1
|
Kim A, Xie F, Abed OA, Moon JJ. Vaccines for immune tolerance against autoimmune disease. Adv Drug Deliv Rev 2023; 203:115140. [PMID: 37980949 PMCID: PMC10757742 DOI: 10.1016/j.addr.2023.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The high prevalence and rising incidence of autoimmune diseases have become a prominent public health issue. Autoimmune disorders result from the immune system erroneously attacking the body's own healthy cells and tissues, causing persistent inflammation, tissue injury, and impaired organ function. Existing treatments primarily rely on broad immunosuppression, leaving patients vulnerable to infections and necessitating lifelong treatments. To address these unmet needs, an emerging frontier of vaccine development aims to restore immune equilibrium by inducing immune tolerance to autoantigens, offering a potential avenue for a cure rather than mere symptom management. We discuss this burgeoning field of vaccine development against inflammation and autoimmune diseases, with a focus on common autoimmune disorders, including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, inflammatory bowel disease, and systemic lupus erythematosus. Vaccine-based strategies provide a new pathway for the future of autoimmune disease therapeutics, heralding a new era in the battle against inflammation and autoimmunity.
Collapse
Affiliation(s)
- April Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109, USA.
| |
Collapse
|
2
|
P. Singh R, S. Bischoff D, S Singh S, H. Hahn B. Peptide-based immunotherapy in lupus: Where are we now? RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:139-149. [PMID: 37781681 PMCID: PMC10538607 DOI: 10.2478/rir-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/01/2023] [Indexed: 10/03/2023]
Abstract
In autoimmune rheumatic diseases, immune hyperactivity and chronic inflammation associate with immune dysregulation and the breakdown of immune self-tolerance. A continued, unresolved imbalance between effector and regulatory immune responses further exacerbates inflammation that ultimately causes tissue and organ damage. Many treatment modalities have been developed to restore the immune tolerance and immmunoregulatory balance in autoimmune rheumatic diseases, including the use of peptide-based therapeutics or the use of nanoparticles-based nanotechnology. This review summarizes the state-of-the-art therapeutic use of peptide-based therapies in autoimmune rheumatic diseases, with a specific focus on lupus.
Collapse
Affiliation(s)
- Ram P. Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, 90073 CA, USA
| | - David S. Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, 90073 CA, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, 90095 CA, USA
| | | | - Bevra H. Hahn
- Department of Medicine, University of California, Los Angeles, Los Angeles, 90095 CA, USA
| |
Collapse
|
3
|
Ke F, Benet ZL, Maz MP, Liu J, Dent AL, Kahlenberg JM, Grigorova IL. Germinal center B cells that acquire nuclear proteins are specifically suppressed by follicular regulatory T cells. eLife 2023; 12:e83908. [PMID: 36862132 PMCID: PMC9981149 DOI: 10.7554/elife.83908] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Follicular regulatory T cells (Tfr) restrict development of autoantibodies and autoimmunity while supporting high-affinity foreign antigen-specific humoral response. However, whether Tfr can directly repress germinal center (GC) B cells that acquire autoantigens is unclear. Moreover, TCR specificity of Tfr to self-antigens is not known. Our study suggests that nuclear proteins contain antigens specific to Tfr. Targeting of these proteins to antigen-specific B cells in mice triggers rapid accumulation of Tfr with immunosuppressive characteristics. Tfr then exert negative regulation of GC B cells with predominant inhibition of the nuclear protein-acquiring GC B cells, suggesting an important role of direct cognate Tfr-GC B cells interactions for the control of effector B cell response.
Collapse
Affiliation(s)
- Fang Ke
- Department of Microbiology and Immunology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Zachary L Benet
- Department of Microbiology and Immunology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Mitra P Maz
- Department of Internal Medicine, Division of Rheumatology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Jianhua Liu
- Department of Internal Medicine, Division of Rheumatology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of MedicineIndianapolisUnited States
| | - Joanne Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Irina L Grigorova
- Department of Microbiology and Immunology, University of Michigan–Ann ArborAnn ArborUnited States
| |
Collapse
|
4
|
Santambrogio L, Franco A. The yin/yang balance of the MHC-self -immunopeptidome. Front Immunol 2022; 13:1035363. [PMID: 36405763 PMCID: PMC9666884 DOI: 10.3389/fimmu.2022.1035363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 07/22/2023] Open
Abstract
The MHC-self immunopeptidome of professional antigen presenting cells is a cognate ligand for the TCRs expressed on both conventional and thymic-derived natural regulatory T cells. In regulatory T cells, the TCR signaling associated with MHC-peptide recognition induces antigen specific as well as bystander immunosuppression. On the other hand, TCR activation of conventional T cells is associated with protective immunity. As such the peripheral T cell repertoire is populated by a number of T cells with different phenotypes and different TCRs, which can recognize the same MHC-self-peptide complex, resulting in opposite immunological outcomes. This article summarizes what is known about regulatory and conventional T cell recognition of the MHC-self-immunopeptidome at steady state and in inflammatory conditions associated with increased T and B cell self-reactivity, discussing how changes in the MHC-ligandome including epitope copy number and post-translational modifications can tilt the balance toward the expansion of pro-inflammatory or regulatory T cells.
Collapse
Affiliation(s)
- Laura Santambrogio
- Department of Radiation Oncology, Physiology and Biophysics, Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Alessandra Franco
- University of California San Diego School of Medicine, Department of Pediatrics, La Jolla, CA, United States
| |
Collapse
|
5
|
Ciurtin C, Pineda-Torra I, Jury EC, Robinson GA. CD8+ T-Cells in Juvenile-Onset SLE: From Pathogenesis to Comorbidities. Front Med (Lausanne) 2022; 9:904435. [PMID: 35801216 PMCID: PMC9254716 DOI: 10.3389/fmed.2022.904435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Diagnosis of systemic lupus erythematosus (SLE) in childhood [juvenile-onset (J) SLE], results in a more severe disease phenotype including major organ involvement, increased organ damage, cardiovascular disease risk and mortality compared to adult-onset SLE. Investigating early disease course in these younger JSLE patients could allow for timely intervention to improve long-term prognosis. However, precise mechanisms of pathogenesis are yet to be elucidated. Recently, CD8+ T-cells have emerged as a key pathogenic immune subset in JSLE, which are increased in patients compared to healthy individuals and associated with more active disease and organ involvement over time. CD8+ T-cell subsets have also been used to predict disease prognosis in adult-onset SLE, supporting the importance of studying this cell population in SLE across age. Recently, single-cell approaches have allowed for more detailed analysis of immune subsets in JSLE, where type-I IFN-signatures have been identified in CD8+ T-cells expressing high levels of granzyme K. In addition, JSLE patients with an increased cardiometabolic risk have increased CD8+ T-cells with elevated type-I IFN-signaling, activation and apoptotic pathways associated with atherosclerosis. Here we review the current evidence surrounding CD8+ T-cell dysregulation in JSLE and therapeutic strategies that could be used to reduce CD8+ T-cell inflammation to improve disease prognosis.
Collapse
Affiliation(s)
- Coziana Ciurtin
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, United Kingdom
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, Division of Medicine, University College London, London, United Kingdom
| | - Elizabeth C. Jury
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - George A. Robinson
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
6
|
Venkatadri R, Sabapathy V, Dogan M, Sharma R. Targeting Regulatory T Cells for Therapy of Lupus Nephritis. Front Pharmacol 2022; 12:806612. [PMID: 35069220 PMCID: PMC8775001 DOI: 10.3389/fphar.2021.806612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Lupus glomerulonephritis (LN) is a complex autoimmune disease characterized by circulating autoantibodies, immune-complex deposition, immune dysregulation and defects in regulatory T cell (Tregs). Treatment options rely on general immunosuppressants and steroids that have serious side effects. Approaches to target immune cells, such as B cells in particular, has had limited success and new approaches are being investigated. Defects in Tregs in the setting of autoimmunity is well known and Treg-replacement strategies are currently being explored. The aim of this minireview is to rekindle interest on Treg-targeting strategies. We discuss the existing evidences for Treg-enhancement strategies using key cytokines interleukin (IL)-2, IL-33 and IL-6 that have shown to provide remission in LN. We also discuss strategies for indirect Treg-modulation for protection from LN.
Collapse
Affiliation(s)
- Rajkumar Venkatadri
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Vikram Sabapathy
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Murat Dogan
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
7
|
Singh RP, Hahn BH, Bischoff DS. Cellular and Molecular Phenotypes of pConsensus Peptide (pCons) Induced CD8 + and CD4 + Regulatory T Cells in Lupus. Front Immunol 2021; 12:718359. [PMID: 34867947 PMCID: PMC8640085 DOI: 10.3389/fimmu.2021.718359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with widespread inflammation, immune dysregulation, and is associated with the generation of destructive anti-DNA autoantibodies. We have shown previously the immune modulatory properties of pCons peptide in the induction of both CD4+ and CD8+ regulatory T cells which can in turn suppress development of the autoimmune disease in (NZB/NZW) F1 (BWF1) mice, an established model of lupus. In the present study, we add novel protein information and further demonstrate the molecular and cellular phenotypes of pCons-induced CD4+ and CD8+ Treg subsets. Flow cytometry analyses revealed that pCons induced CD8+ Treg cells with the following cell surface molecules: CD25highCD28high and low subsets (shown earlier), CD62Lhigh, CD122low, PD1low, CTLA4low, CCR7low and 41BBhigh. Quantitative real-time PCR (qRT-PCR) gene expression analyses revealed that pCons-induced CD8+ Treg cells downregulated the following several genes: Regulator of G protein signaling (RGS2), RGS16, RGS17, BAX, GPT2, PDE3b, GADD45β and programmed cell death 1 (PD1). Further, we confirmed the down regulation of these genes by Western blot analyses at the protein level. To our translational significance, we showed herein that pCons significantly increased the percentage of CD8+FoxP3+ T cells and further increased the mean fluorescence intensity (MFI) of FoxP3 when healthy peripheral blood mononuclear cells (PBMCs) are treated with pCons (10 μg/ml, for 24-48 hours). In addition, we found that pCons reduced apoptosis in CD4+ and CD8+ T cells and B220+ B cells of BWF1 lupus mice. These data suggest that pCons stimulates cellular, immunological, and molecular changes in regulatory T cells which in turn protect against SLE autoimmunity.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bevra H Hahn
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Rohrer B, Parsons N, Annamalai B, Nicholson C, Obert E, Jones BW, Dick AD. Peptide-based immunotherapy against oxidized elastin ameliorates pathology in mouse model of smoke-induced ocular injury. Exp Eye Res 2021; 212:108755. [PMID: 34487725 PMCID: PMC9753162 DOI: 10.1016/j.exer.2021.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Age-related macular degeneration (AMD), the leading cause of blindness in western populations, is associated with an overactive complement system, and an increase in circulating antibodies against certain epitopes, including elastin. As loss of the elastin layer of Bruch's membrane (BrM) has been reported in aging and AMD, we previously showed that immunization with elastin peptide oxidatively modified by cigarette smoke (ox-elastin), exacerbated ocular pathology in the smoke-induced ocular pathology (SIOP) model. Here we asked whether ox-elastin peptide-based immunotherapy (PIT) ameliorates damage. METHODS C57BL/6J mice were injected with ox-elastin peptide at two doses via weekly subcutaneous administration, while exposed to cigarette smoke for 6 months. FcγR-/- and uninjected C57BL/6J mice served as controls. Retinal morphology was assessed by electron microscopy, and complement activation, antibody deposition and mechanisms of immunological tolerance were assessed by Western blotting and ELISA. RESULTS Elimination of Fcγ receptors, preventing antigen/antibody-dependent cytotoxicity, protected against SIOP. Mice receiving PIT with low dose ox-elastin (LD-PIT) exhibited reduced humoral immunity, reduced complement activation and IgG/IgM deposition in the RPE/choroid, and largely a preserved BrM. While there is no direct evidence of ox-elastin pathogenicity, LD-PIT reduced IFNγ and increased IL-4 within RPE/choroid. High dose PIT was not protective. CONCLUSIONS These data further support ox-elastin role in ocular damage in part via elastin-specific antibodies, and support the corollary that PIT with ox-elastin attenuates ocular pathology. Overall, damage is associated with complement activation, antibody-dependent cell-mediated cytotoxicity, and altered cytokine signature.
Collapse
Affiliation(s)
- Bärbel Rohrer
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA; Departments of Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA; Departments of Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, 29401, USA.
| | - Nathaniel Parsons
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA
| | - Balasubramaniam Annamalai
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA
| | - Crystal Nicholson
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA
| | - Elisabeth Obert
- Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan W Jones
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, 84132, USA
| | - Andrew D Dick
- University of Bristol, Bristol BS8 1TD, UK and University College London-Institute of Ophthalmology and the National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, EC1V 9EL, UK.
| |
Collapse
|
9
|
Maulloo CD, Cao S, Watkins EA, Raczy MM, Solanki AS, Nguyen M, Reda JW, Shim HN, Wilson DS, Swartz MA, Hubbell JA. Lymph Node-Targeted Synthetically Glycosylated Antigen Leads to Antigen-Specific Immunological Tolerance. Front Immunol 2021; 12:714842. [PMID: 34630389 PMCID: PMC8498032 DOI: 10.3389/fimmu.2021.714842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Inverse vaccines that tolerogenically target antigens to antigen-presenting cells (APCs) offer promise in prevention of immunity to allergens and protein drugs and treatment of autoimmunity. We have previously shown that targeting hepatic APCs through intravenous injection of synthetically glycosylated antigen leads to effective induction of antigen-specific immunological tolerance. Here, we demonstrate that targeting these glycoconjugates to lymph node (LN) APCs under homeostatic conditions leads to local and increased accumulation in the LNs compared to unmodified antigen and induces a tolerogenic state both locally and systemically. Subcutaneous administration directs the polymeric glycoconjugate to the draining LN, where the glycoconjugated antigen generates robust antigen-specific CD4+ and CD8+ T cell tolerance and hypo-responsiveness to antigenic challenge via a number of mechanisms, including clonal deletion, anergy of activated T cells, and expansion of regulatory T cells. Lag-3 up-regulation on CD4+ and CD8+ T cells represents an essential mechanism of suppression. Additionally, presentation of antigen released from the glycoconjugate to naïve T cells is mediated mainly by LN-resident CD8+ and CD11b+ dendritic cells. Thus, here we demonstrate that antigen targeting via synthetic glycosylation to impart affinity for APC scavenger receptors generates tolerance when LN dendritic cells are the cellular target.
Collapse
Affiliation(s)
- Chitavi D. Maulloo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Elyse A. Watkins
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Michal M. Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Ani. S. Solanki
- Animal Resources Center, University of Chicago, Chicago, IL, United States
| | - Mindy Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Joseph W. Reda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Ha-Na Shim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - D. Scott Wilson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, United States
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- Committee on Immunology, University of Chicago, Chicago, IL, United States
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, United States
- Committee on Cancer Biology, University of Chicago, Chicago, IL, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- Committee on Immunology, University of Chicago, Chicago, IL, United States
- Committee on Cancer Biology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Singh RP, Bischoff DS, Hahn BH. CD8 + T regulatory cells in lupus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:147-156. [PMID: 35880241 PMCID: PMC9242525 DOI: 10.2478/rir-2021-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 04/11/2023]
Abstract
T regulatory cells (Tregs) have a key role in the maintenance of immune homeostasis and the regulation of immune tolerance by preventing the inflammation and suppressing the autoimmune responses. Numerical and functional deficits of these cells have been reported in systemic lupus erythematosus (SLE) patients and mouse models of SLE, where their imbalance and dysregulated activities have been reported to significantly influence the disease pathogenesis, progression and outcomes. Most studies in SLE have focused on CD4+ Tregs and it has become clear that a critical role in the control of immune tolerance after the breakdown of self-tolerance is provided by CD8+ Tregs. Here we review the role, cellular and molecular phenotypes, and mechanisms of action of CD8+ Tregs in SLE, including ways to induce these cells for immunotherapeutic modulation in SLE.
Collapse
Affiliation(s)
- Ram P. Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Medicine, Division of Rheumatology, University of California, Los Angeles, USA
| | - David S. Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bevra H. Hahn
- Department of Medicine, Division of Rheumatology, University of California, Los Angeles, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a serious autoimmune disease with a wide range of organ involvement. In addition to aberrant B-cell responses leading to autoantibody production, T-cell abnormalities are important in the induction of autoimmunity and the ensuing downstream organ damage. In this article, we present an update on how subsets of CD8+ T cells contribute to SLE pathogenesis. RECENT FINDINGS Reduced cytolytic function of CD8+ T cells not only promotes systemic autoimmunity but also accounts for the increased risk of infections. Additional information suggests that effector functions of tissue CD8+ T cells contribute to organ damage. The phenotypic changes in tissue CD8+ T cells likely arise from exposure to tissue microenvironment and crosstalk with tissue resident cells. Research on pathogenic IL-17-producing double negative T cells also suggests their origin from autoreactive CD8+ T cells, which also contribute to the induction and maintenance of systemic autoimmunity. SUMMARY Reduced CD8+ T-cell effector function illustrates their role in peripheral tolerance in the control of autoimmunity and to the increased risk of infections. Inflammatory cytokine producing double negative T cells and functional defects of regulatory CD8+ T cell both contribute to SLE pathogenesis. Further in depth research on these phenotypic changes are warranted for the development of new therapeutics for people with SLE.
Collapse
|
12
|
Datta SK. Harnessing Tolerogenic Histone Peptide Epitopes From Nucleosomes for Selective Down-Regulation of Pathogenic Autoimmune Response in Lupus (Past, Present, and Future). Front Immunol 2021; 12:629807. [PMID: 33936042 PMCID: PMC8080879 DOI: 10.3389/fimmu.2021.629807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Autoantigen-directed tolerance can be induced by certain nucleosomal histone peptide epitope/s in nanomolar dosage leading to sustained remission of disease in mice with spontaneous SLE. By contrast, lupus is accelerated by administration of intact (whole) histones, or whole nucleosomes in microparticles from apoptotic cells, or by post-translationally acetylated histone-peptides. Low-dose therapy with the histone-peptide epitopes simultaneously induces TGFβ and inhibits IL-6 production by DC in vivo, especially pDC, which then induce CD4+CD25+ Treg and CD8+ Treg cells that suppress pathogenic autoimmune response. Both types of induced Treg cells are FoxP3+ and act by producing TGFβ at close cell-to-cell range. No anaphylactic adverse reactions, or generalized immunosuppression have been detected in mice injected with the peptides, because the epitopes are derived from evolutionarily conserved histones in the chromatin; and the peptides are expressed in the thymus during ontogeny, and their native sequences have not been altered. The peptide-induced Treg cells can block severe lupus on adoptive transfer reducing inflammatory cell reaction and infiltration in the kidney. In Humans, similar potent Treg cells are generated by the histone peptide epitopes in vitro in lupus patients’ PBMC, inhibiting anti-dsDNA autoantibody and interferon production. Furthermore, the same types of Treg cells are generated in lupus patients who are in very long-term remission (2-8 years) after undergoing autologous hematopoietic stem cell transplantation. These Treg cells are not found in lupus patients treated conventionally into clinical remission (SLEDAI of 0); and consequently they still harbor pathogenic autoimmune cells, causing subclinical damage. Although antigen-specific therapy with pinpoint accuracy is suitable for straight-forward organ-specific autoimmune diseases, Systemic Lupus is much more complex. The histone peptide epitopes have unique tolerogenic properties for inhibiting Innate immune cells (DC), T cells and B cell populations that are both antigen-specifically and cross-reactively involved in the pathogenic autoimmune response in lupus. The histone peptide tolerance is a natural and non-toxic therapy suitable for treating early lupus, and also maintaining lupus patients after toxic drug therapy. The experimental steps, challenges and possible solutions for successful therapy with these peptide epitopes are discussed in this highly focused review on Systemic Lupus.
Collapse
Affiliation(s)
- Syamal K Datta
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
13
|
Peptide-Based Vaccination Therapy for Rheumatic Diseases. J Immunol Res 2020; 2020:8060375. [PMID: 32258176 PMCID: PMC7104265 DOI: 10.1155/2020/8060375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Rheumatic diseases are extremely heterogeneous diseases with substantial risks of morbidity and mortality, and there is a pressing need in developing more safe and cost-effective treatment strategies. Peptide-based vaccination is a highly desirable strategy in treating noninfection diseases, such as cancer and autoimmune diseases, and has gained increasing attentions. This review is aimed at providing a brief overview of the recent advances in peptide-based vaccination therapy for rheumatic diseases. Tremendous efforts have been made to develop effective peptide-based vaccinations against rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), while studies in other rheumatic diseases are still limited. Peptide-based active vaccination against pathogenic cytokines such as TNF-α and interferon-α (IFN-α) is shown to be promising in treating RA or SLE. Moreover, peptide-based tolerogenic vaccinations also have encouraging results in treating RA or SLE. However, most studies available now have been mainly based on animal models, while evidence from clinical studies is still lacking. The translation of these advances from experimental studies into clinical therapy remains impeded by some obstacles such as species difference in immunity, disease heterogeneity, and lack of safe delivery carriers or adjuvants. Nevertheless, advances in high-throughput technology, bioinformatics, and nanotechnology may help overcome these impediments and facilitate the successful development of peptide-based vaccination therapy for rheumatic diseases.
Collapse
|
14
|
Horwitz DA, Fahmy TM, Piccirillo CA, La Cava A. Rebalancing Immune Homeostasis to Treat Autoimmune Diseases. Trends Immunol 2019; 40:888-908. [PMID: 31601519 DOI: 10.1016/j.it.2019.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
During homeostasis, interactions between tolerogenic dendritic cells (DCs), self-reactive T cells, and T regulatory cells (Tregs) contribute to maintaining mammalian immune tolerance. In response to infection, immunogenic DCs promote the generation of proinflammatory effector T cell subsets. When complex homeostatic mechanisms maintaining the balance between regulatory and effector functions become impaired, autoimmune diseases can develop. We discuss some of the newest advances on the mechanisms of physiopathologic homeostasis that can be employed to develop strategies to restore a dysregulated immune equilibrium. Some of these designs are based on selectively activating regulators of immunity and inflammation instead of broadly suppressing these processes. Promising approaches include the use of nanoparticles (NPs) to restore Treg control over self-reactive cells, aiming to achieve long-term disease remission, and potentially to prevent autoimmunity in susceptible individuals.
Collapse
Affiliation(s)
- David A Horwitz
- General Nanotherapeutics, LLC, Santa Monica, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Tarek M Fahmy
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA; Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA; Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada; Program in Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Centre of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Antonio La Cava
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Wallace DJ. Low-dose interleukin-2 for systemic lupus erythematosus? THE LANCET. RHEUMATOLOGY 2019; 1:e7-e8. [PMID: 38229363 DOI: 10.1016/s2665-9913(19)30019-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel J Wallace
- Cedars-Sinai Medical Center and David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90048, USA.
| |
Collapse
|
16
|
Zhao H, Feng R, Peng A, Li G, Zhou L. The expanding family of noncanonical regulatory cell subsets. J Leukoc Biol 2019; 106:369-383. [DOI: 10.1002/jlb.6ru0918-353rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hai Zhao
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Ridong Feng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Aijun Peng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Gaowei Li
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Liangxue Zhou
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| |
Collapse
|
17
|
Taylor EB, Sasser JM, Maeda KJ, Ryan MJ. Expansion of regulatory T cells using low-dose interleukin-2 attenuates hypertension in an experimental model of systemic lupus erythematosus. Am J Physiol Renal Physiol 2019; 317:F1274-F1284. [PMID: 30892934 DOI: 10.1152/ajprenal.00616.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune disorder that is characterized by prevalent hypertension, renal injury, and cardiovascular disease. Numerous studies have reported a low prevalence and/or impaired function of regulatory T (TREG) cells in both patients with SLE and murine models of the disease. Evidence suggests that TREG cell dysfunction in SLE results from a deficiency in IL-2. Recent studies have reported that low-dose IL-2 therapy expands TREG cells in mouse models of SLE, but whether expanding TREG cells protects against hypertension and renal injury during SLE is unclear. To examine this question, female SLE (NZBWF1) and control (NZW) mice were injected with vehicle or recombinant mouse IL-2 three times in 24 h followed by single maintenance doses every 5 days for 4 wk. Treatment with IL-2 effectively expanded TREG cell populations in the peripheral blood, spleen, and kidneys. Circulating levels of anti-dsDNA IgG autoantibodies, a marker of SLE disease activity, were higher in SLE mice compared with control mice but were unaffected by IL-2 treatment. As previously reported by our laboratory, mean arterial pressure, measured in conscious mice by a carotid catheter, was higher in SLE mice than in control mice. Mean arterial pressure was significantly lower in IL-2-treated SLE mice compared with vehicle-treated SLE mice, suggesting that expanding TREG cells using low-dose IL-2 attenuates the development of hypertension. While the mechanism for the protection against hypertension is unclear, it does not appear to be related to the delay of SLE disease progression.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kenji J Maeda
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi
| |
Collapse
|
18
|
Horwitz DA, Bickerton S, Koss M, Fahmy TM, La Cava A. Suppression of Murine Lupus by CD4+ and CD8+ Treg Cells Induced by T Cell-Targeted Nanoparticles Loaded With Interleukin-2 and Transforming Growth Factor β. Arthritis Rheumatol 2019; 71:632-640. [PMID: 30407752 DOI: 10.1002/art.40773] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/01/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To develop a nanoparticle (NP) platform that can expand both CD4+ and CD8+ Treg cells in vivo for the suppression of autoimmune responses in systemic lupus erythematosus (SLE). METHODS Poly(lactic-co-glycolic acid) (PLGA) NPs encapsulating interleukin-2 (IL-2) and transforming growth factor β (TGFβ) were coated with anti-CD2/CD4 antibodies and administered to mice with lupus-like disease induced by the transfer of DBA/2 T cells into (C57BL/6 × DBA/2)F1 (BDF1) mice. The peripheral frequency of Treg cells was monitored ex vivo by flow cytometry. Disease progression was assessed by measuring serum anti-double-stranded DNA antibody levels by enzyme-linked immunosorbent assay. Kidney disease was defined as the presence of proteinuria or renal histopathologic features. RESULTS Anti-CD2/CD4 antibody-coated, but not noncoated, NPs encapsulating IL-2 and TGFβ induced CD4+ and CD8+ FoxP3+ Treg cells in vitro. The optimal dosing regimen of NPs for expansion of CD4+ and CD8+ Treg cells was determined in in vivo studies in mice without lupus and then tested in BDF1 mice with lupus. The administration of anti-CD2/CD4 antibody-coated NPs encapsulating IL-2 and TGFβ resulted in the expansion of CD4+ and CD8+ Treg cells, a marked suppression of anti-DNA antibody production, and reduced renal disease. CONCLUSION This study shows for the first time that T cell-targeted PLGA NPs encapsulating IL-2 and TGFβ can expand both CD4+ and CD8+ Treg cells in vivo and suppress murine lupus. This approach, which enables the expansion of Treg cells in vivo and inhibits pathogenic immune responses in SLE, could represent a potential new therapeutic modality in autoimmune conditions characterized by impaired Treg cell function associated with IL-2 deficiency.
Collapse
Affiliation(s)
| | | | - Michael Koss
- Keck School of Medicine at the University of Southern California, Los Angeles
| | | | - Antonio La Cava
- David Geffen School of Medicine at the University of California, Los Angeles
| |
Collapse
|
19
|
Sharabi A, Tsokos MG, Ding Y, Malek TR, Klatzmann D, Tsokos GC. Regulatory T cells in the treatment of disease. Nat Rev Drug Discov 2018; 17:823-844. [DOI: 10.1038/nrd.2018.148] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Sharma R, Kinsey GR. Regulatory T cells in acute and chronic kidney diseases. Am J Physiol Renal Physiol 2018; 314:F679-F698. [PMID: 28877881 PMCID: PMC6031912 DOI: 10.1152/ajprenal.00236.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/18/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023] Open
Abstract
Foxp3-expressing CD4+ regulatory T cells (Tregs) make up one subset of the helper T cells (Th) and are one of the major mechanisms of peripheral tolerance. Tregs prevent abnormal activation of the immune system throughout the lifespan, thus protecting from autoimmune and inflammatory diseases. Recent studies have elucidated the role of Tregs beyond autoimmunity. Tregs play important functions in controlling not only innate and adaptive immune cell activation, but also regulate nonimmune cell function during insults and injury. Inflammation contributes to a multitude of acute and chronic diseases affecting the kidneys. This review examines the role of Tregs in pathogenesis of renal inflammatory diseases and explores the approaches for enhancing Tregs for prevention and therapy of renal inflammation.
Collapse
Affiliation(s)
- Rahul Sharma
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Gilbert R Kinsey
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
21
|
Zhang N, Nandakumar KS. Recent advances in the development of vaccines for chronic inflammatory autoimmune diseases. Vaccine 2018; 36:3208-3220. [PMID: 29706295 DOI: 10.1016/j.vaccine.2018.04.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/28/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022]
Abstract
Chronic inflammatory autoimmune diseases leading to target tissue destruction and disability are not only causing increase in patients' suffering but also contribute to huge economic burden for the society. General increase in life expectancy and high prevalence of these diseases both in elderly and younger population emphasize the importance of developing safe and effective vaccines. In this review, at first the possible mechanisms and risk factors associated with chronic inflammatory autoimmune diseases, such as rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) are discussed. Current advances in the development of vaccines for such autoimmune diseases, particularly those based on DNA, altered peptide ligands and peptide loaded MHC II complexes are discussed in detail. Finally, strategies for improving the efficacy of potential vaccines are explored.
Collapse
Affiliation(s)
- Naru Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
22
|
Abstract
T regulatory cells (Tregs) represent a phenotypically and functionally heterogeneous group of lymphocytes that exert immunosuppressive activities on effector immune responses. Tregs play a key role in maintaining immune tolerance and homeostasis through diverse mechanisms which involve interactions with components of both the innate and adaptive immune systems. As in many autoimmune diseases, Tregs have been proposed to play a relevant role in the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease characterized by a progressive breakdown of tolerance to self-antigens and the presence of concomitant hyperactive immune responses. Here, we review how Tregs dysfunction in SLE has been manipulated experimentally and preclinically in the attempt to restore, at last in part, the immune disturbances in the disease.
Collapse
|
23
|
|
24
|
Immunomodulation of RA Patients' PBMC with a Multiepitope Peptide Derived from Citrullinated Autoantigens. Mediators Inflamm 2017; 2017:3916519. [PMID: 28751821 PMCID: PMC5497640 DOI: 10.1155/2017/3916519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/19/2017] [Accepted: 05/11/2017] [Indexed: 11/18/2022] Open
Abstract
Citrullinated peptides are used for measuring anticitrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA). Accumulation of citrullinated proteins in the inflamed synovium suggests that they may be good targets for inducing peripheral tolerance. In view of the multiplicity of citrullinated autoantigens described as ACPA targets, we generated a multiepitope citrullinated peptide (Cit-ME) from the sequences of major citrullinated autoantigens: filaggrin, β-fibrinogen, vimentin, and collagen type II. We assessed the ability of Cit-ME or the citrullinated β60-74 fibrinogen peptide (β60-74-Fib-Cit) which bears immunodominant citrullinated epitopes (i) to modify cytokine gene expression and (ii) to modulate Treg and Th17 subsets in PBMC derived from newly diagnosed untreated RA patients. RA patient's PBMC incubated with Cit-ME or β60-74-Fib-Cit, showed upregulation of TGF-β expression (16% and 8%, resp.), and increased CD4+Foxp3+ Treg (22% and 19%, resp.). Both peptides were shown to downregulate the TNF-α and IL-1β expression; in addition, Cit-ME reduced CD3+IL17+ T cells. We showed that citrullinated peptides can modulate the expression of anti- and proinflammatory cytokines in PBMC from RA patients as well as the proportions of Treg and Th17 cells. These results indicate that citrullinated peptides could be active in vivo and therefore might be used as immunoregulatory agents in RA patients.
Collapse
|
25
|
Pozsgay J, Szekanecz Z, Sármay G. Antigen-specific immunotherapies in rheumatic diseases. Nat Rev Rheumatol 2017; 13:525-537. [DOI: 10.1038/nrrheum.2017.107] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Abstract
The European League Against Rheumatism (EULAR)'s guidelines for lupus state that mycophenolate mofetil has at least equivalent efficacy to and less toxicity than cyclophosphamide for the short-and medium-term treatment of lupus nephritis but that long-term data are available only for cyclophosphamide. New therapies are needed to reduce toxicity and the need for steroids and to offer the possibility of cure. Therapies under investigation include other immunosuppressive agents, anticellular therapies, drugs that modify cell-cell interactions, (anti-)cytokine therapy, hormone therapy and lupus-specific immunomodulation. Rituximab has shown promise in patients refractory to conventional immunosuppression, which suggests that targeting B cells may be successful. Other anti-cell therapies include epratuzumab, belimumab and alemtuzumab. Anti-cytokine approaches include tumour necrosis factor alpha blockade with infliximab, anti-interleukin 6-receptor therapy with tocilizumab and interferon-α blockade. As anti-double-stranded DNA antibodies correlate with flares of lupus nephritis, they may represent another therapeutic target – as do monocyte chemoattractant protein-1 and protein kinase CK2. Therapeutic options to prevent damage in lupus nephritis include non-immunosuppressive treatments aimed at reducing cardiovascular risk (such as statins, angiotensin-converting enzyme inhibitors and aspirin). As was the case with rheumatoid arthritis, a change in therapeutic aims – from survival through prevention of renal failure to induction of remission – may modify outcomes. EULAR's guidelines state that renal biopsy is the best monitor of clinical outcome in lupus nephritis, as immunological tests have limited predictive value. Measurement of urinary mRNA for cytokine and growth factor genes may provide a more sensitive, non-invasive method of monitoring therapeutic response.
Collapse
Affiliation(s)
- M Schneider
- Clinic for Endocrinology, Diabetology and Rheumatology, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
27
|
Urowitz MB, Isenberg DA, Wallace DJ. Safety and efficacy of hCDR1 (Edratide) in patients with active systemic lupus erythematosus: results of phase II study. Lupus Sci Med 2015; 2:e000104. [PMID: 26301100 PMCID: PMC4538379 DOI: 10.1136/lupus-2015-000104] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/06/2015] [Accepted: 07/10/2015] [Indexed: 01/13/2023]
Abstract
Objective To evaluate the safety and efficacy of hCDR1 (Edratide) in patients with systemic lupus erythematosus (SLE). Methods Patients (n=340) with SLE ≥4 ACR criteria (4–11, mean 7) with active disease (SLEDAI-2K of 6–12). Patients were on average 7.1 years post-diagnosis and their organ involvement was mainly musculoskeletal, mucocutaneous and haematologic. Placebo or Edratide was administered subcutaneously weekly at doses of 0.5, 1.0 or 2.5 mg. The co-primary endpoints were SLEDAI-2K SLE Disease Activity and Adjusted Mean SLEDAI (AMS) reduction in patients compared with controls using a landmark analysis. Secondary outcomes were improvement in British Isles Lupus Assessment Group (BILAG) Responder Index and medicinal flare analysis. Results Edratide was safe and well tolerated. The primary endpoints based solely on SLEDAI-2K and AMS were not met. The secondary predefined endpoint, BILAG, was met for the 0.5 mg Edratide arm in the intention to treat (ITT) cohort (N=316) (OR=2.09, p=0.03) with trends in the 1.0 and 2.5 mg doses. There was also a positive trend in the Composite SLE Responder Index of the ITT cohort. Post hoc analysis showed that the BILAG secondary endpoint was also met for the 0.5 mg Edratide for a number of subgroup dose levels, including low or no steroids, seropositivity and patients with 2 grade BILAG improvement. Conclusions The favourable safety profile and encouraging clinically significant effects noted in some of the endpoints support the need for additional longer term Edratide studies that incorporate recent advances in the understanding and treatment of SLE, including steroid treatment algorithms, and using a composite primary endpoint which is likely to include BILAG. Trial registration number NCT00203151.
Collapse
Affiliation(s)
- Murray B Urowitz
- Toronto Western Hospital, University of Toronto , Toronto, Ontario , Canada
| | | | - Daniel J Wallace
- UCLA & Cedars-Sinai Medical Center , Los Angeles, California , USA
| |
Collapse
|
28
|
Fernandes-Cerqueira C, Ossipova E, Gunasekera S, Hansson M, Mathsson L, Catrina AI, Sommarin Y, Klareskog L, Lundberg K, Rönnelid J, Göransson U, Jakobsson PJ. Targeting of anti-citrullinated protein/peptide antibodies in rheumatoid arthritis using peptides mimicking endogenously citrullinated fibrinogen antigens. Arthritis Res Ther 2015; 17:155. [PMID: 26059223 PMCID: PMC4484629 DOI: 10.1186/s13075-015-0666-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/29/2015] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION We have previously identified endogenously citrullinated peptides derived from fibrinogen in rheumatoid arthritis (RA) synovial tissues. In this study, we have investigated the auto-antigenicity of four of those citrullinated peptides, and explored their feasibility to target anti-citrullinated protein/peptide antibodies (ACPA). METHODS The autoantigenic potential of the fibrinogen peptides was investigated by screening 927 serum samples from the Epidemiological Investigation of RA (EIRA) cohort on a peptide microarray based on the ImmunoCAP ISAC® system. In order to assay for ACPA blocking, two independent pools of purified ACPA were incubated with the respective targeting peptide prior to binding to cyclic citrullinated peptide (CCP)2 using the CCPlus® ELISA kit. RESULTS Two peptides derived from the fibrinogen α chain, Arg573Cit (563-583) and Arg591Cit (580-600), referred to as Cit573 and Cit591, and two peptides from the fibrinogen β chain, Arg72Cit (62-81) and Arg74Cit (62-81) (Cit72 and Cit74), displayed 65%, 15%, 35%, and 53% of immune reactivity among CCP2-positive RA sera, respectively. In CCP2-negative RA sera, a positive reactivity was detected in 5% (Cit573), 6% (Cit591), 8% (Cit72), and 4% (Cit74). In the competition assay, Cit573 and Cit591 peptides reduced ACPA binding to CCP2 by a maximum of 84% and 63% respectively. An additive effect was observed when these peptides were combined. In contrast, Cit74 and Cit72 were less effective. Cyclization of the peptide structure containing Cit573 significantly increased the blocking efficiency. CONCLUSIONS Here we demonstrate extensive autoantibody reactivity against in vivo citrullinated fibrinogen epitopes, and further show the potential use of these peptides for antagonizing ACPA.
Collapse
Affiliation(s)
- Cátia Fernandes-Cerqueira
- Rheumatology Unit, Department Medicine, Karolinska University Hospital, Solna, Rheumatology Clinic D2:01, 171 76, Stockholm, Sweden.
| | - Elena Ossipova
- Rheumatology Unit, Department Medicine, Karolinska University Hospital, Solna, Rheumatology Clinic D2:01, 171 76, Stockholm, Sweden.
| | - Sunithi Gunasekera
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden.
| | - Monika Hansson
- Rheumatology Unit, Department Medicine, Karolinska University Hospital, Solna, Rheumatology Clinic D2:01, 171 76, Stockholm, Sweden.
| | - Linda Mathsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds v 20, 751 85, Uppsala, Sweden.
| | - Anca I Catrina
- Rheumatology Unit, Department Medicine, Karolinska University Hospital, Solna, Rheumatology Clinic D2:01, 171 76, Stockholm, Sweden.
| | - Yngve Sommarin
- Euro-Diagnostica AB, Lundavägen 151, 202 11, Malmö, Sweden.
| | - Lars Klareskog
- Rheumatology Unit, Department Medicine, Karolinska University Hospital, Solna, Rheumatology Clinic D2:01, 171 76, Stockholm, Sweden.
| | - Karin Lundberg
- Rheumatology Unit, Department Medicine, Karolinska University Hospital, Solna, Rheumatology Clinic D2:01, 171 76, Stockholm, Sweden.
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds v 20, 751 85, Uppsala, Sweden.
| | - Ulf Göransson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden.
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department Medicine, Karolinska University Hospital, Solna, Rheumatology Clinic D2:01, 171 76, Stockholm, Sweden.
| |
Collapse
|
29
|
Burton BR, Britton GJ, Fang H, Verhagen J, Smithers B, Sabatos-Peyton CA, Carney LJ, Gough J, Strobel S, Wraith DC. Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy. Nat Commun 2014; 5:4741. [PMID: 25182274 PMCID: PMC4167604 DOI: 10.1038/ncomms5741] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/18/2014] [Indexed: 01/13/2023] Open
Abstract
Antigen-specific immunotherapy combats autoimmunity or allergy by reinstating immunological tolerance to target antigens without compromising immune function. Optimization of dosing strategy is critical for effective modulation of pathogenic CD4+ T-cell activity. Here we report that dose escalation is imperative for safe, subcutaneous delivery of the high self-antigen doses required for effective tolerance induction and elicits anergic, interleukin (IL)-10-secreting regulatory CD4+ T cells. Analysis of the CD4+ T-cell transcriptome, at consecutive stages of escalating dose immunotherapy, reveals progressive suppression of transcripts positively regulating inflammatory effector function and repression of cell cycle pathways. We identify transcription factors, c-Maf and NFIL3, and negative co-stimulatory molecules, LAG-3, TIGIT, PD-1 and TIM-3, which characterize this regulatory CD4+ T-cell population and whose expression correlates with the immunoregulatory cytokine IL-10. These results provide a rationale for dose escalation in T-cell-directed immunotherapy and reveal novel immunological and transcriptional signatures as surrogate markers of successful immunotherapy. Dose escalation in antigen-specific therapies is recognized as safe and effective, but the underlying effects of dosing variables on the immune system are not understood. Here, the authors demonstrate that dose escalation causes sequential modulation of gene expression among antigen-specific lymphocytes.
Collapse
Affiliation(s)
- Bronwen R Burton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Graham J Britton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Hai Fang
- Computational Genomics Group, Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Johan Verhagen
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Ben Smithers
- Computational Genomics Group, Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | | | - Laura J Carney
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Julian Gough
- Computational Genomics Group, Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Stephan Strobel
- Division of Biomedical Sciences, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - David C Wraith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
30
|
Early and repeated IgG1Fc-pCons chimera vaccinations (GX101) improve the outcome in SLE-prone mice. Clin Exp Med 2014; 15:255-60. [PMID: 25059463 DOI: 10.1007/s10238-014-0303-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
A previous study showed that a tolerogenic gene vaccine based on a IgG1Fc-pCons chimera (here named GX101) protects NZB/NZW mice from SLE development. The present study was aimed at identifying the most effective schedule of immunization and the possible involvement of CD4(+) Foxp3(+) Treg in the mechanism of action, in view of its eventual translation to the human studies. NZB/NZW mice were vaccinated with B lymphocytes made transgenic by spontaneous transgenesis with a gene coding for a chimeric IgG1Fc-pCons construct. Different schedules of vaccination were set in relation to the timing and number of administrations. Survival, proteinuria levels, and CD4(+) Foxp3(+) Treg frequency were monitored during the full experiments. GX101-treated mice showed delayed disease onset and delayed mortality than controls. GX101 effects were implemented by early as well as repeated vaccine administrations. GX101 vaccination was associated with increased frequencies of CD4(+) CD25(+) Foxp3(+) Treg with respect to controls. This study demonstrates that early and repeated immunizations with GX101 vaccine provide a better outcome than late or single vaccine administration regarding onset/development in SLE-prone mice, acting as a possible disease-modifying approach. Vaccine effects are likely related to CD4(+) Foxp3(+) Treg cell expansion.
Collapse
|
31
|
Sthoeger Z, Sharabi A, Mozes E. Novel approaches to the development of targeted therapeutic agents for systemic lupus erythematosus. J Autoimmun 2014; 54:60-71. [PMID: 24958634 DOI: 10.1016/j.jaut.2014.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 01/29/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multisystem disease in which various cell types and immunological pathways are dysregulated. Current therapies for SLE are based mainly on the use of non-specific immunosuppressive drugs that cause serious side effects. There is, therefore, an unmet need for novel therapeutic means with improved efficacy and lower toxicity. Based on recent better understanding of the pathogenesis of SLE, targeted biological therapies are under different stages of development. The latter include B-cell targeted treatments, agents directed against the B lymphocyte stimulator (BLyS), inhibitors of T cell activation as well as cytokine blocking means. Out of the latter, Belimumab was the first drug approved by the FDA for the treatment of SLE patients. In addition to the non-antigen specific agents that may affect the normal immune system as well, SLE-specific therapeutic means are under development. These are synthetic peptides (e.g. pConsensus, nucleosomal peptides, P140 and hCDR1) that are sequences of conserved regions of molecules involved in the pathogenesis of lupus. The peptides are tolerogenic T-cell epitopes that immunomodulate only cell types and pathways that play a role in the pathogenesis of SLE without interfering with normal immune functions. Two of the peptides (P140 and hCDR1) were tested in clinical trials and were reported to be safe and well tolerated. Thus, synthetic peptides are attractive potential means for the specific treatment of lupus patients. In this review we discuss the various biological treatments that have been developed for lupus with a special focus on the tolerogenic peptides.
Collapse
Affiliation(s)
- Zev Sthoeger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; Department of Internal Medicine B and Clinical Immunology, Kaplan Medical Center, Rehovot, Israel
| | - Amir Sharabi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Edna Mozes
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
32
|
Regna NL, Chafin CB, Hammond SE, Puthiyaveetil AG, Caudell DL, Reilly CM. Class I and II histone deacetylase inhibition by ITF2357 reduces SLE pathogenesis in vivo. Clin Immunol 2014; 151:29-42. [PMID: 24503172 PMCID: PMC3963170 DOI: 10.1016/j.clim.2014.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/02/2014] [Accepted: 01/04/2014] [Indexed: 12/24/2022]
Abstract
We sought to determine if a specific class I and II HDAC inhibitor (ITF2357) was able to decrease disease in lupus-prone NZB/W mice through regulation of T cell profiles. From 22 to 38 weeks-of-age, NZB/W and non-lupus NZW mice were treated with ITF2357 (5 mg/kg or 10 mg/kg), or vehicle control. Body weight and proteinuria were measured every 2 weeks, while sera anti-dsDNA and cytokine levels were measured every 4 weeks. Kidney disease was determined by sera IgG levels, immune complex deposition, and renal pathology. T lymphocyte profiles were assessed using flow cytometric analyses. Our results showed that NZB/W mice treated with the 10 mg/kgof ITF2357 had decreased renal disease and inflammatory cytokines in the sera. Treatment with ITF2357 decreased the Th17 phenotype while increasing the percentage of Tregs as well as Foxp3 acetylation. These results suggest that specific HDAC inhibition may decrease disease by altering T cell differentiation and acetylation.
Collapse
Affiliation(s)
- Nicole L Regna
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg VA, 24061, USA.
| | - Cristen B Chafin
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg VA, 24061, USA
| | - Sarah E Hammond
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg VA, 24061, USA
| | - Abdul G Puthiyaveetil
- Department of Biotechnology, American University of Ras Al Khaimah, PO Box 10021, United Arab Emirates
| | - David L Caudell
- Department of Pathology, Center for Comparative Medicine Research, Wake Forest School of Medicine, Winston-Salem NC 27157, USA
| | - Christopher M Reilly
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg VA, 24061, USA; Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| |
Collapse
|
33
|
Liu Y, Lan Q, Lu L, Chen M, Xia Z, Ma J, Wang J, Fan H, Shen Y, Ryffel B, Brand D, Quismorio F, Liu Z, Horwitz DA, Xu A, Zheng SG. Phenotypic and functional characteristic of a newly identified CD8+ Foxp3- CD103+ regulatory T cells. J Mol Cell Biol 2014; 6:81-92. [PMID: 23861553 PMCID: PMC3927769 DOI: 10.1093/jmcb/mjt026] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/12/2013] [Accepted: 05/24/2013] [Indexed: 12/21/2022] Open
Abstract
TGF-β and Foxp3 expressions are crucial for the induction and functional activity of CD4(+)Foxp3(+) regulatory T (iTreg) cells. Here, we demonstrate that although TGF-β-primed CD8(+) cells display much lower Foxp3 expression, their suppressive capacity is equivalent to that of CD4(+) iTreg cells, and both Foxp3(-) and Foxp3(+) CD8+ subsets have suppressive activities in vitro and in vivo. CD8(+)Foxp3(-) iTreg cells produce little IFN-γ but almost no IL-2, and display a typical anergic phenotype. Among phenotypic markers expressed in CD8(+)Foxp3(-) cells, we identify CD103 expression particularly crucial for the generation and function of this subset. Moreover, IL-10 and TGF-β signals rather than cytotoxicity mediate the suppressive effect of this novel Treg population. Therefore, TGF-β can induce both CD8(+)Foxp3(-) and CD8(+)Foxp3(+) iTreg subsets, which may represent the unique immunoregulatory means to treat autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Ya Liu
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Qin Lan
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
- Institute of Immunology, Shanghai East Hospital at Tongji University, Shanghai 200120, China
| | - Ling Lu
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Maogen Chen
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Zanxian Xia
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Jilin Ma
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Julie Wang
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Huimin Fan
- Institute of Immunology, Shanghai East Hospital at Tongji University, Shanghai 200120, China
| | - Yi Shen
- Institute of Immunology, Shanghai East Hospital at Tongji University, Shanghai 200120, China
| | - Bernhard Ryffel
- University of Orleans and CNRS UMR7355, 3b rue de la Ferollerie, Orleans 45071, France
| | - David Brand
- Veterans Affairs Medical Center, Memphis, TN 38104, USA
| | - Francisco Quismorio
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Zhongmin Liu
- Institute of Immunology, Shanghai East Hospital at Tongji University, Shanghai 200120, China
| | - David A. Horwitz
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Anping Xu
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
- Institute of Immunology, Shanghai East Hospital at Tongji University, Shanghai 200120, China
| |
Collapse
|
34
|
|
35
|
Dahal LN, Barker RN, Ward FJ. Isolation, polarization, and expansion of CD4⁺ helper T cell lines and clones using magnetic beads. Methods Mol Biol 2014; 1134:237-247. [PMID: 24497367 DOI: 10.1007/978-1-4939-0326-9_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Autoreactive CD4⁺ helper T cells specific for a range of nucleoprotein-derived autoantigens are an important feature of systemic lupus erythematosus, driving B cell differentiation and autoantibody production and contributing to the inflammatory lesions caused by immune complex deposition. Several peptide epitopes from nucleoprotein antigens have been identified and offer a means selectively to manipulate T cell responses by skewing toward a profile of cytokines that is less pro-inflammatory. Antigen-specific T cell lines and clones can be useful in the study of helper T cell subsets because their life span is prolonged and many individual cells can be generated, allowing particular phenotypes to be studied in detail. Magnetic beads offer a robust and convenient method for the isolation, polarization, and expansion of T cells, which can be adapted for a broad range of applications.
Collapse
Affiliation(s)
- Lekh N Dahal
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, Tenovus Research Laboratory, Southampton General Hospital, University of Southampton, Hampshire, UK
| | | | | |
Collapse
|
36
|
Ma J, Liu Y, Li Y, Gu J, Liu J, Tang J, Wang J, Ryffel B, Shen Y, Brand D, Liu Z, Zheng SG. Differential role of all-trans retinoic acid in promoting the development of CD4+ and CD8+ regulatory T cells. J Leukoc Biol 2013; 95:275-83. [PMID: 24082012 DOI: 10.1189/jlb.0513297] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It is known that ATRA promotes the development of TGF-β-induced CD4(+)Foxp3(+) iTregs, which play a vital role in the prevention of autoimmune diseases; however, the role of ATRA in facilitating the differentiation and function of CD8(+)Foxp3(+) iTregs remains elusive. Using a head-to-head comparison, we found that ATRA promoted expression of Foxp3 and development of CD4(+) iTregs, but it did not promote Foxp3 expression on CD8(+) cells. Using a standard in vitro assay, we demonstrated that CD8(+) iTregs induced by TGF-β and ATRA were not superior to CD8(+) iTregs induced by TGF-β alone. In cGVHD, in a typical lupus syndrome model where DBA2 spleen cells were transferred to DBA2xC57BL/6 F1 mice, we observed that both CD8(+) iTregs induced by TGF-β and ATRA and those induced by TGF-β alone had similar therapeutic effects. ATRA did not boost but, conversely, impaired the differentiation and function of human CD8(+) iTregs. CD8(+) cells expressed the ATRA receptor RAR and responded to ATRA, similar to CD4(+) cells. We have identified the differential role of ATRA in promoting Foxp3(+) Tregs in CD4(+) and CD8(+) cell populations. These results will help to determine a protocol for developing different Treg cell populations and may provide novel insights into clinical cell therapy for patients with autoimmune diseases and those needing organ transplantation.
Collapse
Affiliation(s)
- Jilin Ma
- 2.Penn State University Hershey College of Medicine, 500 University Drive, Hershey, PA 17033. ; Division of Rheumatology, Immunology and Nephrology, Zhejiang Traditional Chinese Medicine and Western Medicine Hospital, 208 Huancheng East Road, Hangzhou 310003, P. R. China. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang L, Bertucci AM, Ramsey-Goldman R, Harsha-Strong ER, Burt RK, Datta SK. Major pathogenic steps in human lupus can be effectively suppressed by nucleosomal histone peptide epitope-induced regulatory immunity. Clin Immunol 2013; 149:365-78. [PMID: 24211843 DOI: 10.1016/j.clim.2013.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/22/2013] [Accepted: 08/14/2013] [Indexed: 02/05/2023]
Abstract
Low-dose tolerance therapy with nucleosomal histone peptide epitopes blocks lupus disease in mouse models, but effect in humans is unknown. Herein, we found that CD4(+)CD25(high)FoxP3(+) or CD4(+)CD45RA(+)FoxP3(low) T-cells, and CD8(+)CD25(+)FoxP3(+) T-cells were all induced durably in PBMCs from inactive lupus patients and healthy subjects by the histone peptide/s themselves, but in active lupus, dexamethasone or hydroxychloroquine unmasked Treg-induction by the peptides. The peptide-induced Treg depended on TGFβ/ALK-5/pSmad 2/3 signaling, and they expressed TGF-β precursor LAP. Lupus patients' sera did not inhibit Treg induction. The peptide epitope-induced T cells markedly suppressed type I IFN related gene expression in lupus PBMC. Finally, the peptide epitopes suppressed pathogenic autoantibody production by PBMC from active lupus patients to baseline levels by additional mechanisms besides Treg induction, and as potently as anti-IL6 antibody. Thus, low-dose histone peptide epitopes block pathogenic autoimmune response in human lupus by multiple mechanisms to restore a stable immunoregulatory state.
Collapse
Affiliation(s)
- Li Zhang
- Divisions of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
38
|
Tsumiyama K, Hashiramoto A, Takimoto M, Tsuji-Kawahara S, Miyazawa M, Shiozawa S. IFN-γ-producing effector CD8 T lymphocytes cause immune glomerular injury by recognizing antigen presented as immune complex on target tissue. THE JOURNAL OF IMMUNOLOGY 2013; 191:91-6. [PMID: 23720810 DOI: 10.4049/jimmunol.1203217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We investigated the role of effector CD8 T cells in the pathogenesis of immune glomerular injury. BALB/c mice are not prone to autoimmune disease, but after 12 immunizations with OVA they developed a variety of autoantibodies and glomerulonephritis accompanied by immune complex (IC) deposition. In these mice, IFN-γ-producing effector CD8 T cells were significantly increased concomitantly with glomerulonephritis. In contrast, after 12 immunizations with keyhole limpet hemocyanin, although autoantibodies appeared, IFN-γ-producing effector CD8 T cells did not develop, and glomerular injury was not induced. In β2-microglobulin-deficient mice lacking CD8 T cells, glomerular injury was not induced after 12 immunizations with OVA, despite massive deposition of IC in the glomeruli. In mice containing a targeted disruption of the exon encoding the membrane-spanning region of the Ig μ-chain (μMT mice), 12 immunizations with OVA induced IFN-γ-producing effector CD8 T cells but not IC deposition or glomerular injury. When CD8 T cells from mice immunized 12 times with OVA were transferred into naive recipients, glomerular injury could be induced, but only when a single injection of OVA was also given simultaneously. Importantly, injection of OVA could be replaced by one injection of the sera from mice that had been fully immunized with OVA. This indicates that deposition of IC is required for effector CD8 T cells to cause immune tissue injury. Thus, in a mouse model of systemic lupus erythematosus, glomerular injury is caused by effector CD8 T cells that recognize Ag presented as IC on the target renal tissue.
Collapse
Affiliation(s)
- Ken Tsumiyama
- Department of Medicine, Kyushu University Beppu Hospital, Tsurumi, Beppu, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Rohoza LA, Dyubko TS, Galchenko SY, Sandomirsky BP. Peptide composition of extracts of cryopreserved pigs’ and piglets’ heart fragments. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.02.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Buneva VN, Krasnorutskii MA, Nevinsky GA. Natural antibodies to nucleic acids. BIOCHEMISTRY (MOSCOW) 2013; 78:127-143. [DOI: 10.1134/s0006297913020028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
41
|
Nyland JF, Stoll ML, Jiang F, Feng F, Gavalchin J. Mechanisms involved in the p62-73 idiopeptide-modulated delay of lupus nephritis in SNF(1) mice. Lupus 2012; 21:1552-64. [PMID: 23015610 DOI: 10.1177/0961203312461964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The F(1) progeny of the (SWR × NZB) cross develop a lupus-like disease with high serum titers of autoantibodies, and increased frequency and severity of immune complex-mediated glomerulonephritis in females. In previous work, we found that an idiotypic peptide corresponding to aa62-73 (p62-73) of the heavy chain variable region of autoantibody 540 (Id(LN)F(1)) induced the proliferation of p62-73 idiotype-reactive T cell clones. Further, monthly immunization of pre-nephritic SNF(1) female mice with p62-73 resulted in decreased nephritis and prolonged life spans. Here we show that this treatment modulated proliferative responses to Id(LN)F(1) antigen, including a reduction in the population of idiopeptide-presenting antigen-presenting cells (APCs), as early as two weeks after immunization (10 weeks of age). Th1-type cytokine production was increased at 12 weeks of age. The incidence and severity of nephritis was reduced by 14 weeks compared to controls. Clinical indicators of nephritis, specifically histological evidence of glomerulonephritis and urine protein levels, were reduced by 20 weeks. Together these data suggest that events involved in the mechanism(s) whereby p62-73 immunization delayed nephritis occurred early after immunization, and involved modulation of APCs, B and T cell populations.
Collapse
Affiliation(s)
- J F Nyland
- Department of Microbiology and Immunology, State University of New York-Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
42
|
Schall N, Page N, Macri C, Chaloin O, Briand JP, Muller S. Peptide-based approaches to treat lupus and other autoimmune diseases. J Autoimmun 2012; 39:143-53. [PMID: 22727561 DOI: 10.1016/j.jaut.2012.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 01/15/2023]
Abstract
After a long period where the potential of therapeutic peptides was let into oblivion and even dismissed, there is a revival of interest in peptides as potential drug candidates. Novel strategies for limiting metabolism and improve their bioavailability, and alternative routes of administration have emerged. This resulted in a large number of peptide-based drugs that are now being marketed in different indications. Regarding autoimmunity, successful data have been reported in numerous mouse models of autoimmune inflammation, yet relatively few clinical trials based on synthetic peptides are currently underway. This review reports on peptides that show much promises in appropriate mouse models of autoimmunity and describes in more detail clinical trials based on peptides for treating autoimmune patients. A particular emphasis is given to the 21-mer peptide P140/Lupuzor that has completed successfully phase I, phase IIa and phase IIb clinical trials for systemic lupus erythematosus.
Collapse
Affiliation(s)
- Nicolas Schall
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
43
|
Kang HK, Chiang MY, Ecklund D, Zhang L, Ramsey-Goldman R, Datta SK. Megakaryocyte progenitors are the main APCs inducing Th17 response to lupus autoantigens and foreign antigens. THE JOURNAL OF IMMUNOLOGY 2012; 188:5970-80. [PMID: 22561152 DOI: 10.4049/jimmunol.1200452] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In search of autoantigen-presenting cells that prime the pathogenic autoantibody-inducing Th cells of lupus, we found that CD41(+)CD151(+) cells among Lineage(-) (Lin(-)) CD117(+) (c-Kit(+)) CX3CR1(-) splenocytes depleted of known APCs were most proficient in presenting nuclear autoantigens from apoptotic cells to induce selectively an autoimmune Th17 response in different lupus-prone mouse strains. The new APCs have properties resembling megakaryocyte and/or bipotent megakaryocyte/erythroid progenitors of bone marrow, hence they are referred to as MM cells in this study. The MM cells produce requisite cytokines, but they require contact for optimal Th17 induction upon nucleosome feeding, and can induce Th17 only before undergoing differentiation to become c-Kit(-)CD41(+) cells. The MM cells expand up to 10-fold in peripheral blood of lupus patients and 49-fold in spleens of lupus mice preceding disease activity; they accelerate lupus in vivo and break tolerance in normal mice, inducing autoimmune Th17 cells. MM cells also cause Th17 skewing to foreign Ag in normal mice without Th17-polarizing culture conditions. Several molecules in MM cells are targets for blocking of autoimmunization. This study advances our understanding of lupus pathogenesis and Th17 differentiation biology by characterizing a novel category of APC.
Collapse
Affiliation(s)
- Hee-Kap Kang
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
44
|
Wang SH, Fan Y, Makidon PE, Cao Z, Baker JR. Induction of immune tolerance in mice with a novel mucosal nanoemulsion adjuvant and self-antigen. Nanomedicine (Lond) 2012; 7:867-76. [PMID: 22420425 DOI: 10.2217/nnm.11.187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The aim of this study was to investigate the impact of a novel nanoemulsion (NE) adjuvant, a soybean oil emulsion, on autoimmune response. To this end, we used murine thyroglobulin (mTg)-induced experimental autoimmune thyroiditis in mice as a study model. MATERIALS & METHODS Mice received NE or NE + mTg by nasal delivery. At 1 week after the second nasal delivery of NE with or without mTg, all mice were immunized with mTg and lipopolysaccharides to induce experimental autoimmune thyroiditis. RESULTS Compared with controls, mTg-NE-treated mice had much more antigens accumulated in the nasal passage and thymus and developed a milder form of thyroiditis. This was accompanied by an increase in IL-10, IL-17 and reduced IFN-γ. The production of anti-mTg antibodies was significantly decreased in mTg-NE-treated mice. The percentage of Tregs in cervical lymph nodes was higher in mTg-NE-treated mice than NE-treated mice. Furthermore, Foxp3 and TGF-β levels were prominently enhanced in mTg-NE-treated mice. CONCLUSION This study indicates that a low dose of mTg in NE can significantly enhance antigen uptake and Tregs, resulting in inhibition of experimental autoimmune thyroiditis development.
Collapse
Affiliation(s)
- Su He Wang
- Michigan Nanotechnology Institute for Medicine & Biological Sciences, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | |
Collapse
|
45
|
Schmetterer KG, Neunkirchner A, Pickl WF. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation. FASEB J 2012; 26:2253-76. [DOI: 10.1096/fj.11-193672] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Klaus G. Schmetterer
- Institute of ImmunologyCenter for Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
| | - Alina Neunkirchner
- Institute of ImmunologyCenter for Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for ImmunmodulationViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for ImmunmodulationViennaAustria
| |
Collapse
|
46
|
Regulatory T-cell-associated cytokines in systemic lupus erythematosus. J Biomed Biotechnol 2011; 2011:463412. [PMID: 22219657 PMCID: PMC3247013 DOI: 10.1155/2011/463412] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/08/2011] [Indexed: 11/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production, complement activation, and immune complex deposition, resulting in tissue and organ damage. An understanding of the mechanisms responsible for homeostatic control of inflammation, which involve both innate and adoptive immune responses, will enable the development of novel therapies for SLE. Regulatory T cells (Treg) play critical roles in the induction of peripheral tolerance to self- and foreign antigens. Naturally occurring CD4+CD25+ Treg, which characteristically express the transcription factor forkhead box protein P3 (Foxp3), have been intensively studied because their deficiency abrogates self-tolerance and causes autoimmune disease. Moreover, regulatory cytokines such as interleukin-10 (IL-10) also play a central role in controlling inflammatory processes. This paper focuses on Tregs and Treg-associated cytokines which might regulate the pathogenesis of SLE and, hence, have clinical applications.
Collapse
|
47
|
Tsai S, Clemente-Casares X, Santamaria P. CD8(+) Tregs in autoimmunity: learning "self"-control from experience. Cell Mol Life Sci 2011; 68:3781-95. [PMID: 21671120 PMCID: PMC11114820 DOI: 10.1007/s00018-011-0738-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/10/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Autoreactive CD8(+) regulatory T cells (Tregs) play important roles as modulators of immune responses against self, and numerical and functional defects in CD8(+) Tregs have been linked to autoimmunity. Several subsets of CD8(+) Tregs have been described. However, the origin of these T cells and how they participate in the natural progression of autoimmunity remain poorly defined. We discuss several lines of evidence suggesting that the autoimmune process itself promotes the development of autoregulatory CD8(+) T cells. We posit that chronic autoantigenic exposure fosters the differentiation of non-pathogenic autoreactive CD8(+) T cells into antigen-experienced, memory-like autoregulatory T cells, to generate a "negative feedback" regulatory loop capable of countering pathogenic autoreactive effectors. This hypothesis predicts that approaches capable of boosting autoregulatory T cell memory will be able to blunt autoimmunity without compromising systemic immunity.
Collapse
Affiliation(s)
- Sue Tsai
- Julia McFarlane Diabetes Research Centre, Faculty of Medicine, The University of Calgary, 3330 Hospital Dr. N.W, Calgary, AB T2N 4N1 Canada
| | - Xavier Clemente-Casares
- Julia McFarlane Diabetes Research Centre, Faculty of Medicine, The University of Calgary, 3330 Hospital Dr. N.W, Calgary, AB T2N 4N1 Canada
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre, Faculty of Medicine, The University of Calgary, 3330 Hospital Dr. N.W, Calgary, AB T2N 4N1 Canada
- Department of Microbiology and Infectious Diseases, Institute of Inflammation, Infection and Immunity, Faculty of Medicine, The University of Calgary, 3330 Hospital Dr. N.W, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
48
|
Abstract
The characterization of functional CD8(+) inhibitory or regulatory T cells and their gene regulation remains a critical challenge in the field of tolerance and autoimmunity. Investigating the genes induced in regulatory cells and the regulatory networks and pathways that underlie mechanisms of immune resistance and prevent apoptosis in the CD8(+) T cell compartment are crucial to understanding tolerance mechanisms in systemic autoimmunity. Little is currently known about the genetic control that governs the ability of CD8(+) Ti or regulatory cells to suppress anti-DNA Ab production in B cells. Silencing genes with siRNA or shRNA and overexpression of genes with lentiviral cDNA transduction are established approaches to identifying and understanding the function of candidate genes in tolerance and immunity. Elucidation of interactions between genes and proteins, and their synergistic effects in establishing cell-cell cross talk, including receptor modulation/antagonism, are essential for delineating the roles of these cells. In this review, we will examine recent reports which describe the modulation of cells from lupus prone mice or lupus patients to confer anti-inflammatory and protective gene expression and novel associated phenotypes. We will highlight recent findings on the role of selected genes induced by peptide tolerance in CD8(+) Ti.
Collapse
|
49
|
Sawla P, Hossain A, Hahn BH, Singh RP. Regulatory T cells in systemic lupus erythematosus (SLE); role of peptide tolerance. Autoimmun Rev 2011; 11:611-4. [PMID: 22001419 DOI: 10.1016/j.autrev.2011.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 09/27/2011] [Indexed: 12/23/2022]
Abstract
Regulatory T cells play an important role in the maintenance and regulation of immune tolerance and in the prevention of autoimmunity. Recent studies have demonstrated a deficiency in number and function of regulatory T cells in lupus and other autoimmune diseases. This may contribute to immune dysregulations and a defect in self-tolerance mechanisms. How to balance and "reset" the immune response from harmful pro-inflammatory to beneficial anti-inflammatory is the current strategy of the research. In this regard, several studies have been performed with various peptides, drugs, steroids and epigenetic agents to induce or modify regulatory cells and some measure of success has been achieved in the animal model of SLE and with lupus patient cells. Challenges ahead include the heterogeneous nature, phenotype and function of regulatory cells and the difficulties in manipulation of regulatory function in healthy versus diseased states. In this review, we will provide some recent findings indicating challenges and potential benefits of targeting of regulatory T cells in lupus.
Collapse
Affiliation(s)
- Priya Sawla
- Division of Rheumatology, Dept. of Medicine, David Geffen School of Medicine, University of California at Los Angeles, CA 90095-1670, USA
| | | | | | | |
Collapse
|
50
|
Apostolidis SA, Lieberman LA, Kis-Toth K, Crispín JC, Tsokos GC. The dysregulation of cytokine networks in systemic lupus erythematosus. J Interferon Cytokine Res 2011; 31:769-79. [PMID: 21877904 PMCID: PMC3189553 DOI: 10.1089/jir.2011.0029] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/16/2011] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with chronic immune activation and tissue damage. Organ damage in SLE results from the deposition of immune complexes and the infiltration of activated T cells into susceptible organs. Cytokines are intimately involved in every step of the SLE pathogenesis. Defective immune regulation and uncontrolled lymphocyte activation, as well as increased antigen presenting cell maturation are all influenced by cytokines. Moreover, expansion of local immune responses as well as tissue infiltration by pathogenic cells is instigated by cytokines. In this review, we describe the main cytokine abnormalities reported in SLE and discuss the mechanisms that drive their aberrant production as well as the pathogenic pathways that their presence promotes.
Collapse
Affiliation(s)
- Sokratis A Apostolidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|