1
|
Rosado MRS, Marzan-Rivera N, Watowich MM, Valle ADND, Pantoja P, Pavez-Fox MA, Siracusa ER, Cooper EB, Valle JEND, Phillips D, Ruiz-Lambides A, Martinez MI, Montague MJ, Platt ML, Higham JP, Brent LJN, Sariol CA, Snyder-Mackler N. Immune cell composition varies by age, sex and exposure to social adversity in free-ranging Rhesus Macaques. GeroScience 2024; 46:2107-2122. [PMID: 37853187 PMCID: PMC10828448 DOI: 10.1007/s11357-023-00962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Increasing age is associated with dysregulated immune function and increased inflammation-patterns that are also observed in individuals exposed to chronic social adversity. Yet we still know little about how social adversity impacts the immune system and how it might promote age-related diseases. Here, we investigated how immune cell diversity varied with age, sex and social adversity (operationalized as low social status) in free-ranging rhesus macaques. We found age-related signatures of immunosenescence, including lower proportions of CD20 + B cells, CD20 + /CD3 + ratio, and CD4 + /CD8 + T cell ratio - all signs of diminished antibody production. Age was associated with higher proportions of CD3 + /CD8 + Cytotoxic T cells, CD16 + /CD3- Natural Killer cells, CD3 + /CD4 + /CD25 + and CD3 + /CD8 + /CD25 + T cells, and CD14 + /CD16 + /HLA-DR + intermediate monocytes, and lower levels of CD14 + /CD16-/HLA-DR + classical monocytes, indicating greater amounts of inflammation and immune dysregulation. We also found a sex-dependent effect of exposure to social adversity (i.e., low social status). High-status males, relative to females, had higher CD20 + /CD3 + ratios and CD16 + /CD3 Natural Killer cell proportions, and lower proportions of CD8 + Cytotoxic T cells. Further, low-status females had higher proportions of cytotoxic T cells than high-status females, while the opposite was observed in males. High-status males had higher CD20 + /CD3 + ratios than low-status males. Together, our study identifies the strong age and sex-dependent effects of social adversity on immune cell proportions in a human-relevant primate model. Thus, these results provide novel insights into the combined effects of demography and social adversity on immunity and their potential contribution to age-related diseases in humans and other animals.
Collapse
Affiliation(s)
- Mitchell R Sanchez Rosado
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA.
| | - Nicole Marzan-Rivera
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
| | - Marina M Watowich
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Petraleigh Pantoja
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Melissa A Pavez-Fox
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Erin R Siracusa
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Eve B Cooper
- Department of Anthropology, New York University, New York, NY, USA
| | - Josue E Negron-Del Valle
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Daniel Phillips
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Angelina Ruiz-Lambides
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Melween I Martinez
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Marketing, Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Carlos A Sariol
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Chaudhary O, Wang L, Bose D, Narayan V, Yeh MT, Carville A, Clements JD, Andino R, Kozlowski PA, Aldovini A. Comparative Evaluation of Prophylactic SIV Vaccination Modalities Administered to the Oral Cavity. AIDS Res Hum Retroviruses 2020; 36:984-997. [PMID: 32962398 PMCID: PMC7703093 DOI: 10.1089/aid.2020.0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Attempts to develop a protective human immunodeficiency virus (HIV) vaccine have had limited success, especially in terms of inducing protective antibodies capable of neutralizing different viral strains. As HIV transmission occurs mainly via mucosal surfaces, HIV replicates significantly in the gastrointestinal tract, and the oral route of vaccination is a very convenient one to implement worldwide, we explored three SIV vaccine modalities administered orally and composed of simian immunodeficiency virus (SIV) DNA priming with different boosting immunogens, with the goal of evaluating whether they could provide lasting humoral and cellular responses, including at mucosal surfaces that are sites of HIV entry. Twenty-four Cynomolgus macaques (CyM) were primed with replication-incompetent SIV DNA provirus and divided into three groups for the following booster vaccinations, all administered in the oral cavity: Group 1 with recombinant SIV gp140 and Escherichia coli heat-labile toxin adjuvant dmLT, Group 2 with recombinant SIV-Oral Poliovirus (SIV-OPV), and Group 3 with recombinant SIV-modified vaccinia ankara (SIV-MVA). Cell-mediated responses were measured using blood, lymph node, rectal and vaginal mononuclear cells. Significant levels of systemic and mucosal T-cell responses against Gag and Env were observed in all groups. Some SIV-specific plasma IgG, rectal and salivary IgA antibodies were generated, mainly in animals that received SIV DNA + SIV-MVA, but no vaginal IgA was detected. Susceptibility to infection after SIVmac251 challenge was similar in vaccinated and nonvaccinated animals, but acute infection viremia levels were lower in the group that received SIV DNA + SIV-MVA. Nonvaccinated CyM maintained central memory and total CD4+ T-cell levels in the normal range during the 5 months of postinfection follow-up as did the vaccinated animals, precluding evaluation of vaccine impact on disease progression. We conclude that the oral cavity vaccination tested in these regimens can stimulate cell-mediated immunity systemically and mucosally, but humoral response stimulation was limited with the doses and the vaccine platforms used.
Collapse
Affiliation(s)
- Omkar Chaudhary
- Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Lingyun Wang
- Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Deepanwita Bose
- Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivek Narayan
- Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ming Te Yeh
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | | | - John D. Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Raul Andino
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Anna Aldovini
- Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Jeon YW, Lim JY, Im KI, Kim N, Nam YS, Song YJ, Cho SG. Enhancement of Graft-Versus-Host Disease Control Efficacy by Adoptive Transfer of Type 1 Regulatory T Cells in Bone Marrow Transplant Model. Stem Cells Dev 2018; 28:129-140. [PMID: 30381994 DOI: 10.1089/scd.2018.0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-10-producing type 1 regulatory T (Tr1) cells, which are Foxp3-memory T lymphocytes, play important roles in peripheral immune tolerance. We investigated whether Tr1 cells exert immunoregulatory effects in a mouse model of acute graft-versus-host disease (GVHD). Mouse CD4+ T cells were induced to differentiate in vitro into Tr1 cells using vitamin D3 and dexamethasone, and these donor-derived Tr1 cells were infused on the day of bone marrow transplantation. The Tr1 cell-transferred group showed less weight-loss and a twofold higher survival rate than the GVHD group, together with markedly decreased histopathologic grades. It was associated with the expansion of CD4+IL-4+ type 2 T-helper (Th2) cells and CD4+CD25+Foxp3+ regulatory T (Treg) cells. Furthermore, Tr1 cells decreased the numbers of CD4+interferon-γ+ Th1 and CD4+IL-17+ Th17 cells. Recipient mice harbored some Foxp3+ Tregs due to adoptive transfer of Tr1 cells, together with the upregulated expression of costimulatory molecules, including cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and inducible T-cell costimulator (ICOS); however, the Treg cells did not show the plasticity. Therefore, adoptive Tr1 cell therapy may be effective against manifestations of GVHD, exert immunomodulatory effects in a manner dependent on CTLA-4 and ICOS, and induce differentiation of the transferred Tr1 cells into Foxp3+ Treg cells.
Collapse
Affiliation(s)
- Young-Woo Jeon
- 1 Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea.,3 Lymphoma-Myeloma Center, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Yeon Lim
- 1 Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Keon-Il Im
- 1 Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nayoun Kim
- 1 Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Sun Nam
- 1 Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yun-Jin Song
- 1 Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seok-Goo Cho
- 1 Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea.,3 Lymphoma-Myeloma Center, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Zhou P, Xu J, Dai M, Shi Y, Wu G, Fang Y, Yan X. The immunosuppressive effects of CD4 + CD25 + regulatory T cells on dendritic cells in patients with chronic hepatitis B. J Viral Hepat 2018; 25:733-741. [PMID: 29345851 DOI: 10.1111/jvh.12863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022]
Abstract
The characteristics and functions of CD4+ CD25+ regulatory T cells (Tregs) have been well defined in murine and human systems. However, the interaction or crosstalk between CD4+ CD25+ Tregs and dendritic cells (DCs) remains controversial. In this study, the effects of chronic hepatitis B (CHB) CD4+ CD25+ Tregs on the maturation and function of monocyte-derived DCs were examined. The results showed that CD4+ CD25+ render the DCs inefficient as antigen-presenting cells (APCs) despite prestimulation with CD40 ligand. This effect was marginally reverted by applying neutralizing antibodies (Abs) to IL-10 and TGF-β. There were an increased IL-10 and TGF-β secretion and reduced expression of costimulatory molecules in DC. Thus, in addition to a direct suppressor effect on CD4+ T cells, CD4+ CD25+ may modulate the immune response through DCs in CHB patients.
Collapse
Affiliation(s)
- P Zhou
- Department of Infectious Diseases, the First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - J Xu
- Department of Infectious Diseases, the First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Shengli Oilfield Central Hospital, Dongying, China
| | - M Dai
- Department of Infectious Diseases, the First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Y Shi
- Department of Infectious Diseases, the First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - G Wu
- Department of Infectious Diseases, the First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Y Fang
- Department of Infectious Diseases, the First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - X Yan
- Department of Infectious Diseases, the First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Li HJ, Zhai NC, Song HX, Yang Y, Cui A, Li TY, Tu ZK. The Role of Immune Cells in Chronic HBV Infection. J Clin Transl Hepatol 2015; 3:277-83. [PMID: 26807384 PMCID: PMC4721896 DOI: 10.14218/jcth.2015.00026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/20/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major cause of chronic liver diseases that may progress to liver cirrhosis and hepatocellular carcinoma. Host immune responses are important factors that determine whether HBV infection is cleared or persists. After infection, viral replication occurs inside hepatocytes, and the secretion of infectious virions can take place at high rates for decades. Consequently, HBV DNA and viral proteins, like HBV early antigen (HBeAg) and HBV surface antigen (HBsAg), can be easily detected in serum. Chronic infection with HBV is the result of an ineffective antiviral immune response towards the virus. In this review, we discuss the role of immune cells in chronic HBV infection.
Collapse
Affiliation(s)
- Hai-Jun Li
- Department of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Nai-Cui Zhai
- Department of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Hong-Xiao Song
- Department of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Yang Yang
- Department of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China
| | - An Cui
- Department of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Tian-Yang Li
- Department of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Zheng-Kun Tu
- Department of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China
- Correspondence to: Zheng-Kun Tu, The First Hospital, Jilin University, Changchun 130061, Jilin, China. Tel: +86-0431-88783044, Fax: +86-0431-88783044, E-mail:
| |
Collapse
|
6
|
Jin H, Li C, Li D, Cai M, Li Z, Wang S, Hong X, Shi B. Construction and characterization of a CTLA-4-targeted scFv-melittin fusion protein as a potential immunosuppressive agent for organ transplant. Cell Biochem Biophys 2014; 67:1067-74. [PMID: 23608813 DOI: 10.1007/s12013-013-9605-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunotoxins with selective cytotoxicity are frequently used as therapeutic immunosuppressive agents in solid-organ transplantation because of their efficiency and high specificity. In this study, we present a new recombinant immunotoxin termed anti-CTLA-4-scFv-melittin prepared from Escherichia coli aimed at clearing activated T cells at the same time avoiding all-round decline in systematic immunity. This fusion protein is composed of anti-CTLA-4-scFv unit and melittin analog unit with properties of low immunogenicity and selective cytotoxicity to CTLA-4-positive T cells. In preliminary biological activity assays, our results confirmed the feasibility of activated T cell clearance strategy and there were significant differences in cell survival rates between CTLA-4-positive group and control group at all experimental concentrations of the immunotoxin. The selective cytotoxicity, low immunogenicity, and low production cost make it an attractive alternate to traditional immunosuppressants.
Collapse
Affiliation(s)
- Hailong Jin
- Institute for Organ Transplant Research, 309 Hospital of the Chinese People's Liberation Army, Beijing, 100091, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wu T, Zhang L, Xu K, Sun C, Lei T, Peng J, Liu G, Wang R, Zhao Y. Immunosuppressive drugs on inducing Ag-specific CD4(+)CD25(+)Foxp3(+) Treg cells during immune response in vivo. Transpl Immunol 2012; 27:30-8. [PMID: 22613676 DOI: 10.1016/j.trim.2012.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/31/2012] [Accepted: 05/04/2012] [Indexed: 11/17/2022]
Abstract
A variety of immunosuppressive drugs are currently used in patients with allo-grafts or autoimmune diseases. Though the effects of rapamycin (RPM) and other immunosuppressant on the CD4(+)CD25(+)Foxp3(+) T regulatory cells (Tregs) were studied, their impact on Ag-specific Tregs during immune response was not well defined. In our studies, we adoptively transferred TCR-transgenic CD4(+)KJ1-26(+) T cells, CD4(+)KJ1-26(+)CD25(-) naïve T cells or CD4(+)KJ1-26(+)CD25(+) Tregs into syngeneic BALB/c mice. 24h later, we treated the recipients with OVA immunization and immunosuppressant including rapamycin (RPM), fingolimod (FTY720), cyclosporin A (CsA), mycophenolate mofetil (MMF), leflunomide (LEF), cyclophosphamide (Cy) or none, respectively. The levels and function of CD4(+)KJ1-26(+)CD25(+)Foxp3(+) Tregs in draining lymph nodes (dLNs) and spleens were determined at different time points. Significantly higher percentage and cell number of Ag-specific CD4(+)KJ1-26(+)CD25(+)Foxp3(+) Tregs were observed in OVA immunized mice treated with RPM or FTY720 compared with mice that received OVA immunization alone. Furthermore, RPM augmented the population of functional iTregs in dLNs and spleens whereas inhibited nTregs during immune response. In contrast to RPM and FTY720, MMF, LEF, CsA, and Cy markedly decreased the levels of Ag-specific CD4(+)KJ1-26(+)CD25(+)Foxp3(+) Tregs during immune response. Thus, different immunosuppressive drugs have distinct effects on the Ag-specific CD4(+)CD25(+)Foxp3(+) Tregs during immune response. The stronger inhibiting effects of MMF, LEF, CsA and Cy on CD4(+)CD25(+)Foxp3(+) Tregs than on T effectors may block the host immune tolerance potentiality.
Collapse
Affiliation(s)
- Tingting Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ma A, Qi S, Song L, Hu Y, Dun H, Massicotte E, Dupuis M, Daloze P, Chen H. Adoptive transfer of CD4+CD25+ regulatory cells combined with low-dose sirolimus and anti-thymocyte globulin delays acute rejection of renal allografts in Cynomolgus monkeys. Int Immunopharmacol 2010; 11:618-29. [PMID: 21094689 DOI: 10.1016/j.intimp.2010.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 09/13/2010] [Accepted: 11/01/2010] [Indexed: 12/17/2022]
Abstract
Although donor alloantigen specific Treg cells play an important role in transplant tolerance, therapeutic applications are limited by their low frequency. In this study, isolated Tregs from Cynomolgus monkeys were efficiently expanded by a co-culture system, and maintained suppressive function on the proliferation of CD4(+) effector cells in vitro. Adoptive transfer of expanded donor alloantigen specific Tregs without any immunosuppressants could prolong survival of MHC-mismatched allografts in Cynomolgus monkeys. To reach the feasibility of clinical transplantation, our objectives focused on whether exposure of monkey Tregs to immunosuppressants could preserve suppressive function in vitro and in vivo. The results showed that low-dose sirolimus selectively expanded Tregs, increased the expression of CD25(bright) and Foxp3 markers, and suppressed TCR- or allo-antigens induced CD4(+) T cell proliferation in vitro. In vivo, after pre-treated with anti-thymocyte globulin (ATG) for consecutive 3days, a 14-day therapy of adoptive infusion of donor alloantigen-specific Tregs combined with low-dose sirolimus delayed acute rejection of renal allografts in Cynomolgus monkeys, showing an MST of 48.5days as compared with those of untreated and sirolimus-treated monkeys (7days and 22days). The frequencies of CD4(+)CD25(bright) T cells were significantly elevated in mesenteric lymph nodes vs. those in inguino lymph nodes and peripheral blood. In summary, expanded donor alloantigen specific Tregs exposed to sirolimus can preserve inhibition in vitro and in vivo. Tregs are more resistant to sirolimus than other T cells. Expanded donor alloantigen specific Tregs combined with sirolimus and ATG prolongs renal allograft survival in monkeys, suggesting that sirolimus might be one of the best synergists for Tregs therapy.
Collapse
Affiliation(s)
- Anlun Ma
- Laboratory of Experimental Surgery, Research Centre, Center Hospitalier de l'Université de Montréal-Hôpital Notre-Dame, Department of Surgery, University of Montreal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Khattar M, Chen W, Stepkowski SM. Expanding and converting regulatory T cells: a horizon for immunotherapy. Arch Immunol Ther Exp (Warsz) 2009; 57:199-204. [PMID: 19479206 DOI: 10.1007/s00005-009-0021-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/28/2009] [Indexed: 12/19/2022]
Abstract
The human immune system is a myriad of diverse cellular populations, each contributing to maintaining an effective and optimal immune response against infectious agents. It is important to maintain a "self-check" in the immune system so that responses do not go haywire, leading to the development of autoimmune diseases. Regulatory/suppressor T (Treg) cells are a specialized subpopulation of T cells that suppress the activation, expansion, and function of other T cells, thereby maintaining homeostasis through a fine balance between reactivity to foreign and self antigens. Tregs are characterized by surface expression of interleukin (IL)-2 receptor alpha chain (CD25) and intracellular expression of forkhead box protein P3 (FoxP3). There are at least two important functional populations of Treg cells, namely natural Treg (nTreg), which are continuously derived from the thymus, and induced Treg (iTreg), which are converted from naive T cells. The development and function of both nTreg and iTreg cells are regulated by several factors, such as antigen T-cell receptor, co-stimulatory receptors (i.e., cytotoxic T lymphocyte-associated antigen, or CTLA-4), and cytokines (IL-2, IL-10, and tumor growth factor-beta, or TGF-beta). In addition, the TGF-beta inhibitor ALK5, retinoid acid, and rapamycin influence the expansion of nTreg cells and the conversion of iTreg cells in vitro and in vivo. The heightening of Treg expansion may be harnessed to therapeutic methods for the treatment of autoimmune diseases and the induction of transplantation tolerance.
Collapse
Affiliation(s)
- Mithun Khattar
- Department of Medical Microbiology and Immunology, University of Toledo-Health Science Campus, Toledo, OH 43614, USA
| | | | | |
Collapse
|
10
|
Ma A, Qi S, Wang Z, Massicotte E, Dupuis M, Daloze P, Chen H. Combined therapy of CD4+CD25+ regulatory T cells with low-dose sirolimus, but not calcineurin inhibitors, preserves suppressive function of regulatory T cells and prolongs allograft survival in mice. Int Immunopharmacol 2009; 9:553-63. [DOI: 10.1016/j.intimp.2009.01.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
|
11
|
Trzonkowski P, Szaryńska M, Myśliwska J, Myśliwski A. Ex vivo expansion of CD4+CD25+T regulatory cells for immunosuppressive therapy. Cytometry A 2009; 75:175-88. [DOI: 10.1002/cyto.a.20659] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Calvo-Turrubiartes M, Romano-Moreno S, García-Hernández M, Chevaile-Ramos JA, Layseca-Espinosa E, González-Amaro R, Portales-Pérez D. Quantitative analysis of regulatory T cells in kidney graft recipients: a relationship with calcineurin inhibitor level. Transpl Immunol 2009; 21:43-9. [PMID: 19233271 DOI: 10.1016/j.trim.2009.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
Abstract
BACKGROUND Monitoring of immunosuppressive drug levels can prevent some adverse effects in patients with solid organ transplantation. However, the possible relationship between these drug levels and their biological effect on immune cells has not been studied in depth. The aim of this work was to assess the possible effect of immunosuppressive therapy with calcineurin inhibitors on the levels of regulatory T cells in patients with kidney transplantation. METHODS Serial samples of peripheral blood were obtained from six patients that underwent kidney transplantation and received a triple pharmacological therapy, which included a calcineurin inhibitor (Cyclosporine A or Tacrolimus). Levels of CD4+CD25(high), CD4+Foxp3+ and CD8+CD28- cells and calcineurin inhibitors were evaluated by flow cytometry, and by radioimmunoassay, respectively. In addition, we assessed the in vitro effect of cyclosporine and tacrolimus on the number of T regulatory cells in peripheral blood mononuclear cells from healthy subjects. RESULTS Diminished levels of total CD8+ T cells were found at week 1 after kidney transplantation, with a recovery of this subpopulation at week twelve. In addition, a significant decrease in CD8+CD28- T cell levels was observed at weeks 4 and 12 after transplantation. In contrast, no significant differences were observed in the levels and function of CD4+CD25(high) or CD4+Foxp3+ regulatory T cells. Furthermore, no significant correlation between the level/dose ratios of calcineurin inhibitors and the percentages of regulatory cells was detected. On the other hand, in vitro assays showed that cyclosporine (5.0 ug/mL) and tacrolimus (100 ng/mL) diminished the percentages of CD8+CD28- cells, with no significant effect on natural T regulatory cells. CONCLUSIONS Our results suggest that although calcineurin inhibitors do not have a significant effect on the level and function of CD4+CD25(high) or CD4+Foxp3+ regulatory T cells in patients with kidney transplantation, these drugs seem to exert a down-regulatory effect on CD8+CD28- lymphocytes.
Collapse
Affiliation(s)
- M Calvo-Turrubiartes
- Laboratory of Immunology and Cellular and Molecular Biology, Facultad de Ciencias Químicas, UASLP, Mexico
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
T-cell depletion strategies are an efficient therapy for the treatment of acute rejection after organ transplantation and have been successfully used as induction regimens. Although eliminating whole T cells blocks alloreactivity, this therapy challenges the development of regulatory mechanisms because it depletes regulatory cells and modifies the profile of T cells after homeostatic repopulation. Targeting T-cell subpopulations or selectively activated T cells, without modifying Treg cells, could constitute a pro-tolerogenic approach. However, the perfect molecular target that would be totally specific probably still needs to be identified. In this study, we have reviewed the biological activities of broad or specific T-cell depletion strategies as these contribute to the induction of regulatory cells and tolerance in organ transplantation.
Collapse
Affiliation(s)
- Thomas Haudebourg
- INSERM, U643, CHU Nantes, Institut de Transplantation et de Recherche en Transplantation, ITERT, Université de Nantes, Faculté de Médecine, Nantes, France
| | | | | |
Collapse
|
14
|
D'Ambrosio A, Colucci M, Pugliese O, Quintieri F, Boirivant M. Cholera toxin B subunit promotes the induction of regulatory T cells by preventing human dendritic cell maturation. J Leukoc Biol 2008; 84:661-8. [PMID: 18562485 DOI: 10.1189/jlb.1207850] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cholera toxin B subunit (CTB) is an efficient mucosal carrier molecule for the generation of immune responses to linked antigens. There is also good evidence that CTB acts as an immunosuppressant, as it is able to down-modulate human monocyte/macrophage cell line activation and to suppress Th1-type responses. In the present study, we examined the possibility that recombinant CTB (rCTB) may affect human dendritic cell (DC) functions in response to LPS stimulation and may induce the generation of DC with the capacity to generate CD4(+) regulatory T cells (Tregs). Our findings show that rCTB partially prevents the LPS-induced maturation process of monocyte-derived DC (MDDC) and decreases their IL-12 production with no relevant effect on IL-10 production. LPS-stimulated MDDC pretreated with rCTB are able to promote the induction of low proliferating T cells, which show an enhanced IL-10 production associated with a reduced IFN-gamma production and the same high levels of TGF-beta as the control. These T cells suppress proliferation of activated autologous T cells. Transwell experiments and blockade of IL-10R and TGF-beta showed that the immunomodulatory effect is mediated by soluble factors. Thus, T cells induced by rCTB-conditioned MDDC acquire a regulatory phenotype and activity similar to those described for type 1 Tregs.
Collapse
Affiliation(s)
- Antonella D'Ambrosio
- Immune-Mediated Section, Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanitá, Rome, Italy
| | | | | | | | | |
Collapse
|
15
|
Characterization of naturally occurring CD4+CD25+ regulatory T cells in rhesus monkeys. Transplantation 2008; 85:1185-92. [PMID: 18431240 DOI: 10.1097/tp.0b013e31816b15b9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Translational research in a relevant preclinical model is recommended before Treg-inducing protocols can be implemented in humans. We have characterized rhesus monkey CD25 cells phenotypically and functionally. METHODS The phenotype of CD4(+)CD25(high) cells was determined by FACS, focusing on established markers of mouse and human Treg cells. Percentages of cells positive for CD45RA, CD62L, and intracellular CTLA-4 and FOXP3 were compared between CD4(+)CD25(high) and CD4(+)CD25(-) cells. CD25 cells stimulated with anti-CD3, ConA, and/or allogeneic peripheral blood mononuclear cells were mixed with freshly isolated CD25 cells. The suppressive activity of the CD25 cells in vitro was assessed using several experimental conditions. RESULTS Rhesus monkey CD4(+)CD25(high) cells expressed high intracellular levels of CTLA-4 and FOXP3, whereas expression was negligible in CD4(+)CD25(-) cells. The CD25(high) population was mostly CD45RA(-), indicative of a memory phenotype. The CD25(+) cells were anergic, because they showed low proliferative responses, no interleukin-2 production, and some interferon-gamma and interleukin-10 production. Proliferation of CD4(+)CD25(-) cells stimulated by anti-CD3 or allogeneic cells was decreased when CD4(+)CD25(-) cells were added at a 1:1 ratio. In addition, we found that CD25 cells inhibited the interleukin-2 and interferon-gamma production by anti-CD3-stimulated CD25 cells in a dose-dependent fashion, through a cell-cell contact-dependent mechanism. CONCLUSIONS Rhesus monkey CD4(+)CD25(+) cells have similar phenotypic and functional characteristics as natural Tregs in humans. These findings allow testing of Treg expansion and induction protocols in a relevant preclinical model, the rhesus monkey.
Collapse
|
16
|
Zheng MH, Gu DN, Braddock M, Leishman AJ, Jin C, Wen JS, Gong YW, Chen YP. CD4+ CD25+ regulatory T cells: a therapeutic target for liver diseases. Expert Opin Ther Targets 2008; 12:313-26. [PMID: 18269341 DOI: 10.1517/14728222.12.3.313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Regulatory T cells (Tregs) have been shown to play an important role in maintaining peripheral immune homeostasis by suppressing autoreactive and allergen-specific T cells and turning off the immune response after the pathogen has been cleared. However, in certain situations Tregs can impair effective immunity to some pathogens and tumour cells. OBJECTIVE To review the role of Tregs in liver pathology and to assess the potential to enhance or inhibit their function as applied to the treatment of liver disease. METHODS The literature was reviewed using standard indexing terms and incorporating publications up to and including those published in 2007. RESULTS/CONCLUSIONS Tregs are therapeutic targets for modulation in autoimmune disease and may provide new opportunities for application to human liver conditions.
Collapse
Affiliation(s)
- Ming-Hua Zheng
- First Affiliated Hospital of Wenzhou Medical College, Department of Infection and Liver Diseases, Wenzhou 325000, Zhejiang Province, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zahorchak AF, Kean LS, Tokita D, Turnquist HR, Abe M, Finke J, Hamby K, Rigby MR, Larsen CP, Thomson AW. Infusion of Stably Immature Monocyte-Derived Dendritic Cells Plus CTLA4Ig Modulates Alloimmune Reactivity in Rhesus Macaques. Transplantation 2007; 84:196-206. [PMID: 17667811 DOI: 10.1097/01.tp.0000268582.21168.f6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Immature dendritic cells (DC) can promote long-term transplant survival in rodents. We assessed the impact of stably immature, donor-derived DC on alloimmune reactivity in rhesus macaques. METHODS CD14 monocytes isolated from leukapheresis products of Macacca mulatta were cultured in granulocyte-macrophage colony stimulating factor plus interleukin (IL)-4+/-vitamin (vit) D3, and IL-10. Major histocompatibility complex class II and cosignaling molecule expression was determined on CD11c cells by flow cytometry. T-cell allostimulatory capacity of the DC, including DC exposed to proinflammatory cytokines, was determined in mixed leukocyte reaction. To test their influence in vivo, purified DC were infused intravenously into allogeneic recipients, either alone or followed by CTLA4Ig, 24 hr later. Proliferative responses of recipient CFSE-labeled T cells to donor or third party DC, cytokine production by stimulated T cells, and circulating alloantibody levels were determined by flow cytometry, up to 100 days postinfusion. RESULTS VitD3/IL-10-conditioned, monocyte-derived DC were resistant to maturation and failed to induce allogeneic T cell proliferation in vitro. After their infusion, an increase in anti-donor and anti-third party T-cell reactivity was observed, that subsequently subsided to fall significantly below pretreatment levels (by day 56) only in animals also given CTLA4Ig. No increase in circulating immunoglobulin (Ig) M or IgG anti-donor alloantibody titers compared with pretreatment values was detected. With DC+CTLA4Ig infusion, alloreactive IL-10-producing T cells were prevalent in the circulation after day 28. CONCLUSIONS Maturation-resistant rhesus DC infusion is well-tolerated. DC+CTLA4Ig infusion modulates allogeneic T-cell responses and results in hyporesponsiveness to donor and third party alloantigens.
Collapse
Affiliation(s)
- Alan F Zahorchak
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The healthy host does not normally develop tissue destructive autoimmunity in part because of the presence of natural regulatory T cells. These cells are best identified by their expression of a unique transcription factor forkhead box transcription factor (Foxp3) that controls their regulatory function. Several other types of regulatory T cells also occur most of which are induced in response to antigen stimulation. Some of these express the Foxp3 transcription factor but many do not. The role of natural T-regulatory cells as well as induceable regulatory cells in autoimmunity, cancer, allergy and infectious disease is described. The current status of therapeutic approaches that modulate regulatory T-cell responses on the outcome of experimental animal and human disease is also discussed.
Collapse
Affiliation(s)
- B T Rouse
- Department of Pathobiology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
19
|
Xia G, He J, Zhang Z, Leventhal JR. Targeting Acute Allograft Rejection by Immunotherapy With Ex Vivo-Expanded Natural CD4+CD25+ Regulatory T Cells. Transplantation 2006; 82:1749-55. [PMID: 17198271 DOI: 10.1097/01.tp.0000250731.44913.ee] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Natural CD4CD25 regulatory T (Treg) cells have been implicated in suppressing alloreactivity in vitro and in vivo. We hypothesized that immunotherapy using ex vivo-expanded natural Treg could prevent acute allograft rejection in mice. METHODS Natural CD4+ CD25+ Treg were freshly purified from naive mice via automated magnetic cell sorter and expanded ex vivo by anti-CD3/CD28 monoclonal antibody (mAb)-coated Dynabeads. Suppression was assayed in vitro by mixed lymphocyte reaction and in vivo by targeting cardiac allograft rejection. Survival of Treg or effector T (Teff) cells after adoptive transfer in vivo was tracked by flow cytometry and all allografts were examined by histology and immunohistochemistry. RESULTS By day nine in culture, 26.6+/-5.3-fold of expansion was achieved by co-culture of fresh natural Treg with anti-CD3/CD28 mAb-coated Dynabeads and interleukin-2. Ex vivo-expanded Treg exerted stronger suppression than fresh ones towards alloantigens in vitro and prevented CD4 Teff-mediated but only delayed CD4+/CD8+ Teff-mediated heart allograft rejection in Rag-/- mice. Long-term surviving allografts showed no signs of acute or chronic rejection with graft-infiltrating Treg expressing CD25 and FoxP3. Infused Treg persisted and expanded long-term in vivo and trafficked through the peripheral lymphoid tissues. CD25 expression was dynamic in vivo: maintained CD25 expression on Treg was indicative for the preservation of allosuppression, while significantly enhanced CD25 expression on CD4+ effector T cells was most likely associated with T-cell expansion and graft rejection. CONCLUSIONS Therapeutic use of ex vivo-expanded natural CD4+ CD25+ Treg may be a feasible and nontoxic modality for controlling allograft rejection or perhaps inducing allograft tolerance.
Collapse
Affiliation(s)
- Guliang Xia
- Department of Surgery-Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
20
|
Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 2006; 212:28-50. [PMID: 16903904 DOI: 10.1111/j.0105-2896.2006.00420.x] [Citation(s) in RCA: 876] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-10 (IL-10)-secreting T regulatory type 1 (Tr1) cells are defined by their specific cytokine production profile, which includes the secretion of high levels of IL-10 and transforming growth factor-beta(TGF-beta), and by their ability to suppress antigen-specific effector T-cell responses via a cytokine-dependent mechanism. In contrast to the naturally occurring CD4+ CD25+ T regulatory cells (Tregs) that emerge directly from the thymus, Tr1 cells are induced by antigen stimulation via an IL-10-dependent process in vitro and in vivo. Specialized IL-10-producing dendritic cells, such as those in an immature state or those modulated by tolerogenic stimuli, play a key role in this process. We propose to use the term Tr1 cells for all IL-10-producing T-cell populations that are induced by IL-10 and have regulatory activity. The full biological characterization of Tr1 cells has been hampered by the difficulty in generating these cells in vitro and by the lack of specific marker molecules. However, it is clear that Tr1 cells play a key role in regulating adaptive immune responses both in mice and in humans. Further work to delineate the specific molecular signature of Tr1 cells, to determine their relationship with CD4+ CD25+ Tregs, and to elucidate their respective role in maintaining peripheral tolerance is crucial to advance our knowledge on this Treg subset. Furthermore, results from clinical protocols using Tr1 cells to modulate immune responses in vivo in autoimmunity, transplantation, and chronic inflammatory diseases will undoubtedly prove the biological relevance of these cells in immunotolerance.
Collapse
Affiliation(s)
- Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Norgren RB. Expression arrays for macaque monkeys. Transplant Rev (Orlando) 2006. [DOI: 10.1016/j.trre.2006.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|