1
|
Tomassetti C, Insinga G, Gimigliano F, Morrione A, Giordano A, Giurisato E. Insights into CSF-1R Expression in the Tumor Microenvironment. Biomedicines 2024; 12:2381. [PMID: 39457693 PMCID: PMC11504891 DOI: 10.3390/biomedicines12102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The colony-stimulating factor 1 receptor (CSF-1R) plays a pivotal role in orchestrating cellular interactions within the tumor microenvironment (TME). Although the CSF-1R has been extensively studied in myeloid cells, the expression of this receptor and its emerging role in other cell types in the TME need to be further analyzed. This review explores the multifaceted functions of the CSF-1R across various TME cellular populations, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), cancer-associated fibroblasts (CAFs), endothelial cells (ECs), and cancer stem cells (CSCs). The activation of the CSF-1R by its ligands, colony-stimulating factor 1 (CSF-1) and Interleukin-34 (IL-34), regulates TAM polarization towards an immunosuppressive M2 phenotype, promoting tumor progression and immune evasion. Similarly, CSF-1R signaling influences MDSCs to exert immunosuppressive functions, hindering anti-tumor immunity. In DCs, the CSF-1R alters antigen-presenting capabilities, compromising immune surveillance against cancer cells. CSF-1R expression in CAFs and ECs regulates immune modulation, angiogenesis, and immune cell trafficking within the TME, fostering a pro-tumorigenic milieu. Notably, the CSF-1R in CSCs contributes to tumor aggressiveness and therapeutic resistance through interactions with TAMs and the modulation of stemness features. Understanding the diverse roles of the CSF-1R in the TME underscores its potential as a therapeutic target for cancer treatment, aiming at disrupting pro-tumorigenic cellular crosstalk and enhancing anti-tumor immune responses.
Collapse
Affiliation(s)
- Caterina Tomassetti
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Gaia Insinga
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.I.); (F.G.)
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.I.); (F.G.)
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
2
|
Beerepoot S, Wolf NI, van der Knaap MS, Nierkens S, Plantinga M. Heterozygous missense CSF1R variants hamper in vitro CD34+-derived dendritic cell generation but not in vivo dendritic cell development. Mol Immunol 2024; 174:41-46. [PMID: 39182279 DOI: 10.1016/j.molimm.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Colony stimulating factor 1 receptor (CSF1R) is an essential receptor for both colony stimulating factor 1 (CSF1) and interleukin (IL) 34 signaling expressed on monocyte precursors and myeloid cells, including monocytes, dendritic cells (DC), and microglia. In humans, dominant heterozygous pathogenic variants in CSF1R cause a neurological condition known as CSF1R-related disorder (CSF1R-RD), typically with late onset, previously referred to as adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). CSF1R-RD is characterized by microglia reduction and altered monocyte function; however, the impact of pathogenic CSF1R variants on the human DC lineage remains largely unknown. We previously reported that cord blood CD34+ stem cell-derived DCs generated in vitro originate specifically from CSF1R expressing precursors. In this study, we examined the DC lineage of four unrelated patients with late-onset CSF1R-RD who carried heterozygous missense CSF1R variants (c.2330G>A, c.2375C>A, c.2329C>T, and c.2381T>C) affecting different amino acids in the protein tyrosine kinase domain of CSF1R. CD34+ stem cells and CD14+ monocytes were isolated from peripheral blood and subjected to an in vitro culture protocol to differentiate towards conventional DCs and monocyte-derived DCs, respectively. Flow cytometric analysis revealed that monocytes from patients with late-onset CSF1R-RD were still able to differentiate into monocyte-derived DCs in vitro, whereas the ability of CD34+ stem cells to differentiate into conventional DCs was impaired. Strikingly, the peripheral blood of patients contained all naturally occurring DC subsets. We conclude that the in vitro abrogation of DC-development in patients with heterozygous pathogenic missense CSF1R variants does not translate to an impairment in DC development in vivo and speculate that CSF1R signalling in vivo is compensated, which needs further study.
Collapse
Affiliation(s)
- Shanice Beerepoot
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - Maud Plantinga
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Bridges K, Pizzurro GA, Khunte M, Chen M, Salvador Rocha E, Alexander AF, Bass V, Kellman LN, Baskaran J, Miller-Jensen K. Single-Cell Analysis Reveals a Subset of High IL-12p40-Secreting Dendritic Cells within Mouse Bone Marrow-Derived Macrophages Differentiated with M-CSF. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1357-1365. [PMID: 38416039 DOI: 10.4049/jimmunol.2300431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Macrophages and dendritic cells (DCs), although ontogenetically distinct, have overlapping functions and exhibit substantial cell-to-cell heterogeneity that can complicate their identification and obscure innate immune function. In this study, we report that M-CSF-differentiated murine bone marrow-derived macrophages (BMDMs) exhibit extreme heterogeneity in the production of IL-12, a key proinflammatory cytokine linking innate and adaptive immunity. A microwell secretion assay revealed that a small fraction of BMDMs stimulated with LPS secrete most IL-12p40, and we confirmed that this is due to extremely high expression of Il12b, the gene encoding IL-12p40, in a subset of cells. Using an Il12b-YFP reporter mouse, we isolated cells with high LPS-induced Il12b expression and found that this subset was enriched for genes associated with the DC lineage. Single-cell RNA sequencing data confirmed a DC-like subset that differentiates within BMDM cultures that is transcriptionally distinct but could not be isolated by surface marker expression. Although not readily apparent in the resting state, upon LPS stimulation, this subset exhibited a typical DC-associated activation program that is distinct from LPS-induced stochastic BMDM cell-to-cell heterogeneity. Overall, our findings underscore the difficulty in distinguishing macrophages and DCs even in widely used in vitro murine BMDM cultures and could affect the interpretation of some studies that use BMDMs to explore acute inflammatory responses.
Collapse
Affiliation(s)
- Kate Bridges
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | | | - Mihir Khunte
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Meibin Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | | | | | - Victor Bass
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
| | - Laura N Kellman
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
| | - Janani Baskaran
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Kathryn Miller-Jensen
- Department of Biomedical Engineering, Yale University, New Haven, CT
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
| |
Collapse
|
4
|
Gupta N, Somayajulu M, Gurdziel K, LoGrasso G, Aziz H, Rosati R, McClellan S, Pitchaikannu A, Santra M, Shukkur MFA, Stemmer P, Hazlett LD, Xu S. The miR-183/96/182 cluster regulates sensory innervation, resident myeloid cells and functions of the cornea through cell type-specific target genes. Sci Rep 2024; 14:7676. [PMID: 38561433 PMCID: PMC10985120 DOI: 10.1038/s41598-024-58403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
The conserved miR-183/96/182 cluster (miR-183C) is expressed in both corneal resident myeloid cells (CRMCs) and sensory nerves (CSN) and modulates corneal immune/inflammatory responses. To uncover cell type-specific roles of miR-183C in CRMC and CSN and their contributions to corneal physiology, myeloid-specific miR-183C conditional knockout (MS-CKO), and sensory nerve-specific CKO (SNS-CKO) mice were produced and characterized in comparison to the conventional miR-183C KO. Immunofluorescence and confocal microscopy of flatmount corneas, corneal sensitivity, and tear volume assays were performed in young adult naïve mice; 3' RNA sequencing (Seq) and proteomics in the trigeminal ganglion (TG), cornea and CRMCs. Our results showed that, similar to conventional KO mice, the numbers of CRMCs were increased in both MS-CKO and SNS-CKO vs age- and sex-matched WT control littermates, suggesting intrinsic and extrinsic regulations of miR-183C on CRMCs. The number of CRMCs was increased in male vs female MS-CKO mice, suggesting sex-dependent regulation of miR-183C on CRMCs. In the miR-183C KO and SNS-CKO, but not the MS-CKO mice, CSN density was decreased in the epithelial layer of the cornea, but not the stromal layer. Functionally, corneal sensitivity and basal tear volume were reduced in the KO and SNS-CKO, but not the MS-CKO mice. Tear volume in males is consistently higher than female WT mice. Bioinformatic analyses of the transcriptomes revealed a series of cell-type specific target genes of miR-183C in TG sensory neurons and CRMCs. Our data elucidate that miR-183C imposes intrinsic and extrinsic regulation on the establishment and function of CSN and CRMCs by cell-specific target genes. miR-183C modulates corneal sensitivity and tear production through its regulation of corneal sensory innervation.
Collapse
Affiliation(s)
- Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | | | - Giovanni LoGrasso
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Haidy Aziz
- School of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Sharon McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Manoranjan Santra
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Muhammed Farooq Abdul Shukkur
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Bhattacharyya ND, Kyaw W, McDonald MM, Dhenni R, Grootveld AK, Xiao Y, Chai R, Khoo WH, Danserau LC, Sergio CM, Timpson P, Lee WM, Croucher PI, Phan TG. Minimally invasive longitudinal intravital imaging of cellular dynamics in intact long bone. Nat Protoc 2023; 18:3856-3880. [PMID: 37857852 DOI: 10.1038/s41596-023-00894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/28/2023] [Indexed: 10/21/2023]
Abstract
Intravital two-photon microscopy enables deep-tissue imaging at high temporospatial resolution in live animals. However, the endosteal bone compartment and underlying bone marrow pose unique challenges to optical imaging as light is absorbed, scattered and dispersed by thick mineralized bone matrix and the adipose-rich bone marrow. Early bone intravital imaging methods exploited gaps in the cranial sutures to bypass the need to penetrate through cortical bone. More recently, investigators have developed invasive methods to thin the cortical bone or implant imaging windows to image cellular dynamics in weight-bearing long bones. Here, we provide a step-by-step procedure for the preparation of animals for minimally invasive, nondestructive, longitudinal intravital imaging of the murine tibia. This method involves the use of mixed bone marrow radiation chimeras to unambiguously double-label osteoclasts and osteomorphs. The tibia is exposed by a simple skin incision and an imaging chamber constructed using thermoconductive T-putty. Imaging sessions up to 12 h long can be repeated over multiple timepoints to provide a longitudinal time window into the endosteal and marrow niches. The approach can be used to investigate cellular dynamics in bone remodeling, cancer cell life cycle and hematopoiesis, as well as long-lived humoral and cellular immunity. The procedure requires an hour to complete and is suitable for users with minimal prior expertise in small animal surgery.
Collapse
Affiliation(s)
- Nayan Deger Bhattacharyya
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Wunna Kyaw
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle M McDonald
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Rama Dhenni
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Abigail K Grootveld
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ya Xiao
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ryan Chai
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Weng Hua Khoo
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Linda C Danserau
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- ACRF INCITe Centre for Intravital Imaging of Niches for Cancer Immune Therapy, Sydney, New South Wales, Australia
| | - C Marcelo Sergio
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- ACRF INCITe Centre for Intravital Imaging of Niches for Cancer Immune Therapy, Sydney, New South Wales, Australia
| | - Woei Ming Lee
- ACRF INCITe Centre for Intravital Imaging of Niches for Cancer Immune Therapy, Sydney, New South Wales, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, New South Wales, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- ACRF INCITe Centre for Intravital Imaging of Niches for Cancer Immune Therapy, Sydney, New South Wales, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.
- ACRF INCITe Centre for Intravital Imaging of Niches for Cancer Immune Therapy, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Fiore A, Sala E, Laura C, Riba M, Nelli M, Fumagalli V, Oberrauch F, Mangione M, Cristofani C, Provero P, Iannacone M, Kuka M. A fluorescent reporter model for the visualization and characterization of T DC. Eur J Immunol 2023; 53:e2350529. [PMID: 37741290 DOI: 10.1002/eji.202350529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 09/25/2023]
Abstract
TDC are hematopoietic cells that combine dendritic cell (DC) and conventional T-cell markers and functional properties. They were identified in secondary lymphoid organs (SLOs) of naïve mice as cells expressing CD11c, major histocompatibility molecules (MHC)-II, and the T-cell receptor (TCR). Despite thorough characterization, a physiological role for TDC remains to be determined. Unfortunately, using CD11c as a marker for TDC has the caveat of its upregulation on different cells, including T cells, upon activation. Here, we took advantage of Zbtb46-GFP reporter mice to explore the frequency and localization of TDC in different tissues at steady state and upon viral infection. RNA sequencing analysis confirmed that TDC sorted from Zbtb46-GFP mice have a gene signature that is distinct from conventional T cells and DC. In addition, this reporter model allowed for identification of TDC in situ not only in SLOs but also in the liver and lung of naïve mice. Interestingly, we found that TDC numbers in the SLOs increased upon viral infection, suggesting that TDC might play a role during viral infections. In conclusion, we propose a visualization strategy that might shed light on the physiological role of TDC in several pathological contexts, including infection and cancer.
Collapse
Affiliation(s)
- Alessandra Fiore
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Eleonora Sala
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Chiara Laura
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Riba
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Nelli
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Valeria Fumagalli
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Marta Mangione
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Claudia Cristofani
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Provero
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Matteo Iannacone
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mirela Kuka
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Deguchi M, Fukazawa T, Kubo T. regeneration factors expressed on myeloid expression in macrophage-like cells is required for tail regeneration in Xenopus laevis tadpoles. Development 2023; 150:dev200467. [PMID: 37522363 PMCID: PMC10445729 DOI: 10.1242/dev.200467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
Xenopus laevis tadpoles can regenerate whole tails after amputation. We have previously reported that interleukin 11 (il11) is required for tail regeneration. In this study, we have screened for genes that support tail regeneration under Il11 signaling in a certain cell type and have identified the previously uncharacterized genes Xetrov90002578m.L and Xetrov90002579m.S [referred to hereafter as regeneration factors expressed on myeloid.L (rfem.L) and rfem.S]. Knockdown (KD) of rfem.L and rfem.S causes defects of tail regeneration, indicating that rfem.L and/or rfem.S are required for tail regeneration. Single-cell RNA sequencing (scRNA-seq) revealed that rfem.L and rfem.S are expressed in a subset of leukocytes with a macrophage-like gene expression profile. KD of colony-stimulating factor 1 (csf1), which is essential for macrophage differentiation and survival, reduced rfem.L and rfem.S expression levels and the number of rfem.L- and rfem.S-expressing cells in the regeneration bud. Furthermore, forced expression of rfem.L under control of the mpeg1 promoter, which drives rfem.L in macrophage-like cells, rescues rfem.L and rfem.S KD-induced tail regeneration defects. Our findings suggest that rfem.L or rfem.S expression in macrophage-like cells is required for tail regeneration.
Collapse
Affiliation(s)
- Momoko Deguchi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taro Fukazawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
8
|
Xiang C, Li H, Tang W. Targeting CSF-1R represents an effective strategy in modulating inflammatory diseases. Pharmacol Res 2023; 187:106566. [PMID: 36423789 DOI: 10.1016/j.phrs.2022.106566] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, is a type I single transmembrane protein mainly expressed in myeloid cells, such as monocytes, macrophages, glial cells, and osteoclasts. The endogenous ligands, colony-stimulating factor-1 (CSF-1) and Interleukin-34 (IL-34), activate CSF-1R and downstream signaling pathways including PI3K-AKT, JAK-STATs, and MAPKs, and modulate the proliferation, differentiation, migration, and activation of target immune cells. Over the past decades, the promising therapeutic potential of CSF-1R signaling inhibition has been widely studied for decreasing immune suppression and escape in tumors, owing to depletion and reprogramming of tumor-associated macrophages. In addition, the excessive activation of CSF-1R in inflammatory diseases is consecutively uncovered in recent years, which may result in inflammation in bone, kidney, lung, liver and central nervous system. Agents against CSF-1R signaling have been increasingly investigated in preclinical or clinical studies for inflammatory diseases treatment. However, the pathological mechanism of CSF-1R in inflammation is indistinct and whether CSF-1R signaling can be identified as biomarkers remains controversial. With the background information aforementioned, this review focus on the dialectical roles of CSF-1R and its ligands in regulating innate immune cells and highlights various therapeutic implications of blocking CSF-1R signaling in inflammatory diseases.
Collapse
Affiliation(s)
- Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Dikilitaş A, Karaaslan F, Evirgen Ş, Ertuğrul AS. Gingival crevicular fluid CSF-1 and IL-34 levels in patients with stage III grade C periodontitis and uncontrolled type 2 diabetes mellitus. J Periodontal Implant Sci 2022; 52:455-465. [PMID: 36468466 PMCID: PMC9807851 DOI: 10.5051/jpis.2106260313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Periodontal diseases are inflammatory conditions that alter the host's response to microbial pathogens. Type 2 diabetes mellitus (T2DM) is a complex disease that affects the incidence and severity of periodontal diseases. This study investigated the gingival crevicular fluid (GCF) levels of colony-stimulating factor-1 (CSF-1) and interleukin-34 (IL-34) in patients with stage III grade C periodontitis (SIII-GC-P) and stage III grade C periodontitis with uncontrolled type 2 diabetes (SIII-GC-PD). METHODS In total, 72 individuals, including 24 periodontally healthy (PH), 24 SIII-GC-P, and 24 SIII-GC-PD patients, were recruited for this study. Periodontitis patients (stage III) had interdental attachment loss (AL) of 5 mm or more, probing depth (PD) of 6 mm or more, radiographic bone loss advancing to the middle or apical part of the root, and tooth loss (<5) due to periodontal disease. Radiographic bone loss in the teeth was also evaluated; grade C periodontitis was defined as a ratio of the percentage of root bone loss to age greater than 1.0. The plaque index (PI), gingival index (GI), presence of bleeding on probing (BOP), PD, and clinical AL were used for clinical periodontal assessments. GCF samples were obtained and analyzed using an enzyme-linked immunosorbent assay. RESULTS All clinical parameters-PD, AL, GI, BOP, and PI-were significantly higher in the SIII-GC-PD group than in the PH and SIII-GC-P groups for both the full mouth and each sampling site (P<0.05). The total IL-34 and CSF-1 levels were significantly higher in the SIII-GC-PD group than in the PH and SIII-GC-P groups (P<0.05), and there were significant differences between the periodontitis groups (P<0.05). CONCLUSIONS These findings suggest that IL-34 and CSF-1 expression increases in patients with SIII-GC-PD. CSF-1 was associated with the inflammatory status of periodontal tissues and T2DM, while IL-34 was associated only with T2DM. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04891627.
Collapse
Affiliation(s)
- Ahu Dikilitaş
- Department of Periodontology, Faculty of Dentistry, Usak University, Usak, Turkey.
| | - Fatih Karaaslan
- Department of Periodontology, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Şehrazat Evirgen
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Abdullah Seçkin Ertuğrul
- Department of Periodontology, Faculty of Dentistry, Izmir Katip Celebi University, İzmir, Turkey
| |
Collapse
|
10
|
Single-cell RNA sequencing of mast cells in eosinophilic esophagitis reveals heterogeneity, local proliferation, and activation that persists in remission. J Allergy Clin Immunol 2022; 149:2062-2077. [PMID: 35304158 PMCID: PMC9177790 DOI: 10.1016/j.jaci.2022.02.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Mast cells (MCs) are pleiotropic cells that accumulate in the esophagus of patients with eosinophilic esophagitis (EoE) and are thought to contribute to disease pathogenesis, yet their properties and functions in this organ are largely unknown. OBJECTIVES This study aimed to perform a comprehensive molecular and spatial characterization of esophageal MCs in EoE. METHODS Esophageal biopsies obtained from patients with active EoE, patients with EoE in histologic remission, and individuals with histologically normal esophageal biopsies and no history of esophageal disease (ie, control individuals) were subject to single-cell RNA sequencing, flow cytometry, and immunofluorescence analyses. RESULTS This study probed 39,562 single esophageal cells by single-cell RNA sequencing; approximately 5% of these cells were MCs. Dynamic MC expansion was identified across disease states. During homeostasis, TPSAB1highAREGhigh resident MCs were mainly detected in the lamina propria and exhibited a quiescent phenotype. In patients with active EoE, resident MCs assumed an activated phenotype, and 2 additional proinflammatory MC populations emerged in the intraepithelial compartment, each linked to a proliferating MKI67high cluster. One proinflammatory activated MC population, marked as KIThighIL1RL1highFCER1Alow, was not detected in disease remission (termed "transient MC"), whereas the other population, marked as CMA1highCTSGhigh, was detected in disease remission where it maintained an activated state (termed "persistent MC"). MCs were prominent producers of esophageal IL-13 mRNA and protein, a key therapeutic target in EoE. CONCLUSIONS Esophageal MCs comprise heterogeneous populations with transcriptional signatures associated with distinct spatial compartmentalization and EoE disease status. In active EoE, they assume a proinflammatory state and locally proliferate, and they remain activated and poised to reinitiate inflammation even during disease remission.
Collapse
|
11
|
Wiechers C, Pezoldt J, Beckstette M, Berner J, Schraml BU, Huehn J. Lymph node stromal cells support the maturation of pre‐DCs into cDC‐like cells via colony‐stimulating factor 1. Immunology 2022; 166:475-491. [DOI: 10.1111/imm.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Carolin Wiechers
- Department Experimental Immunology Helmholtz Centre for Infection Research Braunschweig Germany
| | - Joern Pezoldt
- Department Experimental Immunology Helmholtz Centre for Infection Research Braunschweig Germany
- Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Michael Beckstette
- Department Experimental Immunology Helmholtz Centre for Infection Research Braunschweig Germany
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine Helmholtz Centre for Infection Research and Hannover Medical School Hannover Germany
| | - Johanna Berner
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich Planegg‐Martinsried Germany
- Walter‐Brendel‐Centre of Experimental Medicine University Hospital, LMU Munich Planegg‐Martinsried Germany
| | - Barbara U. Schraml
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich Planegg‐Martinsried Germany
- Walter‐Brendel‐Centre of Experimental Medicine University Hospital, LMU Munich Planegg‐Martinsried Germany
| | - Jochen Huehn
- Department Experimental Immunology Helmholtz Centre for Infection Research Braunschweig Germany
| |
Collapse
|
12
|
Hwang D, Seyedsadr MS, Ishikawa LLW, Boehm A, Sahin Z, Casella G, Jang S, Gonzalez MV, Garifallou JP, Hakonarson H, Zhang W, Xiao D, Rostami A, Zhang GX, Ciric B. CSF-1 maintains pathogenic but not homeostatic myeloid cells in the central nervous system during autoimmune neuroinflammation. Proc Natl Acad Sci U S A 2022; 119:e2111804119. [PMID: 35353625 PMCID: PMC9168454 DOI: 10.1073/pnas.2111804119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
The receptor for colony stimulating factor 1 (CSF-1R) is important for the survival and function of myeloid cells that mediate pathology during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). CSF-1 and IL-34, the ligands of CSF-1R, have similar bioactivities but distinct tissue and context-dependent expression patterns, suggesting that they have different roles. This could be the case in EAE, given that CSF-1 expression is up-regulated in the CNS, while IL-34 remains constitutively expressed. We found that targeting CSF-1 with neutralizing antibody halted ongoing EAE, with efficacy superior to CSF-1R inhibitor BLZ945, whereas IL-34 neutralization had no effect, suggesting that pathogenic myeloid cells were maintained by CSF-1. Both anti–CSF-1 and BLZ945 treatment greatly reduced the number of monocyte-derived cells and microglia in the CNS. However, anti–CSF-1 selectively depleted inflammatory microglia and monocytes in inflamed CNS areas, whereas BLZ945 depleted virtually all myeloid cells, including quiescent microglia, throughout the CNS. Anti–CSF-1 treatment reduced the size of demyelinated lesions and microglial activation in the gray matter. Lastly, we found that bone marrow–derived immune cells were the major mediators of CSF-1R–dependent pathology, while microglia played a lesser role. Our findings suggest that targeting CSF-1 could be effective in ameliorating MS pathology, while preserving the homeostatic functions of myeloid cells, thereby minimizing risks associated with ablation of CSF-1R–dependent cells.
Collapse
Affiliation(s)
- Daniel Hwang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Maryam S. Seyedsadr
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | | | - Alexandra Boehm
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ziver Sahin
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Giacomo Casella
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Soohwa Jang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Michael V. Gonzalez
- The Children’s Hospital of Philadelphia, Abramson Research Center, Center for Applied Genomics, Philadelphia, PA 19104
| | - James P. Garifallou
- The Children’s Hospital of Philadelphia, Abramson Research Center, Center for Applied Genomics, Philadelphia, PA 19104
| | - Hakon Hakonarson
- The Children’s Hospital of Philadelphia, Abramson Research Center, Center for Applied Genomics, Philadelphia, PA 19104
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Weifeng Zhang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Dan Xiao
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Abdolmohamad Rostami
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Guang-Xian Zhang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Bogoljub Ciric
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
13
|
Huang JJ, Gaines SB, Amezcua ML, Lubell TR, Dayan PS, Dale M, Boneparth AD, Hicar MD, Winchester R, Gorelik M. Upregulation of type 1 conventional dendritic cells implicates antigen cross-presentation in multisystem inflammatory syndrome. J Allergy Clin Immunol 2022; 149:912-922. [PMID: 34688775 PMCID: PMC8530782 DOI: 10.1016/j.jaci.2021.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C) is an acute, febrile, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated syndrome, often with cardiohemodynamic dysfunction. Insight into mechanism of disease is still incomplete. OBJECTIVE Our objective was to analyze immunologic features of MIS-C patients compared to febrile controls (FC). METHODS MIS-C patients were defined by narrow criteria, including having evidence of cardiohemodynamic involvement and no macrophage activation syndrome. Samples were collected from 8 completely treatment-naive patients with MIS-C (SARS-CoV-2 serology positive), 3 patients with unclassified MIS-C-like disease (serology negative), 14 FC, and 5 MIS-C recovery (RCV). Three healthy controls (HCs) were used for comparisons of normal range. Using spectral flow cytometry, we assessed 36 parameters in antigen-presenting cells (APCs) and 29 in T cells. We used biaxial analysis and uniform manifold approximation and projection (UMAP). RESULTS Significant elevations in cytokines including CXCL9, M-CSF, and IL-27 were found in MIS-C compared to FC. Classic monocytes and type 2 dendritic cells (DCs) were downregulated (decreased CD86, HLA-DR) versus HCs; however, type 1 DCs (CD11c+CD141+CLEC9A+) were highly activated in MIS-C patients versus FC, expressing higher levels of CD86, CD275, and atypical conventional DC markers such as CD64, CD115, and CX3CR1. CD169 and CD38 were upregulated in multiple monocyte subtypes. CD56dim/CD57-/KLRGhi/CD161+/CD38- natural killer (NK) cells were a unique subset in MIS-C versus FC without macrophage activation syndrome. CONCLUSION Orchestrated by complex cytokine signaling, type 1 DC activation and NK dysregulation are key features in the pathophysiology of MIS-C. NK cell findings may suggest a relationship with macrophage activation syndrome, while type 1 DC upregulation implies a role for antigen cross-presentation.
Collapse
Affiliation(s)
- Janice J Huang
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, NY
| | - Samantha B Gaines
- Department of Medicine, Division of Rheumatology, Center for Clinical and Translational Immunology, Columbia University Medical Center, New York, NY
| | - Mateo L Amezcua
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, NY
| | - Tamar R Lubell
- Department of Pediatric Emergency Medicine, Columbia University Medical Center, New York, NY
| | - Peter S Dayan
- Department of Pediatric Emergency Medicine, Columbia University Medical Center, New York, NY
| | - Marissa Dale
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Alexis D Boneparth
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, NY
| | - Mark D Hicar
- Department of Pediatrics, Division of Infectious Diseases, University of Buffalo Medicine Center, Buffalo, NY
| | - Robert Winchester
- Department of Medicine, Division of Rheumatology, Center for Clinical and Translational Immunology, Columbia University Medical Center, New York, NY
| | - Mark Gorelik
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, NY.
| |
Collapse
|
14
|
Menendez M, Drozd A, Borawska K, Chmielewska JJ, Wu ML, Griffin CT. IL-1β Impacts Vascular Integrity and Lymphatic Function in the Embryonic Omentum. Circ Res 2022; 130:366-383. [PMID: 34986653 PMCID: PMC8813910 DOI: 10.1161/circresaha.121.319032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The chromatin-remodeling enzyme BRG1 (brahma-related gene 1) regulates gene expression in a variety of rapidly differentiating cells during embryonic development. However, the critical genes that BRG1 regulates during lymphatic vascular development are unknown. METHODS We used genetic and imaging techniques to define the role of BRG1 in murine embryonic lymphatic development, although this approach inadvertently expanded our study to multiple interacting cell types. RESULTS We found that omental macrophages fine-tune an unexpected developmental process by which erythrocytes escaping from naturally discontinuous omental blood vessels are collected by nearby lymphatic vessels. Our data indicate that circulating fibrin(ogen) leaking from gaps in omental blood vessels can trigger inflammasome-mediated IL-1β (interleukin-1β) production and secretion from nearby macrophages. IL-1β destabilizes adherens junctions in omental blood and lymphatic vessels, contributing to both extravasation of erythrocytes and their uptake by lymphatics. BRG1 regulates IL-1β production in omental macrophages by transcriptionally suppressing the inflammasome trigger RIPK3 (receptor interacting protein kinase 3). CONCLUSIONS Genetic deletion of Brg1 in embryonic macrophages leads to excessive IL-1β production, erythrocyte leakage from blood vessels, and blood-filled lymphatics in the developing omentum. Altogether, these results highlight a novel context for epigenetically regulated crosstalk between macrophages, blood vessels, and lymphatics.
Collapse
Affiliation(s)
- Matthew Menendez
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Anna Drozd
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA,Present address: Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N., Denmark
| | - Katarzyna Borawska
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Joanna J. Chmielewska
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA,Present address: Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Meng-Ling Wu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Courtney T. Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
15
|
Tran V, O’Neill HC. Role of SVEP1 in Stroma-Dependent Hematopoiesis In vitro. Front Cell Dev Biol 2022; 9:760480. [PMID: 35174156 PMCID: PMC8841349 DOI: 10.3389/fcell.2021.760480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Study of the microenvironment that supports hematopoietic stem cell (HSC) development in vivo is very difficult involving small numbers of interacting cells which are usually not well defined. While much is known about HSC niches located within the bone marrow in terms of contributing cell types and signalling molecules, very little is known about equivalent niches within spleen. Extramedullary hematopoiesis in spleen contributes myeloid cells important in the mobilisation of an immune response. As a result, it is important to develop in vitro models to identify the cells which constitute HSC niches in spleen and to identify the regulatory molecules supporting myeloid cell development. Studies described here document a model system to study the maintenance and differentiation of HSC by splenic stromal cells in vitro. The splenic stromal lines 5G3 and 3B5 differ in hematopoietic support capacity. SVEP1 and IGF2 are molecules of interest specifically expressed by 5G3 stroma. Gene knockdown technology using shRNA plasmids has been used to reduce gene expression in 5G3 and to determine specific effects on myeloid cell development following co-culture with overlaid hematopoietic progenitors in vitro. Knockdown of Svep1 gave specific inhibition of a dendritic cell (DC) population described previously in spleen (L-DC). Knockdown of Igf2 resulted in loss of production of a minor subset of conventional (c) DC. SVEP1 is now considered a marker of mesenchymal stromal cells with osteogenic differentiative capacity reflective of perivascular stromal cells. The power of this in vitro model is evidenced by the fact that it has been used to define SVEP1 as a specific adhesion molecule that regulates the hematopoietic process dependent on stromal niche interaction. The identification of stromal cells and molecules that contribute to the hematopoietic process in spleen, brings us closer to the realm of therapeutically regulating hematopoiesis in vivo, and to inhibiting niches which support cancer stem cells.
Collapse
Affiliation(s)
- Vinson Tran
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Helen C. O’Neill
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, Australia
- *Correspondence: Helen C. O’Neill,
| |
Collapse
|
16
|
Wu Z, Hu T, Chintoan-Uta C, Macdonald J, Stevens MP, Sang H, Hume DA, Kaiser P, Balic A. Development of novel reagents to chicken FLT3, XCR1 and CSF2R for the identification and characterization of avian conventional dendritic cells. Immunology 2021; 165:171-194. [PMID: 34767637 DOI: 10.1111/imm.13426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Conventional dendritic cells (cDC) are bone marrow-derived immune cells that play a central role in linking innate and adaptive immunity. cDCs efficiently uptake, process and present antigen to naïve T cells, driving clonal expansion of antigen-specific T-cell responses. In chicken, vital reagents are lacking for the efficient and precise identification of cDCs. In this study, we have developed several novel reagents for the identification and characterization of chicken cDCs. Chicken FLT3 cDNA was cloned and a monoclonal antibody to cell surface FLT3 was generated. This antibody identified a distinct FLT3HI splenic subset which lack expression of signature markers for B cells, T cells or monocyte/macrophages. By combining anti-FLT3 and CSF1R-eGFP transgenic expression, three major populations within the mononuclear phagocyte system were identified in the spleen. The cDC1 subset of mammalian cDCs express the chemokine receptor XCR1. To characterize chicken cDCs, a synthetic chicken chemokine (C motif) ligand (XCL1) peptide conjugated to Alexa Fluor 647 was developed (XCL1AF647 ). Flow cytometry staining of XCL1AF647 on splenocytes showed that all chicken FLT3HI cells exclusively express XCR1, supporting the hypothesis that this population comprises bona fide chicken cDCs. Further analysis revealed that chicken cDCs expressed CSF1R but lacked the expression of CSF2R. Collectively, the cell surface phenotypes of chicken cDCs were partially conserved with mammalian XCR1+ cDC1, with distinct differences in CSF1R and CSF2R expression compared with mammalian orthologues. These original reagents allow the efficient identification of chicken cDCs to investigate their important roles in the chicken immunity and diseases.
Collapse
Affiliation(s)
- Zhiguang Wu
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Tuanjun Hu
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | | | - Joni Macdonald
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Mark P Stevens
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Helen Sang
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - David A Hume
- Translational Research Institute, Mater Research Institute-University of Queensland, Woolloongabba, Qld, Australia
| | - Pete Kaiser
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Adam Balic
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
17
|
Hume DA, Caruso M, Keshvari S, Patkar OL, Sehgal A, Bush SJ, Summers KM, Pridans C, Irvine KM. The Mononuclear Phagocyte System of the Rat. THE JOURNAL OF IMMUNOLOGY 2021; 206:2251-2263. [PMID: 33965905 DOI: 10.4049/jimmunol.2100136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
The laboratory rat continues to be the model of choice for many studies of physiology, behavior, and complex human diseases. Cells of the mononuclear phagocyte system (MPS; monocytes, macrophages, and dendritic cells) are abundant residents in every tissue in the body and regulate postnatal development, homeostasis, and innate and acquired immunity. Recruitment and proliferation of MPS cells is an essential component of both initiation and resolution of inflammation. The large majority of current knowledge of MPS biology is derived from studies of inbred mice, but advances in technology and resources have eliminated many of the advantages of the mouse as a model. In this article, we review the tools available and the current state of knowledge of development, homeostasis, regulation, and diversity within the MPS of the rat.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Omkar L Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Clare Pridans
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Coillard A, Segura E. Antigen presentation by mouse monocyte-derived cells: Re-evaluating the concept of monocyte-derived dendritic cells. Mol Immunol 2021; 135:165-169. [PMID: 33901761 DOI: 10.1016/j.molimm.2021.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Antigen presentation is a key feature of classical dendritic cells (cDCs). Numerous studies have also reported in mouse that, upon inflammation, monocytes enter tissues and differentiate into monocyte-derived DCs (mo-DC) that have the ability to present antigens to T cells. However, a population of inflammatory cDCs sharing phenotypic features with mo-DC has been recently described, challenging the existence of in vivo-generated mo-DC. Here we review studies describing mouse mo-DC in the light of these findings, and evaluate the in vivo evidence for monocyte-derived antigen-presenting cells. We examine the strategies used to demonstrate the monocytic origin of these cells. Finally, we propose that mo-DC play a complementary role to cDCs, by presenting antigens to effector T cells locally in tissues.
Collapse
Affiliation(s)
- Alice Coillard
- Institut Curie, PSL Research University, INSERM, U932, 26 Rue d'Ulm, 75005, Paris, France; Université Paris Descartes, Paris, France
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932, 26 Rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
19
|
Knitz MW, Bickett TE, Darragh LB, Oweida AJ, Bhatia S, Van Court B, Bhuvane S, Piper M, Gadwa J, Mueller AC, Nguyen D, Nangia V, Osborne DG, Bai X, Ferrara SE, Boss MK, Goodspeed A, Burchill MA, Tamburini BAJ, Chan ED, Pickering CR, Clambey ET, Karam SD. Targeting resistance to radiation-immunotherapy in cold HNSCCs by modulating the Treg-dendritic cell axis. J Immunother Cancer 2021; 9:e001955. [PMID: 33883256 PMCID: PMC8061827 DOI: 10.1136/jitc-2020-001955] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Numerous trials combining radiation therapy (RT) and immunotherapy in head and neck squamous cell carcinoma (HNSCC) are failing. Using preclinical immune cold models of HNSCC resistant to RT-immune checkpoint inhibitors, we investigate therapeutic approaches of overcoming such resistance by examining the differential microenvironmental response to RT. METHODS We subjected two HPV-negative orthotopic mouse models of HNSCC to combination RT, regulatory T cells (Treg) depletion, and/or CD137 agonism. Tumor growth was measured and intratumorous and lymph node immune populations were compared among treatment groups. Human gene sets, genetically engineered mouse models DEREG and BATF3-/-, flow and time-of-flight cytometry, RNA-Seq, Treg adoptive transfer studies, and in vitro experiments were used to further evaluate the role of dendritic cells (DCs) and Tregs in these treatments. RESULTS In MOC2 orthotopic tumors, we find no therapeutic benefit to targeting classically defined immunosuppressive myeloids, which increase with RT. In these radioresistant tumors, supplementing combination RT and Treg depletion with anti-CD137 agonism stimulates CD103+ DC activation in tumor-draining lymph nodes as characterized by increases in CD80+ and CCR7+ DCs, resulting in a CD8 T cell-dependent response. Simultaneously, Tregs are reprogrammed to an effector phenotype demonstrated by increases in interferonγ+, tumor necrosis factorα+, PI3K+, pAKT+ and Eomes+ populations as well as decreases in CTLA4+ and NRP-1+ populations. Tumor eradication is observed when RT is increased to an 8 Gy x 5 hypofractionated regimen and combined with anti-CD25+ anti-CD137 treatment. In a human gene set from oral squamous cell carcinoma tumors, high Treg number is associated with earlier recurrence. CONCLUSIONS Regulating Treg functionality and DC activation status within the lymph node is critical for generating a T cell effector response in these highly radioresistant tumors. These findings underscore the plasticity of Tregs and represent a new therapeutic opportunity for reprogramming the tumor microenvironment in HNSCCs resistant to conventional radioimmunotherapy approaches.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- Cell Line, Tumor
- Combined Modality Therapy
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Drug Resistance, Neoplasm
- Head and Neck Neoplasms/immunology
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/therapy
- Immune Checkpoint Inhibitors/pharmacology
- Immunotherapy
- Interleukin-2 Receptor alpha Subunit/antagonists & inhibitors
- Interleukin-2 Receptor alpha Subunit/metabolism
- Lymphocyte Depletion
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Radiation Dose Hypofractionation
- Radiation Tolerance
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Squamous Cell Carcinoma of Head and Neck/immunology
- Squamous Cell Carcinoma of Head and Neck/metabolism
- Squamous Cell Carcinoma of Head and Neck/pathology
- Squamous Cell Carcinoma of Head and Neck/therapy
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Burden
- Tumor Microenvironment
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Mice
Collapse
Affiliation(s)
- Michael W Knitz
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas E Bickett
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ayman J Oweida
- Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shiv Bhuvane
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Adam C Mueller
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Varuna Nangia
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Douglas G Osborne
- Department of Dermatology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiyuan Bai
- Department of Academic Affairs, National Jewish Health, Denver, Colorado, USA
| | - Sarah E Ferrara
- University of Colorado Comprehensive Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Andrew Goodspeed
- University of Colorado Comprehensive Cancer Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Matthew A Burchill
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Beth A Jirón Tamburini
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edward D Chan
- Department of Academic Affairs, National Jewish Health, Denver, Colorado, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eric T Clambey
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
20
|
Zhang Y, Xie X, Yeganeh PN, Lee DJ, Valle-Garcia D, Meza-Sosa KF, Junqueira C, Su J, Luo HR, Hide W, Lieberman J. Immunotherapy for breast cancer using EpCAM aptamer tumor-targeted gene knockdown. Proc Natl Acad Sci U S A 2021; 118:e2022830118. [PMID: 33627408 PMCID: PMC7936362 DOI: 10.1073/pnas.2022830118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New strategies for cancer immunotherapy are needed since most solid tumors do not respond to current approaches. Here we used epithelial cell adhesion molecule EpCAM (a tumor-associated antigen highly expressed on common epithelial cancers and their tumor-initiating cells) aptamer-linked small-interfering RNA chimeras (AsiCs) to knock down genes selectively in EpCAM+ tumors with the goal of making cancers more visible to the immune system. Knockdown of genes that function in multiple steps of cancer immunity was evaluated in aggressive triple-negative and HER2+ orthotopic, metastatic, and genetically engineered mouse breast cancer models. Gene targets were chosen whose knockdown was predicted to promote tumor neoantigen expression (Upf2, Parp1, Apex1), phagocytosis, and antigen presentation (Cd47), reduce checkpoint inhibition (Cd274), or cause tumor cell death (Mcl1). Four of the six AsiC (Upf2, Parp1, Cd47, and Mcl1) potently inhibited tumor growth and boosted tumor-infiltrating immune cell functions. AsiC mixtures were more effective than individual AsiC and could synergize with anti-PD-1 checkpoint inhibition.
Collapse
MESH Headings
- Animals
- Antigen Presentation/drug effects
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/pharmacology
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/immunology
- Aptamers, Nucleotide/pharmacology
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- CD47 Antigen/antagonists & inhibitors
- CD47 Antigen/genetics
- CD47 Antigen/immunology
- DNA-(Apurinic or Apyrimidinic Site) Lyase/antagonists & inhibitors
- DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics
- DNA-(Apurinic or Apyrimidinic Site) Lyase/immunology
- Epithelial Cell Adhesion Molecule/genetics
- Epithelial Cell Adhesion Molecule/immunology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoconjugates/chemistry
- Immunoconjugates/immunology
- Immunoconjugates/pharmacology
- Immunotherapy/methods
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Molecular Targeted Therapy
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/immunology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Phagocytosis/drug effects
- Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors
- Poly (ADP-Ribose) Polymerase-1/genetics
- Poly (ADP-Ribose) Polymerase-1/immunology
- RNA-Binding Proteins/antagonists & inhibitors
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/immunology
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/immunology
- Triple Negative Breast Neoplasms/pathology
- Triple Negative Breast Neoplasms/therapy
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Ying Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Xuemei Xie
- Department of Pathology, Harvard Medical School, Boston, MA 02115
- Department of Lab Medicine and The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 300020 Tianjin, China
| | | | - Dian-Jang Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - David Valle-Garcia
- Divison of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, México
| | - Karla F Meza-Sosa
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, México
| | - Caroline Junqueira
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- René Rachou Institute, Oswaldo Cruz Foundation, 30190-002 Belo Horizonte, Brazil
| | - Jiayu Su
- Department of Pathology, Harvard Medical School, Boston, MA 02115
- Department of Lab Medicine and The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115
- School of Life Sciences, Center for Bioinformatics, Peking University, 100871 Beijing, China
- Center for Statistical Science, Peking University, 100871 Beijing, China
| | - Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, MA 02115
- Department of Lab Medicine and The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115
| | - Winston Hide
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115;
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
21
|
Freuchet A, Salama A, Remy S, Guillonneau C, Anegon I. IL-34 and CSF-1, deciphering similarities and differences at steady state and in diseases. J Leukoc Biol 2021; 110:771-796. [PMID: 33600012 DOI: 10.1002/jlb.3ru1120-773r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although IL-34 and CSF-1 share actions as key mediators of monocytes/macrophages survival and differentiation, they also display differences that should be identified to better define their respective roles in health and diseases. IL-34 displays low sequence homology with CSF-1 but has a similar general structure and they both bind to a common receptor CSF-1R, although binding and subsequent intracellular signaling shows differences. CSF-1R expression has been until now mainly described at a steady state in monocytes/macrophages and myeloid dendritic cells, as well as in some cancers. IL-34 has also 2 other receptors, protein-tyrosine phosphatase zeta (PTPζ) and CD138 (Syndecan-1), expressed in some epithelium, cells of the central nervous system (CNS), as well as in numerous cancers. While most, if not all, of CSF-1 actions are mediated through monocyte/macrophages, IL-34 has also other potential actions through PTPζ and CD138. Additionally, IL-34 and CSF-1 are produced by different cells in different tissues. This review describes and discusses similarities and differences between IL-34 and CSF-1 at steady state and in pathological situations and identifies possible ways to target IL-34, CSF-1, and its receptors.
Collapse
Affiliation(s)
- Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Apolline Salama
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
22
|
Lee JW, Lee IH, Iimura T, Kong SW. Two macrophages, osteoclasts and microglia: from development to pleiotropy. Bone Res 2021; 9:11. [PMID: 33568650 PMCID: PMC7875961 DOI: 10.1038/s41413-020-00134-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Tissue-resident macrophages are highly specialized to their tissue-specific microenvironments, activated by various inflammatory signals and modulated by genetic and environmental factors. Osteoclasts and microglia are distinct tissue-resident cells of the macrophage lineage in bone and brain that are responsible for pathological changes in osteoporosis and Alzheimer’s disease (AD), respectively. Osteoporosis is more frequently observed in individuals with AD compared to the prevalence in general population. Diagnosis of AD is often delayed until underlying pathophysiological changes progress and cause irreversible damages in structure and function of brain. As such earlier diagnosis and intervention of individuals at higher risk would be indispensable to modify clinical courses. Pleiotropy is the phenomenon that a genetic variant affects multiple traits and the genetic correlation between two traits could suggest a shared molecular mechanism. In this review, we discuss that the Pyk2-mediated actin polymerization pathway in osteoclasts and microglia in bone and brain, respectively, is the horizontal pleiotropic mediator of shared risk factors for osteoporosis and AD.
Collapse
Affiliation(s)
- Ji-Won Lee
- Department of Nephrology, Transplant Research Program, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - In-Hee Lee
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Tadahiro Iimura
- Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Ali S, Borin TF, Piranlioglu R, Ara R, Lebedyeva I, Angara K, Achyut BR, Arbab AS, Rashid MH. Changes in the tumor microenvironment and outcome for TME-targeting therapy in glioblastoma: A pilot study. PLoS One 2021; 16:e0246646. [PMID: 33544755 PMCID: PMC7864405 DOI: 10.1371/journal.pone.0246646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a hypervascular and aggressive primary malignant tumor of the central nervous system. Recent investigations showed that traditional therapies along with antiangiogenic therapies failed due to the development of post-therapy resistance and recurrence. Previous investigations showed that there were changes in the cellular and metabolic compositions in the tumor microenvironment (TME). It can be said that tumor cell-directed therapies are ineffective and rethinking is needed how to treat GBM. It is hypothesized that the composition of TME-associated cells will be different based on the therapy and therapeutic agents, and TME-targeting therapy will be better to decrease recurrence and improve survival. Therefore, the purpose of this study is to determine the changes in the TME in respect of T-cell population, M1 and M2 macrophage polarization status, and MDSC population following different treatments in a syngeneic model of GBM. In addition to these parameters, tumor growth and survival were also studied following different treatments. The results showed that changes in the TME-associated cells were dependent on the therapeutic agents, and the TME-targeting therapy improved the survival of the GBM bearing animals. The current GBM therapies should be revisited to add agents to prevent the accumulation of bone marrow-derived cells in the TME or to prevent the effect of immune-suppressive myeloid cells in causing alternative neovascularization, the revival of glioma stem cells, and recurrence. Instead of concurrent therapy, a sequential strategy would be better to target TME-associated cells.
Collapse
Affiliation(s)
- Sehar Ali
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Thaiz F. Borin
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Raziye Piranlioglu
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Roxan Ara
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia, United States of America
| | - Kartik Angara
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Bhagelu R. Achyut
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Ali Syed Arbab
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
- * E-mail: (ASA); (MHR)
| | - Mohammad H. Rashid
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail: (ASA); (MHR)
| |
Collapse
|
24
|
Coku A, McClellan SA, Van Buren E, Back JB, Hazlett LD, Xu S. The miR-183/96/182 Cluster Regulates the Functions of Corneal Resident Macrophages. Immunohorizons 2020; 4:729-744. [PMID: 33208381 PMCID: PMC7891884 DOI: 10.4049/immunohorizons.2000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident macrophages (ResMϕ) play important roles in the normal development and physiological functions as well as tissue repair and immune/inflammatory response to both internal and external insults. In cornea, ResMϕ are critical to the homeostasis and maintenance, wound healing, ocular immune privilege, and immune/inflammatory response to injury and microbial infection. However, the roles of microRNAs in corneal ResMϕ are utterly unknown. Previously, we demonstrated that the conserved miR-183/96/182 cluster (miR-183/96/182) plays important roles in sensory neurons and subgroups of both innate and adaptive immune cells and modulates corneal response to bacterial infection. In this study, we provide direct evidence that the mouse corneal ResMϕ constitutively produce both IL-17f and IL-10. This function is regulated by miR-183/96/182 through targeting Runx1 and Maf, key transcriptional regulators for IL-17f and IL-10 expression, respectively. In addition, we show that miR-183/96/182 has a negative feedback regulation on the TLR4 pathway in mouse corneal ResMϕ. Furthermore, miR-183/96/182 regulates the number of corneal ResMϕ. Inactivation of miR-183/96/182 in mouse results in more steady-state corneal resident immune cells, including ResMϕ, and leads to a simultaneous early upregulation of innate IL-17f and IL-10 production in the cornea after Pseudomonas aeruginosa infection. Its multiplex regulations on the simultaneous production of IL-17f and IL-10, TLR4 signaling pathway and the number of corneal ResMϕ place miR-183/96/182 in the center of corneal innate immunity, which is key to the homeostasis of the cornea, ocular immune privilege, and the corneal response to microbial infections.
Collapse
Affiliation(s)
- Ardian Coku
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| | - Sharon A McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| | - Eric Van Buren
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201
| | - Jessica B Back
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| |
Collapse
|
25
|
Grabert K, Sehgal A, Irvine KM, Wollscheid-Lengeling E, Ozdemir DD, Stables J, Luke GA, Ryan MD, Adamson A, Humphreys NE, Sandrock CJ, Rojo R, Verkasalo VA, Mueller W, Hohenstein P, Pettit AR, Pridans C, Hume DA. A Transgenic Line That Reports CSF1R Protein Expression Provides a Definitive Marker for the Mouse Mononuclear Phagocyte System. THE JOURNAL OF IMMUNOLOGY 2020; 205:3154-3166. [DOI: 10.4049/jimmunol.2000835] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
|
26
|
Development of a new macrophage-specific TRAP mouse (Mac TRAP) and definition of the renal macrophage translational signature. Sci Rep 2020; 10:7519. [PMID: 32372032 PMCID: PMC7200716 DOI: 10.1038/s41598-020-63514-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue macrophages play an important role in organ homeostasis, immunity and the pathogenesis of various inflammation-driven diseases. One major challenge has been to selectively study resident macrophages in highly heterogeneous organs such as kidney. To address this problem, we adopted a Translational Ribosome Affinity Purification (TRAP)- approach and designed a transgene that expresses an eGFP-tagged ribosomal protein (L10a) under the control of the macrophage-specific c-fms promoter to generate c-fms-eGFP-L10a transgenic mice (MacTRAP). Rigorous characterization found no gross abnormalities in MacTRAP mice and confirmed transgene expression across various organs. Immunohistological analyses of MacTRAP kidneys identified eGFP-L10a expressing cells in the tubulointerstitial compartment which stained positive for macrophage marker F4/80. Inflammatory challenge led to robust eGFP-L10a upregulation in kidney, confirming MacTRAP responsiveness in vivo. We successfully extracted macrophage-specific polysomal RNA from MacTRAP kidneys and conducted RNA sequencing followed by bioinformatical analyses, hereby establishing a comprehensive and unique in vivo gene expression and pathway signature of resident renal macrophages. In summary, we created, validated and applied a new, responsive macrophage-specific TRAP mouse line, defining the translational profile of renal macrophages and dendritic cells. This new tool may be of great value for the study of macrophage biology in different organs and various models of injury and disease.
Collapse
|
27
|
Carranza-León DA, Oeser A, Marton A, Wang P, Gore JC, Titze J, Stein CM, Chung CP, Ormseth MJ. Tissue sodium content in patients with systemic lupus erythematosus: association with disease activity and markers of inflammation. Lupus 2020; 29:455-462. [PMID: 32070186 DOI: 10.1177/0961203320908934] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Sodium (Na+) is stored in the skin and muscle and plays an important role in immune regulation. In animal models, increased tissue Na+ is associated with activation of the immune system, and high salt intake exacerbates autoimmune disease and worsens hypertension. However, there is no information about tissue Na+ and human autoimmune disease. We hypothesized that muscle and skin Na+ content is (a) higher in patients with systemic lupus erythematosus (SLE) than in control subjects, and (b) associated with blood pressure, disease activity, and inflammation markers (interleukin (IL)-6, IL-10 and IL-17 A) in SLE. METHODS Lower-leg skin and muscle Na+ content was measured in 23 patients with SLE and in 28 control subjects using 23Na+ magnetic resonance imaging. Demographic and clinical information was collected from interviews and chart review, and blood pressure was measured. Disease activity was assessed using the SLE Disease Activity Index (SLEDAI). Plasma inflammation markers were measured by multiplex immunoassay. RESULTS Muscle Na+ content was higher in patients with SLE (18.8 (16.7-18.3) mmol/L) than in control subjects (15.8 (14.7-18.3) mmol/L; p < 0.001). Skin Na+ content was also higher in SLE patients than in controls, but this difference was not statistically significant. Among patients with SLE, muscle Na+ was associated with SLEDAI and higher concentrations of IL-10 after adjusting for age, race, and sex. Skin Na+ was significantly associated with systolic blood pressure, but this was attenuated after covariate adjustment. CONCLUSION Patients with SLE had higher muscle Na+ content than control subjects. In patients with SLE, higher muscle Na+ content was associated with higher disease activity and IL-10 concentrations.
Collapse
Affiliation(s)
| | - A Oeser
- Department of Medicine, Vanderbilt University Medical Center, USA
| | - A Marton
- Department of Medicine, Duke-NUS Medical School, Singapore
| | - P Wang
- Department of Radiology, Vanderbilt University Medical Center, USA
| | - J C Gore
- Department of Radiology, Vanderbilt University Medical Center, USA
| | - J Titze
- Department of Medicine, Duke-NUS Medical School, Singapore
| | - C M Stein
- Department of Medicine, Vanderbilt University Medical Center, USA.,Department of Pharmacology, Vanderbilt University Medical Center, USA
| | - C P Chung
- Department of Medicine, Vanderbilt University Medical Center, USA.,Tennessee Valley Healthcare System, US Department of Veterans Affairs, USA
| | - M J Ormseth
- Department of Medicine, Vanderbilt University Medical Center, USA.,Tennessee Valley Healthcare System, US Department of Veterans Affairs, USA
| |
Collapse
|
28
|
Sorkin M, Huber AK, Hwang C, Carson WF, Menon R, Li J, Vasquez K, Pagani C, Patel N, Li S, Visser ND, Niknafs Y, Loder S, Scola M, Nycz D, Gallagher K, McCauley LK, Xu J, James AW, Agarwal S, Kunkel S, Mishina Y, Levi B. Regulation of heterotopic ossification by monocytes in a mouse model of aberrant wound healing. Nat Commun 2020; 11:722. [PMID: 32024825 PMCID: PMC7002453 DOI: 10.1038/s41467-019-14172-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 12/13/2019] [Indexed: 11/08/2022] Open
Abstract
Heterotopic ossification (HO) is an aberrant regenerative process with ectopic bone induction in response to musculoskeletal trauma, in which mesenchymal stem cells (MSC) differentiate into osteochondrogenic cells instead of myocytes or tenocytes. Despite frequent cases of hospitalized musculoskeletal trauma, the inflammatory responses and cell population dynamics that regulate subsequent wound healing and tissue regeneration are still unclear. Here we examine, using a mouse model of trauma-induced HO, the local microenvironment of the initial post-injury inflammatory response. Single cell transcriptome analyses identify distinct monocyte/macrophage populations at the injury site, with their dynamic changes over time elucidated using trajectory analyses. Mechanistically, transforming growth factor beta-1 (TGFβ1)-producing monocytes/macrophages are associated with HO and aberrant chondrogenic progenitor cell differentiation, while CD47-activating peptides that reduce systemic macrophage TGFβ levels and help ameliorate HO. Our data thus implicate CD47 activation as a therapeutic approach for modulating monocyte/macrophage phenotypes, MSC differentiation and HO formation during wound healing.
Collapse
Affiliation(s)
- Michael Sorkin
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda K Huber
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Charles Hwang
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - William F Carson
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - John Li
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaetlin Vasquez
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chase Pagani
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicole Patel
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shuli Li
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Noelle D Visser
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yashar Niknafs
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shawn Loder
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Melissa Scola
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dylan Nycz
- Division of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katherine Gallagher
- Division of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Shailesh Agarwal
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuji Mishina
- Department of Biologic and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin Levi
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
29
|
Wada H, Shibata Y, Abe Y, Otsuka R, Eguchi N, Kawamura Y, Oka K, Baghdadi M, Atsumi T, Miura K, Seino KI. Flow cytometric identification and cell-line establishment of macrophages in naked mole-rats. Sci Rep 2019; 9:17981. [PMID: 31784606 PMCID: PMC6884578 DOI: 10.1038/s41598-019-54442-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/11/2019] [Indexed: 01/08/2023] Open
Abstract
Naked mole rats (NMRs) have extraordinarily long lifespans and anti-tumorigenic capability. Recent studies of humans and mice have shown that many age-related diseases, including cancer, are strongly correlated with immunity, and macrophages play particularly important roles in immune regulation. Therefore, NMR macrophages may contribute to their unique phenotypes. However, studies of the roles of macrophages are limited by material restrictions and the lack of an established experimental strategy. In this study, we developed a flow cytometric strategy to identify NMR macrophages. The NMR macrophages were extractable using an off-the-shelf anti-CD11b antibody, M1/70, and forward/side scatter data obtained by flow cytometry. NMR macrophages proliferated in response to human/mouse recombinant M-CSF and engulfed Escherichia coli particles. Interestingly, the majority of NMR macrophages exhibited co-staining with an anti-NK1.1 antibody, PK136. NK1.1 antigen crosslinking with PK136 results in mouse NK cell stimulation; similarly, NMR macrophages proliferated in response to NK1.1 antibody treatment. Furthermore, we successfully established an NMR macrophage cell line, NPM1, by transduction of Simian virus 40 early region that proliferated indefinitely without cytokines and retained its phagocytotic capacity. The NPM1 would contribute to further studies on the immunity of NMRs.
Collapse
Affiliation(s)
- Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yuhei Shibata
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Rheumatology, Endocrinology and Nephrology, Graduate School of Medicine and Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yurika Abe
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Otsuka
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Nanami Eguchi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kaori Oka
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Graduate School of Medicine and Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kyoko Miura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan. .,Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan. .,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
30
|
Schwarzer P, Kokona D, Ebneter A, Zinkernagel MS. Effect of Inhibition of Colony-Stimulating Factor 1 Receptor on Choroidal Neovascularization in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:412-425. [PMID: 31783006 DOI: 10.1016/j.ajpath.2019.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/09/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
Neovascular age-related macular degeneration is one of the leading causes of blindness. Microglia and macrophages play a critical role in choroidal neovascularization (CNV) and may, therefore, be potential targets to modulate the disease course. This study evaluated the effect of the colony-stimulating factor-1 receptor inhibitor PLX5622 on experimental laser-induced CNV. A 98% reduction of retinal microglia cells was observed in the retina 1 week after initiation of PLX5622 treatment, preventing accumulation of macrophages within the laser site and leading to a reduction of leukocytes within the choroid after CNV induction. Mice treated with PLX5622 had a significantly faster decrease of the CNV lesion size, as revealed by in vivo imaging and immunohistochemistry from day 3 to day 14 compared with untreated mice. Several inflammatory modulators, such as chemokine (C-C motif) ligand 9, granulocyte-macrophage colony-stimulating factor, soluble tumor necrosis factor receptor-I, IL-1α, and matrix metallopeptidase-2, were elevated in the acute phase of the disease when microglia were ablated with PLX5622, whereas other cytokines (eg, interferon-γ, IL-4, and IL-10) were reduced. Our results suggest that colony-stimulating factor-1 receptor inhibition may be a novel therapeutic target in patients with neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Petra Schwarzer
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Despina Kokona
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Andreas Ebneter
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
31
|
Tanabe S, Saitoh S, Miyajima H, Itokazu T, Yamashita T. Microglia suppress the secondary progression of autoimmune encephalomyelitis. Glia 2019; 67:1694-1704. [PMID: 31106910 DOI: 10.1002/glia.23640] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022]
Abstract
Secondary progressive multiple sclerosis (SPMS) is an autoimmune disease of the central nervous system (CNS) characterized by progressive motor dysfunction, sensory deficits, and visual problems. The pathological mechanism of SPMS remains poorly understood. In this study, we investigated the role of microglia, immune cells in the CNS, in a secondary progressive form of experimental autoimmune encephalomyelitis (EAE), the mouse model of SPMS. We induced EAE in nonobese diabetic mice and treated the EAE mice with PLX3397, an antagonist of colony stimulating factor-1 receptor, during secondary progression in order to deplete microglia. The results showed that PLX3397 treatment significantly exacerbated secondary progression of EAE and increased mortality rates. Additionally, histological analysis showed that PLX3397 treatment significantly promoted inflammation, demyelination, and axonal degeneration. Moreover, the number of CD4+ T cells in the spinal cord of EAE mice was expanded due to PLX3397-mediated proliferation. These results suggest that microglia suppressed secondary progression of EAE by inhibiting the proliferation of CD4+ T cells in the CNS.
Collapse
Affiliation(s)
- Shogo Tanabe
- Department of Molecular Neuroscience, World Premier International, Immunology Frontier Research Center, Osaka University, Suita-shi, Osaka, Japan.,Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
| | - Shohei Saitoh
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
| | - Hisao Miyajima
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita-shi, Osaka, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, World Premier International, Immunology Frontier Research Center, Osaka University, Suita-shi, Osaka, Japan.,Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita-shi, Osaka, Japan
| |
Collapse
|
32
|
Mindur JE, Swirski FK. Growth Factors as Immunotherapeutic Targets in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:1275-1287. [PMID: 31092009 DOI: 10.1161/atvbaha.119.311994] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growth factors, such as CSFs (colony-stimulating factors), EGFs (epidermal growth factors), and FGFs (fibroblast growth factors), are signaling proteins that control a wide range of cellular functions. Although growth factor networks are critical for intercellular communication and tissue homeostasis, their abnormal production or regulation occurs in various pathologies. Clinical strategies that target growth factors or their receptors are used to treat a variety of conditions but have yet to be adopted for cardiovascular disease. In this review, we focus on M-CSF (macrophage-CSF), GM-CSF (granulocyte-M-CSF), IL (interleukin)-3, EGFR (epidermal growth factor receptor), and FGF21 (fibroblast growth factor 21). We first discuss the efficacy of targeting these growth factors in other disease contexts (ie, inflammatory/autoimmune diseases, cancer, or metabolic disorders) and then consider arguments for or against targeting them to treat cardiovascular disease. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- John E Mindur
- From the Graduate Program in Immunology (J.E.M.), Massachusetts General Hospital and Harvard Medical School, Boston.,Center for Systems Biology (J.E.M., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- Center for Systems Biology (J.E.M., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
33
|
Percin GI, Eitler J, Kranz A, Fu J, Pollard JW, Naumann R, Waskow C. CSF1R regulates the dendritic cell pool size in adult mice via embryo-derived tissue-resident macrophages. Nat Commun 2018; 9:5279. [PMID: 30538245 PMCID: PMC6290072 DOI: 10.1038/s41467-018-07685-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/05/2018] [Indexed: 12/14/2022] Open
Abstract
Regulatory mechanisms controlling the pool size of spleen dendritic cells (DC) remain incompletely understood. DCs are continuously replenished from hematopoietic stem cells, and FLT3-mediated signals cell-intrinsically regulate homeostatic expansion of spleen DCs. Here we show that combining FLT3 and CSF1R-deficiencies results in specific and complete abrogation of spleen DCs in vivo. Spatiotemporally controlled CSF1R depletion reveals a cell-extrinsic and non-hematopoietic mechanism for DC pool size regulation. Lack of CSF1R-mediated signals impedes the differentiation of spleen macrophages of embryonic origin, and the resulted macrophage depletion during development or in adult mice results in loss of DCs. Moreover, embryo-derived macrophages are important for the physiologic regeneration of DC after activation-induced depletion in situ. In summary, we show that the differentiation of DC and their regeneration relies on ontogenetically distinct spleen macrophages, thereby providing a novel regulatory principle that may also be important for the differentiation of other hematopoietic cell types.
Collapse
Affiliation(s)
- Gulce Itir Percin
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Fetscherstr. 74, 01307, Dresden, Germany
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging - Fritz-Lipmann-Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Jiri Eitler
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Andrea Kranz
- Genomics, Biotechnology Center, TU Dresden, BioInnovationsZentrum, Tatzberg 47-49, 01307, Dresden, Germany
| | - Jun Fu
- Genomics, Biotechnology Center, TU Dresden, BioInnovationsZentrum, Tatzberg 47-49, 01307, Dresden, Germany
| | - Jeffrey W Pollard
- MRC and University of Edinburgh Centre for Reproductive Health, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road S, Edinburgh, EH16 4TJ, Scotland, UK
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Transgenic Core Facility, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Fetscherstr. 74, 01307, Dresden, Germany.
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging - Fritz-Lipmann-Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany.
- Department of Medicine III, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- Faculty of Biological Sciences, Friedrich-Schiller University, Fürstengraben 1, 07743, Jena, Germany.
| |
Collapse
|
34
|
Pridans C, Raper A, Davis GM, Alves J, Sauter KA, Lefevre L, Regan T, Meek S, Sutherland L, Thomson AJ, Clohisey S, Bush SJ, Rojo R, Lisowski ZM, Wallace R, Grabert K, Upton KR, Tsai YT, Brown D, Smith LB, Summers KM, Mabbott NA, Piccardo P, Cheeseman MT, Burdon T, Hume DA. Pleiotropic Impacts of Macrophage and Microglial Deficiency on Development in Rats with Targeted Mutation of the Csf1r Locus. THE JOURNAL OF IMMUNOLOGY 2018; 201:2683-2699. [PMID: 30249809 PMCID: PMC6196293 DOI: 10.4049/jimmunol.1701783] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
Abstract
We have produced Csf1r-deficient rats by homologous recombination in embryonic stem cells. Consistent with the role of Csf1r in macrophage differentiation, there was a loss of peripheral blood monocytes, microglia in the brain, epidermal Langerhans cells, splenic marginal zone macrophages, bone-associated macrophages and osteoclasts, and peritoneal macrophages. Macrophages of splenic red pulp, liver, lung, and gut were less affected. The pleiotropic impacts of the loss of macrophages on development of multiple organ systems in rats were distinct from those reported in mice. Csf1r-/- rats survived well into adulthood with postnatal growth retardation, distinct skeletal and bone marrow abnormalities, infertility, and loss of visceral adipose tissue. Gene expression analysis in spleen revealed selective loss of transcripts associated with the marginal zone and, in brain regions, the loss of known and candidate novel microglia-associated transcripts. Despite the complete absence of microglia, there was little overt phenotype in brain, aside from reduced myelination and increased expression of dopamine receptor-associated transcripts in striatum. The results highlight the redundant and nonredundant functions of CSF1R signaling and of macrophages in development, organogenesis, and homeostasis.
Collapse
Affiliation(s)
- Clare Pridans
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom; .,The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Anna Raper
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Gemma M Davis
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Joana Alves
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Kristin A Sauter
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Tim Regan
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Stephen Meek
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Linda Sutherland
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Alison J Thomson
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom.,New World Laboratories, Laval, Quebec H7V 5B7, Canada
| | - Sara Clohisey
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Stephen J Bush
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom.,Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Rocío Rojo
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Zofia M Lisowski
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Robert Wallace
- Department of Orthopaedic Surgery, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Kathleen Grabert
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Kyle R Upton
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yi Ting Tsai
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Deborah Brown
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Lee B Smith
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.,Faculty of Science, University of Newcastle, Callaghan, New South Wales 2309, Australia; and
| | - Kim M Summers
- Mater Research-University of Queensland, Brisbane, Queensland 4101, Australia
| | - Neil A Mabbott
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Pedro Piccardo
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Michael T Cheeseman
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Tom Burdon
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - David A Hume
- The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom; .,Mater Research-University of Queensland, Brisbane, Queensland 4101, Australia
| |
Collapse
|
35
|
Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood 2018; 132:1675-1688. [PMID: 30154111 DOI: 10.1182/blood-2018-01-825240] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022] Open
Abstract
Autologous stem cell transplantation (SCT) remains a standard of care for multiple myeloma (MM) patients and prolongs progression-free survival. A small cohort of patients achieve long-term control of disease, but the majority of patients ultimately relapse, and the mechanisms permitting disease progression remain unclear. In this study, we used a preclinical model of autologous SCT for myeloma where the disease either progressed (MM relapsed) or was controlled. In the bone marrow (BM), inhibitory receptor expression on CD8+ T cells correlated strongly with myeloma progression after transplant. In conjunction, the costimulatory/adhesion receptor CD226 (DNAM-1) was markedly downregulated. Interestingly, DNAM-1- CD8+ T cells in MM-relapsed mice had an exhausted phenotype, characterized by upregulation of multiple inhibitory receptors, including T-cell immunoglobulin and ITIM domains (TIGIT) and programmed cell death protein 1 (PD-1) with decreased T-bet and increased eomesodermin expression. Immune checkpoint blockade using monoclonal antibodies against PD-1 or TIGIT significantly prolonged myeloma control after SCT. Furthermore, CD8+ T cells from MM-relapsed mice exhibited high interleukin-10 (IL-10) secretion that was associated with increased TIGIT and PD-1 expression. However, while donor-derived IL-10 inhibited myeloma control post-SCT, this was independent of IL-10 secretion by or signaling to T cells. Instead, the donor myeloid compartment, including colony-stimulating factor 1 receptor-dependent macrophages and an IL-10-secreting dendritic cell population in the BM, promoted myeloma progression. Our findings highlight PD-1 or TIGIT blockade in conjunction with SCT as a potent combination therapy in the treatment of myeloma.
Collapse
|
36
|
Moon HG, Kim SJ, Jeong JJ, Han SS, Jarjour NN, Lee H, Abboud-Werner SL, Chung S, Choi HS, Natarajan V, Ackerman SJ, Christman JW, Park GY. Airway Epithelial Cell-Derived Colony Stimulating Factor-1 Promotes Allergen Sensitization. Immunity 2018; 49:275-287.e5. [PMID: 30054206 DOI: 10.1016/j.immuni.2018.06.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/25/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022]
Abstract
Airway epithelial cells (AECs) secrete innate immune cytokines that regulate adaptive immune effector cells. In allergen-sensitized humans and mice, the airway and alveolar microenvironment is enriched with colony stimulating factor-1 (CSF1) in response to allergen exposure. In this study we found that AEC-derived CSF1 had a critical role in the production of allergen reactive-IgE production. Furthermore, spatiotemporally secreted CSF1 regulated the recruitment of alveolar dendritic cells (DCs) and enhanced the migration of conventional DC2s (cDC2s) to the draining lymph node in an interferon regulatory factor 4 (IRF4)-dependent manner. CSF1 selectively upregulated the expression of the chemokine receptor CCR7 on the CSF1R+ cDC2, but not the cDC1, population in response to allergen stimuli. Our data describe the functional specification of CSF1-dependent DC subsets that link the innate and adaptive immune responses in T helper 2 (Th2) cell-mediated allergic lung inflammation.
Collapse
Affiliation(s)
- Hyung-Geun Moon
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Seung-Jae Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jong Jin Jeong
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Seon-Sook Han
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nizar N Jarjour
- Allergy, Pulmonary, and Critical Care Division, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Hyun Lee
- Center for Biomolecular Sciences, and Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sherry L Abboud-Werner
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sangwoon Chung
- Section of Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Center, Columbus, OH, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, and Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - John W Christman
- Section of Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Center, Columbus, OH, USA
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
37
|
Cooles FAH, Anderson AE, Skelton A, Pratt AG, Kurowska-Stolarska MS, McInnes I, Hilkens CMU, Isaacs JD. Phenotypic and Transcriptomic Analysis of Peripheral Blood Plasmacytoid and Conventional Dendritic Cells in Early Drug Naïve Rheumatoid Arthritis. Front Immunol 2018; 9:755. [PMID: 29867920 PMCID: PMC5968398 DOI: 10.3389/fimmu.2018.00755] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
Objective Dendritic cells (DCs) are key orchestrators of immune function. To date, rheumatoid arthritis (RA) researchers have predominantly focused on a potential pathogenic role for CD1c+ DCs. In contrast, CD141+ DCs and plasmacytoid DCs (pDCs) have not been systematically examined, at least in early RA. In established RA, the role of pDCs is ambiguous and, since disease duration and treatment both impact RA pathophysiology, we examined pDCs, and CD1c+ and CD141+ conventional DCs (cDCs), in early, drug-naïve RA (eRA) patients. Methods We analyzed the frequency and phenotype of pDCs, CD1c+, and CD141+ DCs from eRA patients and compared findings with healthy controls. In parallel, we performed transcriptional analysis of >600 immunology-related genes (Nanostring) from peripheral blood pDCs, CD1c+ DCs, B cells, T cells, and monocytes. Results All DC subsets were reduced in eRA (n = 44) compared with healthy controls (n = 30) and, for pDCs, this was most marked in seropositive patients. CD141+ and CD1c+ DCs, but not pDCs, had a comparatively activated phenotype at baseline (increased CD86) and CD1c+ DC frequency inversely associated with disease activity. All DC frequencies remained static 12 months after initiation of immunomodulatory therapy despite a fall in activation markers (e.g., HLA-DR, CD40). There was no association between the whole blood interferon gene signature (IGS) and pDC or CD1c+ DC parameters but an inverse association between CD141+ DC frequency and IGS was noted. Furthermore, IFN-I and IFN-III mRNA transcripts were comparable between eRA pDC and other leukocyte subsets (B cells, CD4+, and CD8+ T cells and monocytes) with no obvious circulating cellular source of IFN-I or IFN-III. Transcriptomic analysis suggested increased pDC and CD1c+ DC proliferation in eRA; pDC differentially expressed genes also suggested enhanced tolerogenic function, whereas for CD1c+ DCs, pro-inflammatory transcripts were upregulated. Discussion This is the first detailed examination of DC subsets in eRA peripheral blood. Compared with CD1c+ DCs, pDCs are less activated and may be skewed toward tolerogenic functions. CD141+ DCs may be implicated in RA pathophysiology. Our findings justify further investigation of early RA DC biology.
Collapse
Affiliation(s)
- Faye A H Cooles
- Institute of Cellular Medicine, Newcastle University and National Institute for Health Research Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy E Anderson
- Institute of Cellular Medicine, Newcastle University and National Institute for Health Research Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew Skelton
- Institute of Cellular Medicine, Newcastle University and National Institute for Health Research Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arthur G Pratt
- Institute of Cellular Medicine, Newcastle University and National Institute for Health Research Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mariola S Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), University of Glasgow, Glasgow, United Kingdom
| | - Iain McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), University of Glasgow, Glasgow, United Kingdom
| | - Catharien M U Hilkens
- Institute of Cellular Medicine, Newcastle University and National Institute for Health Research Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John D Isaacs
- Institute of Cellular Medicine, Newcastle University and National Institute for Health Research Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
38
|
Li Y, Liu TM. Discovering Macrophage Functions Using In Vivo Optical Imaging Techniques. Front Immunol 2018; 9:502. [PMID: 29599778 PMCID: PMC5863475 DOI: 10.3389/fimmu.2018.00502] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/26/2018] [Indexed: 12/27/2022] Open
Abstract
Macrophages are an important component of host defense and inflammation and play a pivotal role in immune regulation, tissue remodeling, and metabolic regulation. Since macrophages are ubiquitous in human bodies and have versatile physiological functions, they are involved in virtually every disease, including cancer, diabetes, multiple sclerosis, and atherosclerosis. Molecular biological and histological methods have provided critical information on macrophage biology. However, many in vivo dynamic behaviors of macrophages are poorly understood and yet to be discovered. A better understanding of macrophage functions and dynamics in pathogenesis will open new opportunities for better diagnosis, prognostic assessment, and therapeutic intervention. In this article, we will review the advances in macrophage tracking and analysis with in vivo optical imaging in the context of different diseases. Moreover, this review will cover the challenges and solutions for optical imaging techniques during macrophage intravital imaging.
Collapse
Affiliation(s)
- Yue Li
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Tzu-Ming Liu
- Faculty of Health Sciences, University of Macau, Macao, China
| |
Collapse
|
39
|
Hawley CA, Rojo R, Raper A, Sauter KA, Lisowski ZM, Grabert K, Bain CC, Davis GM, Louwe PA, Ostrowski MC, Hume DA, Pridans C, Jenkins SJ. Csf1r-mApple Transgene Expression and Ligand Binding In Vivo Reveal Dynamics of CSF1R Expression within the Mononuclear Phagocyte System. THE JOURNAL OF IMMUNOLOGY 2018; 200:2209-2223. [PMID: 29440354 PMCID: PMC5834790 DOI: 10.4049/jimmunol.1701488] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/17/2018] [Indexed: 01/18/2023]
Abstract
CSF1 is the primary growth factor controlling macrophage numbers, but whether expression of the CSF1 receptor differs between discrete populations of mononuclear phagocytes remains unclear. We have generated a Csf1r-mApple transgenic fluorescent reporter mouse that, in combination with lineage tracing, Alexa Fluor 647–labeled CSF1-Fc and CSF1, and a modified ΔCsf1–enhanced cyan fluorescent protein (ECFP) transgene that lacks a 150 bp segment of the distal promoter, we have used to dissect the differentiation and CSF1 responsiveness of mononuclear phagocyte populations in situ. Consistent with previous Csf1r-driven reporter lines, Csf1r-mApple was expressed in blood monocytes and at higher levels in tissue macrophages, and was readily detectable in whole mounts or with multiphoton microscopy. In the liver and peritoneal cavity, uptake of labeled CSF1 largely reflected transgene expression, with greater receptor activity in mature macrophages than monocytes and tissue-specific expression in conventional dendritic cells. However, CSF1 uptake also differed between subsets of monocytes and discrete populations of tissue macrophages, which in macrophages correlated with their level of dependence on CSF1 receptor signaling for survival rather than degree of transgene expression. A double ΔCsf1r-ECFP-Csf1r-mApple transgenic mouse distinguished subpopulations of microglia in the brain, and permitted imaging of interstitial macrophages distinct from alveolar macrophages, and pulmonary monocytes and conventional dendritic cells. The Csf1r-mApple mice and fluorescently labeled CSF1 will be valuable resources for the study of macrophage and CSF1 biology, which are compatible with existing EGFP-based reporter lines.
Collapse
Affiliation(s)
- Catherine A Hawley
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Rocio Rojo
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Anna Raper
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Kristin A Sauter
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Zofia M Lisowski
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Kathleen Grabert
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Calum C Bain
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Gemma M Davis
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom.,Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Pieter A Louwe
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Michael C Ostrowski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425; and
| | - David A Hume
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.,The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom.,Mater Research-University of Queensland, Translational Research Institute, Woolloongabba, Queensland 4104, Australia
| | - Clare Pridans
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.,The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Stephen J Jenkins
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom;
| |
Collapse
|
40
|
Arbab AS, Rashid MH, Angara K, Borin TF, Lin PC, Jain M, Achyut BR. Major Challenges and Potential Microenvironment-Targeted Therapies in Glioblastoma. Int J Mol Sci 2017; 18:ijms18122732. [PMID: 29258180 PMCID: PMC5751333 DOI: 10.3390/ijms18122732] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is considered one of the most malignant, genetically heterogeneous, and therapy-resistant solid tumor. Therapeutic options are limited in GBM and involve surgical resection followed by chemotherapy and/or radiotherapy. Adjuvant therapies, including antiangiogenic treatments (AATs) targeting the VEGF–VEGFR pathway, have witnessed enhanced infiltration of bone marrow-derived myeloid cells, causing therapy resistance and tumor relapse in clinics and in preclinical models of GBM. This review article is focused on gathering previous clinical and preclinical reports featuring major challenges and lessons in GBM. Potential combination therapies targeting the tumor microenvironment (TME) to overcome the myeloid cell-mediated resistance problem in GBM are discussed. Future directions are focused on the use of TME-directed therapies in combination with standard therapy in clinical trials, and the exploration of novel therapies and GBM models for preclinical studies. We believe this review will guide the future of GBM research and therapy.
Collapse
Affiliation(s)
- Ali S Arbab
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Mohammad H Rashid
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Kartik Angara
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Thaiz F Borin
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Ping-Chang Lin
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Meenu Jain
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Bhagelu R Achyut
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
41
|
Jeannin P, Paolini L, Adam C, Delneste Y. The roles of CSFs on the functional polarization of tumor-associated macrophages. FEBS J 2017; 285:680-699. [PMID: 29171156 DOI: 10.1111/febs.14343] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/03/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
Macrophages have a central role in numerous physiological processes, such as immune defense, maintenance of tissue homeostasis, wound healing, and inflammation. Moreover, in numerous severe disorders, such as cancer or chronic inflammation, their functions can be profoundly affected. Macrophages continuously sense their environment and adapt their phenotypes and functions to the local requirements; this process is called plasticity. In addition to stress signals, metabolites, and direct cell-contact interactions with surrounding cells, numerous cytokines play a central role in controlling macrophage polarization. In this review, we will focus on three human macrophage differentiation factors: macrophage colony-stimulating factor (M-CSF), IL-34, and granulocyte M-CSF. These CSFs allow human monocyte survival, promote their differentiation into macrophages, and control macrophage polarization as they give rise to cells with different phenotype and functions. Based on recent observations, the role of granulocyte CSF on macrophage polarization is also addressed. Finally, our current knowledge on the expression of these growth factors in tumor microenvironment and their impact on the generation and polarization of tumor-associated macrophages are summarized.
Collapse
Affiliation(s)
- Pascale Jeannin
- CRCINA, INSERM, Université de Nantes, Université d'Angers, France.,Laboratory of Immunology and Allergology, University Hospital of Angers, France.,LabEx ImmunoGraftOnco, Angers, France
| | - Léa Paolini
- CRCINA, INSERM, Université de Nantes, Université d'Angers, France.,LabEx ImmunoGraftOnco, Angers, France
| | - Clement Adam
- CRCINA, INSERM, Université de Nantes, Université d'Angers, France.,LabEx ImmunoGraftOnco, Angers, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d'Angers, France.,Laboratory of Immunology and Allergology, University Hospital of Angers, France.,LabEx ImmunoGraftOnco, Angers, France
| |
Collapse
|
42
|
Touma W, Brunstein CG, Cao Q, Miller JS, Curtsinger J, Verneris MR, Bachanova V. Dendritic Cell Recovery Impacts Outcomes after Umbilical Cord Blood and Sibling Donor Transplantation for Hematologic Malignancies. Biol Blood Marrow Transplant 2017; 23:1925-1931. [PMID: 28729150 DOI: 10.1016/j.bbmt.2017.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022]
Abstract
Dendritic cells (DCs) orchestrate immune responses after allogeneic hematopoietic cell transplantation (HCT). We studied the association of donor myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) recovery in the landmark analysis of umbilical cord blood (UCB) and matched related donor (RD) HCT. Eighty patients (42 UCB and 38 RD recipients) with a day 100 blood sample were included in the analysis. Median age was 51 years (range, 20 to 71). Most patients had acute leukemia (50%) or lymphoma (23%) and received reduced-intensity conditioning (75%). After transplantation, UCB recipients had higher DC counts than RD recipients reaching normal levels at day 100 after transplantation (UCB median 4.7 cells/µL versus RD median 1.7 cells/µL). UCB recipients with high day 100 pDCs levels (≥ median) had 2-fold lower risk of relapse compared with those with pDClow (14% versus 28%, P = .29) and a trend to improved 1-year survival in multivariate analysis with hazard ratio of .22 (95% confidence interval, .04 to 1.05; P = .057). Cytomegalovirus (CMV) reactivation had adverse impact on DC reconstitution at day 100 in both UCB and RD groups and almost exclusively affected the mDC subset (CMV reactivation: mDC 3.2 cells/µL versus no CMV reactivation: 7.8 cells/µL; P = .004). Collectively, these data suggest that high levels of circulating pDCs at day 100 after UCB transplantation confer a survival advantage at 1 year.
Collapse
Affiliation(s)
- Waseem Touma
- Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, Minnesota
| | - Claudio G Brunstein
- Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, Minnesota
| | - Qing Cao
- Biostatistics and Informatics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, Minnesota
| | - Julie Curtsinger
- Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, Minnesota
| | - Michael R Verneris
- Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Veronika Bachanova
- Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
43
|
Guillonneau C, Bézie S, Anegon I. Immunoregulatory properties of the cytokine IL-34. Cell Mol Life Sci 2017; 74:2569-2586. [PMID: 28258292 PMCID: PMC11107603 DOI: 10.1007/s00018-017-2482-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/10/2017] [Accepted: 01/30/2017] [Indexed: 12/21/2022]
Abstract
Interleukin-34 is a cytokine with only partially understood functions, described for the first time in 2008. Although IL-34 shares very little homology with CSF-1 (CSF1, M-CSF), they share a common receptor CSF-1R (CSF-1R) and IL-34 has also two distinct receptors (PTP-ζ) and CD138 (syndecan-1). To make the situation more complex, IL-34 has also been shown as pairing with CSF-1 to form a heterodimer. Until now, studies have demonstrated that this cytokine is released by some tissues that differ to those where CSF-1 is expressed and is involved in the differentiation and survival of macrophages, monocytes, and dendritic cells in response to inflammation. The involvement of IL-34 has been shown in areas as diverse as neuronal protection, autoimmune diseases, infection, cancer, and transplantation. Our recent work has demonstrated a new and possible therapeutic role for IL-34 as a Foxp3+ Treg-secreted cytokine mediator of transplant tolerance. In this review, we recapitulate most recent findings on IL-34 and its controversial effects on immune responses and address its immunoregulatory properties and the potential of targeting this cytokine in human.
Collapse
Affiliation(s)
- Carole Guillonneau
- INSERM UMR1064, Center for Research in Transplantation and Immunology-ITUN, Université de Nantes, 30 Bd. Jean Monnet, 44093, Nantes Cedex 01, France.
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.
| | - Séverine Bézie
- INSERM UMR1064, Center for Research in Transplantation and Immunology-ITUN, Université de Nantes, 30 Bd. Jean Monnet, 44093, Nantes Cedex 01, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Ignacio Anegon
- INSERM UMR1064, Center for Research in Transplantation and Immunology-ITUN, Université de Nantes, 30 Bd. Jean Monnet, 44093, Nantes Cedex 01, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
44
|
Sichien D, Lambrecht BN, Guilliams M, Scott CL. Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunol 2017; 10:831-844. [PMID: 28198365 DOI: 10.1038/mi.2017.8] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/14/2017] [Indexed: 02/04/2023]
Abstract
Our understanding of conventional dendritic cell (cDC) development and the functional specializations of distinct subsets in the peripheral tissues has increased greatly in recent years. Here, we review cDC development from the distinct progenitors in the bone marrow through to the distinct cDC subsets found in barrier tissues, providing an overview of the different subsets described in each location. In addition, we detail the transcription factors and local signals that have been proposed to control this developmental process. Importantly, despite these significant advances, numerous questions remain to be answered regarding cDC development. For example, it remains unclear whether the different subsets described, such as the CD103+CD11b+ and CD103-CD11b+ cDCs in the intestines, truly represent different populations or rather distinct developmental or activation stages. Furthermore, whether distinct progenitors exist for these cDC subsets remains to be determined. Thus in the last part of this review we discuss what we believe will be the main questions facing the field for the coming years.
Collapse
Affiliation(s)
- D Sichien
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - B N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, Rotterdam, The Netherlands
| | - M Guilliams
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - C L Scott
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
45
|
MacDonald KP, Blazar BR, Hill GR. Cytokine mediators of chronic graft-versus-host disease. J Clin Invest 2017; 127:2452-2463. [PMID: 28665299 DOI: 10.1172/jci90593] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Substantial preclinical and clinical research into chronic graft-versus-host disease (cGVHD) has come to fruition in the last five years, generating a clear understanding of a complex cytokine-driven cellular network. cGVHD is mediated by naive T cells differentiating within IL-17-secreting T cell and follicular Th cell paradigms to generate IL-21 and IL-17A, which drive pathogenic germinal center (GC) B cell reactions and monocyte-macrophage differentiation, respectively. cGVHD pathogenesis includes thymic damage, impaired antigen presentation, and a failure in IL-2-dependent Treg homeostasis. Pathogenic GC B cell and macrophage reactions culminate in antibody formation and TGF-β secretion, respectively, leading to fibrosis. This new understanding permits the design of rational cytokine and intracellular signaling pathway-targeted therapeutics, reviewed herein.
Collapse
Affiliation(s)
- Kelli Pa MacDonald
- Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bruce R Blazar
- Masonic Cancer Center; and Division of Blood and Marrow Transplantation, Department of Pediatrics; University of Minnesota, Minneapolis, USA
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
46
|
Arbab AS, Jain M, Achyut BR. p53 Mutation: Critical Mediator of Therapy Resistance against Tumor Microenvironment. BIOCHEMISTRY & PHYSIOLOGY 2016; 5:e153. [PMID: 27917327 PMCID: PMC5135095 DOI: 10.4172/2168-9652.1000e153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ali S Arbab
- Tumor Angiogenesis Lab, Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Meenu Jain
- Tumor Angiogenesis Lab, Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - B R Achyut
- Tumor Angiogenesis Lab, Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
47
|
Digiacomo G, Tusa I, Bacci M, Cipolleschi MG, Dello Sbarba P, Rovida E. Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway. Cell Adh Migr 2016; 11:327-337. [PMID: 27588738 DOI: 10.1080/19336918.2016.1221566] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.
Collapse
Affiliation(s)
- Graziana Digiacomo
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Ignazia Tusa
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Marina Bacci
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Maria Grazia Cipolleschi
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Persio Dello Sbarba
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Elisabetta Rovida
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| |
Collapse
|
48
|
Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches. Semin Cell Dev Biol 2016; 61:12-21. [PMID: 27521519 DOI: 10.1016/j.semcdb.2016.08.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 12/24/2022]
Abstract
Macrophages, named for their phagocytic ability, participate in homeostasis, tissue regeneration and inflammatory responses. Bone and adjacent marrow contain multiple functionally unique resident tissue macrophage subsets which maintain and regulate anatomically distinct niche environments within these interconnected tissues. Three subsets of bone-bone marrow resident tissue macrophages have been characterised; erythroblastic island macrophages, haematopoietic stem cell niche macrophages and osteal macrophages. The role of these macrophages in controlling homeostasis and repair in bone and bone marrow niches is reviewed in detail.
Collapse
|
49
|
Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 2016; 100:481-9. [PMID: 27354413 DOI: 10.1189/jlb.3ru0316-144r] [Citation(s) in RCA: 355] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved.
Collapse
Affiliation(s)
- Irina Ushach
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA
| | - Albert Zlotnik
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA
| |
Collapse
|
50
|
McCubbrey AL, Barthel L, Mould KJ, Mohning MP, Redente EF, Janssen WJ. Selective and inducible targeting of CD11b+ mononuclear phagocytes in the murine lung with hCD68-rtTA transgenic systems. Am J Physiol Lung Cell Mol Physiol 2016; 311:L87-L100. [PMID: 27190063 PMCID: PMC4967193 DOI: 10.1152/ajplung.00141.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/17/2016] [Indexed: 01/03/2023] Open
Abstract
During homeostasis two distinct macrophage (Mø) populations inhabit the lungs: tissue Mø (often called interstitial Mø) and resident alveolar Mø (resAMø). During acute lung inflammation, monocytes from the circulation migrate to areas of injury where they mature into a third Mø population: recruited Mø. Resident AMø uniquely express low levels of CD11b and high levels of CD11c. In comparison, recruited Mø and tissue Mø express high levels of CD11b and low levels of CD11c. It is likely that these three Mø subpopulations play distinct roles in injury and disease states; however, tools with which to individually target or track these populations are lacking. Here we demonstrate the utility of an hCD68-rtTA transgenic system for specific, robust, and inducible targeting of CD11b(+) recruited Mø and tissue Mø in the murine lung with negligible activation in resAMø. Using hCD68rtTA-GFP reporter mice, we show both during homeostasis and inflammation that administration of doxycycline induces tet-On reporter expression in recruited Mø and tissue Mø but not in resident AMø. We further demonstrate how hCD68-rtTA can be effectively combined with tet-On Cre to target these same recMø and tissue Mø. Accordingly, the hCD68-rtTA system is a powerful new tool that can be used for lineage tracing, fate mapping, and gene deletion in a variety of murine models, thereby enabling sophisticated investigation of the unique role of these CD11b(+) Mø during lung heath and disease.
Collapse
Affiliation(s)
| | - Lea Barthel
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Kara J Mould
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Michael P Mohning
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Elizabeth F Redente
- Department of Pediatrics, National Jewish Health, Denver, Colorado; Department of Research, Denver Veterans Affairs Medical Center, Denver, Colorado
| | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| |
Collapse
|