1
|
Moeckli B, Wassmer CH, El Hajji S, Kumar R, Rodrigues Ribeiro J, Tabrizian P, Feng H, Schnickel G, Kulkarni AV, Allaire M, Asthana S, Karvellas CJ, Meeberg G, Wei L, Chouik Y, Kumar P, Gartrell RD, Martinez M, Kang E, Sogbe M, Sangro B, Schwacha-Eipper B, Schmiderer A, Krendl FJ, Goossens N, Lacotte S, Compagnon P, Toso C. Determining safe washout period for immune checkpoint inhibitors prior to liver transplantation: An international retrospective cohort study. Hepatology 2025:01515467-990000000-01187. [PMID: 40042053 DOI: 10.1097/hep.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/28/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND AND AIMS Immune checkpoint inhibitors (ICIs) are increasingly used in patients with advanced HCC patients awaiting liver transplantation (LT). However, concerns about the risk of posttransplant rejection persist. APPROACH AND RESULTS We conducted an international retrospective cohort study including 119 HCC patients who received ICIs prior to LT. We analyzed the incidence of allograft rejection, graft loss, and posttransplant recurrence with a particular focus on the washout period between the last ICI dose and LT. In this study, 24 of the 119 (20.2%) patients experienced allograft rejection with a median time to rejection of 9 days (IQR 6-10) post-LT. A linear relationship was observed between shorter washout periods and higher rejection risk. Washout periods <30 days (OR: 21.3, 95% CI: 5.93-103, p< 0.001) and between 30 and 50 days (OR: 9.48, 95% CI 2.47-46.8, p =0.002) were significantly associated with higher rejection rates in the univariate analysis compared to the washout period above 50 days. Graft loss as a result of rejection occurred in 6 patients (25%) with rejection. No factors related to grafts were associated with rejection. A longer washout period was not associated with a lower recurrence-free survival posttransplantation at 36 months (71% vs. 67%, p =0.71). CONCLUSIONS Our findings suggest that a washout period longer than 50 days for ICIs before LT appears to be safe with respect to rejection risk. While these results may help guide clinical decision-making, future prospective studies are essential to establish definitive guidelines.
Collapse
Affiliation(s)
- Beat Moeckli
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | | | - Sofia El Hajji
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Rohan Kumar
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | | | - Parissa Tabrizian
- Recanati/Miller Institute, Mount Sinai Medical Center, New York, USA
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital, Shanghai, China
| | - Gabriel Schnickel
- Division of Transplant and Hepatobiliary Surgery, Department of Surgery, University of California San Diego, San Diego, California, USA
| | | | - Manon Allaire
- AP-HP Sorbonne Université, Hôpital Universitaire Pitié-Salpêtrière, Service d'Hépato-gastroentérologie, Paris, France
| | - Sonal Asthana
- Department of Hepatobiliary Surgery and Transplantation, Aster Hospitals, Bangalore, India
| | - Constantine J Karvellas
- Faculty of Medicine and Dentistry, College of Health Sciences and School of Public Health, University of Alberta
| | - Glenda Meeberg
- Faculty of Medicine and Dentistry, College of Health Sciences and School of Public Health, University of Alberta
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Wuhan, China
| | - Yasmina Chouik
- Department of Hepatology, Croix-Rousse Hospital, Lyon, France
| | - Pramod Kumar
- Department of Hepatology, BGS Gleneagles Global Hospital, Bengaluru, India
| | - Robyn D Gartrell
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, USA
- Division of Pediatric Oncology, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, USA
| | - Mercedes Martinez
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, USA
| | - Elise Kang
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, USA
| | - Miguel Sogbe
- Hepatology Unit, Department of Internal Medicine, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | - Bruno Sangro
- Hepatology Unit, Department of Internal Medicine, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | | | - Andreas Schmiderer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix J Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicolas Goossens
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Stephanie Lacotte
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Philippe Compagnon
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| | - Christian Toso
- Faculty of Medicine, Department of Surgery, University of Geneva, Switzerland
| |
Collapse
|
2
|
Özdemir BH, Baştürk B, Sayın CB, Haberal M. Programmed Death-Ligand 1 in Renal Allografts With Antibody-Mediated Rejection. EXP CLIN TRANSPLANT 2025; 23:192-201. [PMID: 40223384 DOI: 10.6002/ect.2024.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
OBJECTIVES Despite its known role in promoting tolerance, the function of programmed cell death protein 1/programmed death ligand 1 in antibody-mediated rejection is less clear. We aimed to clarify this role by examining expression of programmed cell death protein 1/programmed death ligand 1 in renal allografts diagnosed with antibody-mediated rejection. MATERIALS AND METHODS We examined 110 patients: 68 with pure antibody-mediated rejection (group 1) and 42 with both antibody-mediated rejection and T-cell mediated rejection (group 2). Renal immune cell infiltration, cytokine expression, and programmed cell death protein 1/programmed death ligand 1 expres-sion were examined immunohistochemically. RESULTS Expression of programmed cell death protein 1/programmed death ligand 1 in endothelial and inflammatory cells was higher in group 2 versus in group 1 (P < .001). Expression of programmed cell death protein 1/programmed death ligand 1 increased with immune cell infiltration. An inverse relationship existed between peritubular capillary DR expression and programmed cell death protein 1/programmed death ligand 1 interaction, with a positive correlation with tubular HLA-DR. Development of interstitial fibrosis was shown in 52.3% of patients with endothelial programmed cell death protein 1/programmed death ligand 1 interaction compared with 12.1% without this interaction (P < .001). Ten-year survival rate was 27.3% in patients with versus 66.7% in patients without endothelial programmed cell death protein 1/programmed death ligand 1 (P < .001) and 31.3% in patients with and 66.1% in patients without inflammatory cell programmed cell death protein 1/programmed death ligand 1 expression (P < .001). CONCLUSIONS Heightened immunological nature in antibody-mediated rejection may influence the unexpected functions of programmed death ligand 1. Inhibitory functions of the programmed cell death protein 1/programmed death ligand 1 pathway may be less effective under strong T-cell activation with high immunological costimulation in antibody-mediated rejection.
Collapse
Affiliation(s)
- Binnaz Handan Özdemir
- From the Pathology Department, Başkent University Faculty of Medicine, Ankara, Turkey
| | | | | | | |
Collapse
|
3
|
Gabby LC, Jones CK, McIntyre BB, Manalo Z, Meads M, Pizzo DP, Diaz-Vigil J, Soncin F, Fisch KM, Ramos GA, Jacobs MB, Parast MM. Chronic villitis as a distinctive feature of placental injury in maternal SARS-CoV-2 infection. Am J Obstet Gynecol 2025; 232:123.e1-123.e12. [PMID: 38580043 DOI: 10.1016/j.ajog.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND SARS-CoV-2 infection during pregnancy is associated with an increased risk for stillbirth, preeclampsia, and preterm birth. However, this does not seem to be caused by intrauterine fetal infection because vertical transmission is rarely reported. There is a paucity of data regarding the associated placental SARS-CoV-2 histopathology and their relationship with the timing and severity of infection. OBJECTIVE This study aimed to determine if maternal SARS-CoV-2 infection was associated with specific patterns of placental injury and if these findings differed by gestational age at time of infection or disease severity. STUDY DESIGN A retrospective cohort study was performed at the University of California San Diego between March 2020 and February 2021. Placentas from pregnancies with a positive SARS-CoV-2 test were matched with 2 sets of controls; 1 set was time-matched by delivery date and sent to pathology for routine clinical indications, and the other was chosen from a cohort of placentas previously collected for research purposes without clinical indications for pathologic examination before the SARS-CoV-2 outbreak. Placental pathologic lesions were defined based on standard criteria and included maternal and fetal vascular malperfusion and acute and chronic inflammatory lesions. A bivariate analysis was performed using the independent Student t test and Pearson chi-square test. A logistic regression was used to control for relevant covariates. Regions of SARS-CoV-2-associated villitis were further investigated using protein-based digital spatial profiling assays on the GeoMx platform, validated by immunohistochemistry, and compared with cases of infectious villitis and villitis of unknown etiology. Differential expression analysis was performed to identify protein expression differences between these groups of villitis. RESULTS We included 272 SARS-CoV-2 positive cases, 272 time-matched controls, and 272 historic controls. The mean age of SARS-CoV-2 affected subjects was 30.1±5.5 years and the majority were Hispanic (53.7%) and parous (65.7%). SARS-CoV-2 placentas demonstrated a higher frequency of the 4 major patterns of placental injury (all P<.001) than the historic controls. SARS-CoV-2 placentas also showed a higher frequency of chronic villitis and severe chronic villitis (P=.03 for both) than the time-matched controls, which remained significant after controlling for gestational age at delivery (adjusted odds ratio, 1.52; 95% confidence interval, 1.01-2.28; adjusted odds ratio, 2.12; 95% confidence interval, 1.16-3.88, respectively). Digital spatial profiling revealed that programmed death-ligand 1 was increased in villitis-positive regions of the SARS-CoV-2 (logFC, 0.47; adjusted P value =.002) and villitis of unknown etiology (logFC, 0.58; adjusted P value =.003) cases, but it was conversely decreased in villitis-positive regions of the infectious villitis group (log FC, -1.40; adjusted P value <.001). CONCLUSION Chronic villitis seems to be the most specific histopathologic finding associated with SARS-CoV-2 maternal infection. Chronic villitis involves damage to the vasculosyncytial membrane of the chorionic villi, which are involved in gas and nutrient exchange, suggesting potential mechanisms of placental (and perhaps neonatal) injury, even in the absence of vertical transmission. Surprisingly, changes in protein expression in SARS-CoV-2-associated villitis seem to be more similar to villitis of unknown etiology than to infectious villitis.
Collapse
Affiliation(s)
- Lauryn C Gabby
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA
| | - Chelsea K Jones
- University of California San Diego School of Medicine, La Jolla, CA
| | | | - Zoe Manalo
- Department of Pathology, University of California San Diego, La Jolla, CA; Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Morgan Meads
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Donald P Pizzo
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Jessica Diaz-Vigil
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA; Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Kathleen M Fisch
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA
| | - Gladys A Ramos
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA
| | - Marni B Jacobs
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA; Sanford Consortium for Regenerative Medicine, La Jolla, CA.
| |
Collapse
|
4
|
Ortiz V, Loeuillard E. Rethinking Immune Check Point Inhibitors Use in Liver Transplantation: Implications and Resistance. Cell Mol Gastroenterol Hepatol 2024; 19:101407. [PMID: 39326581 PMCID: PMC11609388 DOI: 10.1016/j.jcmgh.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy, including the two most common liver tumors, hepatocellular carcinoma and cholangiocarcinoma, but their use in the peri-transplantation period is controversial. ICI therapy aims to heighten cytotoxic T lymphocytes response against tumors. However, tumor recurrence is common owing to tumor immune response escape involving ablation of CTL response by interfering with antigen presentation, triggering CLT apoptosis and inducing epigenetic changes that promote ICI therapy resistance. ICI can also affect tissue resident memory T cell population, impact tolerance in the post-transplant period, and induce acute inflammation risking graft survival post-transplant. Their interaction with immunosuppression may be key in reducing tumor burden and may thus, require multimodal therapy to treat these tumors. This review summarizes ICI use in the liver transplantation period, their impact on tolerance and resistance, and new potential therapies for combination or sequential treatments for liver tumors.
Collapse
Affiliation(s)
- Vivian Ortiz
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri.
| | | |
Collapse
|
5
|
Keam S, Turner N, Kugeratski FG, Rico R, Colunga-Minutti J, Poojary R, Alekseev S, Patel AB, Li YJ, Sheshadri A, Loghin ME, Woodman K, Aaroe AE, Hamidi S, Iyer PC, Palaskas NL, Wang Y, Nurieva R. Toxicity in the era of immune checkpoint inhibitor therapy. Front Immunol 2024; 15:1447021. [PMID: 39247203 PMCID: PMC11377343 DOI: 10.3389/fimmu.2024.1447021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) reinvigorate anti-tumor immune responses by disrupting co-inhibitory immune checkpoint molecules such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4). Although ICIs have had unprecedented success and have become the standard of care for many cancers, they are often accompanied by off-target inflammation that can occur in any organ system. These immune related adverse events (irAEs) often require steroid use and/or cessation of ICI therapy, which can both lead to cancer progression. Although irAEs are common, the detailed molecular and immune mechanisms underlying their development are still elusive. To further our understanding of irAEs and develop effective treatment options, there is pressing need for preclinical models recapitulating the clinical settings. In this review, we describe current preclinical models and immune implications of ICI-induced skin toxicities, colitis, neurological and endocrine toxicities, pneumonitis, arthritis, and myocarditis along with their management.
Collapse
Affiliation(s)
- Synat Keam
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naimah Turner
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fernanda G Kugeratski
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rene Rico
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jocelynn Colunga-Minutti
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center University of Texas Health (UTHealth) Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| | | | - Sayan Alekseev
- College of Sciences, The University of Texas at San Antonio, San Antonio, TX, United States
- The Cancer Prevention and Research Institute of Texas (CPRIT)-CURE Summer Undergraduate Program, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anisha B Patel
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuanteng Jeff Li
- Department of General Internal Medicine, Section of Rheumatology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Monica E Loghin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karin Woodman
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ashley E Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sarah Hamidi
- Department of Endocrine Neoplasia and HD, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priyanka Chandrasekhar Iyer
- Department of Endocrine Neoplasia and HD, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Roza Nurieva
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center University of Texas Health (UTHealth) Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| |
Collapse
|
6
|
Ben Nasr M, Usuelli V, Dellepiane S, Seelam AJ, Fiorentino TV, D'Addio F, Fiorina E, Xu C, Xie Y, Balasubramanian HB, Castillo-Leon E, Loreggian L, Maestroni A, Assi E, Loretelli C, Abdelsalam A, El Essawy B, Uccella S, Pastore I, Lunati ME, Sabiu G, Petrazzuolo A, Ducci G, Sacco E, Centofanti L, Venturini M, Mazzucchelli S, Mattinzoli D, Ikehata M, Castellano G, Visner G, Kaifeng L, Lee KM, Wang Z, Corradi D, La Rosa S, Danese S, Yang J, Markmann JF, Zuccotti GV, Abdi R, Folli F, Fiorina P. Glucagon-like peptide 1 receptor is a T cell-negative costimulatory molecule. Cell Metab 2024; 36:1302-1319.e12. [PMID: 38838642 DOI: 10.1016/j.cmet.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/06/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a key regulator of glucose metabolism known to be expressed by pancreatic β cells. We herein investigated the role of GLP-1R on T lymphocytes during immune response. Our data showed that a subset of T lymphocytes expresses GLP-1R, which is upregulated during alloimmune response, similarly to PD-1. When mice received islet or cardiac allotransplantation, an expansion of GLP-1Rpos T cells occurred in the spleen and was found to infiltrate the graft. Additional single-cell RNA sequencing (scRNA-seq) analysis conducted on GLP-1Rpos and GLP-1Rneg CD3+ T cells unveiled the existence of molecular and functional dissimilarities between both subpopulations, as the GLP-1Rpos are mainly composed of exhausted CD8 T cells. GLP-1R acts as a T cell-negative costimulatory molecule, and GLP-1R signaling prolongs allograft survival, mitigates alloimmune response, and reduces T lymphocyte graft infiltration. Notably, GLP-1R antagonism triggered anti-tumor immunity when tested in a preclinical mouse model of colorectal cancer.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Sergio Dellepiane
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andy Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Emma Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Cong Xu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
| | - Yanan Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
| | - Hari Baskar Balasubramanian
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Eduardo Castillo-Leon
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lara Loreggian
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Anna Maestroni
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Ahmed Abdelsalam
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Basset El Essawy
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Medicine, Al-Azhar University, Cairo, Egypt
| | - Silvia Uccella
- Humanitas University and IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli Sacco, Milan, Italy
| | | | - Gianmarco Sabiu
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana Petrazzuolo
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Giacomo Ducci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; Department of Health Sciences, Universita'degli Studi di Milano, Milan, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; Department of Health Sciences, Universita'degli Studi di Milano, Milan, Italy
| | - Lucia Centofanti
- Department of Health Sciences, Universita'degli Studi di Milano, Milan, Italy
| | | | | | - Deborah Mattinzoli
- Nephrology, dialysis and renal transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Masami Ikehata
- Nephrology, dialysis and renal transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Castellano
- Nephrology, dialysis and renal transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Gary Visner
- Pulmonary Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Liu Kaifeng
- Pulmonary Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Kang Mi Lee
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhimin Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Domenico Corradi
- Department of Biomedical, Biotechnological and Translational Sciences, Unit of Pathology, University of Parma, Parma, Italy
| | - Stefano La Rosa
- Unit of Pathology, Department of Medicine and Technological innovation, University of Insubria, Varese, Italy; Unit of Pathology, Department of Oncology, ASST Sette Laghi, Varese, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele, Milan, Italy
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
| | - James F Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gian Vincenzo Zuccotti
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Department of Pediatrics, Children's Hospital Buzzi, University of Milan, Milan, Italy
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Franco Folli
- Department of Health Sciences, Universita'degli Studi di Milano, Milan, Italy.
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, ASST Fatebenefratelli Sacco, Milan, Italy.
| |
Collapse
|
7
|
Tabrizian P, Abdelrahim M, Schwartz M. Immunotherapy and transplantation for hepatocellular carcinoma. J Hepatol 2024; 80:822-825. [PMID: 38253289 DOI: 10.1016/j.jhep.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have emerged as the primary treatment for advanced hepatocellular carcinoma (HCC) and have shown promise in the neoadjuvant setting prior to resection. Liver transplantation (LT) is the preferred treatment for unresectable early HCC or locally advanced disease post locoregional therapy, but the need for immunosuppression after LT conflicts with ICIs' immune augmenting effects. Neoadjuvant ICI may benefit select LT candidates, but challenges arise in understanding response indicators and managing post-LT risks. Reports of severe rejection after LT have raised concerns, though liver-specific factors may mitigate rejection risks, prompting exploration of pre-LT ICI usage. While focus has been on PD-1/PD-L1 inhibitors, the optimal pre-LT ICI regimen remains uncertain, and trials must emphasize careful patient selection and management. Living donor LT is advantageous because ICIs can be withheld for a predefined washout period. In the post-LT setting, use of ICIs is generally avoided, though a few reports suggest that PD-L1 expression in the transplanted liver may be a safety biomarker and that, despite the risk, ICI therapy may be better than supportive care for patients with otherwise-untreatable HCC recurrence. This expert opinion highlights the complexities in the management of HCC vis-à-vis LT. Prospective studies and biomarkers are needed to define safe and effective pre- and post-LT immunotherapy protocols.
Collapse
Affiliation(s)
- Parissa Tabrizian
- Recanati-Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Maen Abdelrahim
- Medical Oncology, Houston Methodist Texas Medical Center, Texas, United States
| | - Myron Schwartz
- Recanati-Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, United States.
| |
Collapse
|
8
|
Van Meerhaeghe T, Murakami N, Le Moine A, Brouard S, Sprangers B, Degauque N. Fine-tuning tumor- and allo-immunity: advances in the use of immune checkpoint inhibitors in kidney transplant recipients. Clin Kidney J 2024; 17:sfae061. [PMID: 38606169 PMCID: PMC11008728 DOI: 10.1093/ckj/sfae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 04/13/2024] Open
Abstract
Cancer is a common complication after kidney transplantation. Kidney transplant recipients (KTR) have a 2- to 4-fold higher risk of developing cancer compared to the general population and post-transplant malignancy is the third most common cause of death in KTR. Moreover, it is well known that certain cancer types are overrepresented after transplantation, especially non-melanoma skin cancer. Immune checkpoint inhibitors (ICI) have revolutionized the treatment of cancer, with remarkable survival benefit in a subgroup of patients. ICI are monoclonal antibodies that block the binding of specific co-inhibitory signaling molecules. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1), and its ligand programmed cell death ligand 1 (PD-L1) are the main targets of ICI. Solid organ transplant recipients (SOTR) have been excluded from clinical trials owing to concerns about tumor response, allo-immunity, and risk of transplant rejection. Indeed, graft rejection has been estimated as high as 48% and represents an emerging problem. The underlying mechanisms of organ rejection in the context of treatment with ICI are poorly understood. The search for restricted antitumoral responses without graft rejection is of paramount importance. This review summarizes the current knowledge of the use of ICI in KTR, the potential mechanisms involved in kidney graft rejection during ICI treatment, potential biomarkers of rejection, and how to deal with rejection in clinical practice.
Collapse
Affiliation(s)
- Tess Van Meerhaeghe
- Departement of Nephrology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
| | - Naoka Murakami
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, USA
- Harvard Medical School, Boston, USA
| | - Alain Le Moine
- Departement of Nephrology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie Brouard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
| | - Ben Sprangers
- Biomedical Research Institute, Department of Immunology and Infection, UHasselt, Diepenbeek, Belgium
- Department of Nephrology, Ziekenhuis Oost Limburg, Genk, Belgium
| | - Nicolas Degauque
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
| |
Collapse
|
9
|
Murine precursors to type 1 conventional dendritic cells induce tumor cytotoxicity and exhibit activated PD-1/PD-L1 pathway. PLoS One 2022; 17:e0273075. [PMID: 35980974 PMCID: PMC9387840 DOI: 10.1371/journal.pone.0273075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/02/2022] [Indexed: 11/27/2022] Open
Abstract
The immediate precursor to murine type 1 conventional DCs (cDC1s) has recently been established and named “pre-cDC1s”. Mature CD8α+ cDC1s are recognized for suppressing graft-versus-host disease (GvHD) while promoting graft-versus-leukemia (GvL), however pre-cDC1s have not previously been investigated in the context of alloreactivity or anti-tumor responses. Characterization of pre-cDC1s, compared to CD8α+ cDC1s, found that a lower percentage of pre-cDC1s express PD-L1, yet express greater PD-L1 by MFI and a greater percent PIR-B, a GvHD-suppressing molecule. Functional assays were performed ex vivo following in vivo depletion of CD8α+ DCs to examine whether pre-cDC1s play a redundant role in alloreactivity. Proliferation assays revealed less allogeneic T-cell proliferation in the absence of CD8α+ cDC1s, with slightly greater CD8+ T-cell proliferation. Further, in the absence of CD8α+ cDC1s, stimulated CD8+ T-cells exhibited significantly less PD-1 expression compared to CD4+ T-cells, and alloreactive T-cell death was significantly lower, driven by reduced CD4+ T-cell death. Tumor-killing assays revealed that T-cells primed with CD8α-depleted DCs ex vivo induce greater killing of A20 B-cell leukemia cells, particularly when antigen (Ag) is limited. Bulk RNA sequencing revealed distinct transcriptional programs of these DCs, with pre-cDC1s exhibiting activated PD-1/PD-L1 signaling compared to CD8α+ cDC1s. These results indicate distinct T-cell-priming capabilities of murine pre-cDC1s compared to CD8α+ cDC1s ex vivo, with potentially clinically relevant implications in suppressing GvHD while promoting GvL responses, highlighting the need for greater investigation of murine pre-cDC1s.
Collapse
|
10
|
Yuan M, Zhao Y, Arkenau HT, Lao T, Chu L, Xu Q. Signal pathways and precision therapy of small-cell lung cancer. Signal Transduct Target Ther 2022; 7:187. [PMID: 35705538 PMCID: PMC9200817 DOI: 10.1038/s41392-022-01013-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/05/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022] Open
Abstract
Small-cell lung cancer (SCLC) encounters up 15% of all lung cancers, and is characterized by a high rate of proliferation, a tendency for early metastasis and generally poor prognosis. Most of the patients present with distant metastatic disease at the time of clinical diagnosis, and only one-third are eligible for potentially curative treatment. Recently, investigations into the genomic make-up of SCLC show extensive chromosomal rearrangements, high mutational burden and loss-of-function mutations of several tumor suppressor genes. Although the clinical development of new treatments for SCLC has been limited in recent years, a better understanding of oncogenic driver alterations has found potential novel targets that might be suitable for therapeutic approaches. Currently, there are six types of potential treatable signaling pathways in SCLC, including signaling pathways targeting the cell cycle and DNA repair, tumor development, cell metabolism, epigenetic regulation, tumor immunity and angiogenesis. At this point, however, there is still a lack of understanding of their role in SCLC tumor biology and the promotion of cancer growth. Importantly optimizing drug targets, improving drug pharmacology, and identifying potential biomarkers are the main focus and further efforts are required to recognize patients who benefit most from novel therapies in development. This review will focus on the current learning on the signaling pathways, the status of immunotherapy, and targeted therapy in SCLC.
Collapse
Affiliation(s)
- Min Yuan
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Yu Zhao
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | | | - Tongnei Lao
- Department of Oncology, Centro Medico BO CHI, Macao, SAR, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China.
| |
Collapse
|
11
|
Borges TJ, Murakami N, Lape IT, Gassen RB, Liu K, Cai S, Daccache J, Safa K, Shimizu T, Ohori S, Paterson AM, Cravedi P, Azzi J, Sage P, Sharpe A, Li XC, Riella LV. Overexpression of PD-1 on T cells promotes tolerance in cardiac transplantation via an ICOS-dependent mechanism. JCI Insight 2021; 6:142909. [PMID: 34752418 PMCID: PMC8783692 DOI: 10.1172/jci.insight.142909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/04/2021] [Indexed: 12/04/2022] Open
Abstract
The programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway is a potent inhibitory pathway involved in immune regulation and is a potential therapeutic target in transplantation. In this study, we show that overexpression of PD-1 on T cells (PD-1 Tg) promotes allograft tolerance in a fully MHC-mismatched cardiac transplant model when combined with costimulation blockade with CTLA-4–Ig. PD-1 overexpression on T cells also protected against chronic rejection in a single MHC II–mismatched cardiac transplant model, whereas the overexpression still allowed the generation of an effective immune response against an influenza A virus. Notably, Tregs from PD-1 Tg mice were required for tolerance induction and presented greater ICOS expression than those from WT mice. The survival benefit of PD-1 Tg recipients required ICOS signaling and donor PD-L1 expression. These results indicate that modulation of PD-1 expression, in combination with a costimulation blockade, is a promising therapeutic target to promote transplant tolerance.
Collapse
Affiliation(s)
- Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Naoka Murakami
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Isadora T Lape
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Rodrigo B Gassen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Kaifeng Liu
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Songjie Cai
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Joe Daccache
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Kassem Safa
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Tetsunosuke Shimizu
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Shunsuke Ohori
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Alison M Paterson
- Department of Immunobiology, Harvard Medical School, Boston, United States of America
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Jamil Azzi
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Peter Sage
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Arlene Sharpe
- Department of Immunology, Harvard Medical School, Boston, United States of America
| | - Xian C Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, United States of America
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| |
Collapse
|
12
|
Freitas AP, Clissa PB, Soto DR, Câmara NOS, Faquim-Mauro EL. The modulatory effect of crotoxin and its phospholipase A 2 subunit from Crotalus durissus terrificus venom on dendritic cells interferes with the generation of effector CD4 + T lymphocytes. Immunol Lett 2021; 240:56-70. [PMID: 34626682 DOI: 10.1016/j.imlet.2021.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 01/02/2023]
Abstract
Dendritic Cells (DCs) direct either cellular immune response or tolerance. The crotoxin (CTX) and its CB subunit (phospholipase A2) isolated from Crotalus durissus terrificus rattlesnake venom modulate the DC maturation induced by a TLR4 agonist. Here, we analyzed the potential effect of CTX and CB subunit on the functional ability of DCs to induce anti-ovalbumin (OVA) immune response. Thus, CTX and CB inhibited the maturation of OVA/LPS-stimulated BM-DCs from BALB/c mice, which means inhibition of costimulatory and MHC-II molecule expression and proinflammatory cytokine secretion, accompanied by high expression of ICOSL, PD-L1/2, IL-10 and TGF-β mRNA expression. The addition of CTX and CB in cultures of BM-DCs incubated with ConA or OVA/LPS inhibited the proliferation of CD3+ or CD4+T cells from OVA-immunized mice. In in vitro experiment of co-cultures of purified CD4+T cells of DO11.10 mice with OVA/LPS-stimulated BM-DCs, the CTX or CB induced lowest percentage of Th1 and Th2 and CTX induced increase of Treg cells. In in vivo, CTX and CB induced lower percentage of CD4+IFNγ+ and CD4+IL-4+ cells, as well as promoted CD4+CD25+IL-10+ population in OVA/LPS-immunized mice. CTX in vivo also inhibited the maturation of DCs. Our findings demonstrate that the modulatory action of CTX and CB on DCs interferes with the generation of adaptive immunity and, therefore contribute for the understanding of the mechanisms involved in the generation of cellular immunity, which can be useful for new therapeutic approaches for immune disorders.
Collapse
Affiliation(s)
- Amanda P Freitas
- Laboratory of Immunopathology, Butantan Institute, São Paulo, SP, Brazil; Department of Immunology, Institute of Biomedical Science, University of São Paulo, SP, Brazil
| | - Patricia B Clissa
- Laboratory of Immunopathology, Butantan Institute, São Paulo, SP, Brazil
| | - Dunia R Soto
- Laboratory of Biotechnology, Butantan Institute, São Paulo, Brazil
| | - Niels O S Câmara
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, SP, Brazil
| | - Eliana L Faquim-Mauro
- Laboratory of Immunopathology, Butantan Institute, São Paulo, SP, Brazil; Department of Immunology, Institute of Biomedical Science, University of São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Wang X, MacParland SA, Perciani CT. Immunological Determinants of Liver Transplant Outcomes Uncovered by the Rat Model. Transplantation 2021; 105:1944-1956. [PMID: 33417410 PMCID: PMC8376267 DOI: 10.1097/tp.0000000000003598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023]
Abstract
For many individuals with end-stage liver disease, the only treatment option is liver transplantation. However, liver transplant rejection is observed in 24%-80% of transplant patients and lifelong drug regimens that follow the transplant procedure lead to serious side effects. Furthermore, the pool of donor livers available for transplantation is far less than the demand. Well-characterized and physiologically relevant models of liver transplantation are crucial to a deeper understanding of the cellular processes governing the outcomes of liver transplantation and serve as a platform for testing new therapeutic strategies to enhance graft acceptance. Such a model has been found in the rat transplant model, which has an advantageous size for surgical procedures, similar postoperative immunological progression, and high genome match to the human liver. From rat liver transplant studies published in the last 5 years, it is clear that the rat model serves as a strong platform to elucidate transplant immunological mechanisms. Using the model, we have begun to uncover potential players and possible therapeutic targets to restore liver tolerance and preserve host immunocompetence. Here, we present an overview of recent literature for rat liver transplant models, with an aim to highlight the value of the models and to provide future perspectives on how these models could be further characterized to enhance the overall value of rat models to the field of liver transplantation.
Collapse
Affiliation(s)
- Xinle Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sonya A MacParland
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Ajmera Family Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Catia T Perciani
- Ajmera Family Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| |
Collapse
|
14
|
Molina MS, Hoffman EA, Stokes J, Kummet N, Smith KA, Baker F, Zúñiga TM, Simpson RJ, Katsanis E. Regulatory Dendritic Cells Induced by Bendamustine Are Associated With Enhanced Flt3 Expression and Alloreactive T-Cell Death. Front Immunol 2021; 12:699128. [PMID: 34249005 PMCID: PMC8264365 DOI: 10.3389/fimmu.2021.699128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
The growth factor Flt3 ligand (Flt3L) is central to dendritic cell (DC) homeostasis and development, controlling survival and expansion by binding to Flt3 receptor tyrosine kinase on the surface of DCs. In the context of hematopoietic cell transplantation, Flt3L has been found to suppress graft-versus-host disease (GvHD), specifically via host DCs. We previously reported that the pre-transplant conditioning regimen consisting of bendamustine (BEN) and total body irradiation (TBI) results in significantly reduced GvHD compared to cyclophosphamide (CY)+TBI. Pre-transplant BEN+TBI conditioning was also associated with greater Flt3 expression among host DCs and an accumulation of pre-cDC1s. Here, we demonstrate that exposure to BEN increases Flt3 expression on both murine bone marrow-derived DCs (BMDCs) and human monocyte-derived DCs (moDCs). BEN favors development of murine plasmacytoid DCs, pre-cDC1s, and cDC2s. While humans do not have an identifiable equivalent to murine pre-cDC1s, exposure to BEN resulted in decreased plasmacytoid DCs and increased cDC2s. BEN exposure and heightened Flt3 signaling are associated with a distinct regulatory phenotype, with increased PD-L1 expression and decreased ICOS-L expression. BMDCs exposed to BEN exhibit diminished pro-inflammatory cytokine response to LPS and induce robust proliferation of alloreactive T-cells. These proliferative alloreactive T-cells expressed greater levels of PD-1 and underwent increased programmed cell death as the concentration of BEN exposure increased. Alloreactive CD4+ T-cell death may be attributable to pre-cDC1s and provides a potential mechanism by which BEN+TBI conditioning limits GvHD and yields T-cells tolerant to host antigen.
Collapse
Affiliation(s)
- Megan S Molina
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Emely A Hoffman
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Jessica Stokes
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Nicole Kummet
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Kyle A Smith
- Department of Physiology, University of Arizona, Tucson, AZ, United States.,Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Forrest Baker
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Tiffany M Zúñiga
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Richard J Simpson
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Immunobiology, University of Arizona, Tucson, AZ, United States.,Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, Tucson, AZ, United States
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Immunobiology, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Medicine, University of Arizona, Tucson, AZ, United States.,Department of Pathology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
15
|
Immune modulation via adipose derived Mesenchymal Stem cells is driven by donor sex in vitro. Sci Rep 2021; 11:12454. [PMID: 34127731 PMCID: PMC8203671 DOI: 10.1038/s41598-021-91870-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are currently being used in clinical trials as proposed treatments for a large range of genetic, immunological, orthopaedic, cardiovascular, endocrine and neurological disorders. MSCs are potent anti-inflammatory mediators which are considered immune evasive and employ a large range of secreted vesicles to communicate and repair damaged tissue. Despite their prolific use in therapy, sex specific mechanism of action is rarely considered as a potential confounding factor for use. The purpose of this study was to examine the potency and functionality of both female and male adipose derived MSCs in order to gain further insights into donor selection. Methods MSC were expanded to passage 4, secretome was harvested and stored at − 80c. To assess potency MSC were also primed and assessed via functional immune assays, ELISA, multiplex and immunophenotyping. Results Female MSCs (fMSC), consistently suppressed Peripheral blood mononuclear cell (PBMC) proliferation significantly (p < 0.0001) more than male MSC (mMSC). In co-culture mPBMCs, showed 60.7 ± 15.6% suppression with fMSCs compared with 22.5 ± 13.6% suppression with mMSCs. Similarly, fPBMCs were suppressed by 67.9 ± 10.4% with fMSCs compared to 29.4 ± 9.3% with mMSCs. The enhanced immunosuppression of fMSCs was attributed to the production of higher concentrations of the anti-inflammatory mediators such as IDO1 (3301 pg/mL vs 1699 pg/mL) and perhaps others including IL-1RA (1025 pg/mL vs 701 pg/mL), PGE-2 (6142 pg/mL vs 2448 pg/mL) and prolonged expression of VCAM-1 post activation relative to mMSCs. In contrast, mMSCs produces more inflammatory G-CSF than fMSCs (806 pg/mL vs 503 pg/mL). Moreover, IDO1 expression was correlated to immune suppression and fMSCs, but not mMSCs induced downregulation of the IL-2 receptor and sustained expression of the early T cell activation marker, CD69 in PBMCs further highlighting the differences in immunomodulation potentials between the sexes. Conclusion In conclusion, our data shows that female MSC are more potent in vitro than their male counterparts. The inability of male MSC to match female MSC driven immunomodulation and to use the inflammatory microenvironment to their advantage is evident and is likely a red flag when using allogeneic male MSC as a therapeutic for disease states.
Collapse
|
16
|
Huang D, Chen J, Hu D, Xie F, Yang T, Li Z, Wang X, Xiao Y, Zhong J, Jiang Y, Zhang X, Zhong T. Advances in Biological Function and Clinical Application of Small Extracellular Vesicle Membrane Proteins. Front Oncol 2021; 11:675940. [PMID: 34094979 PMCID: PMC8172959 DOI: 10.3389/fonc.2021.675940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Small extracellular vesicles are membrane-bound vesicles secreted into extracellular spaces by virtually all types of cells. These carry a large number of membrane proteins on their surface that are incorporated during their biogenesis in cells. The composition of the membrane proteins hence bears the signature of the cells from which they originate. Recent studies have suggested that the proteins on these small extracellular vesicles can serve as biomarkers and target proteins for the diagnosis and treatment of diseases. This article classifies small extracellular vesicle membrane proteins and summarizes their pathophysiological functions in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Die Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangfang Xie
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yongwei Xiao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiaokang Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Department of Preventive Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.,Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
17
|
The application of nano-medicine to overcome the challenges related to immune checkpoint blockades in cancer immunotherapy: Recent advances and opportunities. Crit Rev Oncol Hematol 2021; 157:103160. [DOI: 10.1016/j.critrevonc.2020.103160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
|
18
|
Thomson AW, Vionnet J, Sanchez-Fueyo A. Understanding, predicting and achieving liver transplant tolerance: from bench to bedside. Nat Rev Gastroenterol Hepatol 2020; 17:719-739. [PMID: 32759983 DOI: 10.1038/s41575-020-0334-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
In the past 40 years, liver transplantation has evolved from a high-risk procedure to one that offers high success rates for reversal of liver dysfunction and excellent patient and graft survival. The liver is the most tolerogenic of transplanted organs; indeed, immunosuppressive therapy can be completely withdrawn without rejection of the graft in carefully selected, stable long-term liver recipients. However, in other recipients, chronic allograft injury, late graft failure and the adverse effects of anti-rejection therapy remain important obstacles to improved success. The liver has a unique composition of parenchymal and immune cells that regulate innate and adaptive immunity and that can promote antigen-specific tolerance. Although the mechanisms underlying liver transplant tolerance are not well understood, important insights have been gained into how the local microenvironment, hepatic immune cells and specific molecular pathways can promote donor-specific tolerance. These insights provide a basis for the identification of potential clinical biomarkers that might correlate with tolerance or rejection and for the development of novel therapeutic targets. Innovative approaches aimed at promoting immunosuppressive drug minimization or withdrawal include the adoptive transfer of donor-derived or recipient-derived regulatory immune cells to promote liver transplant tolerance. In this Review, we summarize and discuss these developments and their implications for liver transplantation.
Collapse
Affiliation(s)
- Angus W Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Julien Vionnet
- Institute of Liver Studies, Medical Research Council (MRC) Centre for Transplantation, School of Immunology and Infectious Diseases, King's College London University, King's College Hospital, London, UK.,Transplantation Center, University Hospital of Lausanne, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, Medical Research Council (MRC) Centre for Transplantation, School of Immunology and Infectious Diseases, King's College London University, King's College Hospital, London, UK
| |
Collapse
|
19
|
Yang T, Li J, Li R, Yang C, Zhang W, Qiu Y, Yang C, Rong R. Correlation between MDSC and Immune Tolerance in Transplantation: Cytokines, Pathways and Cell-cell Interaction. Curr Gene Ther 2020; 19:81-92. [PMID: 31237207 DOI: 10.2174/1566523219666190618093707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/06/2019] [Accepted: 05/24/2019] [Indexed: 11/22/2022]
Abstract
MDSCs play an important role in the induction of immune tolerance. Cytokines and chemokines (GM-CSF, IL-6) contributed to the expansion, accumulation of MDSCs, and MDSCs function through iNOS, arginase and PD-L1. MDSCs are recruited and regulated through JAK/STAT, mTOR and Raf/MEK/ERK signaling pathways. MDSCs' immunosuppressive functions were realized through Tregs-mediated pathways and their direct suppression of immune cells. All of the above contribute to the MDSC-related immune tolerance in transplantation. MDSCs have huge potential in prolonging graft survival and reducing rejection through different ways and many other factors worthy to be further investigated are also introduced.
Collapse
Affiliation(s)
- Tianying Yang
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiawei Li
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruimin Li
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunchen Yang
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weitao Zhang
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yue Qiu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, ZhongShan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Shim YJ, Khedraki R, Dhar J, Fan R, Dvorina N, Valujskikh A, Fairchild RL, Baldwin WM. Early T cell infiltration is modulated by programed cell death-1 protein and its ligand (PD-1/PD-L1) interactions in murine kidney transplants. Kidney Int 2020; 98:897-905. [PMID: 32763116 DOI: 10.1016/j.kint.2020.03.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 11/16/2022]
Abstract
Allogeneic transplants elicit dynamic T cell responses that are modulated by positive and negative co-stimulatory receptors. Understanding mechanisms that intrinsically modulate the immune responses to transplants is vital to develop rational treatment for rejection. Here, we have investigated the impact of programed cell death-1 (PD-1) protein, a negative co-stimulatory receptor, on the rejection of MHC incompatible kidney transplants in mice. T cells were found to rapidly infiltrate the kidneys of A/J mice transplanted to C57BL/6 mice, which peaked at six days and decline by day 14. The T cells primarily encircled tubules with limited infiltration of the tubular epithelium. Lipocalin 2 (LCN2), a marker of tubular injury, also peaked in the urine at day six and then declined. Notably, flow cytometry demonstrated that most of the T cells expressed PD-1 (over 90% of CD8 and about 75% of CD4 cells) at day six. Administration of blocking antibody to PD-L1, the ligand for PD-1, before day six increased T cell infiltrates and urinary LCN2, causing terminal acute rejection. In contrast, blocking PD-1/PD-L1 interactions after day six caused only a transient increase in urinary LCN2. Depleting CD4 and CD8 T cells virtually eliminated LCN2 in the urine in support of T cells injuring tubules. Thus, our data indicate that PD-1/PD-L1 interactions are not just related to chronic antigenic stimulation of T cells but are critical for the regulation of acute T cell responses to renal transplants.
Collapse
Affiliation(s)
- Young Jun Shim
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Raneem Khedraki
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Jayeeta Dhar
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Ran Fan
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Nina Dvorina
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - William M Baldwin
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA.
| |
Collapse
|
21
|
Batra L, Shrestha P, Zhao H, Woodward KB, Togay A, Tan M, Grimany-Nuno O, Malik MT, Coronel MM, García AJ, Shirwan H, Yolcu ES. Localized Immunomodulation with PD-L1 Results in Sustained Survival and Function of Allogeneic Islets without Chronic Immunosuppression. THE JOURNAL OF IMMUNOLOGY 2020; 204:2840-2851. [PMID: 32253240 DOI: 10.4049/jimmunol.2000055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Allogeneic islet transplantation is limited by adverse effects of chronic immunosuppression used to control rejection. The programmed cell death 1 pathway as an important immune checkpoint has the potential to obviate the need for chronic immunosuppression. We generated an oligomeric form of programmed cell death 1 ligand chimeric with core streptavidin (SA-PDL1) that inhibited the T effector cell response to alloantigens and converted T conventional cells into CD4+Foxp3+ T regulatory cells. The SA-PDL1 protein was effectively displayed on the surface of biotinylated mouse islets without a negative impact islet viability and insulin secretion. Transplantation of SA-PDL1-engineered islet grafts with a short course of rapamycin regimen resulted in sustained graft survival and function in >90% of allogeneic recipients over a 100-d observation period. Long-term survival was associated with increased levels of intragraft transcripts for innate and adaptive immune regulatory factors, including IDO-1, arginase-1, Foxp3, TGF-β, IL-10, and decreased levels of proinflammatory T-bet, IL-1β, TNF-α, and IFN-γ as assessed on day 3 posttransplantation. T cells of long-term graft recipients generated a proliferative response to donor Ags at a similar magnitude to T cells of naive animals, suggestive of the localized nature of tolerance. Immunohistochemical analyses showed intense peri-islet infiltration of T regulatory cells in long-term grafts and systemic depletion of this cell population resulted in prompt rejection. The transient display of SA-PDL1 protein on the surface of islets serves as a practical means of localized immunomodulation that accomplishes sustained graft survival in the absence of chronic immunosuppression with potential clinical implications.
Collapse
Affiliation(s)
- Lalit Batra
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Pradeep Shrestha
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Hong Zhao
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Kyle B Woodward
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Alper Togay
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Min Tan
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Orlando Grimany-Nuno
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Mohammad Tariq Malik
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - María M Coronel
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332; and
| | - Haval Shirwan
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202; .,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65211
| | - Esma S Yolcu
- Institute for Cellular Therapeutics, School of Medicine, University of Louisville, Louisville, KY 40202; .,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202.,Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65211
| |
Collapse
|
22
|
Yoshida R, Maeda S, Tashiro-Yamaji J, Yasuda E, Shibayama Y, Hirose Y, Kubota T. IFN-γ Control of an Effector/Target Combination for Skin Allograft Rejection: Macrophage/Skin Components in Normal Mice or T Cell/Endothelial Cells in IFN-γ-Deficient Mice. J Interferon Cytokine Res 2020; 40:207-217. [PMID: 32069165 DOI: 10.1089/jir.2019.0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organ, skin, or cell allografts are acutely rejected from normal mice, whereas vascularized organ allografts, but not allografted Meth A cells, are rejected from interferon-γ (IFN-γ)-deficient mice. Here we explored effector/target combinations for i.p. allografted Meth A (cytotoxic T lymphocyte [CTL]-resistant) or RLmale1 (CTL-susceptible) cells into or for BALB/c skin (skin components: CTL resistant) onto normal or IFN-γ-deficient C57BL/6 mice. After allografting, normal mice showed more infiltration but only a little thrombosis/hemorrhage. Monocyte/macrophage MHC receptor (MMR)+ macrophages (on days 5-10) and T cell receptor (TCR)+ CTLs (on days 7-9) were cytotoxic against Meth A cells or skin components and RLmale1 cells, respectively, and the allografts were rejected. After allografting into IFN-γ-deficient mice, MMR- macrophages and highly activated TCR+ CTLs were induced, and the mice died of hemorrhagic ascites with Meth A cells and more acutely rejected RLmale1 cells. The CTLs on days 4-6 were inactive toward skin components at an in vivo effector/target ratio but injured endothelial cells to cause severe thrombosis/hemorrhage and more acute rejection of skin allografts. These results indicate that IFN-γ-dependent MMR expression was essential for macrophage-mediated cytolysis of allogeneic skin components and that IFN-γ-deficient mice more acutely rejected skin allograft by causing CTL-induced injury to endothelial cells.
Collapse
Affiliation(s)
- Ryotaro Yoshida
- Department of Physiology, Osaka Medical College, Takatsuki, Japan
| | - Shogo Maeda
- Department of Physiology, Osaka Medical College, Takatsuki, Japan
| | | | - Emi Yasuda
- Department of Pathology, Osaka Medical College, Takatsuki, Japan
| | - Yuro Shibayama
- Department of Pathology, Osaka Medical College, Takatsuki, Japan
| | - Yoshinobu Hirose
- Department of Pathology, Osaka Medical College, Takatsuki, Japan
| | - Takahiro Kubota
- Department of Physiology, Osaka Medical College, Takatsuki, Japan
| |
Collapse
|
23
|
Falcone M, Fousteri G. Role of the PD-1/PD-L1 Dyad in the Maintenance of Pancreatic Immune Tolerance for Prevention of Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:569. [PMID: 32973682 PMCID: PMC7466754 DOI: 10.3389/fendo.2020.00569] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
The human pancreas, like almost all organs in the human body, is immunologically tolerated despite the presence of innate and adaptive immune cells that promptly mediate protective immune responses against pathogens in situ. The PD-1/PD-L1 inhibitory pathway seems to play a key role in the maintenance of immune tolerance systemically and within the pancreatic tissue. Tissue resident memory T cells (TRM), T regulatory cells (Treg), macrophages and even β cells exhibit PD-1 or PD-L1 expression that contributes in controlling pancreatic immune homeostasis and tolerance. Dysregulation of the PD-1/PD-L1 axis as shown by animal studies and our recent experience with checkpoint inhibitory blockade in humans can lead to immune dysfunctions leading to chronic inflammatory disease and to type 1 diabetes (T1D) in genetically susceptible individuals. In this review, we discuss the role of the PD-1/PD-L1 axis in pancreatic tissue homeostasis and tolerance, speculate how genetic and environmental factors can regulate the PD-1/PD-L1 pathway, and discuss PD-1/PD-L1-based therapeutic approaches for pancreatic islet transplantation and T1D treatment.
Collapse
|
24
|
Plotnikova MA, Klotchenko SA, Kiselev AA, Gorshkov AN, Shurygina APS, Vasilyev KA, Uciechowska-Kaczmarzyk U, Samsonov SA, Kovalenko AL, Vasin AV. Meglumine acridone acetate, the ionic salt of CMA and N-methylglucamine, induces apoptosis in human PBMCs via the mitochondrial pathway. Sci Rep 2019; 9:18240. [PMID: 31796757 PMCID: PMC6890692 DOI: 10.1038/s41598-019-54208-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/04/2019] [Indexed: 01/16/2023] Open
Abstract
Meglumine acridone acetate (MA) is used in Russia for the treatment of influenza and other acute respiratory viral infections. It was assumed, until recently, that its antiviral effect was associated with its potential ability to induce type I interferon. Advanced studies, however, have shown the failure of 10-carboxymethyl-9-acridanone (CMA) to activate human STING. As such, MA's antiviral properties are still undergoing clarification. To gain insight into MA's mechanisms of action, we carried out RNA-sequencing analysis of global transcriptomes in MA-treated (MA+) human peripheral blood mononuclear cells (PBMCs). In response to treatment, approximately 1,223 genes were found to be differentially expressed, among which 464 and 759 were identified as either up- or down-regulated, respectively. To clarify the cellular and molecular processes taking place in MA+ cells, we performed a functional analysis of those genes. We have shown that evident MA subcellular localizations are: at the nuclear envelope; inside the nucleus; and diffusely in perinuclear cytoplasm. Postulating that MA may be a nuclear receptor agonist, we carried out docking simulations with PPARα and RORα ligand binding domains including prediction and molecular dynamics-based analysis of potential MA binding poses. Finally, we confirmed that MA treatment enhanced nuclear apoptosis in human PBMCs. The research presented here, in our view, indicates that: (i) MA activity is mediated by nuclear receptors; (ii) MA is a possible PPARα and/or RORα agonist; (iii) MA has an immunosuppressive effect; and (iv) MA induces apoptosis through the mitochondrial signaling pathway.
Collapse
Affiliation(s)
| | | | - Artem A Kiselev
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Andrey N Gorshkov
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | | | - Kirill A Vasilyev
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | | | | | - Alexey L Kovalenko
- Institute of Toxicology, Federal Medical-Biological Agency of Russia, St. Petersburg, Russia
| | - Andrey V Vasin
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
- Institute of Biomedical Systems and Botechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Saint Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| |
Collapse
|
25
|
The importance of the PD-1/PD-L1 pathway at the maternal-fetal interface. BMC Pregnancy Childbirth 2019; 19:74. [PMID: 30782114 PMCID: PMC6381664 DOI: 10.1186/s12884-019-2218-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/07/2019] [Indexed: 02/02/2023] Open
Abstract
Background Our goal with this study was to investigate the contribution of PD-1/PD-L1 immune-checkpoint pathway to maternal immunotolerance mechanisms. Methods Thirteen healthy pregnant women and 10 non-pregnant controls were involved in this project. PBMCs and DICs were isolated from peripheral blood and from decidual tissues. After the characterization of different immune cell subsets, we used fluorochrome-conjugated monoclonal antibodies to measure the expression level of PD-1, PD-L1, NKG2D, and CD107a molecules by flow cytometry. Results We measured significant alternations in the proportion of decidual immune cell subsets compared to the periphery. Elevated PD-1 expression by decidual CD8+ T, CD4+ T, and NKT-like cells were also detected accompanied by the increased PD-L1 expression by decidual CD4+ T, Treg, NKT-like and CD56 + NK cell subsets compared to peripheral blood. The cytotoxic potential was significantly higher in PD-1- decidual immune cells compared to the periphery, however we measured a significantly lower cytotoxicity in the decidual PD-1+ CD8+ T cells compared with the peripheral subsets. An activation receptor NKG2D expression was decreased by the PD-1+ CD8+ T subsets in the first trimester compared to non-pregnant condition but the expression level of the decidual counterparts was significantly elevated compared to the periphery. The cytotoxic potential of decidual PD1/NKG2D double positive CD8+ T cells was significantly decreased compared to the peripheral subsets. Conclusions Based on our results we assume that PD-1/PD-L1 pathway might have a novel role in the maintaining of the local immunological environment. Accompanied by NKG2D activating receptor this checkpoint interaction could regulate decidual CD8 Tc cell subsets and may contribute maternal immunotolerance.
Collapse
|
26
|
Wu B, Sun X, Gupta HB, Yuan B, Li J, Ge F, Chiang HC, Zhang X, Zhang C, Zhang D, Yang J, Hu Y, Curiel TJ, Li R. Adipose PD-L1 Modulates PD-1/PD-L1 Checkpoint Blockade Immunotherapy Efficacy in Breast Cancer. Oncoimmunology 2018; 7:e1500107. [PMID: 30393583 PMCID: PMC6209395 DOI: 10.1080/2162402x.2018.1500107] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) modulate antitumor immunity and are major targets of checkpoint blockade immunotherapy. However, clinical trials of anti-PD-L1 and anti-PD-1 antibodies in breast cancer demonstrate only modest efficacy. Furthermore, specific PD-L1 contributions in various tissue and cell compartments to antitumor immunity remain incompletely elucidated. Here we show that PD-L1 expression is markedly elevated in mature adipocytes versus preadipocytes. Adipocyte PD-L1 prevents anti-PD-L1 antibody from activating important antitumor functions of CD8+ T cells in vitro. Adipocyte PD-L1 ablation obliterates, whereas forced preadipocyte PD-L1 expression confers, these inhibitory effects. Pharmacologic inhibition of adipogenesis selectively reduces PD-L1 expression in mouse adipose tissue and enhances the antitumor efficacy of anti-PD-L1 or anti-PD-1 antibodies in syngeneic mammary tumor models. Our findings provide a previously unappreciated approach to bolster anticancer immunotherapy efficacy and suggest a mechanism for the role of adipose tissue in breast cancer progression.
Collapse
Affiliation(s)
- Bogang Wu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Xiujie Sun
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Harshita B. Gupta
- Department of Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Bin Yuan
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Jingwei Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Fei Ge
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Huai-Chin Chiang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Xiaowen Zhang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Chi Zhang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Deyi Zhang
- Department of Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Jing Yang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Yanfen Hu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Tyler J. Curiel
- Department of Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Rong Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| |
Collapse
|
27
|
Bone marrow mesenchymal stromal cells attenuate liver allograft rejection may via upregulation PD-L1 expression through downregulation of miR-17-5p. Transpl Immunol 2018; 51:21-29. [PMID: 30092337 DOI: 10.1016/j.trim.2018.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/29/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023]
Abstract
Studies have reported that bone marrow mesenchymal stem cells (BMSCs) play an important role in immune regulation after organ transplantation. Some of the BMSC-mediated regulatory mechanisms are related to PD-L1 expression. However, the regulatory mechanism of PD-L1 expression is not fully understood. In this experiment, we confirmed the regulatory role of BMSCs in the rejection of liver transplantation and explored the possible mechanism by which PD-L1 expression is regulated in BMSCs. An orthotopic liver transplantation model in rats was established based on the "double-cuff technique". Third-generation BMSCs were injected into the rejection model rats via portal vein. At the same time, sera were obtained from rats in the allograft, isograft and sham-operated groups. The sera from these groups were separately added to BMSCs complete medium to partially mimic the in vivo environment in which BMSCs are exposed. After predicting and analysing microRNAs that regulate PD-L1 expression, we examined the microRNA and PD-L1 expression in BMSCs of the three groups cultured in the conditioned media. Moreover, a luciferase reporter assay was used to confirm the interaction between PD-L1 and microRNA. The study found that the liver function and liver graft histopathology of the BMSC-treated group were better than those of the allograft group. The Kaplan-Meier survival curve analysis showed that the median survival time (MST) of the BMSC-treated group was longer than that of the allograft group. Bioinformatics prediction and analysis showed that miR-17-5p is highly likely to regulate PD-L1. Compared with the other two groups of cells, BMSCs cultured with serum from allograft models showed higher PD-L1 expression, but lower miR-17-5p expression. Pearson correlation analysis showed that miR-17-5p and PD-L1 expression was negatively correlated, and further luciferase reporter assays confirmed that miR-17-5p interacted directly with the 3´-untranslated region (UTR) of PD-L1 mRNA. The results of this study demonstrate that BMSCs can attenuate liver allograft rejection and provide us with the idea that BMSCs may further upregulate PD-L1 expression by downregulating miR-17-5p expression, thereby attenuating liver allograft rejection.
Collapse
|
28
|
Teruya S, Okamura T, Komai T, Inoue M, Iwasaki Y, Sumitomo S, Shoda H, Yamamoto K, Fujio K. Egr2-independent, Klf1-mediated induction of PD-L1 in CD4 + T cells. Sci Rep 2018; 8:7021. [PMID: 29728568 PMCID: PMC5935736 DOI: 10.1038/s41598-018-25302-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/19/2018] [Indexed: 01/15/2023] Open
Abstract
Programmed death ligand 1 (PD-L1)-mediated induction of immune tolerance has been vigorously investigated in autoimmunity and anti-tumor immunity. However, details of the mechanism by which PD-L1 is induced in CD4+ T cells are unknown. Here, we revealed the potential function of Klf1 and Egr2-mediated induction of PD-L1 in CD4+ T cells. We focused on the molecules specifically expressed in CD4+CD25-LAG3+ regulatory T cells (LAG3+ Tregs) highly express of PD-L1 and transcription factor Egr2. Although ectopic expression of Egr2 induced PD-L1, a deficiency of Egr2 did not affect its expression, indicating the involvement of another PD-L1 induction mechanism. Comprehensive gene expression analysis of LAG3+ Tregs and in silico binding predictions revealed that Krüppel-like factor 1 (Klf1) is a candidate inducer of the PD-L1 gene (Cd274). Klf1 is a transcription factor that promotes β-globin synthesis in erythroid progenitors, and its role in immunological homeostasis is unknown. Ectopic expression of Klf1 induced PD-L1 in CD4+ T cells through activation of the PI3K-mTOR signaling pathway, independent of STATs signaling and Egr2 expression. Our findings indicate that Klf1 and Egr2 are modulators of PD-L1-mediated immune suppression in CD4+ T cells and might provide new insights into therapeutic targets for autoimmune diseases and malignancies.
Collapse
Affiliation(s)
- Shuzo Teruya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Max Planck-University of Tokyo Center for Integrative Inflammology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mariko Inoue
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yukiko Iwasaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Max Planck-University of Tokyo Center for Integrative Inflammology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
29
|
Elizei SS, Pakyari M, Ghoreishi M, Kilani R, Mahmoudi S, Ghahary A. IDO-expressing Fibroblasts Suppress the Development of Imiquimod-induced Psoriasis-like Dermatitis. Cell Transplant 2018; 27:557-570. [PMID: 29759005 PMCID: PMC6038037 DOI: 10.1177/0963689718757482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022] Open
Abstract
Psoriasis is a chronic skin condition whose pathogenesis is reported to be due to the activation of the interleukin-23/interleukin-17 (IL-23/IL-17) pathway. Here, we report that indoleamine 2,3-dioxygenase (IDO)-expressing fibroblasts reduce the activity of this pathway in activated immune cells. The findings showed that intralesional injection of IDO-expressing fibroblasts in imiquimod-induced psoriasis-like dermatitis on the back and ear (Pso. ear group) in mice significantly improves the clinical lesional appearance by reducing the number of skin-infiltrated IL-17+ CD4+ T cells (1.9% ± 0.3% vs. 6.9% ± 0.6%, n = 3, P value < 0.01), IL-17+ γδ+ T cells (2.8% ± 0.3% vs. 11.6% ± 1.2%, n = 3, P value < 0.01), IL-23+ activated dendritic cells (7.6% ± 0.9% vs. 14.0% ± 0.5%, n = 3, P < 0.01), macrophages (4.3% ± 0.1% vs. 11.3% ± 1.0%, n = 3, P value < 0.01), and granulocytes (2.5% ± 0.4% vs. 4.5% ± 0.3%, n = 3, P value < 0.01) as compared to untreated psoriatic mice. This finding suggests that IDO-expressing fibroblasts, and to a lesser extent, non-IDO primary fibroblasts suppress the psoriatic-like symptoms by inhibiting the infiltration of key immune cells involved in the development of psoriasis.
Collapse
Affiliation(s)
- Sanam Salimi Elizei
- Division of Plastic Surgery, Department of Surgery, BC Professional Firefighters’ Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammadreza Pakyari
- Division of Plastic Surgery, Department of Surgery, BC Professional Firefighters’ Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mehraneh Ghoreishi
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ruhangiz Kilani
- Division of Plastic Surgery, Department of Surgery, BC Professional Firefighters’ Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanaz Mahmoudi
- Division of Plastic Surgery, Department of Surgery, BC Professional Firefighters’ Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aziz Ghahary
- Division of Plastic Surgery, Department of Surgery, BC Professional Firefighters’ Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Safari F, Farajnia S, Arya M, Zarredar H, Nasrolahi A. CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis. Immunopharmacol Immunotoxicol 2018; 40:201-211. [DOI: 10.1080/08923973.2018.1437625] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fatemeh Safari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Arya
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ava Nasrolahi
- Molecular Medicine Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Abstract
Over the past century, solid organ transplantation has been improved both at a surgical and postoperative level. However, despite the improvement in efficiency, safety, and survival, we are still far from obtaining full acceptance of all kinds of allograft in the absence of concomitant treatments. Today, transplanted patients are treated with immunosuppressive drugs (IS) to minimize immunological response in order to prevent graft rejection. Nevertheless, the lack of specificity of IS leads to an increase in the risk of cancer and infections. At this point, cell therapies have been shown as a novel promising resource to minimize the use of IS in transplantation. The main strength of cell therapy is the opportunity to generate allograft-specific tolerance, promoting in this way long-term allograft survival. Among several other regulatory cell types, tolerogenic monocyte-derived dendritic cells (Tol-MoDCs) appear to be an interesting candidate for cell therapy due to their ability to perform specific antigen presentation and to polarize immune response to immunotolerance. In this review, we describe the characteristics and the mechanisms of action of both human Tol-MoDCs and rodent tolerogenic bone marrow-derived DCs (Tol-BMDCs). Furthermore, studies performed in transplantation models in rodents and non-human primates corroborate the potential of Tol-BMDCs for immunoregulation. In consequence, Tol-MoDCs have been recently evaluated in sundry clinical trials in autoimmune diseases and shown to be safe. In addition to autoimmune diseases clinical trials, Tol-MoDC is currently used in the first phase I/II clinical trials in transplantation. Translation of Tol-MoDCs to clinical application in transplantation will also be discussed in this review.
Collapse
Affiliation(s)
- Eros Marín
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| | - Maria Cristina Cuturi
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
32
|
Buermann A, Petkov S, Petersen B, Hein R, Lucas-Hahn A, Baars W, Brinkmann A, Niemann H, Schwinzer R. Pigs expressing the human inhibitory ligand PD-L1 (CD 274) provide a new source of xenogeneic cells and tissues with low immunogenic properties. Xenotransplantation 2018; 25:e12387. [DOI: 10.1111/xen.12387] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/27/2017] [Accepted: 01/12/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Anna Buermann
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Stoyan Petkov
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut; Mariensee Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut; Mariensee Germany
| | - Rabea Hein
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut; Mariensee Germany
| | - Wiebke Baars
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Antje Brinkmann
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut; Mariensee Germany
| | - Reinhard Schwinzer
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| |
Collapse
|
33
|
Weinberg A, Lindsey J, Bosch R, Persaud D, Sato P, Ogwu A, Asmelash A, Bwakura-Dangarambezi M, Chi BH, Canniff J, Lockman S, Gaseitsiwe S, Moyo S, Smith CE, Moraka NO, Levin MJ. B and T Cell Phenotypic Profiles of African HIV-Infected and HIV-Exposed Uninfected Infants: Associations with Antibody Responses to the Pentavalent Rotavirus Vaccine. Front Immunol 2018; 8:2002. [PMID: 29403482 PMCID: PMC5780413 DOI: 10.3389/fimmu.2017.02002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 12/23/2022] Open
Abstract
We examined associations between B and T cell phenotypic profiles and antibody responses to the pentavalent rotavirus vaccine (RV5) in perinatally HIV-infected (PHIV) infants on antiretroviral therapy and in HIV-exposed uninfected (PHEU) infants enrolled in International Maternal Pediatric Adolescent AIDS Clinical Trials P1072 study (NCT00880698). Of 17 B and T cell subsets analyzed, PHIV and PHEU differed only in the number of CD4+ T cells and frequency of naive B cells, which were higher in PHEU than in PHIV. In contrast, the B and T cell phenotypic profiles of PHIV and PHEU markedly differed from those of geographically matched contemporary HIV-unexposed infants. The frequency of regulatory T and B cells (Treg, Breg) of PHIV and PHEU displayed two patterns of associations: FOXP3+ CD25+ Treg positively correlated with CD4+ T cell numbers; while TGFβ+ Treg and IL10+ Treg and Breg positively correlated with the frequencies of inflammatory and activated T cells. Moreover, the frequencies of activated and inflammatory T cells of PHIV and PHEU positively correlated with the frequency of immature B cells. Correlations were not affected by HIV status and persisted over time. PHIV and PHEU antibody responses to RV5 positively correlated with CD4+ T cell counts and negatively with the proportion of immature B cells, similarly to what has been previously described in chronic HIV infection. Unique to PHIV and PHEU, anti-RV5 antibodies positively correlated with CD4+/CD8+FOXP3+CD25+% and negatively with CD4+IL10+% Tregs. In conclusion, PHEU shared with PHIV abnormal B and T cell phenotypic profiles. PHIV and PHEU antibody responses to RV5 were modulated by typical HIV-associated immune response modifiers except for the association between CD4+/CD8+FOXP3+CD25+Treg and increased antibody production.
Collapse
Affiliation(s)
- Adriana Weinberg
- Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pathology, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jane Lindsey
- Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, MA, United States
| | - Ronald Bosch
- Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, MA, United States
| | - Deborah Persaud
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Paul Sato
- Maternal Adolescent and Pediatric Research Branch, NIAID, NIH, Bethesda, MD, United States
| | | | | | - Mutsa Bwakura-Dangarambezi
- Department of Paediatrics and Child Health, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Benjamin H Chi
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jennifer Canniff
- Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shahin Lockman
- Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Simani Gaseitsiwe
- Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Christiana Elizabeth Smith
- Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Myron J Levin
- Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine, Section of Pediatric Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | |
Collapse
|
34
|
Xu-Monette ZY, Zhang M, Li J, Young KH. PD-1/PD-L1 Blockade: Have We Found the Key to Unleash the Antitumor Immune Response? Front Immunol 2017; 8:1597. [PMID: 29255458 PMCID: PMC5723106 DOI: 10.3389/fimmu.2017.01597] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
PD-1–PD-L1 interaction is known to drive T cell dysfunction, which can be blocked by anti-PD-1/PD-L1 antibodies. However, studies have also shown that the function of the PD-1–PD-L1 axis is affected by the complex immunologic regulation network, and some CD8+ T cells can enter an irreversible dysfunctional state that cannot be rescued by PD-1/PD-L1 blockade. In most advanced cancers, except Hodgkin lymphoma (which has high PD-L1/L2 expression) and melanoma (which has high tumor mutational burden), the objective response rate with anti-PD-1/PD-L1 monotherapy is only ~20%, and immune-related toxicities and hyperprogression can occur in a small subset of patients during PD-1/PD-L1 blockade therapy. The lack of efficacy in up to 80% of patients was not necessarily associated with negative PD-1 and PD-L1 expression, suggesting that the roles of PD-1/PD-L1 in immune suppression and the mechanisms of action of antibodies remain to be better defined. In addition, important immune regulatory mechanisms within or outside of the PD-1/PD-L1 network need to be discovered and targeted to increase the response rate and to reduce the toxicities of immune checkpoint blockade therapies. This paper reviews the major functional and clinical studies of PD-1/PD-L1, including those with discrepancies in the pathologic and biomarker role of PD-1 and PD-L1 and the effectiveness of PD-1/PD-L1 blockade. The goal is to improve understanding of the efficacy of PD-1/PD-L1 blockade immunotherapy, as well as enhance the development of therapeutic strategies to overcome the resistance mechanisms and unleash the antitumor immune response to combat cancer.
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianyong Li
- Department of Hematology, JiangSu Province Hospital, The First Affiliated Hospital of NanJing Medical University, NanJing, JiangSu Province, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Graduate School of Biomedical Science, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
35
|
Hossain MS, Kunter GM, El-Najjar VF, Jaye DL, Al-Kadhimi Z, Taofeek OK, Li JM, Waller EK. PD-1 and CTLA-4 up regulation on donor T cells is insufficient to prevent GvHD in allo-HSCT recipients. PLoS One 2017; 12:e0184254. [PMID: 28953925 PMCID: PMC5617147 DOI: 10.1371/journal.pone.0184254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/21/2017] [Indexed: 01/22/2023] Open
Abstract
The expression of checkpoint blockade molecules PD-1, PD-L1, CTLA-4, and foxp3+CD25+CD4+ T cells (Tregs) regulate donor T cell activation and graft-vs-host disease (GvHD) in allogeneic hematopoietic stem cell transplant (allo-HSCT). Detailed kinetics of PD-1-, CTLA-4-, and PD-L1 expression on donor and host cells in GvHD target organs have not been well studied. Using an established GvHD model of allo-HSCT (B6 → CB6F1), we noted transient increases of PD-1- and CTLA-4-expressing donor CD4+ and CD8+ T cells on day 10 post transplant in spleens of allo-HSCT recipients compared with syngeneic HSCT (syn-HSCT) recipients. In contrast, expression of PD-1- and CTLA-4 on donor T cells was persistently increased in bone marrow (BM) of allo-HSCT recipients compared with syn-HSCT recipients. Similar differential patterns of donor T cell immune response were observed in a minor histocompatibility (miHA) mismatched transplant model of GvHD. Despite higher PD-1 and CTLA-4 expression in BM, numbers of foxp3+ T cells and Tregs were much lower in allo-HSCT recipients compared with syn-HSCT recipients. PD-L1-expressing host cells were markedly decreased concomitant with elimination of residual host hematopoietic elements in spleens of allo-HSCT recipients. Allo-HSCT recipients lacking PD-L1 rapidly developed increased serum inflammatory cytokines and lethal acute GvHD compared with wild-type (WT) B6 allo-HSCT recipients. These data suggest that increased expression of checkpoint blockade molecules PD-1 and CTLA-4 on donor T cells is not sufficient to prevent GvHD, and that cooperation between checkpoint blockade signaling by host cells and donor Tregs is necessary to limit GvHD in allo-HSCT recipients.
Collapse
Affiliation(s)
- Mohammad S. Hossain
- Department of Hematology and Medical Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ghada M. Kunter
- Holzer Cancer Center, Gallipolis, Ohio, United States of America
| | - Vicky F. El-Najjar
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - David L. Jaye
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Zaid Al-Kadhimi
- Department of Hematology and Medical Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Owonikoko K. Taofeek
- Department of Hematology and Medical Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jian-Ming Li
- Department of Hematology and Medical Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
36
|
Cancer Clonal Theory, Immune Escape, and Their Evolving Roles in Cancer Multi-Agent Therapeutics. Curr Oncol Rep 2017; 19:66. [DOI: 10.1007/s11912-017-0625-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Kean LS, Turka LA, Blazar BR. Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol Rev 2017; 276:192-212. [PMID: 28258702 PMCID: PMC5338458 DOI: 10.1111/imr.12523] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, the power of harnessing T-cell co-signaling pathways has become increasingly understood to have significant clinical importance. In cancer immunotherapy, the field has concentrated on two related modalities: First, targeting cancer antigens through highly activated chimeric antigen T cells (CAR-Ts) and second, re-animating endogenous quiescent T cells through checkpoint blockade. In each of these strategies, the therapeutic goal is to re-ignite T-cell immunity, in order to eradicate tumors. In transplantation, there is also great interest in targeting T-cell co-signaling, but with the opposite goal: in this field, we seek the Yin to cancer immunotherapy's Yang, and focus on manipulating T-cell co-signaling to induce tolerance rather than activation. In this review, we discuss the major T-cell signaling pathways that are being investigated for tolerance induction, detailing preclinical studies and the path to the clinic for many of these molecules. These include blockade of co-stimulation pathways and agonism of coinhibitory pathways, in order to achieve the delicate state of balance that is transplant tolerance: a state which guarantees lifelong transplant acceptance without ongoing immunosuppression, and with preservation of protective immune responses. In the context of the clinical translation of immune tolerance strategies, we discuss the significant challenge that is embodied by the fact that targeted pathway modulators may have opposing effects on tolerance based on their impact on effector vs regulatory T-cell biology. Achieving this delicate balance holds the key to the major challenge of transplantation: lifelong control of alloreactivity while maintaining an otherwise intact immune system.
Collapse
Affiliation(s)
- Leslie S Kean
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
- The Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Immune Tolerance Network, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
38
|
Zhou J, Jin JO, Kawai T, Yu Q. Endogenous programmed death ligand-1 restrains the development and onset of Sjӧgren's syndrome in non-obese diabetic mice. Sci Rep 2016; 6:39105. [PMID: 27966604 PMCID: PMC5155421 DOI: 10.1038/srep39105] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/17/2016] [Indexed: 01/09/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) down-modulates various immune responses by engaging the co-inhibitory receptor programmed death-1. Expression of PD-L1 and programmed death-1 is elevated in the salivary glands of patients with Sjögren’s syndrome (SS). The objective of this study is to define the role of endogenous PD-L1 in SS pathogenesis in non-obese diabetic (NOD) mouse model of this disease. We inhibited endogenous PD-L1 function by intraperitoneal administration of a blocking antibody to 6 week-old female NOD/ShiLtJ mice repeatedly during a 9-day period. PD-L1 blockade accelerated leukocyte infiltration and caspase-3 activation in the submandibular gland (SMG), production of antinuclear and anti-M3 muscarinic acetylcholine receptor (M3R) autoantibodies and impairment of saliva secretion, indicative of accelerated development and onset of SS. The effect of PD-L1 blockade was associated with increased T- and B cells and T helper 1 cytokine IFN-γ in the SMG. Local administration of exogenous IFN-γ to the SMG led to impaired salivary secretion accompanied by down-regulation of aquaporin 5 and an increase in anti-M3R autoantibodies. Conversely, neutralization of IFN-γ markedly improved salivary secretion and aquaporin 5 expression in anti-PD-L1-treated NOD/ShiLtJ mice. Hence, endogenous PD-L1 hinders the development and onset of SS in NOD mice, in part by suppressing IFN-γ production.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Immunology and Infectious Diseases, the Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Jun-O Jin
- Department of Immunology and Infectious Diseases, the Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Toshihisa Kawai
- Department of Immunology and Infectious Diseases, the Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Qing Yu
- Department of Immunology and Infectious Diseases, the Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
39
|
The intragraft microenvironment as a central determinant of chronic rejection or local immunoregulation/tolerance. Curr Opin Organ Transplant 2016; 22:55-63. [PMID: 27898465 DOI: 10.1097/mot.0000000000000373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Chronic rejection is associated with persistent mononuclear cell recruitment, endothelial activation and proliferation, local tissue hypoxia and related biology that enhance effector immune responses. In contrast, the tumor microenvironment elicits signals/factors that inhibit effector T cell responses and rather promote immunoregulation locally within the tissue itself. The identification of immunoregulatory check points and/or secreted factors that are deficient within allografts is of great importance in the understanding and prevention of chronic rejection. RECENT FINDINGS The relative deficiency of immunomodulatory molecules (cell surface and secreted) on microvascular endothelial cells within the intragraft microenvironment, is of functional importance in shaping the phenotype of rejection. These regulatory molecules include coinhibitory and/or intracellular regulatory signals/factors that enhance local activation of T regulatory cells. For example, semaphorins may interact with endothelial cells and CD4 T cells to promote local tolerance. Additionally, metabolites and electrolytes within the allograft microenvironment may regulate local effector and regulatory cell responses. SUMMARY Multiple factors within allografts shape the microenvironment either towards local immunoregulation or proinflammation. Promoting the expression of intragraft cell surface or secreted molecules that support immunoregulation will be critical for long-term graft survival and/or alloimmune tolerance.
Collapse
|
40
|
Buermann A, Römermann D, Baars W, Hundrieser J, Klempnauer J, Schwinzer R. Inhibition of B-cell activation and antibody production by triggering inhibitory signals via the PD-1/PD-ligand pathway. Xenotransplantation 2016; 23:347-56. [PMID: 27613101 DOI: 10.1111/xen.12261] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 08/01/2016] [Accepted: 08/12/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND The development of donor-reactive antibodies is regarded to be an important barrier limiting long-term outcome of allo- and xenografts. We asked whether enhanced signaling via the co-inhibitory receptor programmed cell death-1 (PD-1; CD279) can downregulate human B-cell activation. METHODS Proliferation of human purified CD19(+) B cells was induced by in vitro stimulation with CpG oligodeoxynucleotides (CpG-B). To induce antibody production, peripheral blood mononuclear cells were co-cultured with the porcine B-cell line L23. Triggering of inhibitory signals via the PD-1 receptor was obtained either using a recombinant agonistic soluble ligand (PD-L1.Ig) or L23 transfectants overexpressing membrane-bound human PD-L1 (CD274; L23-PD-L1 cells). RESULTS Stimulation of purified CD19(+) B cells with CpG-B resulted in upregulation of PD-1 and strong proliferation. Addition of PD-L1.Ig significantly reduced B-cell proliferation in a dose-dependent manner. A great proportion (~1%) of human circulating B cells recognizes the epitope galactose-α1,3-galactose-β1,4-N-acetylglucosamine-R (α-gal). Thus, when B cells-in the presence of T cell help-were cocultured with α-gal-expressing L23 cells, anti-gal and anti-L23 antibodies could readily be detected in the culture supernatant. The level of induced antibodies was significantly reduced when stimulation was performed by L23-PD-L1 cells. CONCLUSIONS Enhancing inhibitory signals may be part of future protocols to better control humoral immunity to allo- and xenografts.
Collapse
Affiliation(s)
- Anna Buermann
- Transplant Laboratory, Department of General- Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Dorothee Römermann
- Transplant Laboratory, Department of General- Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Wiebke Baars
- Transplant Laboratory, Department of General- Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Joachim Hundrieser
- Transplant Laboratory, Department of General- Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Jürgen Klempnauer
- Transplant Laboratory, Department of General- Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Reinhard Schwinzer
- Transplant Laboratory, Department of General- Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
41
|
Tsirigotis P, Savani BN, Nagler A. Programmed death-1 immune checkpoint blockade in the treatment of hematological malignancies. Ann Med 2016; 48:428-439. [PMID: 27224873 DOI: 10.1080/07853890.2016.1186827] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The use of tumor-specific monoclonal antibodies (MAbs) has revolutionize the field of cancer immunotherapy. Although treatment of malignant diseases with MAbs is promising, many patients fail to respond or relapse after an initial response. Both solid tumors and hematological malignancies develop mechanisms that enable them to evade the host immune system by usurping immune checkpoint pathways such as PD-1, PD-2, PDL-1, or PDL-2 (programmed cell death protein-1 or 2 and PD-Ligand 1 or 2), which are expressed on activated T cells and on T-regulatory, B cells, natural killers, monocytes, and dendritic cells. One of the most exciting anticancer development in recent years has been the immune checkpoint blockade therapy by using MAbs against immune checkpoint receptor and/or ligands. Anti-PD1 antibodies have been tested in clinical studies that included patients with hematological malignancies and showed remarkable efficacy in Hodgkin lymphoma (HL). In our review, we will focus on the effect of PD-1 activation on hematological malignancies and its role as a therapeutic target. Key messages The programmed death 1 (PD1) immune checkpoint is an important homeostatic mechanism of the immune system that helps in preventing autoimmunity and uncontrolled inflammation in cases of chronic infections. However, PD1 pathway is also operated by a wide variety of malignancies and represents one of the most important mechanisms by which tumor cells escape from the surveillance of the immune system. Blocking of immune checkpoints by the use of monoclonal antibodies opened a new era in the field of cancer immunotherapy. Results from clinical trials are promising, and currently, this approach has been proven effective and safe in patients with solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Panagiotis Tsirigotis
- a Second Department of Internal Medicine , National and Kapodistrian University of Athens , Athens , Greece
| | - Bipin N Savani
- b Department of Hematology, Vanderbilt University Medical Center , Nashville , TN , USA
| | - Arnon Nagler
- c Hematology Division , Chaim Sheba Medical Center , Tel Hashomer , Israel
| |
Collapse
|
42
|
Saha A, O'Connor RS, Thangavelu G, Lovitch SB, Dandamudi DB, Wilson CB, Vincent BG, Tkachev V, Pawlicki JM, Furlan SN, Kean LS, Aoyama K, Taylor PA, Panoskaltsis-Mortari A, Foncea R, Ranganathan P, Devine SM, Burrill JS, Guo L, Sacristan C, Snyder NW, Blair IA, Milone MC, Dustin ML, Riley JL, Bernlohr DA, Murphy WJ, Fife BT, Munn DH, Miller JS, Serody JS, Freeman GJ, Sharpe AH, Turka LA, Blazar BR. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest 2016; 126:2642-60. [PMID: 27294527 DOI: 10.1172/jci85796] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/28/2016] [Indexed: 12/20/2022] Open
Abstract
Programmed death ligand-1 (PD-L1) interaction with PD-1 induces T cell exhaustion and is a therapeutic target to enhance immune responses against cancer and chronic infections. In murine bone marrow transplant models, PD-L1 expression on host target tissues reduces the incidence of graft-versus-host disease (GVHD). PD-L1 is also expressed on T cells; however, it is unclear whether PD-L1 on this population influences immune function. Here, we examined the effects of PD-L1 modulation of T cell function in GVHD. In patients with severe GVHD, PD-L1 expression was increased on donor T cells. Compared with mice that received WT T cells, GVHD was reduced in animals that received T cells from Pdl1-/- donors. PD-L1-deficient T cells had reduced expression of gut homing receptors, diminished production of inflammatory cytokines, and enhanced rates of apoptosis. Moreover, multiple bioenergetic pathways, including aerobic glycolysis, oxidative phosphorylation, and fatty acid metabolism, were also reduced in T cells lacking PD-L1. Finally, the reduction of acute GVHD lethality in mice that received Pdl1-/- donor cells did not affect graft-versus-leukemia responses. These data demonstrate that PD-L1 selectively enhances T cell-mediated immune responses, suggesting a context-dependent function of the PD-1/PD-L1 axis, and suggest selective inhibition of PD-L1 on donor T cells as a potential strategy to prevent or ameliorate GVHD.
Collapse
|
43
|
Abstract
The ultimate outcome of alloreactivity versus tolerance following transplantation is potently influenced by the constellation of cosignaling molecules expressed by immune cells during priming with alloantigen, and the net sum of costimulatory and coinhibitory signals transmitted via ligation of these molecules. Intense investigation over the last two decades has yielded a detailed understanding of the kinetics, cellular distribution, and intracellular signaling networks of cosignaling molecules such as the CD28, TNF, and TIM families of receptors in alloimmunity. More recent work has better defined the cellular and molecular mechanisms by which engagement of cosignaling networks serve to either dampen or augment alloimmunity. These findings will likely aid in the rational development of novel immunomodulatory strategies to prolong graft survival and improve outcomes following transplantation.
Collapse
Affiliation(s)
- Mandy L Ford
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
44
|
Nguyen-Lefebvre AT, Ajith A, Portik-Dobos V, Horuzsko DD, Mulloy LL, Horuzsko A. Mouse models for studies of HLA-G functions in basic science and pre-clinical research. Hum Immunol 2016; 77:711-9. [PMID: 27085792 DOI: 10.1016/j.humimm.2016.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/27/2016] [Accepted: 02/10/2016] [Indexed: 11/29/2022]
Abstract
HLA-G was described originally as a tolerogenic molecule that allows the semiallogeneic fetus to escape from recognition by the maternal immune response. This review will discuss different steps in the study of HLA-G expression and functions in vivo, starting with analyses of expression of the HLA-G gene and its receptors in transgenic mice, and continuing with applications of HLA-G and its receptors in prevention of allograft rejection, transplantation tolerance, and controlling the development of infection. Humanized mouse models have been discussed for developing in vivo studies of HLA-G in physiological and pathological conditions. Collectively, animal models provide an opportunity to evaluate the importance of the interaction between HLA-G and its receptors in terms of its ability to regulate immune responses during maternal-fetal tolerance, survival of allografts, tumor-escape mechanisms, and development of infections when both HLA-G and its receptors are expressed. In addition, in vivo studies on HLA-G also offer novel approaches to achieve a reproducible transplantation tolerance and to develop personalized medicine to prevent allograft rejection.
Collapse
Affiliation(s)
- Anh Thu Nguyen-Lefebvre
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Ashwin Ajith
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Vera Portik-Dobos
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Daniel D Horuzsko
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Laura L Mulloy
- Department of Medicine, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA
| | - Anatolij Horuzsko
- Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, 1140 Laney Walker Blvd, Augusta, GA 30912, USA; Department of Medicine, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
45
|
Ma D, Duan W, Li Y, Wang Z, Li S, Gong N, Chen G, Chen Z, Wan C, Yang J. PD-L1 Deficiency within Islets Reduces Allograft Survival in Mice. PLoS One 2016; 11:e0152087. [PMID: 26990974 PMCID: PMC4798758 DOI: 10.1371/journal.pone.0152087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/08/2016] [Indexed: 12/21/2022] Open
Abstract
Background Islet transplantation may potentially cure type 1 diabetes mellitus (T1DM). However, immune rejection, especially that induced by the alloreactive T-cell response, remains a restraining factor for the long-term survival of grafted islets. Programmed death ligand-1 (PD-L1) is a negative costimulatory molecule. PD-L1 deficiency within the donor heart accelerates allograft rejection. Here, we investigate whether PD-L1 deficiency in donor islets reduces allograft survival time. Methods Glucose Stimulation Assays were performed to evaluate whether PD-L1 deficiency has detrimental effects on islet function. Islets isolated from PDL1-deficient mice or wild- type (WT) mice (C57BL/6j) were implanted beneath the renal capsule of streptozotocin (STZ)-induced diabetic BALB/c mice. Blood glucose levels and graft survival time after transplantation were monitored. Moreover, we analyzed the residual islets, infiltrating immune cells and alloreactive cells from the recipients. Results PD-L1 deficiency within islets does not affect islet function. However, islet PD-L1 deficiency increased allograft rejection and was associated with enhanced inflammatory cell infiltration and recipient T-cell alloreactivity. Conclusions This is the first report to demonstrate that PD-L1 deficiency accelerated islet allograft rejection and regulated recipient alloimmune responses.
Collapse
Affiliation(s)
- Dongxia Ma
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, Hubei Province, P. R. China
| | - Wu Duan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Yakun Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, Hubei Province, P. R. China
| | - Zhimin Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, Hubei Province, P. R. China
| | - Shanglin Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, Hubei Province, P. R. China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, Hubei Province, P. R. China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, Hubei Province, P. R. China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, Hubei Province, P. R. China
| | - Chidan Wan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
- * E-mail: (JY); (CW)
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, Hubei Province, P. R. China
- * E-mail: (JY); (CW)
| |
Collapse
|
46
|
Arefanian H, Tredget EB, Mok DCM, Ramji Q, Rafati S, Rodriguez-Barbosa J, Korbutt GS, Rajotte RV, Gill RG, Rayat GR. Porcine Islet-Specific Tolerance Induced by the Combination of Anti-LFA-1 and Anti-CD154 mAbs is Dependent on PD-1. Cell Transplant 2016; 25:327-42. [DOI: 10.3727/096368915x688506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We previously demonstrated that short-term administration of a combination of anti-LFA-1 and anti-CD154 monoclonal antibodies (mAbs) induces tolerance to neonatal porcine islet (NPI) xenografts that is mediated by regulatory T cells (Tregs) in B6 mice. In this study, we examined whether the coinhibitory molecule PD-1 is required for the induction and maintenance of tolerance to NPI xenografts. We also determined whether tolerance to NPI xenografts could be extended to allogeneic mouse or xenogeneic rat islet grafts since we previously demonstrated that tolerance to NPI xenografts could be extended to second-party NPI xenografts. Finally, we determined whether tolerance to NPI xenografts could be extended to allogeneic mouse or second-party porcine skin grafts. Diabetic B6 mice were transplanted with 2,000 NPIs under the kidney capsule and treated with short-term administration of a combination of anti-LFA-1 and anti-CD154 mAbs. Some of these mice were also treated simultaneously with anti-PD-1 mAb at >150 days posttransplantation. Spleen cells from some of the tolerant B6 mice were used for proliferation assays or were injected into B6 rag-/- mice with established islet grafts from allogeneic or xenogeneic donors. All B6 mice treated with anti-LFA-1 and anti-CD154 mAbs achieved and maintained normoglycemia until the end of the study; however, some mice that were treated with anti-PD-1 mAb became diabetic. All B6 rag-/- mouse recipients of first- and second-party NPIs maintained normoglycemia after reconstitution with spleen cells from tolerant B6 mice, while all B6 rag-/- mouse recipients of allogeneic mouse or xenogeneic rat islets rejected their grafts after cell reconstitution. Tolerant B6 mice rejected their allogeneic mouse or xenogeneic second-party porcine skin grafts while remaining normoglycemic until the end of the study. These results show that porcine islet-specific tolerance is dependent on PD-1, which could not be extended to skin grafts.
Collapse
Affiliation(s)
- Hossein Arefanian
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
- Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Pancreatic Islet Biology and Transplantation Unit, Dasman Diabetes Institute, Kuwait, Dasman, Kuwait
| | - Eric B. Tredget
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| | - Dereck C. M. Mok
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| | - Qahir Ramji
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| | - Shahin Rafati
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| | - Jose Rodriguez-Barbosa
- Institute of Biomedicine (Immunobiology), University of Leon, Campus de Vegazana s/n, Leon, Spain
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| | - Ray V. Rajotte
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| | - Ron G. Gill
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Gina R. Rayat
- Alberta Diabetes Institute, Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
47
|
Jalili RB, Zhang Y, Hosseini-Tabatabaei A, Kilani RT, Khosravi Maharlooei M, Li Y, Salimi Elizei S, Warnock GL, Ghahary A. Fibroblast Cell-Based Therapy for Experimental Autoimmune Diabetes. PLoS One 2016; 11:e0146970. [PMID: 26765526 PMCID: PMC4713151 DOI: 10.1371/journal.pone.0146970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/23/2015] [Indexed: 11/22/2022] Open
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of insulin producing β cells of the pancreatic islets. Curbing autoimmunity at the initiation of T1D can result in recovery of residual β cells and consequently remission of diabetes. Here we report a cell-based therapy for autoimmune diabetes in non-obese diabetic (NOD) mice using dermal fibroblasts. This was achieved by a single injection of fibroblasts, expressing the immunoregulatory molecule indoleamine 2,3 dioxygenase (IDO), into peritoneal cavity of NOD mice shortly after the onset of overt hyperglycemia. Mice were then monitored for reversal of hyperglycemia and changes in inflammatory / regulatory T cell profiles. Blood glucose levels dropped into the normal range in 82% of NOD mice after receiving IDO-expressing fibroblasts while all control mice remained diabetic. We found significantly reduced islet inflammation, increased regulatory T cells, and decreased T helper 17 cells and β cell specific autoreactive CD8+ T cells following IDO cell therapy. We further showed that some of intraperitoneal injected fibroblasts migrated to local lymph nodes and expressed co-inhibitory molecules. These findings suggest that IDO fibroblasts therapy can reinstate self-tolerance and alleviate β cell autoreactivity in NOD mice, resulting in remission of autoimmune diabetes.
Collapse
MESH Headings
- Animals
- Autoimmunity/genetics
- Autoimmunity/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Cell- and Tissue-Based Therapy/methods
- Diabetes Mellitus, Experimental
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/therapy
- Fibroblasts/metabolism
- Gene Expression
- Hyperglycemia/genetics
- Hyperglycemia/metabolism
- Hyperglycemia/therapy
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Insulin-Secreting Cells/metabolism
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymphocyte Count
- Mice
- Mice, Inbred NOD
- Receptors, CCR7/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Reza B. Jalili
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Yun Zhang
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | | | - Ruhangiz T. Kilani
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | | | - Yunyuan Li
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Sanam Salimi Elizei
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Garth L. Warnock
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Aziz Ghahary
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
48
|
Tolerance induction using nanoparticles bearing HY peptides in bone marrow transplantation. Biomaterials 2015; 76:1-10. [PMID: 26513216 DOI: 10.1016/j.biomaterials.2015.10.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/13/2015] [Accepted: 10/18/2015] [Indexed: 11/24/2022]
Abstract
Allogeneic cell therapies have either proven effective or have great potential in numerous applications, though the required systemic, life-long immunosuppression presents significant health risks. Inducing tolerance to allogeneic cells offers the potential to reduce or eliminate chronic immunosuppression. Herein, we investigated antigen-loaded nanoparticles for their ability to promote transplant tolerance in the minor histocompatibility antigen sex-mismatched C57BL/6 model of bone marrow transplantation. In this model, the peptide antigens Dby and Uty mediate rejection of male bone marrow transplants by female CD4+ and CD8+ T cells, respectively, and we investigated the action of nanoparticles on these T cell subsets. Antigens were coupled to or encapsulated within poly(lactide-co-glycolide) (PLG) nanoparticles with an approximate diameter of 500 nm. Delivery of the CD4-encoded Dby epitope either coupled to or encapsulated within PLG particles prevented transplant rejection, promoted donor-host chimerism, and suppressed proliferative and IFN-γ responses in tolerized recipients. Nanoparticles modified with the Uty peptide did not induce tolerance. The dosing regimen was investigated with Dby coupled particles, and a single dose delivered the day after bone marrow transplant was sufficient for tolerance induction. The engraftment of cells was significantly affected by PD-1/PDL-1 costimluation, as blockade of PD-1 reduced engraftment by ∼50%. In contrast, blockade of regulatory T cells did not impact the level of chimerism. The delivery of antigen on PLG nanoparticles promoted long-term engraftment of bone marrow in a model with a minor antigen mismatch in the absence of immunosuppression, and this represents a promising platform for developing a translatable, donor-specific tolerance strategy.
Collapse
|
49
|
Acute GVHD results in a severe DC defect that prevents T-cell priming and leads to fulminant cytomegalovirus disease in mice. Blood 2015; 126:1503-14. [PMID: 26130706 DOI: 10.1182/blood-2015-01-622837] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/13/2015] [Indexed: 11/20/2022] Open
Abstract
Viral infection is a common, life-threatening complication after allogeneic bone marrow transplantation (BMT), particularly in the presence of graft-versus-host disease (GVHD). Using cytomegalovirus (CMV) as the prototypic pathogen, we have delineated the mechanisms responsible for the inability to mount protective antiviral responses in this setting. Although CMV infection was self-limiting after syngeneic BMT, in the presence of GVHD after allogeneic BMT, CMV induced a striking cytopathy resulting in universal mortality in conjunction with a fulminant necrotizing hepatitis. Critically, GVHD induced a profound dendritic cell (DC) defect that led to a failure in the generation of CMV-specific CD8(+) T-cell responses. This was accompanied by a defect in antiviral CD8(+) T cells. In combination, these defects dramatically limited antiviral T-cell responses. The transfer of virus-specific cells circumvented the DC defects and provided protective immunity, despite concurrent GVHD. These data demonstrate the importance of avoiding GVHD when reconstructing antiviral immunity after BMT, and highlight the mechanisms by which the adoptive transfer of virus-specific T cells overcome the endogenous defects in priming invoked by GVHD.
Collapse
|
50
|
Tkachev V, Goodell S, Opipari AW, Hao LY, Franchi L, Glick GD, Ferrara JLM, Byersdorfer CA. Programmed death-1 controls T cell survival by regulating oxidative metabolism. THE JOURNAL OF IMMUNOLOGY 2015; 194:5789-800. [PMID: 25972478 DOI: 10.4049/jimmunol.1402180] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 04/14/2015] [Indexed: 12/13/2022]
Abstract
The coinhibitory receptor programmed death-1 (PD-1) maintains immune homeostasis by negatively regulating T cell function and survival. Blockade of PD-1 increases the severity of graft-versus-host disease (GVHD), but the interplay between PD-1 inhibition and T cell metabolism is not well studied. We found that both murine and human alloreactive T cells concomitantly upregulated PD-1 expression and increased levels of reactive oxygen species (ROS) following allogeneic bone marrow transplantation. This PD-1(Hi)ROS(Hi) phenotype was specific to alloreactive T cells and was not observed in syngeneic T cells during homeostatic proliferation. Blockade of PD-1 signaling decreased both mitochondrial H2O2 and total cellular ROS levels, and PD-1-driven increases in ROS were dependent upon the oxidation of fatty acids, because treatment with etomoxir nullified changes in ROS levels following PD-1 blockade. Downstream of PD-1, elevated ROS levels impaired T cell survival in a process reversed by antioxidants. Furthermore, PD-1-driven changes in ROS were fundamental to establishing a cell's susceptibility to subsequent metabolic inhibition, because blockade of PD-1 decreased the efficacy of later F1F0-ATP synthase modulation. These data indicate that PD-1 facilitates apoptosis in alloreactive T cells by increasing ROS in a process dependent upon the oxidation of fat. In addition, blockade of PD-1 undermines the potential for subsequent metabolic inhibition, an important consideration given the increasing use of anti-PD-1 therapies in the clinic.
Collapse
Affiliation(s)
- Victor Tkachev
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109
| | - Stefanie Goodell
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109
| | - Anthony W Opipari
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
| | | | | | - Gary D Glick
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109; and
| | - James L M Ferrara
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| |
Collapse
|