmune liver disease.
Collapse
Affiliation(s)
- Anna K Kopec
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
| | - Bradley P Sullivan
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Karen M Kassel
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Nikita Joshi
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
29
|
HIRSCHFIELD GIDEONM, CHAPMAN ROGERW, KARLSEN TOMH, LAMMERT FRANK, LAZARIDIS KONSTANTINOSN, MASON ANDREWL. The genetics of complex cholestatic disorders. Gastroenterology 2013; 144:1357-74. [PMID: 23583734 PMCID: PMC3705954 DOI: 10.1053/j.gastro.2013.03.053] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/24/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
Cholestatic liver diseases are caused by a range of hepatobiliary insults and involve complex interactions among environmental and genetic factors. Little is known about the pathogenic mechanisms of specific cholestatic diseases, which has limited our ability to manage patients with these disorders. However, recent genome-wide studies have provided insight into the pathogenesis of gallstones, primary biliary cirrhosis, and primary sclerosing cholangitis. A lithogenic variant in the gene that encodes the hepatobiliary transporter ABCG8 has been identified as a risk factor for gallstone disease; this variant has been associated with altered cholesterol excretion and metabolism. Other variants of genes encoding transporters that affect the composition of bile have been associated with cholestasis, namely ABCB11, which encodes the bile salt export pump, and ABCB4, which encodes hepatocanalicular phosphatidylcholine floppase. In contrast, studies have associated primary biliary cirrhosis and primary sclerosing cholangitis with genes encoding major histocompatibility complex proteins and identified loci associated with microbial sensing and immune regulatory pathways outside this region, such as genes encoding IL12, STAT4, IRF5, IL2 and its receptor (IL2R), CD28, and CD80. These discoveries have raised interest in the development of reagents that target these gene products. We review recent findings from genetic studies of patients with cholestatic liver disease. Future characterization of genetic variants in animal models, stratification of risk alleles by clinical course, and identification of interacting environmental factors will increase our understanding of these complex cholestatic diseases.
Collapse
Affiliation(s)
- GIDEON M. HIRSCHFIELD
- Centre for Liver Research, National Institute for Health Research Biomedical Research Unit, University of Birmingham, Birmingham, England
| | - ROGER W. CHAPMAN
- Department of Gastroenterology, John Radcliffe Hospital, Oxford, England
| | - TOM H. KARLSEN
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - FRANK LAMMERT
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - KONSTANTINOS N. LAZARIDIS
- Center for Basic Research in Digestive Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - ANDREW L. MASON
- Centre of Excellence in Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
|
31
|
Concepcion AR, Medina JF. Approaches to the pathogenesis of primary biliary cirrhosis through animal models. Clin Res Hepatol Gastroenterol 2012; 36:21-8. [PMID: 21862437 DOI: 10.1016/j.clinre.2011.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/11/2011] [Indexed: 02/04/2023]
Abstract
Primary biliary cirrhosis (PBC) is a chronic and progressive cholestatic liver disease of unknown etiopathogenesis that mainly affects middle-aged women. Patients show non-suppurative cholangitis with damage and destruction of the small- and medium-sized intrahepatic bile ducts. Characteristically, the disease is strongly associated with autoimmune phenomena such as the appearance of serum antimitochondrial autoantibodies (AMA) and portal infiltrating T cells against the inner lipoyl domain in the E2 component of the pyruvate dehydrogenase complex (PDC-E2). Here we review the major characteristics of a series of inducible and genetically modified animal models of PBC and analyze the similarities and differences to PBC features in humans.
Collapse
Affiliation(s)
- Axel R Concepcion
- Division of Gene Therapy and Hepatology, CIMA, Clinic and School of Medicine University of Navarra, and Ciberehd, Pamplona, Spain
| | | |
Collapse
|
32
|
Leung PSC, Yang GX, Dhirapong A, Tsuneyama K, Ridgway WM, Gershwin ME. Animal models of primary biliary cirrhosis: materials and methods. Methods Mol Biol 2012; 900:291-316. [PMID: 22933075 DOI: 10.1007/978-1-60761-720-4_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Primary biliary cirrhosis (PBC) is a female-predominant autoimmune disease of the liver characterized by immune-mediated destruction of the intrahepatic bile ducts and the presence of antimitochondrial antibodies (AMAs). There have been limited advances in understanding the molecular pathogenesis of the disease because of the difficulty in accessing human tissues and the absence of appropriate animal models. Recently, several unique murine models that manifest the serological, biochemical, and histological features similar to human PBC have been described. In this article, we discuss the current data on three spontaneous and two induced murine models of PBC. The spontaneous models are: (a) NOD.c3c4, (b) dominant negative TGF-β receptor II (dnTGFβRII), and (c) IL-2Rα(-/-) mouse line models. The two induced models are: (a) xenobiotic and (b) Novosphingobium aromaticivorans immunized mice. These animal models provide various important platforms to further investigate the etiology and mechanisms of pathogenesis in PBC. Laboratory methodologies and the protocols that are used in evaluating these animal models are described. Finally, we stress the importance of realizing the strengths and limitations of the animal models are essential in data analysis and their application in therapeutic studies.
Collapse
Affiliation(s)
- Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, USA.
| | | | | | | | | | | |
Collapse
|
33
|
PBC: Animal Models of Cholangiopathies and Possible Endogenous Viral Infections. Int J Hepatol 2012; 2012:649290. [PMID: 22007316 PMCID: PMC3168943 DOI: 10.1155/2012/649290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 06/19/2011] [Indexed: 01/19/2023] Open
Abstract
Primary Biliary Cirrhosis (PBC) is considered an autoimmune disease characterized by immune-mediated destruction of the intrahepatic bile ducts and its characteristic serologic marker, the anti-mitochondrial antibody (AMA). Several factors were proposed to clarify the pathological and immunological mechanisms of PBC. Immunological reaction with a bacterial or a viral association was identified in the previous report, and it seems probable that PBC was thought to have such an etiology. The majority of patients with PBC was reported to have both RT-PCR and immunohistochemistry evidence of human betaretrovirus infection in lymph nodes or in 2008, the patient who developed PBC with high HIV viral load had an antiviral therapy and recovered. To understand the etiology of PBC associated with infection, several factors should be considered and especially animal models may be useful. In this paper, we introduce three typical animal models of PBC: the dominant-negative form of transforming growth factor-β receptor type II (dnTGFβRII) mouse, IL-2Rα(-/-) mouse and NOD.c3c4 mouse, are enumerated and described, and we discuss previous reports of viral infection associated with PBC and consider the etiology of PBC from our analysis of results in NOD.c3c4 mouse.
Collapse
|
34
|
McGuire HM, Vogelzang A, Ma CS, Hughes WE, Silveira PA, Tangye SG, Christ D, Fulcher D, Falcone M, King C. A subset of interleukin-21+ chemokine receptor CCR9+ T helper cells target accessory organs of the digestive system in autoimmunity. Immunity 2011; 34:602-15. [PMID: 21511186 DOI: 10.1016/j.immuni.2011.01.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 08/26/2010] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
This study describes a CD4+ T helper (Th) cell subset marked by coexpression of the cytokine interleukin 21 (IL-21) and the gut-homing chemokine receptor CCR9. Although CCR9+ Th cells were observed in healthy mice and humans, they were enriched in the inflamed pancreas and salivary glands of NOD mice and in the circulation of Sjögren's syndrome patients. CCR9+ Th cells expressed large amounts of IL-21, inducible T cell costimulator (ICOS), and the transcription factors Bcl6 and Maf, and also supported antibody production from B cells, thereby resembling T follicular B helper (Tfh) cells. However, in contrast to Tfh cells, CCR9+ Th cells displayed limited expression of CXCR5 and the targets of CCR9+ Th cells were CD8+ T cells whose responsiveness to IL-21 was necessary for the development of diabetes. Thus, CCR9+ Th cells are a subset of IL-21-producing T helper cells that influence regional specification of autoimmune diseases that affect accessory organs of the digestive system.
Collapse
Affiliation(s)
- Helen M McGuire
- Department of Immunology, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Penz-Österreicher M, Österreicher CH, Trauner M. Fibrosis in autoimmune and cholestatic liver disease. Best Pract Res Clin Gastroenterol 2011; 25:245-58. [PMID: 21497742 PMCID: PMC3134112 DOI: 10.1016/j.bpg.2011.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/18/2011] [Indexed: 01/31/2023]
Abstract
Autoimmune and cholestatic liver disease account for a significant part of end-stage liver disease and are leading indications for liver transplantation. Especially cholestatic liver diseases (primary biliary cirrhosis and primary sclerosing cholangitis) appear to be different from other chronic liver diseases with regards to pathogenesis. Portal fibroblasts located in the connective tissue surrounding bile ducts appear to be different from hepatic stellate cells with regards to expression of marker proteins and response the profibrogenic and mitogenic stimuli. In addition there is increasing evidence for a cross talk between activated cholangiocytes and portal myofibroblasts. Several animal models have improved our understanding of the mechanisms underlying these chronic liver diseases. In the present review, we discuss the current concepts and ideas with regards to myofibroblastic cell populations, mechanisms of fibrosis, summarize characteristic histological findings and currently employed animal models of autoimmune and cholestatic liver disease.
Collapse
Affiliation(s)
- Melitta Penz-Österreicher
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Christoph H. Österreicher
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria,Corresponding author. Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 43 18-20, A-1090 Vienna, Austria. Tel.: +43 140 400 4741; fax: +43 140 400 4735.
| |
Collapse
|
36
|
Moritoki Y, Tsuda M, Tsuneyama K, Zhang W, Yoshida K, Lian ZX, Yang GX, Ridgway WM, Wicker LS, Ansari AA, Gershwin ME. B cells promote hepatic inflammation, biliary cyst formation, and salivary gland inflammation in the NOD.c3c4 model of autoimmune cholangitis. Cell Immunol 2011; 268:16-23. [PMID: 21349500 DOI: 10.1016/j.cellimm.2011.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/02/2011] [Accepted: 01/24/2011] [Indexed: 12/16/2022]
Abstract
There are now several murine models of autoimmune cholangitis that have features both similar and distinct from human PBC. One such model, the NOD.c3c4 mouse, manifests portal cell infiltrates, anti-mitochondrial antibodies but also biliary cysts. The biliary cysts are not a component of PBC and not found in the other murine models. To address the immunopathology in these mice, we generated genetically B cell deficient Igμ(-/-) NOD.c3c4 mice and compared the immunopathology of these animals to control B cell sufficient NOD.c3c4 mice. B cell deficient mice demonstrated decreased number of non-B cells in the liver accompanied by reduced numbers of activated natural killer cells. The degree of granuloma formation and bile duct damage were comparable to NOD.c3c4 mice. In contrast, liver inflammation, biliary cyst formation and salivary gland inflammation was significantly attenuated in these B cell deficient mice. In conclusion, B cells play a critical role in promoting liver inflammation and also contribute to cyst formation as well as salivary gland pathology in autoimmune NOD.c3c4 mice, illustrating a critical role of B cells in modulating specific organ pathology and, in particular, in exacerbating both the biliary disease and the sialadenitis.
Collapse
Affiliation(s)
- Yuki Moritoki
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mattner J. Genetic susceptibility to autoimmune liver disease. World J Hepatol 2011; 3:1-7. [PMID: 21307981 PMCID: PMC3035697 DOI: 10.4254/wjh.v3.i1.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/12/2010] [Accepted: 12/19/2010] [Indexed: 02/06/2023] Open
Abstract
Autoimmune hepatitis (AIH), primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC) are considered as putative autoimmune diseases of the liver. Whereas strong evidence that bacterial infection may trigger PBC exists, the etiologies for PSC and AIH remain unknown. Although there have been significant discoveries of genetic polymorphisms that may underlie the susceptibility to these liver diseases, their associations with environmental triggers and the subsequent implications have been difficult to elucidate. While single nucleotide polymorphisms within the negative costimulatory molecule cytotoxic T lymphocyte antigen 4 (CTLA-4) have been suggested as genetic susceptibility factors for all three disorders, we discuss the implications of CTLA-4 susceptibility alleles mainly in the context of PBC, where Novosphingobium aromaticivorans, an ubiquitous alphaproteobacterium, has recently been specifically associated with the pathogenesis of this devastating liver disease. Ultimately, the discovery of infectious triggers of PBC may expand the concept of genetic susceptibility in immune-mediated liver diseases from the concept of aberrant immune responses against self-antigens to insufficient and/or inappropriate immunological defense mechanisms allowing microbes to cross natural barriers, establish infection and damage respective target organs.
Collapse
Affiliation(s)
- Jochen Mattner
- Jochen Mattner, Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen D91054, Germany
| |
Collapse
|
38
|
Yang GX, Wu Y, Tsukamoto H, Leung PS, Lian ZX, Rainbow DB, Hunter KM, Morris GA, Lyons PA, Peterson LB, Wicker LS, Gershwin ME, Ridgway WM. CD8 T cells mediate direct biliary ductule damage in nonobese diabetic autoimmune biliary disease. THE JOURNAL OF IMMUNOLOGY 2010; 186:1259-67. [PMID: 21169553 DOI: 10.4049/jimmunol.1001597] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We previously described the NOD.c3c4 mouse, which is protected from type 1 diabetes (T1D) because of protective alleles at multiple insulin-dependent diabetes (Idd) genes, but develops autoimmune biliary disease (ABD) resembling primary biliary cirrhosis (PBC). In this paper, we characterize the NOD.ABD strain, which is genetically related to the NOD.c3c4 strain but develops both ABD and T1D. Histologically, NOD.ABD biliary disease is indistinguishable from that in NOD.c3c4 mice. The frequency of effector memory (CD44(+)CD62L(-)) and central memory (CD44(+)CD62L(+)) CD8 T cells is significantly increased in the intrahepatic lymphocyte fraction of NOD.ABD mice, and NOD.ABD CD8 T cells produce more IFN-γ and TNF-α, compared with controls. NOD.ABD splenocytes can transfer ABD and T1D to NOD.c3c4 scid mice, but only T1D to NOD scid mice, suggesting that the genetic origin of the target organ and/or its innate immune cells is critical to disease pathogenesis. The disease transfer model, importantly, shows that biliary duct damage (characteristic of PBC) and inflammation precede biliary epithelial cell proliferation. Unlike T1D where both CD4 and CD8 T cells are required for disease transfer, purified NOD.ABD CD8 T cells can transfer liver inflammation into NOD.c3c4 scid recipients, and disease transfer is ameliorated by cotransferring T regulatory cells. Unlike NOD.c3c4 mice, NOD.ABD mice do not develop anti-nuclear or anti-Smith autoantibodies; however, NOD.ABD mice do develop the antipyruvate dehydrogenase Abs typical of human PBC. The NOD.ABD strain is a model of immune dysregulation affecting two organ systems, most likely by mechanisms that do not completely coincide.
Collapse
Affiliation(s)
- Guo-Xiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Thayer TC, Wilson SB, Mathews CE. Use of nonobese diabetic mice to understand human type 1 diabetes. Endocrinol Metab Clin North Am 2010; 39:541-61. [PMID: 20723819 PMCID: PMC2925291 DOI: 10.1016/j.ecl.2010.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In 1922, Leonard Thompson received the first injections of insulin prepared from the pancreas of canine test subjects. From pancreatectomized dogs to the more recent development of animal models that spontaneously develop autoimmune syndromes, animal models have played a meaningful role in furthering diabetes research. Of these animals, the nonobese diabetic (NOD) mouse is the most widely used for research in type 1 diabetes (T1D) because the NOD shares several genetic and immunologic traits with the human form of the disease. In this article, the authors discuss the similarities and differences in NOD and human T1D and the potential role of NOD mice in future preclinical studies, aiming to provide a better understanding of the genetic and immune defects that lead to T1D.
Collapse
Affiliation(s)
- Terri C Thayer
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
40
|
Mason AL, Zhang G. Linking human beta retrovirus infection with primary biliary cirrhosis. ACTA ACUST UNITED AC 2010; 34:359-66. [PMID: 20580176 DOI: 10.1016/j.gcb.2010.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 04/28/2010] [Indexed: 02/05/2023]
Abstract
Several environmental agents have been linked with primary biliary cirrhosis (PBC) that include bacteria, xenobiotics and viruses. A human beta retrovirus (HBRV) related to mouse mammary tumor virus has been cloned and characterized from patients with PBC. This agent can be detected in the majority of patients' perihepatic lymph nodes by immunochemistry and RT-PCR. The HBRV has recently been isolated in culture and integration sites have been identified in the genome of patients to provide convincing evidence of beta retrovirus infection in patients. Three lines of evidence support a role for the virus in PBC. First, the beta retrovirus is linked with aberrant expression of mitochondrial protein(s) on the biliary epithelium cell (BEC) surface, a disease specific phenotype. Second, the related agent, mouse mammary tumor virus has been linked with autoimmune biliary disease in the NOD.c3c4 mouse model for PBC. In this mouse model, the virus is localized to diseased biliary epithelium that also display aberrant expression of the mitochondrial autoantigens. In translational studies, both patients with PBC and NOD.c3c4 mice demonstrate significant improvement in biliary disease with combination antiviral therapy. An overview of the biological relevance of the beta retrovirus infection in PBC will be discussed in this review.
Collapse
Affiliation(s)
- A L Mason
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada.
| | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Primary biliary cirrhosis (PBC) is a human autoimmune liver disease whose molecular pathogenesis is poorly understood because of the difficulty in accessing human tissue and the absence of appropriate animal models. Recently, several unique murine models of human PBC have been discovered. These models have great potential for illustrating the cause and the cellular events that lead to biliary-specific damage. The purpose of this review is to summarize recent progress in these models. RECENT FINDINGS The murine models of autoimmune cholangitis include the transforming growth factor beta receptor II (TGF-betaRII) dominant-negative (dnTGF-betaRII), IL-2 receptor alpha deleted (IL-2Ralpha-/-), scurfy, nonobese diabetic (NOD) c3c4, and Ae2 gene-disrupted (Ae2a,b-/-) mice. Recently, we have also established a successful murine model following the immunization with a chemical mimicry of the lipoyl-lysine residue of the E2 component of PDC-E2. SUMMARY These emerging murine models have greatly enabled researchers to address the pathogenesis of human PBC and to elucidate pathogenic factors. These models will ultimately lead to new therapeutic options for human PBC.
Collapse
|
42
|
Sim DL, Bagavant H, Scindia YM, Ge Y, Gaskin F, Fu SM, Deshmukh US. Genetic complementation results in augmented autoantibody responses to lupus-associated antigens. THE JOURNAL OF IMMUNOLOGY 2009; 183:3505-11. [PMID: 19667095 DOI: 10.4049/jimmunol.0901207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lupus-prone female New Zealand Mixed (NZM)2328 mice develop high titers of anti-nuclear and anti-dsDNA autoantibodies. Despite high expression of type I IFNs, these mice do not develop autoantibodies to the small nuclear ribonucleoprotein (snRNP) complex. Thus, additional genetic factors must regulate the generation of anti-snRNP autoantibodies. In contrast, despite much lower expression of type 1 IFNs, the diabetes-prone NOD mice spontaneously make anti-snRNP autoantibodies, albeit at a low incidence. To determine whether combination of high type I IFN response of NZM mice with appropriate susceptibility genes of NOD mice would result in anti-snRNP Ab response, cohorts of (NZM2328 x NOD)F(1) mice were generated and characterized for development of autoimmunity. In comparison with parental strains, the PBMCs from F(1) mice showed intermediate expression of type I IFN-responsive genes and augmented expression of IL-6 transcripts. TLR7 expression was similar in all strains. The F(1) mice had very high incidence and titer of anti-snRNP autoantibodies, anti-nuclear Abs, and anti-dsDNA autoantibodies. The levels of anti-snRNP autoantibody correlated with the expression levels of type I IFN-responsive genes. None of the F(1) mice developed diabetes, and only female mice developed severe renal disease. Our data demonstrate that only in presence of appropriate susceptibility genes, anti-snRNP autoantibodies are induced and type I IFNs amplify this response. A synergy between IL-6 and type I IFNs might be critical for amplifying overall autoantibody responses in systemic lupus erythematosus. In NZM/NOD F(1) mouse, genetic complementation between NZM and NOD genes leads to expression of phenotypes similar to those seen in certain lupus patients.
Collapse
Affiliation(s)
- Davis L Sim
- Department of Microbiology, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Wakabayashi K, Yoshida K, Leung PSC, Moritoki Y, Yang GX, Tsuneyama K, Lian ZX, Hibi T, Ansari AA, Wicker LS, Ridgway WM, Coppel RL, Mackay IR, Gershwin ME. Induction of autoimmune cholangitis in non-obese diabetic (NOD).1101 mice following a chemical xenobiotic immunization. Clin Exp Immunol 2009; 155:577-86. [PMID: 19094117 PMCID: PMC2669535 DOI: 10.1111/j.1365-2249.2008.03837.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2008] [Indexed: 01/03/2023] Open
Abstract
Our laboratory has suggested that loss of tolerance to pyruvate dehydrogenase (PDC-E2) leads to an anti-mitochondrial antibody response and autoimmune cholangitis, similar to human primary biliary cirrhosis (PBC). We have suggested that this loss of tolerance can be induced either via chemical xenobiotic immunization or exposure to select bacteria. Our work has also highlighted the importance of genetic susceptibility. Using the non-obese diabetic (NOD) congenic strain 1101 (hereafter referred to as NOD.1101 mice), which has chromosome 3 regions from B6 introgressed onto a NOD background, we exposed animals to 2-octynoic acid (2OA) coupled to bovine serum albumin (BSA). 2OA has been demonstrated previously by a quantitative structural activity relationship to react as well as or better than lipoic acid to anti-mitochondrial antibodies. We demonstrate herein that NOD.1101 mice immunized with 2OA-BSA, but not with BSA alone, develop high titre anti-mitochondrial antibodies and histological features, including portal infiltrates enriched in CD8(+) cells and liver granulomas, similar to human PBC. We believe this model will allow the rigorous dissection of early immunogenetic cause of biliary damage.
Collapse
Affiliation(s)
- K Wakabayashi
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ridgway WM, Peterson LB, Todd JA, Rainbow DB, Healy B, Burren OS, Wicker LS. Gene-gene interactions in the NOD mouse model of type 1 diabetes. Adv Immunol 2009; 100:151-75. [PMID: 19111166 DOI: 10.1016/s0065-2776(08)00806-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human genome wide association studies (GWAS) have recently identified at least four new, non-MHC-linked candidate genes or gene regions causing type one diabetes (T1D), highlighting the need for functional models to investigate how susceptibility alleles at multiple common genes interact to mediate disease. Progress in localizing genes in congenic strains of the nonobese diabetic (NOD) mouse has allowed the reproducible testing of gene functions and gene-gene interactions that can be reflected biologically as intrapathway interactions, for example, IL-2 and its receptor CD25, pathway-pathway interactions such as two signaling pathways within a cell, or cell-cell interactions. Recent studies have identified likely causal genes in two congenic intervals associated with T1D, Idd3, and Idd5, and have documented the occurrence of gene-gene interactions, including "genetic masking", involving the genes encoding the critical immune molecules IL-2 and CTLA-4. The demonstration of gene-gene interactions in congenic mouse models of T1D has major implications for the understanding of human T1D since such biological interactions are highly likely to exist for human T1D genes. Although it is difficult to detect most gene-gene interactions in a population in which susceptibility and protective alleles at many loci are randomly segregating, their existence as revealed in congenic mice reinforces the hypothesis that T1D alleles can have strong biological effects and that such genes highlight pathways to consider as targets for immune intervention.
Collapse
Affiliation(s)
- William M Ridgway
- University of Pittsburgh School of Medicine, 725 SBST, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Meagher C, Tang Q, Fife BT, Bour-Jordan H, Wu J, Pardoux C, Bi M, Melli K, Bluestone JA. Spontaneous development of a pancreatic exocrine disease in CD28-deficient NOD mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:7793-803. [PMID: 18523243 DOI: 10.4049/jimmunol.180.12.7793] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autoimmune pancreatitis (AIP) is a heterogeneous autoimmune disease in humans characterized by a progressive lymphocytic and plasmacytic infiltrate in the exocrine pancreas. In this study, we report that regulatory T cell-deficient NOD.CD28KO mice spontaneously develop AIP that closely resembles the human disease. NOD mouse AIP was associated with severe periductal and parenchymal inflammation of the exocrine pancreas by CD4(+) T cells, CD8(+) T cells, and B cells. Spleen CD4(+) T cells were found to be both necessary and sufficient for the development of AIP. Autoantibodies and autoreactive T cells from affected mice recognized a approximately 50-kDa protein identified as pancreatic amylase. Importantly, administration of tolerogenic amylase-coupled fixed spleen cells significantly ameliorated disease severity, suggesting that this protein functions as a key autoantigen. The establishment and characterization of this spontaneous pancreatic amylase-specific AIP in regulatory T cell-deficient NOD.CD28KO mice provides an excellent model for the study of disease pathogenesis and development of new therapies for human autoimmune pancreatitis.
Collapse
Affiliation(s)
- Craig Meagher
- Diabetes Center, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wakabayashi K, Lian ZX, Leung PSC, Moritoki Y, Tsuneyama K, Kurth MJ, Lam KS, Yoshida K, Yang GX, Hibi T, Ansari AA, Ridgway WM, Coppel RL, Mackay IR, Gershwin ME. Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology 2008; 48:531-40. [PMID: 18563844 PMCID: PMC3753011 DOI: 10.1002/hep.22390] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED There have been important advances in defining effector mechanisms for several human autoimmune diseases. However, for most human autoimmune diseases, the induction stage is less well defined and there are very few clues on etiology. Our laboratory has focused on defining the molecular basis of autoantibody recognition and epitope modification in primary biliary cirrhosis (PBC). Our work has demonstrated that antibodies to mitochondria, the hallmark of disease, are directed against a very conserved site of pyruvate dehydrogenase, the E2 subunit of pyruvate dehydrogenase (PDC-E2). We have also demonstrated that several chemical xenobiotics, chosen based on quantitative structural activity relationship analysis and rigorous epitope analysis, when coupled to the lysine residue that normally binds the lipoic acid cofactor of PDC-E2, reacts as well or better to PBC sera than native autoantigen. In the present studies, we immunized C57BL/6 mice with one such xenobiotic, 2-octynoic acid, coupled to bovine serum albumin and we followed the mice for 24 weeks. Animals were studied for appearance of histologic lesions as well as appearance of antibodies to PDC-E2, serum levels of tumor necrosis factor-alpha and interferon-gamma, and splenic and liver lymphoid phenotyping by flow cytometry. Mice immunized with 2-octynoic acid manifest autoimmune cholangitis, typical mitochondrial autoantibodies, increased liver lymphoid cell numbers, an increase in CD8(+) liver infiltrating cells, particularly CD8(+) T cells that coexpress CD44, and finally an elevation of serum tumor necrosis factor-alpha and interferon-gamma. CONCLUSION these data provide a persuasive argument in favor of an environmental origin for human PBC.
Collapse
Affiliation(s)
- Kanji Wakabayashi
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee SO. [Physiologic and pathologic experimental models for studying cholangiocytes]. THE KOREAN JOURNAL OF HEPATOLOGY 2008; 14:139-49. [PMID: 18617761 DOI: 10.3350/kjhep.2008.14.2.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cholangiocytes (epithelial cells lining the intra- and extrahepatic bile ducts) and hepatocytes are two major components of liver epithelia. Although cholangiocytes are less numerous than hepatocytes, they are involved in both bile secretion and diverse cellular processes such as cell-cycle phenomena, cell signaling, and interactions with other cells, matrix components, foreign organisms, and xenobiotics. Cholangiocytes are also targets in several human diseases including cholangiocarcinoma, primary sclerosing cholangitis, autoimmune cholangitis, and vanishing bile-duct syndrome. The rapid advances in experimental biology technologies are greatly expanding interest in and knowledge of the physiology and pathophysiology of cholangiocytes. This review focuses on the progress of in vivo and in vitro experimental models in elucidating the physiologic functions of cholangiocytes and the pathophysiology of various cholangiopathies. The following aspects are reviewed: isolation of cholangiocytes from the liver and their heterogeneity, various culture systems, establishment of cholangiocyte cell lines, isolation and usage of intrahepatic bile-duct units, three-dimensional modeling of the bile duct, experimental models for inducing cholangiocyte proliferation, and various cholangiopathies such as cholangiocarcinoma, primary sclerosing cholangitis, and autoimmune cholangitis.
Collapse
Affiliation(s)
- Seung-Ok Lee
- Division of Gatroenterology and Hepatology, Department of Internal Medicine, Chonbuk National University Hospital and Medical School, Jeonju, Korea.
| |
Collapse
|
48
|
Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 2008; 3:304-15. [PMID: 18474357 PMCID: PMC2453520 DOI: 10.1016/j.chom.2008.03.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 02/08/2008] [Accepted: 03/14/2008] [Indexed: 11/28/2022]
Abstract
Humans with primary biliary cirrhosis (PBC), a disease characterized by the destruction of small bile ducts, exhibit signature autoantibodies against mitochondrial Pyruvate Dehydrogenase Complex E2 (PDC-E2) that crossreact onto the homologous enzyme of Novosphingobium aromaticivorans, an ubiquitous alphaproteobacterium. Here, we show that infection of mice with N. aromaticivorans induced signature antibodies against microbial PDC-E2 and its mitochondrial counterpart but also triggered chronic T cell-mediated autoimmunity against small bile ducts. Disease induction required NKT cells, which specifically respond to N. aromaticivorans cell wall α-glycuronosylceramides presented by CD1d molecules. Combined with the natural liver tropism of NKT cells, the accumulation of N. aromaticivorans in the liver likely explains the liver specificity of destructive responses. Once established, liver disease could be adoptively transferred by T cells independently of NKT cells and microbes, illustrating the importance of early microbial activation of NKT cells in the initiation of autonomous, organ-specific autoimmunity.
Collapse
|
49
|
Abstract
The etiologic and pathogenic factors contributing to primary biliary cirrhosis (PBC) development, progression, response to treatment, and outcome remain a mystery. Recognition of the genomic regions harboring risk factors is hindered by the rarity and late onset of PBC. Recent advancements in genomics hold promise for understanding, prevention, and therapy of PBC. Large registries and biospecimen repositories of patients who have PBC, their family members, and controls are needed. Haplotype mapping-based association studies are necessary for defining genetic predisposition. Experimental data will provide the means for fine mapping studies, resequencing efforts, functional experimentation, and elucidation of gene-environment and gene-gene interaction.
Collapse
Affiliation(s)
- Brian D. Juran
- Senior Research Technologist, Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Konstantinos N. Lazaridis
- Assistant Professor of Medicine and Consultant, Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
50
|
Other potential medical therapies: the use of antiviral agents to investigate and treat primary ciliary cirrhosis. Clin Liver Dis 2008; 12:445-60; xi. [PMID: 18456190 DOI: 10.1016/j.cld.2008.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A human betaretrovirus has been characterized in patients with primary biliary cirrhosis (PBC) and the related mouse mammary tumor virus linked with autoimmune biliary disease in the NOD.c3c4 mouse model. Translational studies have been performed in patients who have PBC to investigate the role of viral infection in disease. Patients treated with Combivir experienced significant improvements in hepatic biochemistry, clinical symptoms, and histology with evidence of reversal of ductopenia. Preliminary studies suggest that the NOD.c3c4 mouse model of PBC provides a good model to test safer and more potent drug regimens for future use in trials for patients who have PBC.
Collapse
|