1
|
Zhao H, Zhao S, Wang S, Liu Y. Human β-defensins: The multi-functional natural peptide. Biochem Pharmacol 2024; 227:116451. [PMID: 39059771 DOI: 10.1016/j.bcp.2024.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The increasing threat of antibiotic resistance among pathogenic microorganisms and the urgent demand for new antibiotics require immediate attention. Antimicrobial peptides exhibit effectiveness against microorganisms, fungi, viruses, and protozoa. The discovery of human β-defensins represents a major milestone in biomedical research, opening new avenues for scientific investigation into the innate immune system and its resistance mechanisms against pathogenic microorganisms. Multiple defensins present a promising alternative in the context of antibiotic abuse. However, obstacles to the practical application of defensins as anti-infective therapies persist due to the unique properties of human β-defensins themselves and serious pharmacological and technical challenges. To overcome these challenges, diverse delivery vehicles have been developed and progressively improved for the conjugation or encapsulation of human β-defensins. This review briefly introduces the biology of human β-defensins, focusing on their multistage structure and diverse functions. It also discusses several heterologous systems for producing human β-defensins, various delivery systems created for these peptides, and patent applications related to their utilization, concluding with a summary of current challenges and potential solutions.
Collapse
Affiliation(s)
- Haile Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Shuli Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Simeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Ying Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China.
| |
Collapse
|
2
|
Yang T, Lai K, Yu Y, Liao Z, Cai R, Yu X, Li W. Effects of neuropeptide Y on the immune-protection and intestinal tract of juvenile Micropterus salmoides. Gen Comp Endocrinol 2024; 351:114480. [PMID: 38401858 DOI: 10.1016/j.ygcen.2024.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Neuropeptide Y is known to be directly or indirectly involved in immune regulation. The immune effects of NPY include immune cell transport, helper T cell differentiation, cytokine secretion, staining and killer cell activity, phagocytosis and production of reactive oxygen species. In this study, we investigated the immunoprotective effect of synthetic NPY on largemouth bass larvae. For the first time, the dose and time effects of NPY injection on largemouth bass was explored, and then Poly I:C and LPS infection was carried out in juvenile largemouth bass, respectively, after the injection of NPY. The results showed that NPY could reduce the inflammatory response by inhibiting the expression of il-1β, tgf-β, ifn-γ and other immune factors in head kidney, spleen and brain, and alleviate the immune stress caused by strong inflammatory response in the early stage of infection. Meanwhile, NPY injection ameliorated the intestinal tissue damage caused by infection. This study provides a new way to protect juvenile fish and improve its innate immunity.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Kingwai Lai
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yang Yu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zongzhen Liao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Ran Cai
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaozheng Yu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
3
|
Choudhary P, Magloire D, Hamonic G, Wilson HL. Immune responses in the uterine mucosa: clues for vaccine development in pigs. Front Immunol 2023; 14:1171212. [PMID: 37483639 PMCID: PMC10361056 DOI: 10.3389/fimmu.2023.1171212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
The immune system in the upper reproductive tract (URT) protects against sexually transmitted pathogens, while at the same time providing immune tolerance responses against allogenic sperm and the developing fetus. The uterine environment is also responsive to hormonal variations during the estrus cycle, although the most likely timing of exposure to pathogens is during estrus and breeding when the cervix is semi-permissive. The goal for intrauterine immunization would be to induce local or systemic immunity and/or to promote colostral/lactogenic immunity that will passively protect suckling offspring. The developing fetus is not the vaccine target. This minireview article focuses on the immune response induced in the pig uterus (uterine body and uterine horns) with some comparative references to other livestock species, mice, and humans.
Collapse
Affiliation(s)
- Pooja Choudhary
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Donaldson Magloire
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Glenn Hamonic
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Heather L. Wilson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Zhang J, Huang J, Zhao H. Molecular Cloning of Toll-like Receptor 2 and 4 ( SpTLR2, 4) and Expression of TLR-Related Genes from Schizothorax prenanti after Poly (I:C) Stimulation. Genes (Basel) 2023; 14:1388. [PMID: 37510293 PMCID: PMC10379648 DOI: 10.3390/genes14071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Toll-like receptor (TLR) signaling is conserved between fish and mammals, except for TLR4, which is absent in most fish. In the present study, we aimed to evaluate whether TLR4 is expressed in Schizothorax prenanti (SpTLR4). The SpTLR2 and SpTLR4 were cloned and identified, and their tissue distribution was examined. The cDNA encoding SpTLR4 and SpTLR2 complete coding sequences (CDS) were identified and cloned. Additionally, we examined the expression levels of seven SpTLRs (SpTLR2, 3, 4, 18, 22-1, 22-2, and 22-3), as well as SpMyD88 and SpIRF3 in the liver, head kidney, hindgut, and spleen of S. prenanti, after intraperitoneal injection of polyinosinic-polycytidylic acid (poly (I:C)). The SpTLR2 and SpTLR4 shared amino acid sequence identity of 42.15-96.21% and 36.21-93.58%, respectively, with sequences from other vertebrates. SpTLR2 and SpTLR4 were expressed in all S. prenanti tissues examined, particularly in immune-related tissues. Poly (I:C) significantly upregulated most of the genes evaluated in the four immune organs compared with the PBS-control (p < 0.05); expression of these different genes was tissue-specific. Our findings demonstrate that TLR2 and TLR4 are expressed in S. prenanti and that poly (I:C) affects the expression of nine TLR-related genes, which are potentially involved in S. prenanti antiviral immunity or mediating pathological processes with differential kinetics. This will contribute to a better understanding of the roles of these TLR-related genes in antiviral immunity.
Collapse
Affiliation(s)
- Jianlu Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiqin Huang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| | - Haitao Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| |
Collapse
|
5
|
Carserides C, Smith K, Zinicola M, Kumar A, Swedrowska M, Scala C, Cameron G, Riches Z, Iannelli F, Pozzi G, Hold GL, Forbes B, Kelly C, Hijazi K. Comprehensive Study of Antiretroviral Drug Permeability at the Cervicovaginal Mucosa via an In Vitro Model. Pharmaceutics 2022; 14:pharmaceutics14091938. [PMID: 36145684 PMCID: PMC9504208 DOI: 10.3390/pharmaceutics14091938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Modulation of drug transporter activity at mucosal sites of HIV-1 transmission may be exploited to optimize retention of therapeutic antiretroviral drug concentrations at target submucosal CD4+ T cells. Previously, we showed that darunavir was a substrate for the P-glycoprotein efflux drug transporter in colorectal mucosa. Equivalent studies in the cervicovaginal epithelium have not been reported. Here, we describe the development of a physiologically relevant model to investigate the permeability of antiretroviral drugs across the vaginal epithelium. Barrier properties of the HEC-1A human endometrial epithelial cell line were determined, in a dual chamber model, by measurement of transepithelial electrical resistance, immunofluorescent staining of tight junctions and bi-directional paracellular permeability of mannitol. We then applied this model to investigate the permeability of tenofovir, darunavir and dapivirine. Efflux ratios indicated that the permeability of each drug was transporter-independent in this model. Reduction of pH to physiological levels in the apical compartment increased absorptive transfer of darunavir, an effect that was reversed by inhibition of MRP efflux transport via MK571. Thus, low pH may increase the transfer of darunavir across the epithelial barrier via increased MRP transporter activity. In a previous in vivo study in the macaque model, we demonstrated increased MRP2 expression following intravaginal stimulation with darunavir which may further increase drug uptake. Stimulation with inflammatory modulators had no effect on drug permeability across HEC-1A barrier epithelium but, in the VK2/E6E7 vaginal cell line, increased expression of both efflux and uptake drug transporters which may influence darunavir disposition.
Collapse
Affiliation(s)
- Constandinos Carserides
- Centre for Host Microbiome Interactions, King’s College London, London SE1 9NH, UK
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Kieron Smith
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
| | - Marta Zinicola
- Centre for Host Microbiome Interactions, King’s College London, London SE1 9NH, UK
| | - Abhinav Kumar
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Magda Swedrowska
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Carlo Scala
- Centre for Host Microbiome Interactions, King’s College London, London SE1 9NH, UK
| | - Gary Cameron
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
| | - Zoe Riches
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Georgina L. Hold
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
| | - Ben Forbes
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Charles Kelly
- Centre for Host Microbiome Interactions, King’s College London, London SE1 9NH, UK
| | - Karolin Hijazi
- School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
- Correspondence: ; Tel.: +44-(0)-1224-555153
| |
Collapse
|
6
|
Schizothorax prenanti Heat Shock Protein 27 Gene: Cloning, Expression, and Comparison with Other Heat Shock Protein Genes after Poly (I:C) Induction. Animals (Basel) 2022; 12:ani12162034. [PMID: 36009624 PMCID: PMC9404436 DOI: 10.3390/ani12162034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
We identified and cloned cDNA encoding the heat shock protein (Hsp) 27 gene from Schizothorax prenanti (SpHsp27), and compared its expression with that of SpHsp60, SpHsp70, and SpHsp90 in the liver, head kidney, hindgut, and spleen of S. prenanti that were injected with polyinosinic-polycytidylic acid [Poly (I:C)]. The SpHsp27 partial cDNA (sequence length, 653 bp; estimated molecular mass, 5.31 kDa; theoretical isoelectric point, 5.09) contained an open reading frame of 636 bp and a gene encoding 211 amino acids. The SpHsp27 amino acid sequence shared 61.0−92.89% identity with Hsp27 sequences from other vertebrates and SpHsp27 was expressed in seven S. prenanti tissues. Poly (I:C) significantly upregulated most SpHsps genes in the tissues at 12 or 24 h (p < 0.05) compared with control fish that were injected with phosphate-buffered saline. However, the intensity of responses of the four SpHsps was organ-specifically increased. The expression of SpHsp27 was increased 163-fold in the head kidney and 26.6-fold SpHsp27 in the liver at 24 h after Poly (I:C) injection. In contrast, SpHsp60 was increased 0.97−1.46-fold in four tissues and SpHsp90 was increased 1.21- and 1.16-fold in the liver and spleen at 12 h after Poly (I:C) injection. Our findings indicated that Poly (I:C) induced SpHsp27, SpHsp60, SpHsp70, and SpHsp90 expression and these organ-specific SpHsps are potentially involved in S. prenanti antiviral immunity or mediate pathological process.
Collapse
|
7
|
Wang Y, Wang X, Zhu M, Ge L, Liu X, Su K, Chen Z, Zhao W. The Interplay Between Cervicovaginal Microbial Dysbiosis and Cervicovaginal Immunity. Front Immunol 2022; 13:857299. [PMID: 35359942 PMCID: PMC8960256 DOI: 10.3389/fimmu.2022.857299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
The cervicovaginal microbiota plays a key role in the health and reproductive outcomes of women. In reality epidemiological studies have demonstrated that there is an association between the structure of cervicovaginal microbiota and reproductive health, although key mechanistic questions regarding these effects remain unanswered and understanding the interplay between the immune system and the structure of the cervicovaginal microbiota. Here, we review existing literature relating to the potential mechanisms underlying the interaction between vaginal microbes and the immune system; we also describe the composition and function of the microbiome and explain the mechanisms underlying the interactions between these microbial communities and various aspects of the immune system. Finally, we also discuss the diseases that are caused by disorders of the reproductive tract and how the immune system is involved. Finally, based on the data presented in this review, the future perspectives in research directions and therapeutic opportunities are explored.
Collapse
Affiliation(s)
- Ya Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Xiaoli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Meiling Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Li Ge
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Xiaochen Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Kaikai Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Zhengzheng Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Weidong Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Su G, Luo Y, Chen D, Yu B, He J. NF-κB-dependent induction of porcine β-defensin 114 regulates intestinal epithelium homeostasis. Int J Biol Macromol 2021; 192:241-249. [PMID: 34619281 DOI: 10.1016/j.ijbiomac.2021.09.163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022]
Abstract
Intestinal epithelial cells (IECs) offer a primary physical barrier against commensal and pathogenic microorganisms in the gastrointestine. However, the influence of IECs on the development and regulation of mucosal immunity to infection is unknown. Here, we show that the porcine β-defensin 114 (PBD114) is an endotoxin-responsive gene expressed in IECs. Analysis on expression profiling of PBD114 gene using an infected porcine model and IPEC-J2 cells unveiled a pattern of induction in response to stimulation of various toll-like receptors (TLRs). By means of promoter analysis, PBD114 was found to be a NF-κB-dependent gene. Importantly, PBD114 suppresses endotoxin-induced inflammation and apoptosis in IECs through downregulation of two critical inflammation-associated signaling proteins, NF-kappa-B inhibitor alpha (IkB-α) and extracellular signal-regulated kinase1/2 (ERK1/2). PBD114 also suppresses inflammation and IEC apoptosis in mice exposed to bacterial endotoxins. Thus, we propose that TLR-activated NF-kB rapidly increases the expression of PBD114 that operates a feedback control of the NF-kB-dependent inflammation. The NF-kB-dependent induction of PBD114 may be a key event through which the mammalian host maintains intestinal epithelium homeostasis in response to various infections or diseases.
Collapse
Affiliation(s)
- Guoqi Su
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, PR China; Chongqing Academy of Animal Sciences, Chongqing 402460, PR China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, PR China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, PR China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, PR China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, PR China.
| |
Collapse
|
9
|
Patel MV, Hopkins DC, Barr FD, Wira CR. Sex Hormones and Aging Modulate Interferon Lambda 1 Production and Signaling by Human Uterine Epithelial Cells and Fibroblasts. Front Immunol 2021; 12:718380. [PMID: 34630393 PMCID: PMC8497887 DOI: 10.3389/fimmu.2021.718380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Estradiol (E2) and progesterone (P) have potent effects on immune function in the human uterine endometrium which is essential for creating an environment conducive for successful reproduction. Type III/lambda (λ) interferons (IFN) are implicated in immune defense of the placenta against viral pathogens, which occurs against the backdrop of high E2 and P levels. However, the effect of E2 and P in modulating the expression and function of IFNλ1 in the non-pregnant human uterine endometrium is unknown. We generated purified in vitro cultures of human uterine epithelial cells and stromal fibroblast cells recovered from hysterectomy specimens. Poly (I:C), a viral dsRNA mimic, potently increased secretion of IFNλ1 by both epithelial cells and fibroblasts. The secretion of IFNλ1 by epithelial cells significantly increased with increasing age following poly (I:C) stimulation. Stimulation of either cell type with E2 (5x10-8M) or P (1x10-7M) had no effect on expression or secretion of IFNλ1 either alone or in the presence of poly (I:C). E2 suppressed the IFNλ1-induced upregulation of the antiviral IFN-stimulated genes (ISGs) MxA, OAS2 and ISG15 in epithelial cells, but not fibroblasts. Estrogen receptor alpha (ERα) blockade using Raloxifene indicated that E2 mediated its inhibitory effects on ISG expression via ERα. In contrast to E2, P potentiated the upregulation of ISG15 in response to IFNλ1 but had no effect on MxA and OAS2 in epithelial cells. Our results demonstrate that the effects of E2 and P on IFNλ1-induced ISGs are cell-type specific. E2-mediated suppression, and selective P-mediated stimulation, of IFNλ1-induced ISG expression in uterine epithelial cells suggest that the effects of IFNλ1 varies with menstrual cycle stage, pregnancy, and menopausal status. The suppressive effect of E2 could be a potential mechanism by which ascending pathogens from the lower reproductive tract can infect the pregnant and non-pregnant endometrium.
Collapse
Affiliation(s)
- Mickey V. Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | | | | | | |
Collapse
|
10
|
Rodriguez‐Garcia M, Patel MV, Shen Z, Wira CR. The impact of aging on innate and adaptive immunity in the human female genital tract. Aging Cell 2021; 20:e13361. [PMID: 33951269 PMCID: PMC8135005 DOI: 10.1111/acel.13361] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023] Open
Abstract
Mucosal tissues in the human female reproductive tract (FRT) are primary sites for both gynecological cancers and infections by a spectrum of sexually transmitted pathogens, including human immunodeficiency virus (HIV), that compromise women's health. While the regulation of innate and adaptive immune protection in the FRT by hormonal cyclic changes across the menstrual cycle and pregnancy are being intensely studied, little to nothing is known about the alterations in mucosal immune protection that occur throughout the FRT as women age following menopause. The immune system in the FRT has two key functions: defense against pathogens and reproduction. After menopause, natural reproductive function ends, and therefore, two overlapping processes contribute to alterations in immune protection in aging women: menopause and immunosenescence. The goal of this review is to summarize the multiple immune changes that occur in the FRT with aging, including the impact on the function of epithelial cells, immune cells, and stromal fibroblasts. These studies indicate that major aspects of innate and adaptive immunity in the FRT are compromised in a site‐specific manner in the FRT as women age. Further, at some FRT sites, immunological compensation occurs. Overall, alterations in mucosal immune protection contribute to the increased risk of sexually transmitted infections (STI), urogenital infections, and gynecological cancers. Further studies are essential to provide a foundation for the development of novel therapeutic interventions to restore immune protection and reverse conditions that threaten women's lives as they age.
Collapse
Affiliation(s)
| | - Mickey V. Patel
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| | - Zheng Shen
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| | - Charles R. Wira
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| |
Collapse
|
11
|
Liu QN, Tang YY, Zhou MJ, Luo S, Li YT, Wang G, Zhang DZ, Yang H, Tang BP, He WF. Differentially expressed genes involved in immune pathways from yellowhead catfish (Tachysurus fulvidraco) after poly (I:C) challenge. Int J Biol Macromol 2021; 183:340-345. [PMID: 33932411 DOI: 10.1016/j.ijbiomac.2021.04.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/11/2023]
Abstract
Yellowhead catfish (Tachysurus fulvidraco) is an important aquaculture fish species in China with a high market value. Infectious diseases pose serious threats in farmed fish species, and although vaccines can prevent certain infections, they rely on potent adjuvants. In this study, we analyzed the transcriptomic profiles of spleens from poly (I:C)-treated T. fulvidraco. We obtained 46,362,922 reads corresponding to 490,926 transcripts and 318,059 genes. Gene annotation using different databases and subsequent differential gene expression analyses led to the identification of 5587 differentially expressed genes (DEGs), of which 2473 were up-regulated and 3114 were down-regulated in poly (I:C)-treated fish. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs revealed the significant dysregulation of immune- and cancer-related genes in the spleens of poly (I:C)-treated fish. Notably, several components of JAK-STAT, MAPK, and p53 signaling pathways were significantly dysregulated in response to poly (I:C) treatment. Quantitative real-time PCR (qRT-PCR) analysis of 11 randomly selected immune response genes confirmed the reliability of our findings. In conclusion, our findings provide novel insight into the immune responses of T. fulvidraco and suggest that poly (I:C) may represent a promising adjuvant of fish vaccines.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Ying-Yu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Meng-Jiao Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Sha Luo
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Yue-Tian Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Wen-Fei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
12
|
Rodriguez-Garcia M, Connors K, Ghosh M. HIV Pathogenesis in the Human Female Reproductive Tract. Curr HIV/AIDS Rep 2021; 18:139-156. [PMID: 33721260 PMCID: PMC9273024 DOI: 10.1007/s11904-021-00546-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Women remain disproportionately affected by the HIV/AIDS pandemic. The primary mechanism for HIV acquisition in women is sexual transmission, yet the immunobiological factors that contribute to HIV susceptibility remain poorly characterized. Here, we review current knowledge on HIV pathogenesis in women, focusing on infection and immune responses in the female reproductive tract (FRT). RECENT FINDINGS We describe recent findings on innate immune protection and HIV target cell distribution in the FRT. We also review multiple factors that modify susceptibility to infection, including sex hormones, microbiome, trauma, and how HIV risk changes during women's life cycle. Finally, we review current strategies for HIV prevention and identify barriers for research in HIV infection and pathogenesis in women. A complex network of interrelated biological and sociocultural factors contributes to HIV risk in women and impairs prevention and cure strategies. Understanding how HIV establishes infection in the FRT can provide clues to develop novel interventions to prevent HIV acquisition in women.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, 150 Harrison Ave, Boston, MA, 02111, USA
| | - Kaleigh Connors
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Mimi Ghosh
- Department of Epidemiology, Milken Institute School of Public Health and Health Services, The George Washington University, 800 22nd St NW, Washington, DC, 20052, USA.
| |
Collapse
|
13
|
Gudisa R, Goyal K, Gupta P, Singh MP. Localized and Systemic Immune Response in Human Reproductive Tract. Front Cell Infect Microbiol 2021; 11:649893. [PMID: 33859953 PMCID: PMC8042290 DOI: 10.3389/fcimb.2021.649893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
Sexually transmitted infections (STIs) are one of the significant causes of morbidity and mortality among adolescents and adults across the globe and encompass all the infections transmitted via person-to-person sexual contact. In spite of the widespread approach being used, STIs remain under-reported and many infections have taken an epidemic turn. The biggest roadblock in this is the unraveled basis of immunopathology of these infections, hindering the discovery of potential targets for immunization. Thereby, it is of utmost significance to decipher the hidden basis of these STIs to control the increasing epidemic of less commonly studied STIs. A complex interplay between innate immune defenses, with resident microbiota and mucosal immune response serves as the basis of therapeutic approaches, by targeting the vital steps of this dynamic interaction. The characterization of pathogen-specific antibodies to significant immunogenic molecules may divulge the conceivable protective effects.
Collapse
Affiliation(s)
| | | | | | - Mini P. Singh
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Abstract
The innate immune system is comprised of both cellular and humoral players that recognise and eradicate invading pathogens. Therefore, the interplay between retroviruses and innate immunity has emerged as an important component of viral pathogenesis. HIV-1 infection in humans that results in hematologic abnormalities and immune suppression is well represented by changes in the CD4/CD8 T cell ratio and consequent cell death causing CD4 lymphopenia. The innate immune responses by mucosal barriers such as complement, DCs, macrophages, and NK cells as well as cytokine/chemokine profiles attain great importance in acute HIV-1 infection, and thus, prevent mucosal capture and transmission of HIV-1. Conversely, HIV-1 has evolved to overcome innate immune responses through RNA-mediated rapid mutations, pathogen-associated molecular patterns (PAMPs) modification, down-regulation of NK cell activity and complement receptors, resulting in increased secretion of inflammatory factors. Consequently, epithelial tissues lining up female reproductive tract express innate immune sensors including anti-microbial peptides responsible for forming primary barriers and have displayed an effective potent anti-HIV activity during phase I/II clinical trials.
Collapse
|
15
|
Cornish EF, Filipovic I, Åsenius F, Williams DJ, McDonnell T. Innate Immune Responses to Acute Viral Infection During Pregnancy. Front Immunol 2020; 11:572567. [PMID: 33101294 PMCID: PMC7556209 DOI: 10.3389/fimmu.2020.572567] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Immunological adaptations in pregnancy allow maternal tolerance of the semi-allogeneic fetus but also increase maternal susceptibility to infection. At implantation, the endometrial stroma, glands, arteries and immune cells undergo anatomical and functional transformation to create the decidua, the specialized secretory endometrium of pregnancy. The maternal decidua and the invading fetal trophoblast constitute a dynamic junction that facilitates a complex immunological dialogue between the two. The decidual and peripheral immune systems together assume a pivotal role in regulating the critical balance between tolerance and defense against infection. Throughout pregnancy, this equilibrium is repeatedly subjected to microbial challenge. Acute viral infection in pregnancy is associated with a wide spectrum of adverse consequences for both mother and fetus. Vertical transmission from mother to fetus can cause developmental anomalies, growth restriction, preterm birth and stillbirth, while the mother is predisposed to heightened morbidity and maternal death. A rapid, effective response to invasive pathogens is therefore essential in order to avoid overwhelming maternal infection and consequent fetal compromise. This sentinel response is mediated by the innate immune system: a heritable, highly evolutionarily conserved system comprising physical barriers, antimicrobial peptides (AMP) and a variety of immune cells—principally neutrophils, macrophages, dendritic cells, and natural killer cells—which express pattern-receptors that detect invariant molecular signatures unique to pathogenic micro-organisms. Recognition of these signatures during acute infection triggers signaling cascades that enhance antimicrobial properties such as phagocytosis, secretion of pro-inflammatory cytokines and activation of the complement system. As well as coordinating the initial immune response, macrophages and dendritic cells present microbial antigens to lymphocytes, initiating and influencing the development of specific, long-lasting adaptive immunity. Despite extensive progress in unraveling the immunological adaptations of pregnancy, pregnant women remain particularly susceptible to certain acute viral infections and continue to experience mortality rates equivalent to those observed in pandemics several decades ago. Here, we focus specifically on the pregnancy-induced vulnerabilities in innate immunity that contribute to the disproportionately high maternal mortality observed in the following acute viral infections: Lassa fever, Ebola virus disease (EVD), dengue fever, hepatitis E, influenza, and novel coronavirus infections.
Collapse
Affiliation(s)
- Emily F Cornish
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Fredrika Åsenius
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - David J Williams
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Thomas McDonnell
- Department of Biochemical Engineering, University College London, London, United Kingdom
| |
Collapse
|
16
|
Benjelloun F, Quillay H, Cannou C, Marlin R, Madec Y, Fernandez H, Chrétien F, Le Grand R, Barré-Sinoussi F, Nugeyre MT, Menu E. Activation of Toll-Like Receptors Differentially Modulates Inflammation in the Human Reproductive Tract: Preliminary Findings. Front Immunol 2020; 11:1655. [PMID: 32849571 PMCID: PMC7417306 DOI: 10.3389/fimmu.2020.01655] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
The female reproductive tract (FRT) is the main site of entry of sexually transmitted infections (STIs). Toll-like receptors (TLRs) that recognize pathogenic motifs are widely expressed in the FRT. TLR stimulation induces immune activation and local production of inflammatory mediators. In the FRT, this response should also be compatible with reproductive functions and symbiosis with host microbiota. With a view to develop efficient mucosal vaccines to prevent STI acquisition, the role of TLR ligands in the FRT needs to be explored. We have therefore investigated the cytokine profiles of the different compartments of the FRT (vagina, endocervix, ectocervix, and uterus) before and after stimulation of mononuclear cells from human tissue specimens. The comparison with PBMCs allowed us to highlight the FRT specificities. We first characterized the main immune cell populations in each compartment and observed that their distribution was different through the compartments. The CD45+ cells represented a maximum of 11% in the FRT in contrast to 96% in PBMCs. We identified two main populations among the CD45+ cells in the four compartments of the FRT: CD3+ T cells (CD4+ and CD8+) and CD14+ APCs. B cell populations (CD19+) were much less frequent than T cells in all the FRT regions and were equally distributed. NK CD56+ cells were detected in all compartments and were more abundant in the uterus. Stimulation of the mononuclear cells was then performed with TLR agonists: R848 for TLR7/8, Poly I:C for TLR3, LPS for TLR4 and ODN CpG for TLR9. Cytokine levels in unstimulated cultures of cells isolated from all FRT compartments were higher than in cultures of unstimulated PBMCs. In contrast, after stimulation with TLR agonists, cytokine responses induced by TLR agonists were moderate in the FRT and significantly lower than in PBMCs. These responses were varied with different TLR ligands and FRT compartments. The cytokine profile induced by TLR activation in the FRT supports the role of these tissues in genital anti-microbial immunity and in the control of inflammation while allowing maintenance of its reproductive function.
Collapse
Affiliation(s)
- Fahd Benjelloun
- MISTIC Team, Virology Department, Institut Pasteur, Paris, France.,Université Paris-Saclay, Inserm U1184, CEA, Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (ImVA-HB), IDMIT Department, IBFJ, Fontenay-Aux-Roses, France
| | - Héloïse Quillay
- MISTIC Team, Virology Department, Institut Pasteur, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Claude Cannou
- MISTIC Team, Virology Department, Institut Pasteur, Paris, France.,Université Paris-Saclay, Inserm U1184, CEA, Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (ImVA-HB), IDMIT Department, IBFJ, Fontenay-Aux-Roses, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm U1184, CEA, Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (ImVA-HB), IDMIT Department, IBFJ, Fontenay-Aux-Roses, France
| | - Yoann Madec
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France
| | - Hervé Fernandez
- Bicêtre Hospital, AP-HP, Gynecology-Obstetrics Service, Le Kremlin-Bicêtre, France
| | - Fabrice Chrétien
- Experimental Neuropathology Unit, Institut Pasteur, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm U1184, CEA, Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (ImVA-HB), IDMIT Department, IBFJ, Fontenay-Aux-Roses, France
| | | | - Marie-Thérèse Nugeyre
- MISTIC Team, Virology Department, Institut Pasteur, Paris, France.,Université Paris-Saclay, Inserm U1184, CEA, Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (ImVA-HB), IDMIT Department, IBFJ, Fontenay-Aux-Roses, France
| | - Elisabeth Menu
- MISTIC Team, Virology Department, Institut Pasteur, Paris, France.,Université Paris-Saclay, Inserm U1184, CEA, Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (ImVA-HB), IDMIT Department, IBFJ, Fontenay-Aux-Roses, France
| |
Collapse
|
17
|
Hamonic G, Pasternak JA, Ng SH, Fourie KR, Simko OM, Deluco B, Wilson HL. Assessment of Immunological Response and Impacts on Fertility Following Intrauterine Vaccination Delivered to Swine in an Artificial Insemination Dose. Front Immunol 2020; 11:1015. [PMID: 32536924 PMCID: PMC7267065 DOI: 10.3389/fimmu.2020.01015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
To protect the health of sows and gilts, significant investments are directed toward the development of vaccines against infectious agents that impact reproduction. We developed an intrauterine vaccine that can be delivered with semen during artificial insemination to induce mucosal immunity in the reproductive tract. An in vitro culture of uterine epithelial cells was used to select an adjuvant combination capable of recruiting antigen-presenting cells into the uterus. Adjuvant polyinosinic:polycytidylic acid (poly I:C), alone or in combination, induced expression of interferon gamma, tumor necrosis factor alpha, and select chemokines. A combination adjuvant consisting of poly I:C, host defense peptide and polyphosphazene (Triple Adjuvant; TriAdj), which previously was shown to induce robust mucosal and systemic humoral immunity when administered to the uterus in rabbits, was combined with boar semen to evaluate changes in localized gene expression and cellular recruitment, in vivo. Sows bred with semen plus TriAdj had decreased γδ T cells and monocytes in blood, however, no corresponding increase in the number of monocytes and macrophages was detected in the endometrium. Compared to sows bred with semen alone, sows bred with semen plus TriAdj showed increased CCL2 gene expression in the epithelial layer. These data suggest that the adjuvants may further augment a local immune response and, therefore, may be suitable for use in an intrauterine vaccine. When inactivated porcine parvovirus (PPV) formulated with the TriAdj was administered to the pig uterus during estrus along with semen, we observed induction of PPV antibodies in serum but only when the pigs were already primed with parenteral PPV vaccines. Recombinant protein vaccines and inactivated PPV vaccines administered to the pig uterus during breeding as a primary vaccine alone failed to induce significant humoral immunity. More trials need to be performed to clarify whether repeated intrauterine vaccination can trigger strong humoral immunity or whether the primary vaccine needs to be administered via a systemic route to promote a mucosal and systemic immune response.
Collapse
Affiliation(s)
- Glenn Hamonic
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - J Alex Pasternak
- Department of Animal Science, Purdue University, West Lafayette, IN, United States
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Kezia R Fourie
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Olena M Simko
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Brodie Deluco
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
18
|
Asiamah EK, Ekwemalor K, Adjei-Fremah S, Osei B, Newman R, Worku M. Natural and synthetic pathogen associated molecular patterns modulate galectin expression in cow blood. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2019; 61:245-253. [PMID: 31602302 PMCID: PMC6778856 DOI: 10.5187/jast.2019.61.5.245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 01/25/2023]
Abstract
Pathogen-associated Molecular Patterns (PAMPs) are highly conserved structural
motifs that are recognized by Pathogen Recognition receptors (PRRs) to initiate
immune responses. Infection by these pathogens and the immune response to PAMPS
such as lipopolysaccharide (LPS), Peptidoglycan (PGN), bacterial
oligodeoxynucleotides [CpG oligodeoxynucleotides 2006 (CpG ODN2006) and CpG
oligodeoxynucleotides 2216 (CpG ODN2216)], and viral RNA
Polyinosinic-Polycytidylic Acid (Poly I:C), are associated with infectious and
metabolic diseases in animals impacting health and production. It is established
that PAMPs mediate the production of cytokines by binding to PRRs such as
Toll-like receptors (TLR) on immune cells. Galectins (Gal) are
carbohydrate-binding proteins that when expressed play essential roles in the
resolution of infectious and metabolic diseases. Thus it is important to
determine if the expression of galectin gene (LGALS) and Gal secretion in blood
are affected by exposure to LPS and PGN, PolyI:C and bacterial CpG ODNs. LPS
increased transcription of LGALS4 and 12 (2.5 and 2.02 folds respectively) and
decreased secretion of Gal 4 (p < 0.05). PGN increased
transcription of LGALS-1, -2, -3, -4, -7, and -12 (3.0, 2.3, 2.0, 4.1, 3.3, and
2.4 folds respectively) and secretion of Gal-8 and Gal-9 (p
< 0.05). Poly I:C tended to increase the transcription of LGALS1, LGALS4,
and LGALS8 (1.78, 1.88, and 1.73 folds respectively). Secretion of Gal-1, -3, -8
and nine were significantly increased in treated samples compared to control
(p < 0.05). CpG ODN2006 did not cause any
significant fold changes in LGALS transcription (FC < 2) but increased
secretion of Gal-1, and-3 (p < 0.05) in plasma compared
to control. Gal-4 was however reduced in plasma (p <
0.05). CpG ODN2216 increased transcription of LGALS1 and LGALS3 (3.8 and 1.6
folds respectively), but reduced LGALS2, LGALS4, LGALS7, and LGALS12
(–1.9, –2.0, –2.0 and; –2.7 folds respectively).
Secretion of Gal-2 and -3 in plasma was increased compared to control
(p < 0.05). Gal-4 secretion was reduced in plasma
(p < 0.05). The results demonstrate that PAMPs
differentially modulate galectin transcription and translation of galectins in
cow blood.
Collapse
Affiliation(s)
- Emmanuel Kwaku Asiamah
- Department of Agriculture-Animal Science, University of Arkansas at Pine Bluff, AR 71601, USA
| | - Kingsley Ekwemalor
- Department of Animal Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Sarah Adjei-Fremah
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Bertha Osei
- Functional and Chemical Genomics, Oklahoma Medical Research Foundation, OK 73104, USA
| | - Robert Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Mulumebet Worku
- Department of Animal Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
19
|
Patel MV, Shen Z, Rossoll RM, Wira CR. IL-27 Expression and Responsiveness in Human Uterine Epithelial Cells and Fibroblasts In Vitro and the Role of Estradiol. J Interferon Cytokine Res 2019; 38:101-110. [PMID: 29565744 DOI: 10.1089/jir.2017.0038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)-27 is a pleiotropic cytokine that regulates multiple aspects of innate and adaptive immunity, but whose role in immune protection of the female reproductive tract is unknown. Although not constitutively expressed by human uterine epithelial cells and fibroblasts in culture, IL-27 secretion was upregulated after treatment with the viral ligand poly (I:C) in a type I interferon (IFN)-dependent manner, with higher levels measured in fibroblasts than epithelial cells. Estradiol increased poly (I:C)-induced IL-27 production by fibroblasts, but not epithelial cells. While both cell types expressed the IL-27 receptor, only fibroblasts responded to recombinant IL-27 with increased expression of the antiviral genes, APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G) and MxA, and the tryptophan-catabolizing enzyme, indoleamine 2,3-dioxygenase (IDO). Estradiol inhibited IL-27-mediated induction of IDO in fibroblasts through estrogen receptor alpha, but had no effect on APOBEC3G. IL-27 pretreatment also potentiated poly (I:C) upregulation of the antiviral genes, OAS2 and APOBEC3G, in fibroblasts. Thus, IL-27 is part of the antiviral response by uterine cells against potential pathogens. The effect of estradiol on IL-27 production and sensitivity by fibroblasts demonstrates a selective hormone action on individual cell types in the uterus and suggests that IL-27 may have differential effects during the menstrual cycle.
Collapse
Affiliation(s)
- Mickey V Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire
| | - Richard M Rossoll
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire
| |
Collapse
|
20
|
Pollak DD, Weber-Stadlbauer U. Transgenerational consequences of maternal immune activation. Semin Cell Dev Biol 2019; 97:181-188. [PMID: 31233834 DOI: 10.1016/j.semcdb.2019.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/12/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023]
Abstract
Prenatal exposure to infectious or inflammatory insults is increasingly recognized in the etiology of neuropsychiatric diseases, including schizophrenia, autism, depression and bipolar disorder. New discoveries highlight that maternal immune activation can lead to pathological effects on brain and behavior in multiple generations. This review describes the transgenerational consequences of maternal immune activation in shaping brain and behavior anomalies and disease risk across generations. We discuss potential underlying mechanisms of transmission, by which prenatal immune activation can mediate generation-spanning changes in brain development and functions and how external influences could further determine the specificity of the phenotype across generations. The identification of the underlying mechanisms appears relevant to infection-related neuropsychiatric illnesses independently of existing diagnostic classifications and may help identifying complex patterns of generation-spanning transmission beyond genetic inheritance. The herein described principles emphasize the importance of considering ancestral infectious histories in clinical research aiming at developing new preventive treatment strategies against infection-related neurodevelopmental disorders and mental illnesses.
Collapse
Affiliation(s)
- Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
| |
Collapse
|
21
|
Benner M, Ferwerda G, Joosten I, van der Molen RG. How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum Reprod Update 2019; 24:393-415. [PMID: 29668899 DOI: 10.1093/humupd/dmy012] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/27/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fertility depends on a receptive state of the endometrium, influenced by hormonal and anatomical adaptations, as well as the immune system. Local and systemic immunity is greatly influenced by microbiota. Recent discoveries of 16S rRNA in the endometrium and the ability to detect low-biomass microbiota fueled the notion that the uterus may be indeed a non-sterile compartment. To date, the concept of the 'sterile womb' focuses on in utero effects of microbiota on offspring and neonatal immunity. However, little awareness has been raised regarding the importance of uterine microbiota for endometrial physiology in reproductive health; manifested in fertility and placentation. OBJECTIVE AND RATIONALE Commensal colonization of the uterus has been widely discussed in the literature. The objective of this review is to outline the possible importance of this uterine colonization for a healthy, fertile uterus. We present the available evidence regarding uterine microbiota, focusing on recent findings based on 16S rRNA, and depict the possible importance of uterine colonization for a receptive endometrium. We highlight a possible role of uterine microbiota for host immunity and tissue adaptation, as well as conferring protection against pathogens. Based on knowledge of the interaction of the mucosal immune cells of the gut with the local microbiome, we want to investigate the potential implications of commensal colonization for uterine health. SEARCH METHODS PubMed and Google Scholar were searched for articles in English indexed from 1 January 2008 to 1 March 2018 for '16S rRNA', 'uterus' and related search terms to assess available evidence on uterine microbiome analysis. A manual search of the references within the resulting articles was performed. To investigate possible functional contributions of uterine microbiota to health, studies on microbiota of other body sites were additionally assessed. OUTCOMES Challenging the view of a sterile uterus is in its infancy and, to date, no conclusions on a 'core uterine microbiome' can be drawn. Nevertheless, evidence for certain microbiota and/or associated compounds in the uterus accumulates. The presence of microbiota or their constituent molecules, such as polysaccharide A of the Bacteroides fragilis capsule, go together with healthy physiological function. Lessons learned from the gut microbiome suggest that the microbiota of the uterus may potentially modulate immune cell subsets needed for implantation and have implications for tissue morphology. Microbiota can also be crucial in protection against uterine infections by defending their niche and competing with pathogens. Our review highlights the need for well-designed studies on a 'baseline' microbial state of the uterus representing the optimal starting point for implantation and subsequent placenta formation. WIDER IMPLICATIONS The complex interplay of processes and cells involved in healthy pregnancy is still poorly understood. The correct receptive endometrial state, including the local immune environment, is crucial not only for fertility but also placenta formation since initiation of placentation highly depends on interaction with immune cells. Implantation failure, recurrent pregnancy loss, and other pathologies of endometrium and placenta, such as pre-eclampsia, represent an increasing societal burden. More robust studies are needed to investigate uterine colonization. Based on current data, future research needs to include the uterine microbiome as a relevant factor in order to understand the players needed for healthy pregnancy.
Collapse
Affiliation(s)
- Marilen Benner
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Renate G van der Molen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
22
|
Abstract
INTRODUCTION Cell-free "fetal" DNA is released from the placenta. Because the fetal membranes also arise from the trophectoderm layer of the blastocyst, these studies sought to test the hypothesis that the membranes also release cell-free DNA (cfDNA). METHODS Fetal membranes were harvested from pregnant CD-1 mice and cultured in 12-well plates containing media alone or with staurosporine and thapsigargin (apoptosis stimulators), Q-VD-OPh (caspase inhibitor), Trolox (vitamin E analog), and lipopolysaccharide and tumor necrosis factor α (TNFα; inflammatory mediators). The cfDNA in the media was extracted, quantified, and normalized for tissue weight. Media was used for a lactate dehydrogenase (LDH) assay. Membrane homogenates were used to assess activated caspase levels and the expression of DNA fragmentation factor B (DFFB) and BAX proteins. 5-Methylcytosine was assessed using a 5-mC DNA enzyme-linked immunosorbent assay. The cfDNA was used to stimulate interleukin 6 (IL6) release by J774A.1 mouse macrophage cells. RESULTS Increased cfDNA release at 6 and 21 hours occurred in parallel with increasing LDH levels. The cfDNA concentrations were significantly suppressed by Q-VD-OPh and Trolox and increased by thapsigargin and TNFα. Increased caspase activity was suppressed by Q-VD-OPh and increased by TNFα, thapsigargin, and staurosporine. The expression of BAX and DFFB proteins significantly increased by 21 hours. 5-Methylcytosine levels were significantly lower in fetal membranes and placentas and below detectable in the cfDNA released by the explants. The cfDNA-stimulated IL6 release by macrophage cells was suppressed by chloroquine, a Toll-like receptor 9 (TLR9) inhibitor. CONCLUSIONS These studies have confirmed cfDNA release by the mouse fetal membranes; cfDNA was markedly hypomethylated and a robust stimulator of TLR9.
Collapse
Affiliation(s)
- Michala R Sawyer
- Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics & Gynecology, Massachusetts General Hospital, 55 Fruit Street, Thier Bldg. 9-911, Boston, MA, 02114, USA
| | - Sharareh Adeli
- Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics & Gynecology, Massachusetts General Hospital, 55 Fruit Street, Thier Bldg. 9-911, Boston, MA, 02114, USA
| | - Mark Phillippe
- Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics & Gynecology, Massachusetts General Hospital, 55 Fruit Street, Thier Bldg. 9-911, Boston, MA, 02114, USA.
| |
Collapse
|
23
|
Zandieh Z, Amjadi F, Vakilian H, Aflatoonian K, Amirchaghmaghi E, Fazeli A, Aflatoonian R. Sex hormones alter the response of Toll-like receptor 3 to its specific ligand in fallopian tube epithelial cells. Clin Exp Reprod Med 2018; 45:154-162. [PMID: 30538945 PMCID: PMC6277672 DOI: 10.5653/cerm.2018.45.4.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/27/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
Objective The fallopian tubes play a critical role in the early events of fertilization. The rapid innate immune defense is an important part of the fallopian tubes. Toll-like receptor 3 (TLR3), as a part of the innate immune system, plays an important role in detecting viral infections. In this basic and experimental study, the effect of sex hormones on the function of TLR3 in the OE-E6/E7 cell line was investigated. Methods The functionality of TLR3 in this cell line was evaluated by cytokine measurements (interleukin [IL]-6 and IL-1b) and the effects of sex hormones on TLR3 were tested by an enzyme-linked immunosorbent assay kit. Additionally, TLR3 small interfering RNA (siRNA) and a TLR3 function-blocking antibody were used to confirm our findings. Results The production of IL-6 significantly increased in the presence of polyinosinic-polycytidylic acid (poly(I:C)) as the TLR3 ligand. Using a TLR3-siRNA-ransfected OE-E6/E7 cell line and function-blocking antibody confirmed that cytokine production was due to TLR3. In addition, 17-β estradiol and progesterone suppressed the production of IL-6 in the presence and absence of poly(I:C). Conclusion These results imply that sex hormones exerted a suppressive effect on the function of TLR3 in the fallopian tube cell line when different concentrations of sex hormones were present. The current results also suggest that estrogen receptor beta and nuclear progesterone receptor B are likely to mediate the hormonal regulation of TLR3, as these two receptors are the main estrogen and progesterone receptors in OE-E6/E7 cell line.
Collapse
Affiliation(s)
- Zahra Zandieh
- Shahid Akbar Abadi Clinical Research Development Unit, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haghighat Vakilian
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Elham Amirchaghmaghi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Alireza Fazeli
- Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Sheffield, UK
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
24
|
Patel MV, Shen Z, Rossoll RM, Wira CR. Estradiol-regulated innate antiviral responses of human endometrial stromal fibroblasts. Am J Reprod Immunol 2018; 80:e13042. [PMID: 30295964 PMCID: PMC6275105 DOI: 10.1111/aji.13042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022] Open
Abstract
PROBLEM The contribution of fibroblasts to innate immune protection of the human female reproductive tract (FRT) against viral pathogens is relatively unknown. METHOD OF STUDY Endometrial (EM), endocervical (Cx) and ectocervical (ECx) fibroblasts were isolated from hysterectomy patients and grown in vitro. Fibroblasts were treated with the viral mimic poly (I:C) in the presence or absence of the sex hormone estradiol (E2 ), with gene expression measured by real-time RT-PCR and protein secretion by ELISA. RESULTS Poly (I:C) induced the expression of the interferon-stimulated genes (ISG) MxA, OAS2 and APOBEC3G, and the cytokines MCP-1, IL-8, IL-6, CCL20, IFNβ and RANTES by fibroblasts from all three sites. ISG upregulation was dependent upon Type I IFN signaling. E2 inhibited the poly (I:C)-induced upregulation of MxA and OAS2 in EM fibroblasts, but not Cx or ECx fibroblasts. E2 upregulated SDF-1α by EM fibroblasts but had no effect on secretion of other cytokines either alone or in the presence of poly (I:C). Conditioned media (CM) from poly (I:C)-treated or E2 -treated fibroblasts significantly reduced HIV infection of CD4+ T cells. CONCLUSION Stromal fibroblasts represent a level of innate immune protection against viral pathogens in the FRT beyond that seen with epithelial cells and immune cells. Our findings indicate that fibroblasts FRT are selectively responsive to E2 , capable of initiating an antiviral response against viral pathogens and may play a role in preventing HIV infection of CD4+ T cells.
Collapse
Affiliation(s)
- Mickey V. Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Richard M. Rossoll
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| |
Collapse
|
25
|
Hamonic G, Pasternak JA, Forsberg NM, Käser T, Wilson HL. Expression of pattern recognition receptors in porcine uterine epithelial cells in vivo and in culture. Vet Immunol Immunopathol 2018; 202:1-10. [PMID: 30078581 DOI: 10.1016/j.vetimm.2018.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022]
Abstract
Preservation of a pathogen free uterine environment is critical for maintaining healthy swine herds with high reproductive performance. Considering that uterine epithelial cells are the most numerous and thus likely point of cellular contact for pathogens in the uterus, we hypothesize that these cells may be critical for activating the immune system to clear uterine infections. Although uterine epithelial cells have not been well characterized in pigs, studies in several other species have shown that these cells express several pattern recognition receptors (PRR) and thus may act as sentinels for the uterine immune response. To characterize PRR expression in the porcine uterine epithelia, we used laser-capture microdissection to isolate epithelial cells lining the porcine uterus to quantify in vivo mRNA expression levels for select PRRs. As well, primary uterine epithelial cells (UECs) were isolated, cultured, polarized and PRR expression was quantified. Immunohistofluorescence and immunofluorescence were used to determine subcellular localization of TLR3, TLR4 and TLR9 in both uterine tissue and in polarized primary UECs. Finally, polarized primary UECs were stimulated with ligands for TLR3, TLR4, TLR9 and NOD2 to determine their functional innate immune response. Uterine epithelial cells (in vivo and in vitro) were shown to express TLR1-7, TLR9, NOD1, NOD2, NLRP3, NLRP6, NLRX1, RIG1, MDA5 and LGP2. Subcellular localization of in vivo and polarized primary UECs exhibited TLR3 and TLR9 localized to the apical cell surface whereas TLR4 was localized to the intracellular space. Polarized primary UECs stimulated with TLR3, TLR4 and TLR9 ligands showed induced secretion of IL-6, IL-13 and IL-10, respectively indicating that these receptors were functional. These results indicate that pig uterine epithelial cells are functional innate immune cells that may act as sentinels to protect against uterine infection.
Collapse
Affiliation(s)
- Glenn Hamonic
- Vaccine and Infectious Disease Organization (VIDO) - International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| | - J Alex Pasternak
- Large Animal Clinical Sciences (LACS), Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| | - Nikki M Forsberg
- Vaccine and Infectious Disease Organization (VIDO) - International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA.
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO) - International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
26
|
Hodgkinson CP, Pratt RE, Kirste I, Dal-Pra S, Cooke JP, Dzau VJ. Cardiomyocyte Maturation Requires TLR3 Activated Nuclear Factor Kappa B. Stem Cells 2018; 36:1198-1209. [PMID: 29676038 DOI: 10.1002/stem.2833] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/15/2018] [Accepted: 03/30/2018] [Indexed: 12/18/2022]
Abstract
The process by which committed precursors mature into cardiomyocytes is poorly understood. We found that TLR3 inhibition blocked cardiomyocyte maturation; precursor cells committed to the cardiomyocyte lineage failed to express maturation genes and sarcomeres did not develop. Using various approaches, we found that the effects of TLR3 upon cardiomyocyte maturation were dependent upon the RelA subunit of nuclear factor kappa B (NFκB). Importantly, under conditions that promote the development of mature cardiomyocytes NFκB became significantly enriched at the promoters of cardiomyocyte maturation genes. Furthermore, activation of the TLR3-NFκB pathway enhanced cardiomyocyte maturation. This study, therefore, demonstrates that the TLR3-NFκB pathway is necessary for the maturation of committed precursors into mature cardiomyocytes. Stem Cells 2018;36:1198-1209.
Collapse
Affiliation(s)
- Conrad P Hodgkinson
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - Richard E Pratt
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - Imke Kirste
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - Sophie Dal-Pra
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - John P Cooke
- Houston Methodist Research Institute, Department of Cardiovascular Sciences, Houston, Texas, USA
| | - Victor J Dzau
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| |
Collapse
|
27
|
Nazli A, Dizzell S, Zahoor MA, Ferreira VH, Kafka J, Woods MW, Ouellet M, Ashkar AA, Tremblay MJ, Bowdish DM, Kaushic C. Interferon-β induced in female genital epithelium by HIV-1 glycoprotein 120 via Toll-like-receptor 2 pathway acts to protect the mucosal barrier. Cell Mol Immunol 2018; 16:178-194. [PMID: 29553138 PMCID: PMC6355787 DOI: 10.1038/cmi.2017.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022] Open
Abstract
More than 40% of HIV infections occur via female reproductive tract (FRT) through heterosexual transmission. Epithelial cells that line the female genital mucosa are the first line of defense against HIV-1 and other sexually transmitted pathogens. These sentient cells recognize and respond to external stimuli by induction of a range of carefully balanced innate immune responses. Previously, we have shown that in response to HIV-1 gp120, the genital epithelial cells (GECs) from upper reproductive tract induce an inflammatory response that may facilitate HIV-1 translocation and infection. In this study, we report that the endometrial and endocervical GECs simultaneously induce biologically active interferon-β (IFNβ) antiviral responses following exposure to HIV-1 that act to protect the epithelial tight junction barrier. The innate antiviral response was directly induced by HIV-1 envelope glycoprotein gp120 and addition of gp120 neutralizing antibody inhibited IFNβ production. Interferon-β was induced by gp120 in upper GECs through Toll-like receptor 2 signaling and required presence of heparan sulfate on epithelial cell surface. The induction of IFNβ was dependent upon activation of transcription factor IRF3 (interferon regulatory factor 3). The IFNβ was biologically active, had a protective effect on epithelial tight junction barrier and was able to inhibit HIV-1 infection in TZM-bl indicator cells and HIV-1 replication in T cells. This is the first report that recognition of HIV-1 by upper GECs leads to induction of innate antiviral pathways. This could explain the overall low infectivity of HIV-1 in the FRT and could be exploited for HIV-1 prophylaxis.
Collapse
Affiliation(s)
- Aisha Nazli
- McMaster Immunology Research Centre, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sara Dizzell
- McMaster Immunology Research Centre, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Muhammad Atif Zahoor
- McMaster Immunology Research Centre, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Victor H Ferreira
- McMaster Immunology Research Centre, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jessica Kafka
- McMaster Immunology Research Centre, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Matthew William Woods
- McMaster Immunology Research Centre, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Michel Ouellet
- Department of Medical Biology, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Ali A Ashkar
- McMaster Immunology Research Centre, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Michel J Tremblay
- Department of Medical Biology, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Dawn Me Bowdish
- McMaster Immunology Research Centre, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Charu Kaushic
- McMaster Immunology Research Centre, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON L8S 4K1, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
28
|
Fruitwala S, El-Naccache DW, Chang TL. Multifaceted immune functions of human defensins and underlying mechanisms. Semin Cell Dev Biol 2018; 88:163-172. [PMID: 29501617 PMCID: PMC6485945 DOI: 10.1016/j.semcdb.2018.02.023] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022]
Abstract
Defensins have been long recognized as natural antimicrobial peptides, but they also possess diverse and versatile immune functions. Defensins can both induce inflammation and suppress inflammatory responses by acting on specific cells through distinct mechanisms. Defensins can also modulate the immune response by forming a complex with cellular molecules including proteins, nucleic acids, and carbohydrates. The mechanisms of defensin-mediated immune modulation appear to be cell-type and context specific. Because the levels of human defensins are often altered in response to infection or disease states, suggesting their clinical relevance, this review summarizes the complex immune functions of human defensins and their underlying mechanisms of action, which have implications for the development of new therapeutics.
Collapse
Affiliation(s)
- Saahil Fruitwala
- Public Health Research Institute, Rutgers, the State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Darine W El-Naccache
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, the State University of New Jersey, New Jersey Medical School, Newark, NJ, USA; Public Health Research Institute, Rutgers, the State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Theresa L Chang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, the State University of New Jersey, New Jersey Medical School, Newark, NJ, USA; Public Health Research Institute, Rutgers, the State University of New Jersey, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
29
|
Embryotoxic cytokines—Potential roles in embryo loss and fetal programming. J Reprod Immunol 2018; 125:80-88. [DOI: 10.1016/j.jri.2017.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
|
30
|
Hamonic G, Pasternak JA, Wilson HL. Recognizing conserved non-canonical localization patterns of toll-like receptors in tissues and across species. Cell Tissue Res 2018; 372:1-11. [PMID: 29330675 DOI: 10.1007/s00441-017-2767-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022]
Abstract
Toll-like receptors (TLR) 1, 2, 4, 5 and 6 were originally characterized as exclusively expressed on the cell surface and TLR 3, 7, 8 and 9 were said to be localized to the endosomes. However, continued research in this area shows that TLR localization may be altered across cell-types, and in response to stimulation, age or disease. Mucosal surfaces must remain tolerant to the commensal flora and thus intracellular or basal lateral localization of TLRs at mucosal surfaces may be necessary to prevent induction of an inflammatory response to commensal flora while still allowing the possibility for the receptors to prime an immune response when a pathogen has crossed the epithelial barrier. Here, we highlight the research specifying 'non-canonical' localization of TLRs in human and animal mucosal tissues and blood-derived cells, while excluding cultured polarized immortalized cells. Reports that only indicate TLR gene/protein expression and/or responsiveness to agonists have been excluded unless the report also indicates surface/intracellular distribution in the cell. Understanding the tissue- and species-specific localization of these specific pattern recognition receptors will lead to a greater appreciation of the way in which TLR ligands promote innate immunity and influence the adaptive immune response. A more comprehensive understanding of this information will potentially aid in the exploitation of the therapeutic or adjuvant potential of selectively localized TLRs and in opening new perspectives in understanding the basis of immunity.
Collapse
Affiliation(s)
- Glenn Hamonic
- Vaccine & Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr. Saskatoon, Saskatoon, SK, S7N 5B4, Canada
| | - J Alex Pasternak
- Vaccine & Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Heather L Wilson
- Vaccine & Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr. Saskatoon, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
31
|
Cappelletti M, Lawson MJ, Chan CC, Wilburn AN, Divanovic S. Differential outcomes of TLR2 engagement in inflammation-induced preterm birth. J Leukoc Biol 2017; 103:535-543. [PMID: 29345344 PMCID: PMC6084304 DOI: 10.1002/jlb.3ma0717-274rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
Preterm birth (PTB) is the leading cause of neonatal mortality worldwide. Infection and inflammation are considered main causes of PTB. Among multiple pathogens, Gram‐positive bacteria are commonly linked with induction of PTB. Although activation of innate immune responses, via TLR2 engagement, by Gram‐positive bacteria is a likely cause, whether induction of PTB depends on the potency of specific microbial components to induce Toll‐like receptor (TLR)2‐driven inflammation has not been elucidated. Here, we show that TLR2 activation by synthetic lipopeptides, Pam2Cys, and Pam3Cys specifically, variably influenced inflammation and subsequent induction of PTB. Pam2Cys challenge, compared to Pam3Cys, induced PTB and promoted significantly higher expression of inflammatory cytokines, specifically IL‐6 and IFN‐β, both in vivo and in vitro. Notably, antibody‐mediated neutralization of IL‐6 or genetic deletion of type I IFN receptor (IFNAR) was sufficient to protect from Pam2Cys‐driven PTB and to temper excessive proinflammatory cytokine production. Conversely, IFN‐β or IL‐6 was not sufficient to promote induction of PTB by Pam3Cys. In summary, our data implies a divergent function of TLR2‐activating lipopeptides in the magnitude and type of ligand‐driven inflammatory vigor in induction of PTB.
Collapse
Affiliation(s)
- Monica Cappelletti
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Matthew J Lawson
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Calvin C Chan
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Adrienne N Wilburn
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
32
|
Srisomboon Y, Poonyachoti S, Deachapunya C. Soy isoflavones enhance β-defensin synthesis and secretion in endometrial epithelial cells with exposure to TLR3 agonist polyinosinic-polycytidylic acid. Am J Reprod Immunol 2017; 78. [PMID: 28429578 DOI: 10.1111/aji.12694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/25/2017] [Indexed: 12/14/2022] Open
Abstract
PROBLEM β-defensins are important innate chemical barriers that protect the endometrium from pathogen invasion. The effects of soy isoflavones, genistein and daidzein, on the expression and secretion of porcine β-defensins (PBD) in endometrial epithelial cells were investigated under normal or poly I:C-stimulated conditions. METHOD OF STUDY Primary cultured porcine endometrial epithelial (PE) cells were pretreated with genistein or daidzein followed by poly I:C inoculation. During treatment, the culture media were analyzed for PBD 1-4 secretion by ELISA and the total RNA for PBD gene expression by quantitative RT-PCR. RESULTS Porcine endometrial epithelial cells constitutively expressed PBD 1-4 and secreted PBD-1, PBD-2, and PBD-4. Genistein and daidzein enhanced PBD-2 expression and PBD-2 and PBD-3 secretion. These compounds also potentiated PBD-2 and PBD-3 expression and secretion which were upregulated by poly I:C. CONCLUSION Soy isoflavones, genistein and daidzein, could be potentially used for promoting the innate host defense of endometrium against infection.
Collapse
Affiliation(s)
- Yotesawee Srisomboon
- Department of Physiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Sutthasinee Poonyachoti
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chatsri Deachapunya
- Department of Physiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
33
|
Mukura LR, Hickey DK, Rodriguez-Garcia M, Fahey JV, Wira CR. Chlamydia trachomatis regulates innate immune barrier integrity and mediates cytokine and antimicrobial responses in human uterine ECC-1 epithelial cells. Am J Reprod Immunol 2017; 78. [PMID: 28921726 DOI: 10.1111/aji.12764] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/25/2017] [Indexed: 12/27/2022] Open
Abstract
PROBLEM Chlamydia trachomatis infection is the most common sexually transmitted bacterial infection worldwide and known to increase the risk for HIV acquisition. Few studies have investigated how infection of epithelial cells compromises barrier integrity and antimicrobial response. METHOD OF STUDY ECC-1 cells, a human uterine epithelial cell line, were treated with live and heat-killed C. trachomatis. Epithelial barrier integrity measured as transepithelial resistance (TER), chemokines antimicrobial levels, and antimicrobial mRNA expression was measured by ELISA and Real-time RT-PCR. RESULTS Epithelial barrier integrity was compromised when cells were infected with live, but not with heat-killed, C. trachomatis. IL-8 secretion by ECC-1 cells increased in response to live and heat-killed C. trachomatis, while MCP-1, HBD2 and trappin2/elafin secretion decreased with live C. trachomatis. CONCLUSION Live C. trachomatis suppresses ECC-1 innate immune responses by compromising the barrier integrity, inhibiting secretion of MCP-1, HBD2, and trappin-2/elafin. Differential responses between live and heat-killed Chlamydia indicate which immune responses are dependent on ECC-1 infection rather than the extracellular presence of Chlamydia.
Collapse
Affiliation(s)
- Lucy Rudo Mukura
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Danica K Hickey
- Biomedical Sciences, Chronic Disease and Ageing Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Marta Rodriguez-Garcia
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - John V Fahey
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
34
|
Liu Y, Xin ZZ, Zhang DZ, Wang ZF, Zhu XY, Tang BP, Jiang SH, Zhang HB, Zhou CL, Chai XY, Liu QN. Transcriptome analysis of yellow catfish (Pelteobagrus fulvidraco) liver challenged with polyriboinosinic polyribocytidylic acid (poly I:C). FISH & SHELLFISH IMMUNOLOGY 2017; 68:395-403. [PMID: 28732769 DOI: 10.1016/j.fsi.2017.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
Yellow catfish (Pelteobagrus fulvidraco) is one of the most important economic freshwater species in China. However, infection by bacterial pathogenic diseases has caused high mortality and great economic loss in aquaculture. It is necessary for disease control to know more about the P. fulvidraco immune system and its related genes in response to bacterial or viral infections. In this study, the transcriptomic profiles of liver from P. fulvidraco stimulated by polyriboinosinic polyribocytidylic acid (poly I:C) was analyzed using high-throughput sequencing method. After assembly and annotation, total 67,447 unigenes were acquired, with an average length of 1091 bp. Under the infection of poly I:C, 522 differentially expressed genes (DEGs) were identified, including 307 up-regulated genes and 215 down-regulated genes. To further investigate the immune-related DEGs, Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. The result of GO enrichment indicated gene response to external stimulus, regulation of response to stimulus, cellular response to stimulus, immune response and immune system progress. Significant KEGG enrichment analysis identified major immune related pathways. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed that 13 immune response genes were identified to be up-regulated after 12 h of poly I:C stimulation compared to controls. Taken together, the results of our study are beneficial for better understanding of the immune system and defense mechanisms of yellow catfish in response to poly I:C infection.
Collapse
Affiliation(s)
- Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Zheng-Fei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Xiao-Yu Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China.
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China.
| |
Collapse
|
35
|
Wang YH, Zhang YG. Poly (I:C) alleviates obesity related pro-inflammatory status and promotes glucose homeostasis. Cytokine 2017; 99:225-232. [PMID: 28757363 DOI: 10.1016/j.cyto.2017.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022]
Abstract
Obesity associated insulin resistance (IR) is implicated in chronic inflammation that mediated by the immune system. Imbalance between anti-inflammatory and pro-inflammatory response contributes to the origins and drivers of IR. However, cells of innate and adaptive immune system participate in the pathogenesis of IR, while glucose homeostasis related immune tolerance could be compromised high fat diet (HFD) reduced metabolic disorder. Although previous studies have demonstrated that anti-inflammatory therapy has a protective role in alleviating the pro-inflammatory status in HFD induced IR, the precise mechanism is still unclear. Ploy (I:C) is a synthetic double-stranded RNA that activates innate and/or adaptive immune response via retinoic acid-inducible gene-I (RIG-I), toll-like receptor 3 (TLR3) and melanoma differentiation-associated protein 5 (MDA5). In the present study, we initially perform a novel research on the relationship between Poly (I:C) preconditioning and improved glucose metabolism in obesity related IR. Interestingly, Poly (I:C) treatment has alleviated the pro-inflammatory status and promoted glucose homeostasis during a HFD feeding. Improved insulin sensitivity is consistent with enhanced immune tolerance, which accompanied with increased Foxp3+ regulatory T cells (Tregs). Of note, Tregs have a pivotal role in orchestrating the self-balance between autoimmunity and inflammation reaction. Thus, our findings reveal that Ploy (I:C) preconditioning prevents HFD induced glucose intolerance, which may be recognized as vaccination by the host. Overall, selectively targeting precise immune regulators may lead to new classes of potentially meaningful therapies for IR in the clinical trials.
Collapse
Affiliation(s)
- Ying-Hui Wang
- Department of Immunology, Faculty of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Yu-Gen Zhang
- Department of Immunology, Faculty of Basic Medicine, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
36
|
Ta A, Thakur BK, Dutta P, Sinha R, Koley H, Das S. Double-stranded RNA induces cathelicidin expression in the intestinal epithelial cells through phosphatidylinositol 3-kinase-protein kinase Cζ-Sp1 pathway and ameliorates shigellosis in mice. Cell Signal 2017; 35:140-153. [DOI: 10.1016/j.cellsig.2017.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
|
37
|
Weber-Stadlbauer U. Epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders. Transl Psychiatry 2017; 7:e1113. [PMID: 28463237 PMCID: PMC5534947 DOI: 10.1038/tp.2017.78] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/07/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
Prenatal infection is an environmental risk factor for various brain disorders with neurodevelopmental components, including autism spectrum disorder and schizophrenia. Modeling this association in animals shows that maternal immune activation negatively affects fetal brain development and leads to the emergence of behavioral disturbances later in life. Recent discoveries in these preclinical models suggest that epigenetic modifications may be a critical molecular mechanism by which prenatal immune activation can mediate changes in brain development and functions, even across generations. This review discusses the potential epigenetic mechanisms underlying the effects of prenatal infections, thereby highlighting how infection-mediated epigenetic reprogramming may contribute to the transgenerational transmission of pathological traits. The identification of epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders appears relevant to brain disorders independently of existing diagnostic classifications and may help identifying complex patterns of transgenerational disease transmission beyond genetic inheritance. The consideration of ancestral infectious histories may be of great clinical interest and may be pivotal for developing new preventive treatment strategies against infection-mediated neurodevelopmental disorders.
Collapse
Affiliation(s)
- U Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| |
Collapse
|
38
|
Cappelletti M, Presicce P, Lawson MJ, Chaturvedi V, Stankiewicz TE, Vanoni S, Harley IT, McAlees JW, Giles DA, Moreno-Fernandez ME, Rueda CM, Senthamaraikannan P, Sun X, Karns R, Hoebe K, Janssen EM, Karp CL, Hildeman DA, Hogan SP, Kallapur SG, Chougnet CA, Way SS, Divanovic S. Type I interferons regulate susceptibility to inflammation-induced preterm birth. JCI Insight 2017; 2:e91288. [PMID: 28289719 DOI: 10.1172/jci.insight.91288] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Preterm birth (PTB) is a leading worldwide cause of morbidity and mortality in infants. Maternal inflammation induced by microbial infection is a critical predisposing factor for PTB. However, biological processes associated with competency of pathogens, including viruses, to induce PTB or sensitize for secondary bacterial infection-driven PTB are unknown. We show that pathogen/pathogen-associated molecular pattern-driven activation of type I IFN/IFN receptor (IFNAR) was sufficient to prime for systemic and uterine proinflammatory chemokine and cytokine production and induction of PTB. Similarly, treatment with recombinant type I IFNs recapitulated such effects by exacerbating proinflammatory cytokine production and reducing the dose of secondary inflammatory challenge required for induction of PTB. Inflammatory challenge-driven induction of PTB was eliminated by defects in type I IFN, TLR, or IL-6 responsiveness, whereas the sequence of type I IFN sensing by IFNAR on hematopoietic cells was essential for regulation of proinflammatory cytokine production. Importantly, we also show that type I IFN priming effects are conserved from mice to nonhuman primates and humans, and expression of both type I IFNs and proinflammatory cytokines is upregulated in human PTB. Thus, activation of the type I IFN/IFNAR axis in pregnancy primes for inflammation-driven PTB and provides an actionable biomarker and therapeutic target for mitigating PTB risk.
Collapse
Affiliation(s)
| | - Pietro Presicce
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Research Foundation
| | - Matthew J Lawson
- Division of Immunobiology.,Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | - Simone Vanoni
- Division of Allergy and Immunology, Cincinnati Children's Hospital Research Foundation, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | - Daniel A Giles
- Division of Immunobiology.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | - Rebekah Karns
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Research Foundation, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Research Foundation, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Suhas G Kallapur
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Research Foundation
| | | | | | | |
Collapse
|
39
|
Menezes CB, Tasca T. Trichomoniasis immunity and the involvement of the purinergic signaling. Biomed J 2016; 39:234-243. [PMID: 27793265 PMCID: PMC6138788 DOI: 10.1016/j.bj.2016.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Innate and adaptive immunity play a significant role in trichomoniasis, the most common non-viral sexually transmitted disease worldwide. In the urogenital tract, innate immunity is accomplished by a defense physical barrier constituted by epithelial cells, mucus, and acidic pH. During infection, immune cells, antimicrobial peptides, cytokines, chemokines, and adaptive immunity evolve in the reproductive tract, and a proinflammatory response is generated to eliminate the invading extracellular pathogen Trichomonas vaginalis. However, the parasite has developed complex evolutionary mechanisms to evade the host immune response through cysteine proteases, phenotypic variation, and molecular mimicry. The purinergic system constitutes a signaling cellular net where nucleotides and nucleosides, enzymes, purinoceptors and transporters are involved in almost all cells and tissues signaling pathways, especially in central and autonomic nervous systems, endocrine, respiratory, cardiac, reproductive, and immune systems, during physiological as well as pathological processes. The involvement of the purinergic system in T. vaginalis biology and infection has been demonstrated and this review highlights the participation of this signaling pathway in the parasite immune evasion strategies.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Parasitology Research Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Parasitology Research Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
40
|
Liu QN, Xin ZZ, Chai XY, Jiang SH, Li CF, Zhang DZ, Zhou CL, Tang BP. Identification of differentially expressed genes in the spleens of polyriboinosinic polyribocytidylic acid (poly I:C)-stimulated yellow catfish Pelteobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2016; 56:278-285. [PMID: 27368543 DOI: 10.1016/j.fsi.2016.06.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
The yellow catfish, Pelteobagrus fulvidraco (Siluriformes: Bagridae) is an economically important fish in China. However, genomic research and resources on this species are largely unavailable and still in infancy. In the present study, we constructed a cDNA library following poly I:C injection to screen for immune response genes in the spleens of P. fulvidraco using suppression subtractive hybridization (SSH). A total of 420 putative expressed sequence tag (EST) clones were identified at 24 h post-injection, which contain 103 genes consisting of 25 immune response genes, 12 cytoskeleton genes, 7 cell cycle and apoptosis genes, 7 respiration and energy metabolism genes, 7 transport genes, 26 metabolism genes, 10 stress response genes, 9 translational regulation genes, and 71 unknown genes. Real-time quantitative reverse transcription-PCR (qRT-PCR) results revealed that a set of randomly selected immune response genes were identified to be up-regulated after 24 h of poly I:C stimulation compared to controls. Our study provides an annotation of immune genes in detail and insight into fish immunity.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Chao-Feng Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, PR China.
| |
Collapse
|
41
|
Sheldon IM, Owens SE, Turner ML. Innate immunity and the sensing of infection, damage and danger in the female genital tract. J Reprod Immunol 2016; 119:67-73. [PMID: 27498991 DOI: 10.1016/j.jri.2016.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Tissue homeostasis in the female genital tract is challenged by infection, damage, and even physiological events during reproductive cycles. We propose that the evolutionarily ancient system of innate immunity is sufficient to sense and respond to danger in the non-pregnant female genital tract. Innate immunity produces a rapidly inducible, non-specific response when cells sense danger. Here we provide a primer on innate immunity and discuss what is known about how danger signals are sensed in the endometrium and ovary, the impact of inflammatory responses on reproduction, and how endocrinology and innate immunity are integrated. Endometrial epithelial and stromal cells, and ovarian granulosa cells express pattern recognition receptors, similar to cells of the innate immune system. These pattern recognition receptors, such as the Toll-like receptors, bind pathogen-associated or damage-associated molecular patterns. Activation of pattern recognition receptors leads to inflammation, recruitment of immune cells from the peripheral circulation, and phagocytosis. Although the inflammatory response helps maintain or restore endometrial health, there may also be negative consequences for fertility, including perturbation of oocyte competence. The intensity of the inflammatory response reflects the balance between the level of danger and the systems that regulate innate immunity, including the endocrine environment. Understanding innate immunity is important because disease and inappropriate inflammatory responses in the endometrium or ovary cause infertility.
Collapse
Affiliation(s)
- Iain Martin Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| | - Siân-Eleri Owens
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Matthew Lloyd Turner
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| |
Collapse
|
42
|
Montazeri M, Sanchez-Lopez JA, Caballero I, Maslehat Lay N, Elliott S, Fazeli A. Interleukin-1 receptor antagonist mediates toll-like receptor 3-induced inhibition of trophoblast adhesion to endometrial cells in vitro. Hum Reprod 2016; 31:2098-107. [PMID: 27412245 DOI: 10.1093/humrep/dew171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 06/13/2016] [Indexed: 01/10/2023] Open
Abstract
STUDY QUESTION Is interleukin-1 receptor antagonist (IL-1RA) involved in the toll-like receptor 3 (TLR 3)-induced inhibition of trophoblast cells' adhesion to endometrial cells in vitro? SUMMARY ANSWER IL-1RA mediates the TLR 3-induced inhibition of trophoblast cells' adhesion to endometrial cells in vitro. WHAT IS KNOWN ALREADY It is well documented that endometrial TLR 3 activation leads to impairment of trophoblast binding to endometrial cells in vitro. IL-1RA is known as an anti-implantation factor, as its injection significantly reduced implantation rates in mice by an effect on endometrial receptivity. STUDY DESIGN, SIZE, DURATION Poly I:C was used as a TLR3 specific ligand and endometrial cells were either treated or not with Poly I:C (treated versus control) in vitro. IL-1RA was applied to block IL-1 signal transduction. IL-1RA was knocked down by Accell Human IL1RN siRNA. Flagellin was used to stimulate TLR 5. SP600125 (JNK) was applied to inhibit the mitogen-activated protein kinases (MAPK) pathway. BAY11 -7082 was used to inhibit the nuclear factor-κB (NF-κB) pathway. The experiments were performed in three replicates on three separate days. PARTICIPANTS/MATERIALS, SETTING, METHODS An in vitro assay was developed using RL95-2 (an endometrial cell line) and JAr (a trophoblast cell line) cells. Initially, the production of IL-1RA in RL95-2 cells in response to TLR 3 activation was measured. To determine whether the TLR 3-induced inhibition of trophoblast binding was mediated through IL-1RA: (i) we evaluated the effect of IL-1RA on the attachment of trophoblast cells to endometrial cells; (ii) we knocked down TLR3-induced IL-1RA gene expression by IL-1RA Small interfering RNA (siRNA) and evaluated trophoblast attachment to endometrial cells. Finally, to clarify through which pathway TLR 3-induced inhibition of trophoblast binding occurs: (i) activation of NF-κB and MAPK was detected by transfecting the cells with secreted placental alkaline phosphatase reporter plasmids bearing promoter sequences for each transcription factor; (ii) the inhibitors for NF-κB and MAPK were used to block signaling; (iii) it was then investigated whether addition of these inhibitors could restore the TLR 3-induced impairment of trophoblast attachment to the endometrial cells. MAIN RESULTS AND THE ROLE OF CHANCE Our results showed that addition of polyinosinic:polycytidylic acid (Poly I:C) to RL95-2 cells significantly increased the production of IL-1RA (P < 0.05). Addition of human recombinant IL-1RA to RL95-2 cells remarkably decreased the adhesion rate of trophoblast cells to endometrial cells (P < 0.05). In addition, suppression of TLR3-induced IL-1RA gene expression in RL95-2 cells significantly restored trophoblast cells attachment to endometrial cells in the presence of Poly I:C (P < 0.05). Only TLR3 and not TLR5 induced MAPK activation (P < 0.05). TLR3 ligation did not affect NF-κB activation. Of NF-kB and MAPK inhibitors, only MAPK's inhibitor could achieve restoration of spheroid adhesion to endometrial cells (P < 0.05). LIMITATIONS, REASONS FOR CAUTION This study has been only done in vitro. Future in vivo studies will confirm our data. WIDER IMPLICATIONS OF THE FINDINGS The findings of this study have a potential clinical application in introducing IL-1RA as one of the diagnostic infertility markers in the endometrium, which can affect the process of embryo adhesion at the time of implantation. Moreover, based on the novel data obtained in the current study, blocking and regulating the MAPK pathway by its inhibitors can be used as a new strategy to prevent and treat virus-induced infertility cases in ART techniques. STUDY FUNDING/COMPETING INTEREST This study was partially funded by a Marie Curie IIF-253948 grant to I.C. and was partially funded by the author's institutions. The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- M Montazeri
- Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Level 4, Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK
| | - J A Sanchez-Lopez
- Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Level 4, Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK
| | - I Caballero
- Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Level 4, Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK UMR1282 ISP, INRA, Nouzilly, France
| | - N Maslehat Lay
- Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Level 4, Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK
| | - S Elliott
- Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Level 4, Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK
| | - A Fazeli
- Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Level 4, Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK
| |
Collapse
|
43
|
Winkle SM, Throop AL, Herbst-Kralovetz MM. IL-36γ Augments Host Defense and Immune Responses in Human Female Reproductive Tract Epithelial Cells. Front Microbiol 2016; 7:955. [PMID: 27379082 PMCID: PMC4911402 DOI: 10.3389/fmicb.2016.00955] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/02/2016] [Indexed: 12/12/2022] Open
Abstract
IL-36γ is a proinflamatory cytokine which belongs to the IL-1 family of cytokines. It is expressed in the skin and by epithelial cells (ECs) lining lung and gut tissue. We used human 3-D organotypic cells, that recapitulate either in vivo human vaginal or cervical tissue, to explore the possible role of IL-36γ in host defense against pathogens in the human female reproductive tract (FRT). EC were exposed to compounds derived from virus or bacterial sources and induction and regulation of IL-36γ and its receptor was determined. Polyinosinic-polycytidylic acid (poly I:C), flagellin, and synthetic lipoprotein (FSL-1) significantly induced expression of IL-36γ in a dose-dependent manner, and appeared to be TLR-dependent. Recombinant IL-36γ treatment resulted in self-amplification of IL-36γ and its receptor (IL-36R) via increased gene expression, and promoted other inflammatory signaling pathways. This is the first report to demonstrate that the IL-36 receptor and IL-36γ are present in the human FRT EC and that they are differentially induced by microbial products at this site. We conclude that IL-36γ is a driver for epithelial and immune activation following microbial insult and, as such, may play a critical role in host defense in the FRT.
Collapse
Affiliation(s)
- Sean M Winkle
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix AZ, USA
| | - Andrea L Throop
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix AZ, USA
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix AZ, USA
| |
Collapse
|
44
|
Fehri E, Ennaifer E, Bel Haj Rhouma R, Guizani-Tabbane L, Guizani I, Boubaker S. The role of Toll-like receptor 9 in gynecologic cancer. Curr Res Transl Med 2016; 64:155-159. [PMID: 27765276 DOI: 10.1016/j.retram.2016.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/27/2016] [Indexed: 12/14/2022]
Abstract
Toll-like receptor 9 (TLR9) plays a major role in the fight against DNA viruses infections. Despite its antitumor properties, inappropriate activation of TLR9 during chronic inflammation may cause the activation of transcription factors inducing pro-cancerous activities. Thus, the relationship between TLR9 and cancer remains highly confrontational especially in gynecological cancers and cervical cancer induced by viruses. In this review, we focus on the beneficial and detrimental role of TLR9 in gynecological carcinogenesis. TLR9 contributes to tumor regression by inducing cytotoxic T cell response (CTL), reducing the numbers of myeloid-derived suppressor cells (MDSCs), the tumor-associated macrophages (TAMs) and the regulatory T cells (T regs). It can however, also promote tumor progression and invasiveness of cervical tissue. Therefore, the dichotomous role of TLR9 needs to be carefully investigated in the setting of neoplastic disease.
Collapse
Affiliation(s)
- E Fehri
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, BP 74, 1002, le Belvédère, Tunis, Tunisia; Department of Human and Experimental Pathology, Pasteur Institute of Tunis, BP 74, 1002, le Belvédère, Tunis, Tunisia.
| | - E Ennaifer
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, BP 74, 1002, le Belvédère, Tunis, Tunisia; Department of Human and Experimental Pathology, Pasteur Institute of Tunis, BP 74, 1002, le Belvédère, Tunis, Tunisia
| | - R Bel Haj Rhouma
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, BP 74, 1002, le Belvédère, Tunis, Tunisia
| | - L Guizani-Tabbane
- Laboratory of Medical Parasitology Biotechnology and Biomolecules, Pasteur Institute of Tunis, BP 74, 1002, le Belvédère, Tunis, Tunisia
| | - I Guizani
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, BP 74, 1002, le Belvédère, Tunis, Tunisia
| | - S Boubaker
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, BP 74, 1002, le Belvédère, Tunis, Tunisia
| |
Collapse
|
45
|
Zandieh Z, Amjadi F, Ashrafi M, Aflatoonian A, Fazeli A, Aflatoonian R. The Effect of Estradiol and Progesterone on Toll Like Receptor Gene Expression in A Human Fallopian Tube Epithelial Cell Line. CELL JOURNAL 2016; 17:678-91. [PMID: 26862527 PMCID: PMC4746418 DOI: 10.22074/cellj.2016.3840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/21/2014] [Indexed: 11/09/2022]
Abstract
Objective Toll like receptors (TLRs) are one of the main components of the innate im-
mune system. It has been reported that expression of these receptors are altered in the
female reproductive tract (FRT) during menstrual cycle. Here we used a fallopian tube
epithelial cell line (OE-E6/E7) to evaluate the effect of two sex hormones in modulating
TLR expression.
Materials and Methods In this experimental study, initially TLR gene expression in OE-
E6/E7 cells was evaluated and compared with that of fallopian tube tissue using quanti-
tative real time-polymerase chain reaction (qRT-PCR) and immunostaining. Thereafter,
OE-E6/E7 cells were cultured with different concentrations of estradiol and progesterone,
and combination of both. qRT-PCR was performed to reveal any changes in expression of
TLR genes as a result of hormonal treatment.
Results TLR1-10 genes were expressed in human fallopian tube tissue. TLR1-6 genes
and their respective proteins were expressed in the OE-E6/E7 cell line. Although estradiol
and progesterone separately had no significant effect on TLR expression, their combined
treatment altered the expression of TLRs in this cell line. Also, the pattern of TLR expres-
sion in preovulation (P), mensturation (M) and window of implantation (W) were the same
for all TLRs with no significant differences between P, M and W groups.
Conclusion These data show the significant involvement of the combination of es-
tradiol and progesterone in modulation of TLR gene expression in this human fal-
lopian tube cell line. Further experiments may reveal the regulatory mechanism and
signalling pathway behind the effect of sex hormones in modulating TLRs in the hu-
man FRT.
Collapse
Affiliation(s)
- Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ashrafi
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Aflatoonian
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Fazeli
- Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
46
|
Buckner LR, Amedee AM, Albritton HL, Kozlowski PA, Lacour N, McGowin CL, Schust DJ, Quayle AJ. Chlamydia trachomatis Infection of Endocervical Epithelial Cells Enhances Early HIV Transmission Events. PLoS One 2016; 11:e0146663. [PMID: 26730599 PMCID: PMC4701475 DOI: 10.1371/journal.pone.0146663] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 01/20/2023] Open
Abstract
Chlamydia trachomatis causes a predominantly asymptomatic, but generally inflammatory, genital infection that is associated with an increased risk for HIV acquisition. Endocervical epithelial cells provide the major niche for this obligate intracellular bacterium in women, and the endocervix is also a tissue in which HIV transmission can occur. The mechanism by which CT infection enhances HIV susceptibility at this site, however, is not well understood. Utilizing the A2EN immortalized endocervical epithelial cell line grown on cell culture inserts, we evaluated the direct role that CT-infected epithelial cells play in facilitating HIV transmission events. We determined that CT infection significantly enhanced the apical-to-basolateral migration of cell-associated, but not cell-free, HIVBaL, a CCR5-tropic strain of virus, across the endocervical epithelial barrier. We also established that basolateral supernatants from CT-infected A2EN cells significantly enhanced HIV replication in peripheral mononuclear cells and a CCR5+ T cell line. These results suggest that CT infection of endocervical epithelial cells could facilitate both HIV crossing the mucosal barrier and subsequent infection or replication in underlying target cells. Our studies provide a mechanism by which this common STI could potentially promote the establishment of founder virus populations and the maintenance of local HIV reservoirs in the endocervix. Development of an HIV/STI co-infection model also provides a tool to further explore the role of other sexually transmitted infections in enhancing HIV acquisition.
Collapse
Affiliation(s)
- Lyndsey R. Buckner
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Angela M. Amedee
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Hannah L. Albritton
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Nedra Lacour
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Chris L. McGowin
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
- Department of Medicine, Section of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, United States of America
| | - Danny J. Schust
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65201, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| |
Collapse
|
47
|
Franasiak JM, Werner MD, Juneau CR, Tao X, Landis J, Zhan Y, Treff NR, Scott RT. Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit. J Assist Reprod Genet 2016; 33:129-36. [PMID: 26547201 PMCID: PMC4717132 DOI: 10.1007/s10815-015-0614-z] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/29/2015] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Characterization of the human microbiome has become more precise with the application of powerful molecular tools utilizing the unique 16S ribosomal subunit's hypervariable regions to greatly increase sensitivity. The microbiome of the lower genital tract can prognosticate obstetrical outcome while the upper reproductive tract remains poorly characterized. Here, the endometrial microbiome at the time of single embryo transfer (SET) is characterized by reproductive outcome. METHODS Consecutive patients undergoing euploid, SET was included in the analysis. After embryo transfer, performed as per routine, the most distal 5-mm portion of the transfer catheter was sterilely placed in a DNA free PCR tube. Next-generation sequencing of the bacteria specific 16S ribosome gene was performed, allowing genus and species calls for microorganisms. RESULTS Taxonomy assignments were made on 35 samples from 33 patients and 2 Escherichia coli controls. Of the 33 patients, 18 had ongoing pregnancies and 15 did not. There were a total of 278 different genus calls present across patient samples. The microbiome at time of transfer for those patients with ongoing pregnancy vs. those without ongoing pregnancy was characterized by top genera by sum fraction. Lactobacillus was the top species call for both outcomes. CONCLUSIONS The data presented here show the microbiome at the time of embryo transfer can successfully be characterized without altering standard clinical practice. This novel approach, both in specimen collection and analysis, is the first step toward the goal of determining physiologic from pathophysiologic microbiota. Further studies will help delineate if differences in the microbiome at the time of embryo transfer have a reliable impact on pregnancy outcome.
Collapse
Affiliation(s)
- J M Franasiak
- Division of Reproductive Endocrinology, Department of Obstetrics Gynecology and Reproductive Sciences, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
- Reproductive Medicine Associates of New Jersey, 140 Allen Road, Basking Ridge, NJ, 07920, USA.
| | - M D Werner
- Division of Reproductive Endocrinology, Department of Obstetrics Gynecology and Reproductive Sciences, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
- Reproductive Medicine Associates of New Jersey, 140 Allen Road, Basking Ridge, NJ, 07920, USA
| | - C R Juneau
- Division of Reproductive Endocrinology, Department of Obstetrics Gynecology and Reproductive Sciences, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
- Reproductive Medicine Associates of New Jersey, 140 Allen Road, Basking Ridge, NJ, 07920, USA
| | - X Tao
- Reproductive Medicine Associates of New Jersey, 140 Allen Road, Basking Ridge, NJ, 07920, USA
| | - J Landis
- Foundation for Embryonic Competence, Basking Ridge, NJ, USA
| | - Y Zhan
- Foundation for Embryonic Competence, Basking Ridge, NJ, USA
| | - N R Treff
- Reproductive Medicine Associates of New Jersey, 140 Allen Road, Basking Ridge, NJ, 07920, USA
| | - R T Scott
- Division of Reproductive Endocrinology, Department of Obstetrics Gynecology and Reproductive Sciences, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
- Reproductive Medicine Associates of New Jersey, 140 Allen Road, Basking Ridge, NJ, 07920, USA
| |
Collapse
|
48
|
De Buck M, Gouwy M, Wang JM, Van Snick J, Proost P, Struyf S, Van Damme J. The cytokine-serum amyloid A-chemokine network. Cytokine Growth Factor Rev 2015; 30:55-69. [PMID: 26794452 DOI: 10.1016/j.cytogfr.2015.12.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
Abstract
Levels of serum amyloid A (SAA), a major acute phase protein in humans, are increased up to 1000-fold upon infection, trauma, cancer or other inflammatory events. However, the exact role of SAA in host defense is yet not fully understood. Several pro- and anti-inflammatory properties have been ascribed to SAA. Here, the regulated production of SAA by cytokines and glucocorticoids is discussed first. Secondly, the cytokine and chemokine inducing capacity of SAA and its receptor usage are reviewed. Thirdly, the direct (via FPR2) and indirect (via TLR2) chemotactic effects of SAA and its synergy with chemokines are unraveled. Altogether, a complex cytokine-SAA-chemokine network is established, in which SAA plays a key role in regulating the inflammatory response.
Collapse
Affiliation(s)
- Mieke De Buck
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Mieke Gouwy
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Jacques Van Snick
- Ludwig Cancer Research, Brussels Branch, Brussels, Belgium; e Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Jo Van Damme
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
49
|
Baines KJ, Wright TK, Simpson JL, McDonald VM, Wood LG, Parsons KS, Wark PA, Gibson PG. Airway β-Defensin-1 Protein Is Elevated in COPD and Severe Asthma. Mediators Inflamm 2015; 2015:407271. [PMID: 26568662 PMCID: PMC4629049 DOI: 10.1155/2015/407271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Innate immune antimicrobial peptides, including β-defensin-1, promote the chemotaxis and activation of several immune cells. The role of β-defensin-1 in asthma and chronic obstructive pulmonary disease (COPD) remains unclear. METHODS Induced sputum was collected from healthy controls and individuals with asthma or COPD. β-defensin-1 protein in sputum supernatant was quantified by ELISA. Biomarker potential was examined using receiver operating characteristic curves. β-defensin-1 release from primary bronchial epithelial cells (pBECs) was investigated in culture with and without cigarette smoke extract (CSE). RESULTS Airway β-defensin-1 protein was elevated in COPD participants compared to asthma participants and healthy controls. Inflammatory phenotype had no effect on β-defensin-1 levels in asthma or COPD. β-defensin-1 protein was significantly higher in severe asthma compared to controlled and uncontrolled asthma. β-defensin-1 protein could predict the presence of COPD from both healthy controls and asthma patients. Exposure of pBECs to CSE decreased β-defensin-1 production in healthy controls; however in pBECs from COPD participants the level of β-defensin-1 remanied unchanged. CONCLUSIONS Elevated β-defensin-1 protein is a feature of COPD and severe asthma regardless of inflammatory phenotype. β-defensin-1 production is dysregulated in the epithelium of patients with COPD and may be an effective biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Katherine J. Baines
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW 2305, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| | - Thomas K. Wright
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW 2305, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| | - Jodie L. Simpson
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW 2305, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| | - Vanessa M. McDonald
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW 2305, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| | - Lisa G. Wood
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW 2305, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| | - Kristy S. Parsons
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW 2305, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| | - Peter A. Wark
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW 2305, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| | - Peter G. Gibson
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW 2305, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
50
|
Labouesse MA, Langhans W, Meyer U. Long-term pathological consequences of prenatal infection: beyond brain disorders. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1-R12. [DOI: 10.1152/ajpregu.00087.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022]
Abstract
Prenatal immunological adversities such as maternal infection have been widely acknowledged to contribute to an increased risk of neurodevelopmental brain disorders. In recent years, epidemiological and experimental evidence has accumulated to suggest that prenatal exposure to immune challenges can also negatively affect various physiological and metabolic functions beyond those typically associated with primary defects in CNS development. These peripheral changes include excessive accumulation of adipose tissue and increased body weight, impaired glycemic regulation and insulin resistance, altered myeloid lineage development, increased gut permeability, hyperpurinergia, and changes in microbiota composition. Experimental work in animal models further suggests that at least some of these peripheral abnormalities could directly contribute to CNS dysfunctions, so that normalization of peripheral pathologies could lead to an amelioration of behavioral deficits. Hence, seemingly unrelated central and peripheral effects of prenatal infection could represent interrelated pathological entities that emerge in response to a common developmental stressor. Targeting peripheral abnormalities may thus represent a valuable strategy to improve the wide spectrum of behavioral abnormalities that can emerge in subjects with prenatal infection histories.
Collapse
Affiliation(s)
| | | | - Urs Meyer
- Physiology and Behavior Laboratory, ETH Zurich, Switzerland
| |
Collapse
|