1
|
Costa JP, de Carvalho A, Paiva A, Borges O. Insights into Immune Exhaustion in Chronic Hepatitis B: A Review of Checkpoint Receptor Expression. Pharmaceuticals (Basel) 2024; 17:964. [PMID: 39065812 PMCID: PMC11279883 DOI: 10.3390/ph17070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B, caused by the hepatitis B virus (HBV), often progresses to chronic infection, leading to severe complications, such as cirrhosis, liver failure, and hepatocellular carcinoma. Chronic HBV infection is characterized by a complex interplay between the virus and the host immune system, resulting in immune cell exhaustion, a phenomenon commonly observed in chronic viral infections and cancer. This state of exhaustion involves elevated levels of inhibitory molecules, cells, and cell surface receptors, as opposed to stimulatory counterparts. This review aims to elucidate the expression patterns of various co-inhibitory and co-stimulatory receptors on immune cells isolated from chronic hepatitis B (CHB) patients. By analyzing existing data, the review conducts comparisons between CHB patients and healthy adults, explores the differences between HBV-specific and total T cells in CHB patients, and examines variations between intrahepatic and peripheral immune cells in CHB patients. Understanding the mechanisms underlying immune exhaustion in CHB is crucial for developing novel immunotherapeutic approaches. This detailed analysis sheds light on the immune exhaustion observed in CHB and lays the groundwork for future combined immunotherapy strategies aimed at leveraging checkpoint receptors to restore immune function and improve clinical outcomes.
Collapse
Affiliation(s)
- João Panão Costa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Armando de Carvalho
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Artur Paiva
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
2
|
Chronic LCMV Infection Is Fortified with Versatile Tactics to Suppress Host T Cell Immunity and Establish Viral Persistence. Viruses 2021; 13:v13101951. [PMID: 34696381 PMCID: PMC8537583 DOI: 10.3390/v13101951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
Ever since the immune regulatory strains of lymphocytic choriomeningitis virus (LCMV), such as Clone 13, were isolated, LCMV infection of mice has served as a valuable model for the mechanistic study of viral immune suppression and virus persistence. The exhaustion of virus-specific T cells was demonstrated during LCMV infection, and the underlying mechanisms have been extensively investigated using LCMV infection in mouse models. In particular, the mechanism for gradual CD8+ T cell exhaustion at molecular and transcriptional levels has been investigated. These studies revealed crucial roles for inhibitory receptors, surface markers, regulatory cytokines, and transcription factors, including PD-1, PSGL-1, CXCR5, and TOX in the regulation of T cells. However, the action mode for CD4+ T cell suppression is largely unknown. Recently, sphingosine kinase 2 was proven to specifically repress CD4+ T cell proliferation and lead to LCMV persistence. As CD4+ T cell regulation was also known to be important for viral persistence, research to uncover the mechanism for CD4+ T cell repression could help us better understand how viruses launch and prolong their persistence. This review summarizes discoveries derived from the study of LCMV in regard to the mechanisms for T cell suppression and approaches for the termination of viral persistence with special emphasis on CD8+ T cells.
Collapse
|
3
|
Lanuza PM, Pesini C, Arias MA, Calvo C, Ramirez-Labrada A, Pardo J. Recalling the Biological Significance of Immune Checkpoints on NK Cells: A Chance to Overcome LAG3, PD1, and CTLA4 Inhibitory Pathways by Adoptive NK Cell Transfer? Front Immunol 2020; 10:3010. [PMID: 31998304 PMCID: PMC6962251 DOI: 10.3389/fimmu.2019.03010] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint receptors (IC) positively or negatively regulate the activation of the host immune response, preventing unwanted reactions against self-healthy tissues. In recent years the term IC has been mainly used for the inhibitory ICs, which are critical to control Natural Killer (NK) and Cytotoxic CD8+ T cells due to its high cytotoxic potential. Due to the different nature of the signals that regulate T and NK cell activation, specific ICs have been described that mainly regulate either NK cell or T cell activity. Thus, strategies to modulate NK cell activity are raising as promising tools to treat tumors that do not respond to T cell-based immunotherapies. NK cell activation is mainly regulated by ICs and receptors from the KIR, NKG2 and NCRs families and the contribution of T cell-related ICs is less clear. Recently, NK cells have emerged as contributors to the effect of inhibitors of T cell-related ICs like CTLA4, LAG3 or the PD1/PD-L1 axes in cancer patients, suggesting that these ICs also regulate the activity of NK cells under pathological conditions. Strikingly, in contrast to NK cells from cancer patients, the level of expression of these ICs is low on most subsets of freshly isolated and in vitro activated NK cells from healthy patients, suggesting that they do not control NK cell tolerance and thus, do not act as conventional ICs under non-pathological conditions. The low level of expression of T cell-related ICs in “healthy” NK cells suggest that they should not be restricted to the detrimental effects of these inhibitory mechanisms in the cancer microenvironment. After a brief introduction of the regulatory mechanisms that control NK cell anti-tumoral activity and the conventional ICs controlling NK cell tolerance, we will critically discuss the potential role of T cell-related ICs in the control of NK cell activity under both physiological and pathological (cancer) conditions. This discussion will allow to comprehensively describe the chances and potential limitations of using allogeneic NK cells isolated from a healthy environment to overcome immune subversion by T cell-related ICs and to improve the efficacy of IC inhibitors (ICIs) in a safer way.
Collapse
Affiliation(s)
- Pilar M Lanuza
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - Carlota Calvo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Medical Oncopediatry Department, Aragón Health Research Institute (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Julian Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Aragón i + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Chen Y, Tan J, Huang S, Huang X, Huang J, Chen J, Yu Z, Lu Y, Weng J, Du X, Li Y, Zha X, Chen S. Higher frequency of the CTLA-4 + LAG-3 + T-cell subset in patients with newly diagnosed acute myeloid leukemia. Asia Pac J Clin Oncol 2019; 16:e12-e18. [PMID: 31612643 DOI: 10.1111/ajco.13236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
Abstract
AIM Immune suppression based on alternative regulation of immune checkpoint proteins, for example, programmed cell death receptor-1 (PD-1) and cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), which results in T-cell exhaustion, contributes to cancer development and progression. In this study, we sought to characterize the distribution of CTLA-4 and T-cell lymphocyte activation gene-3 (LAG-3) expression on exhausted T cells in different T-cell subsets from patients with acute myeloid leukemia (AML). METHODS The coexpression of CTLA-4 and LAG-3 on exhausted CD244+ and CD57+ T cells from the CD3+ , CD4+ , and CD8+ T-cell subsets in peripheral blood from 12 patients with newly diagnosed AML was analyzed by multicolor flow cytometry assay. RESULTS A significantly higher percentage of CTLA-4+ CD3+ , CD4+ and CD8+ T cells was found in patients with AML. In addition, higher numbers of both CTLA-4+ CD244+ and CTLA-4+ CD57+ CD3+ T cells were detected. Interestingly, the increased CTLA-4+ CD244+ T cells were predominantly CD4+ T cells. In contrast, the increased CTLA-4+ CD57+ T cells primarily consisted of the CD8+ T-cell subset. A high proportion of LAG-3+ T cells was found in only a few cases with AML; however, a significantly higher proportion of coexpression of CTLA-4 and LAG-3 in the CD3+ and CD8+ T-cell subsets was detected. CONCLUSION We for the first time observed higher CTLA-4+ CD244+ CD4+ , CTLA-4+ CD57+ CD8+ , CTLA-4+ LAG-3+ CD3+ and CTLA-4+ LAG-3+ CD8+ T cells in patients with AML, whereas the upregulated expression of LAG-3 on T cells was only found in a subset of the cases. These data may provide further information by complementing the heterogeneity of immune checkpoints expression in AML.
Collapse
Affiliation(s)
- Youchun Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jiaxiong Tan
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shuxin Huang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingying Huang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jie Chen
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhi Yu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuhong Lu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of clinical laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Sheng H, Marrero I, Maricic I, Fanchiang SS, Zhang S, Sant'Angelo DB, Kumar V. Distinct PLZF +CD8αα + Unconventional T Cells Enriched in Liver Use a Cytotoxic Mechanism to Limit Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2150-2162. [PMID: 31554695 PMCID: PMC6783388 DOI: 10.4049/jimmunol.1900832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023]
Abstract
Hepatic immune system is uniquely challenged to mount a controlled effector response to pathogens while maintaining tolerance to diet and microbial Ags. We have identified a novel population of innate-like, unconventional CD8αα+TCRαβ+ T cells in naive mice and in human peripheral blood, called CD8αα Tunc, capable of controlling effector T cell responses. They are NK1.1+ (CD161+ in human), express NK-inhibitory receptors, and express the promyelocytic leukemia zinc finger (PLZF) transcription factor that distinguishes them from conventional CD8+ T cells. These cells display a cytotoxic phenotype and use a perforin-dependent mechanism to control Ag-induced or T cell-mediated autoimmune diseases. CD8αα Tunc are dependent upon IL-15/IL-2Rβ signaling and PLZF for their development and/or survival. They are Foxp3-negative and their regulatory activity is associated with a functionally distinct Qa-1b-dependent population coexpressing CD11c and CD244. A polyclonal TCR repertoire, an activated/memory phenotype, and the presence of CD8αα Tunc in NKT- and in MAIT-deficient as well as in germ-free mice indicates that these cells recognize diverse self-protein Ags. Our studies reveal a distinct population of unconventional CD8+ T cells within the natural immune repertoire capable of controlling autoimmunity and also providing a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Huiming Sheng
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Idania Marrero
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Igor Maricic
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Shaohsuan S Fanchiang
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Sai Zhang
- Rutgers University, New Brunswick, NJ 08901
| | | | - Vipin Kumar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093;
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| |
Collapse
|
6
|
NK cell education via nonclassical MHC and non-MHC ligands. Cell Mol Immunol 2016; 14:321-330. [PMID: 27264685 PMCID: PMC5380944 DOI: 10.1038/cmi.2016.26] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cell education, a process for achieving functional maturation and self-tolerance, has been previously defined by the interaction between self-major histocompatibility complex class I (MHC-I) molecules and their specific inhibitory receptors. Over the past several years, growing evidence has highlighted the important roles of nonclassical MHC-I and non-MHC-I molecules in NK cell education. Herein, we review the current knowledge of NK cell education, with a particular focus on nonclassical MHC-I- and non-MHC-I-dependent education, and compare them with the classical MHC-I-dependent education theory. In addition, we update and extend this theory by presenting the 'Confining Model', discussing cis and trans characteristics, reassessing quantity and quality control, and elucidating the redundancy of NK cell education in tumor and virus infection.
Collapse
|
7
|
Lissina A, Ambrozak DR, Boswell KL, Yang W, Boritz E, Wakabayashi Y, Iglesias MC, Hashimoto M, Takiguchi M, Haddad E, Douek DC, Zhu J, Koup RA, Yamamoto T, Appay V. Fine-tuning of CD8(+) T-cell effector functions by targeting the 2B4-CD48 interaction. Immunol Cell Biol 2016; 94:583-92. [PMID: 26860368 DOI: 10.1038/icb.2016.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 01/08/2016] [Accepted: 01/24/2016] [Indexed: 12/22/2022]
Abstract
Polyfunctionality and cytotoxic activity dictate CD8(+) T-cell efficacy in the eradication of infected and malignant cells. The induction of these effector functions depends on the specific interaction between the T-cell receptor (TCR) and its cognate peptide-MHC class I complex, in addition to signals provided by co-stimulatory or co-inhibitory receptors, which can further regulate these functions. Among these receptors, the role of 2B4 is contested, as it has been described as either co-stimulatory or co-inhibitory in modulating T-cell functions. We therefore combined functional, transcriptional and epigenetic approaches to further characterize the impact of disrupting the interaction of 2B4 with its ligand CD48, on the activity of human effector CD8(+) T-cell clones. In this setting, we show that the 2B4-CD48 axis is involved in the fine-tuning of CD8(+) T-cell effector function upon antigenic stimulation. Blocking this interaction resulted in reduced CD8(+) T-cell clone-mediated cytolytic activity, together with a subtle drop in the expression of genes involved in effector function regulation. Our results also imply a variable contribution of the 2B4-CD48 interaction to the modulation of CD8(+) T-cell functional properties, potentially linked to intrinsic levels of T-bet expression and TCR avidity. The present study thus provides further insights into the role of the 2B4-CD48 interaction in the fine regulation of CD8(+) T-cell effector function upon antigenic stimulation.
Collapse
Affiliation(s)
- Anna Lissina
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,INSERM U1135, CIMI-Paris, Paris, France
| | - David R Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristin L Boswell
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Eli Boritz
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Yoshiyuki Wakabayashi
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Maria C Iglesias
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,INSERM U1135, CIMI-Paris, Paris, France
| | - Masao Hashimoto
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Elias Haddad
- Vaccine and Gene Therapy Institute of Florida, Lucie, FL, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Takuya Yamamoto
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Victor Appay
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,INSERM U1135, CIMI-Paris, Paris, France
| |
Collapse
|
8
|
Kis-Toth K, Tsokos GC. Engagement of SLAMF2/CD48 prolongs the time frame of effective T cell activation by supporting mature dendritic cell survival. THE JOURNAL OF IMMUNOLOGY 2014; 192:4436-42. [PMID: 24670806 DOI: 10.4049/jimmunol.1302909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Signaling lymphocyte activation molecule family (SLAMF)2/CD48 is a coactivator and adhesion molecule on cells with hematopoietic origin. It ligates mainly SLAMF4 on effector/memory CD8(+) T cells and NK cells, suggesting a potential role during viral infection, with SLAMF2 acting as a ligand to activate SLAMF4-bearing cells. The ability of SLAMF2 to signal on its own after it is engaged and the functional consequences are largely unknown. We found that cytosolic DNA-activated dendritic cells (DCs) upregulate the expression of SLAMF2 molecules. Using anti-SLAMF2 Ab and SLAMF4 recombinant protein, we found that SLAMF2 engagement activates immature DCs and, more interestingly, prolongs the survival of DNA-activated DCs by inhibiting IFN-β production and IFN-β-induced apoptosis and promotes the production of the granzyme B inhibitor protease inhibitor-9. Thus, SLAMF2 can serve as a survival molecule for DNA-activated DCs during their interaction with SLAMF4-expressing cytotoxic T cells. Based on our results, we propose that SLAMF2 engagement regulates adaptive immune responses by providing longer access of putative APCs to virus-specific effector T cells by prolonging the time frame of effective stimulation.
Collapse
Affiliation(s)
- Katalin Kis-Toth
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
9
|
Xiao L, Wang D, Sun C, Li P, Jin Y, Feng L, Chen L. Enhancement of SIV-specific cell mediated immune responses by co-administration of soluble PD-1 and Tim-3 as molecular adjuvants in mice. Hum Vaccin Immunother 2013; 10:724-33. [PMID: 24326266 DOI: 10.4161/hv.27340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of an effective T cell based HIV vaccine would need to elicit cell mediated immune responses with superior magnitude, breadth, and quality. Since blocking the interactions between inhibitory receptors with their associated ligands using soluble PD-1 (sPD-1) and soluble Tim-3 (sTim-3) have been shown to reverse T cell exhaustion and enhance cell mediated immune responses, we tested if co-administration of sPD-1 and sTim-3 with an adenovirus vectored SIV vaccine (rAd5-SIV) can enhance cell mediated immune responses. The frequency of SIV antigen specific IFN-γ spot-forming cells and the secretion of IFN-γ and TNF-α by splenocytes from rAd5-SIV immunized mice was significantly increased when stimulated ex vivo with SIV peptides in the presence of sPD-1 or sTim-3 or both sPD-1 and sTim-3. The magnitude of cell mediated immune responses elicited by rAd5-SIV was enhanced by co-administration of sPD-1 and sTim-3. Co-administration of both sPD-1 and sTim-3 induced higher frequency of SIV antigen specific IFN-γ(+) spot-forming cells to poorly immunogenic Vif and Tat. The percentage of cell mediated responses for each SIV antigen became more balanced, with reduction to Gag but induction to non-structural proteins. Furthermore, co-injection of rAd5-sPD1 and rAd5-sTim3 with rAd5-SIV in mice enhanced T cell proliferation capability and generated more antigen specific IFN-γ(+) CD4(+) and CD8(+) T cells. Our study provided a new approach to enhance vaccine induced cell mediated immune responses, which may be applicable to improve the efficacy of vaccines against SIV/HIV.
Collapse
Affiliation(s)
- Lijun Xiao
- State Key Laboratory of Respiratory Diseases; Guangzhou Institutes of Biomedicine and Health (GIBH); Chinese Academy of Sciences; Guangzhou, PR China; University of Chinese Academy of Sciences; Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
10
|
Gleason MK, Verneris MR, Todhunter DA, Zhang B, McCullar V, Zhou SX, Panoskaltsis-Mortari A, Weiner LM, Vallera DA, Miller JS. Bispecific and trispecific killer cell engagers directly activate human NK cells through CD16 signaling and induce cytotoxicity and cytokine production. Mol Cancer Ther 2012; 11:2674-84. [PMID: 23075808 DOI: 10.1158/1535-7163.mct-12-0692] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study evaluates the mechanism by which bispecific and trispecific killer cell engagers (BiKEs and TriKEs) act to trigger human natural killer (NK) cell effector function and investigates their ability to induce NK cell cytokine and chemokine production against human B-cell leukemia. We examined the ability of BiKEs and TriKEs to trigger NK cell activation through direct CD16 signaling, measuring intracellular Ca²⁺ mobilization, secretion of lytic granules, induction of target cell apoptosis, and production of cytokine and chemokines in response to the Raji cell line and primary leukemia targets. Resting NK cells triggered by the recombinant reagents led to intracellular Ca²⁺ mobilization through direct CD16 signaling. Coculture of reagent-treated resting NK cells with Raji targets resulted in significant increases in NK cell degranulation and target cell death. BiKEs and TriKEs effectively mediated NK cytotoxicity of Raji targets at high and low effector-to-target ratios and maintained functional stability after 24 and 48 hours of culture in human serum. NK cell production of IFN-γ, TNF-α, granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-8, macrophage inflammatory protein (MIP)-1α, and regulated and normal T cell expressed and secreted (RANTES) was differentially induced in the presence of recombinant reagents and Raji targets. Moreover, significant increases in NK cell degranulation and enhancement of IFN-γ production against primary acute lymphoblastic leukemia and chronic lymphocytic leukemia targets were induced with reagent treatment of resting NK cells. In conclusion, BiKEs and TriKEs directly trigger NK cell activation through CD16, significantly increasing NK cell cytolytic activity and cytokine production against tumor targets, showing their therapeutic potential for enhancing NK cell immunotherapies for leukemias and lymphomas.
Collapse
Affiliation(s)
- Michelle K Gleason
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tjwa ETTL, van Oord GW, Biesta PJ, Boonstra A, Janssen HLA, Woltman AM. Restoration of TLR3-activated myeloid dendritic cell activity leads to improved natural killer cell function in chronic hepatitis B virus infection. J Virol 2012; 86:4102-9. [PMID: 22318141 PMCID: PMC3318629 DOI: 10.1128/jvi.07000-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/29/2012] [Indexed: 12/25/2022] Open
Abstract
There is increasing evidence that the function of NK cells in patients with chronic hepatitis B (CHB) infection is impaired. The underlying mechanism for the impaired NK cell function is still unknown. Since myeloid dendritic cells (mDC) are potent inducers of NK cells, we investigated the functional interaction of mDC and NK cells in CHB and the influence of antiviral therapy. Blood BDCA1(+) mDC and NK cells were isolated from 16 healthy controls or 39 CHB patients at baseline and during 6 months of antiviral therapy. After activation of mDC with poly(I · C) and gamma interferon (IFN-γ), mDC were cocultured with NK cells. Phenotype and function were analyzed in detail by flow cytometry and enzyme-linked immunosorbent assay. Our findings demonstrate that on poly(I · C)/IFN-γ-stimulated mDC from CHB patients, the expression of costimulatory molecules was enhanced, while cytokine production was reduced. In cocultures of poly(I · C)/IFN-γ-stimulated mDC and NK cells obtained from CHB patients, reduced mDC-induced NK cell activation (i.e., CD69 expression) and IFN-γ production compared to those in healthy individuals was observed. Antiviral therapy normalized mDC activity, since decreased expression of CD80 and CD86 on DC and of HLA-E on NK cells was observed, while poly(I · C)/IFN-γ-induced cytokine production by mDC was enhanced. In parallel, successful antiviral therapy resulted in improved mDC-induced NK cell activation and IFN-γ production. These data demonstrate that CHB patients display a diminished functional interaction between poly(I · C)/IFN-γ activated mDC and NK cells due to impaired mDC function, which can be partially restored by antiviral therapy. Enhancing this reciprocal interaction could reinforce the innate and thus the adaptive T cell response, and this may be an important step in achieving effective antiviral immunity.
Collapse
Affiliation(s)
- Eric T T L Tjwa
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C, Speiser DE. The three main stumbling blocks for anticancer T cells. Trends Immunol 2012; 33:364-72. [PMID: 22445288 DOI: 10.1016/j.it.2012.02.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/08/2012] [Accepted: 02/21/2012] [Indexed: 02/06/2023]
Abstract
Memory and effector T cells have the potential to counteract cancer progression, but often fail to control the disease, essentially because of three main stumbling blocks. First, clonal deletion leads to relatively low numbers or low-to-intermediate T cell receptor (TCR) affinity of self/tumor-specific T cells. Second, the poor innate immune stimulation by solid tumors is responsible for inefficient priming and boosting. Third, T cells are suppressed in the tumor microenvironment by inhibitory signals from other immune cells, stroma and tumor cells, which induces T cell exhaustion, as demonstrated in metastases of melanoma patients. State-of-the-art adoptive cell transfer and active immunotherapy can partially overcome the three stumbling blocks. The reversibility of T cell exhaustion and novel molecular insights provide the basis for further improvements of clinical immunotherapy.
Collapse
Affiliation(s)
- Lukas Baitsch
- Clinical Tumor Biology and Immunotherapy Unit, Ludwig Center for Cancer Research of the University of Lausanne, and Service of Radiation Oncology, Lausanne University Hospital Center, CH-1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Margraf-Schönfeld S, Böhm C, Watzl C. Glycosylation affects ligand binding and function of the activating natural killer cell receptor 2B4 (CD244) protein. J Biol Chem 2011; 286:24142-9. [PMID: 21606496 DOI: 10.1074/jbc.m111.225334] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
2B4 (CD244) is an important activating receptor for the regulation of natural killer (NK) cell responses. Here we show that 2B4 is heavily and differentially glycosylated in primary human NK cells and NK cell lines. The differential glycosylation could be attributed to sialic acid residues on N- and O-linked carbohydrates. Using a recombinant fusion protein of the extracellular domain of 2B4, we demonstrate that N-linked glycosylation of 2B4 is essential for the binding to its ligand CD48. In contrast, sialylation of 2B4 has a negative impact on ligand binding, as the interaction between 2B4 and CD48 is increased after the removal of sialic acids. This was confirmed in a functional assay system, where the desialylation of NK cells or the inhibition of O-linked glycosylation resulted in increased 2B4-mediated lysis of CD48-expressing tumor target cells. These data demonstrate that glycosylation has an important impact on 2B4-mediated NK cell function and suggest that regulated changes in glycosylation during NK cell development and activation might be involved in the regulation of NK cell responses.
Collapse
|
14
|
Abstract
The proliferation and differentiation of adult stem cells is balanced to ensure adequate generation of differentiated cells, stem cell homeostasis, and guard against malignant transformation. CD48 is broadly expressed on hematopoietic cells but excluded from quiescent long-term murine HSCs. Through its interactions with CD244 on progenitor cells, it influences HSC function by altering the BM cytokine milieu, particularly IFNγ. In CD48-null mice, the resultant misregulation of cytokine signaling produces a more quiescent HSC, a disproportionate number of short-term progenitors, and hyperactivation of Pak1, leading to hematologic malignancies similar to those found in patients with X-linked lymphoproliferative disease. CD48 plays a vital role as an environmental sensor for regulating HSC and progenitor cell numbers and inhibiting tumor development.
Collapse
|
15
|
Aldy KN, Horton NC, Mathew PA, Mathew SO. 2B4+ CD8+ T cells play an inhibitory role against constrained HIV epitopes. Biochem Biophys Res Commun 2011; 405:503-7. [PMID: 21256826 DOI: 10.1016/j.bbrc.2011.01.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/19/2011] [Indexed: 01/04/2023]
Abstract
Cytotoxic T cells play a critical role in the control of HIV and the progression of infected individuals to AIDS. 2B4 (CD244) is a member of the SLAM family of receptors that regulate lymphocyte development and function. The expression of 2B4 on CD8+ T cells was shown to increase during AIDS disease progression. However, the functional role of 2B4+ CD8+ T cells against HIV infection is not known. Here, we have examined the functional role of 2B4+ CD8+ T cells during and after stimulation with HLA B14 or B27 restricted HIV epitopes. Interestingly, IFN-γ secretion and cytotoxic activity of 2B4+ CD8+ T cells stimulated with HIV peptides were significantly decreased when compared to influenza peptide stimulated 2B4+ CD8+ T cells. The expression of the signaling adaptor molecule SAP was downregulated in 2B4+ CD8+ T cells upon HIV peptide stimulation. These results suggest that 2B4+ CD8+ T cells play an inhibitory role against constrained HIV epitopes underlying the inability to control the virus during disease progression.
Collapse
Affiliation(s)
- Kim N Aldy
- Department of Surgery-Burn/Trauma/Critical care, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
16
|
Jost S, Reardon J, Peterson E, Poole D, Bosch R, Alter G, Altfeld M. Expansion of 2B4+ natural killer (NK) cells and decrease in NKp46+ NK cells in response to influenza. Immunology 2011; 132:516-26. [PMID: 21214542 DOI: 10.1111/j.1365-2567.2010.03394.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Several studies have highlighted the importance of murine natural killer (NK) cells in the control of influenza virus infection, notably through the natural cytotoxicity receptor NKp46. However, little is known about the involvement of NK cells in human influenza infection. Here, we show that upon in vitro exposure to influenza, NKp46 expression on NK cells decreases, whereas expression of 2B4, an activating receptor that can enhance natural cytotoxicity in synergy with NKp46, is up-regulated. Consistent with these observations, NKp46(dull) and 2B4(bright) NK cells had a higher functional activity in response to influenza than NK cells expressing high levels of NKp46 or low levels of 2B4, respectively. Importantly, we assessed whether the expression of these receptors was also modified in vivo in response to influenza antigens and showed that an increase in 2B4-expressing NK cells and a decrease in NKp46(+) NK cells occurred following intramuscular influenza vaccination. Altogether, our results further suggest that NKp46 may play an important role in the innate immune response to human influenza and reveal that exposure to influenza antigens is associated with a previously unrecognized increase in 2B4 expression that can impact NK cell activity against the virus.
Collapse
Affiliation(s)
- Stephanie Jost
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kim EO, Kim TJ, Kim N, Kim ST, Kumar V, Lee KM. Homotypic cell to cell cross-talk among human natural killer cells reveals differential and overlapping roles of 2B4 and CD2. J Biol Chem 2010; 285:41755-64. [PMID: 20813844 DOI: 10.1074/jbc.m110.137976] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human natural killer (NK) cells express an abundant level of 2B4 and CD2 on their surface. Their counter-receptors, CD48 and CD58, are also expressed on the NK cell surface, raising a question about the functional consequences of potential 2B4/CD48 and CD2/CD58 interactions. Using blocking antibodies specific to each receptor, we demonstrated that both 2B4/CD48 and CD2/CD58 interactions were essential for the development of NK effector functions: cytotoxicity and cytokine secretion. However, only 2B4/CD48, but not CD2/CD58, interactions were shown to be critical for the optimal NK cell proliferation in response to interleukin (IL)-2. IL-2-activated NK cells cultured in the absence of 2B4/CD48 or CD2/CD58 interactions were severely impaired for their ability to induce intracellular calcium mobilization and subsequent ERK activation upon tumor target exposure, suggesting that the early signaling pathway of NK receptors leading to impaired cytolysis and interferon (IFN)-γ secretion was inhibited. Nevertheless, these defects did not fully account for the reduced proliferation of NK cells in the absence of 2B4/CD48 interactions, because anti-CD2 or anti-CD58 monoclonal antibody (mAb)-treated NK cells, showing defective signaling and effector functions, displayed normal proliferation upon IL-2 stimulation. These results propose the signaling divergence between pathways leading to cell proliferation and cytotoxicity/cytokine release, which can be differentially regulated by 2B4 and CD2 during IL-2-driven NK cell activation. Collectively, these results reveal the importance of homotypic NK-to-NK cell cross-talk through 2B4/CD48 and CD2/CD58 pairs and further present their differential and overlapping roles in human NK cells.
Collapse
Affiliation(s)
- Eun-Ok Kim
- Department of Biochemistry, Division of Brain Korea 21 Program for Biomedical Science, Global Research Lab, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
18
|
Waggoner SN, Taniguchi RT, Mathew PA, Kumar V, Welsh RM. Absence of mouse 2B4 promotes NK cell-mediated killing of activated CD8+ T cells, leading to prolonged viral persistence and altered pathogenesis. J Clin Invest 2010; 120:1925-38. [PMID: 20440077 PMCID: PMC2877945 DOI: 10.1172/jci41264] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/24/2010] [Indexed: 12/19/2022] Open
Abstract
Persistent viral infections are often associated with inefficient T cell responses and sustained high-level expression of inhibitory receptors, such as the NK cell receptor 2B4 (also known as CD244), on virus-specific T cells. However, the role of 2B4 in T cell dysfunction is undefined, and it is unknown whether NK cells contribute to regulation of these processes. We show here that persistent lymphocytic choriomeningitis virus (LCMV) infection of mice lacking 2B4 resulted in diminished LCMV-specific CD8+ T cell responses, prolonged viral persistence, and spleen and thymic pathologies that differed from those observed in infected wild-type mice. Surprisingly, these altered phenotypes were not caused by 2B4 deficiency in T cells. Rather, the entire and long-lasting pathology and viral persistence were regulated by 2B4-deficient NK cells acting early in infection. In the absence of 2B4, NK cells lysed activated (defined as CD44hi) but not naive (defined as CD44lo) CD8+ T cells in a perforin-dependent manner in vitro and in vivo. These results illustrate the importance of NK cell self-tolerance to activated CD8+ T cells and demonstrate how an apparent T cell-associated persistent infection can actually be regulated by NK cells.
Collapse
Affiliation(s)
- Stephen N. Waggoner
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ruth T. Taniguchi
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Porunelloor A. Mathew
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Vinay Kumar
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Raymond M. Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
19
|
Altvater B, Landmeier S, Pscherer S, Temme J, Juergens H, Pule M, Rossig C. 2B4 (CD244) signaling via chimeric receptors costimulates tumor-antigen specific proliferation and in vitro expansion of human T cells. Cancer Immunol Immunother 2009; 58:1991-2001. [PMID: 19360406 PMCID: PMC11030178 DOI: 10.1007/s00262-009-0704-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 03/20/2009] [Indexed: 01/28/2023]
Abstract
Regulatory NK cell receptors can contribute to antigen-specific adaptive immune responses by modulating T cell receptor (TCR)-induced T cell activation. We investigated the potential of the NK cell receptor 2B4 (CD244) to enhance tumor antigen-induced activation of human T cells. 2B4 is a member of the CD2 receptor subfamily with both activating and inhibitory functions in NK cells. In T cells, its expression is positively associated with the acquisition of a cytolytic effector memory phenotype. Recombinant chimeric receptors that link extracellular single-chain Fv fragments specific for the tumor-associated surface antigens CD19 and G(D2) to the signaling domains of human 2B4 and/or TCRzeta were expressed in non-specifically activated peripheral blood T cells by retroviral gene transfer. While 2B4 signaling alone failed to induce T cell effector functions or proliferation, it significantly augmented the antigen-specific activation responses induced by TCRzeta. 2B4 costimulation did not affect the predominant effector memory phenotype of expanding T cells, nor did it increase the proportion of T cells with regulatory phenotype (CD4+CD25(hi)FoxP3+). These data support a costimulatory role for 2B4 in human T cell subpopulations. As an amplifier of TCR-mediated signals, 2B4 may provide a powerful new tool for immunotherapy of cancer, promoting sustained activation and proliferation of gene-modified antitumor T cells.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Cell Growth Processes/immunology
- Cell Line, Tumor
- Epitopes
- Humans
- Immunologic Memory
- Interferon-gamma/immunology
- Killer Cells, Natural/immunology
- Lymphocyte Activation
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Signal Transduction
- Signaling Lymphocytic Activation Molecule Family
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer-Str. 33, 48149 Münster, Germany
| | - Silke Landmeier
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer-Str. 33, 48149 Münster, Germany
| | - Sibylle Pscherer
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer-Str. 33, 48149 Münster, Germany
| | - Jaane Temme
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer-Str. 33, 48149 Münster, Germany
| | - Heribert Juergens
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer-Str. 33, 48149 Münster, Germany
| | - Martin Pule
- University College London, 98 Chenies Mews, London, UK
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Albert-Schweitzer-Str. 33, 48149 Münster, Germany
| |
Collapse
|
20
|
Ximeri M, Galanopoulos A, Klaus M, Parcharidou A, Giannikou K, Psyllaki M, Symeonidis A, Pappa V, Kartasis Z, Liapi D, Hatzimichael E, Kokoris S, Korkolopoulou P, Sambani C, Pontikoglou C, Papadaki HA. Effect of lenalidomide therapy on hematopoiesis of patients with myelodysplastic syndrome associated with chromosome 5q deletion. Haematologica 2009; 95:406-14. [PMID: 19773257 DOI: 10.3324/haematol.2009.010876] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lenalidomide improves erythropoiesis in patients with low/intermediate-1 risk myelodysplastic syndrome and interstitial deletion of the long arm of chromosome 5 [del(5q)]. The aim of this study was to explore the effect of lenalidomide treatment on the reserves and functional characteristics of bone marrow hematopoietic progenitor/precursor cells, bone marrow stromal cells and peripheral blood lymphocytes in patients with low/intermediate-1 risk myelodysplastic syndrome with del(5q). DESIGN AND METHODS We evaluated the number and clonogenic potential of bone marrow erythroid/myeloid/megakaryocytic progenitor cells using clonogenic assays, the apoptotic characteristics and adhesion molecule expression of CD34(+) cells by flow cytometry, the hematopoiesis-supporting capacity of bone marrow stromal cells using long-term bone marrow cultures and the number and activation status of peripheral blood lymphocytes in ten patients with low/intermediate-1 risk myelodysplastic syndrome with del(5q) receiving lenalidomide. RESULTS Compared to baseline, lenalidomide treatment significantly decreased the proportion of bone marrow CD34+ cells, increased the proportion of CD36(+)/GlycoA(+) and CD36(-)/GlycoA(+) erythroid cells and the percentage of apoptotic cells within these cell compartments. Treatment significantly improved the clonogenic potential of bone marrow erythroid, myeloid, megakaryocytic colony-forming cells and increased the proportion of CD34(+) cells expressing the adhesion molecules CD11a, CD49d, CD54, CXCR4 and the SLAM antigen CD48. The hematopoiesis-supporting capacity of bone marrow stroma improved significantly following treatment, as demonstrated by the number of colony-forming cells and the level of stromal-derived factor-1 alpha and intercellular adhesion molecule-1 in long-term bone marrow culture supernatants. Lenalidomide treatment also increased the proportion of activated peripheral blood T lymphocytes. CONCLUSIONS The beneficial effect of lenalidomide in patients with lower risk myelodysplastic syndrome with del(5q) is associated with significant increases in the proportion of bone marrow erythroid precursor cells and in the frequency of clonogenic progenitor cells, a substantial improvement in the hematopoiesis-supporting potential of bone marrow stroma and significant alterations in the adhesion profile of bone marrow CD34(+) cells.
Collapse
Affiliation(s)
- Maria Ximeri
- Department of Hematology, University of Crete School of Medicine, Heraklion, Crete, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Tumor immunotherapy harnesses the potential of the host immune system to recognize and eradicate neoplastic tissue. The efficiency of the immune system in mediating tumor regression depends on the induction of antigen-specific T-cell responses through physiologic immune surveillance, priming by vaccination, or following adoptive transfer of T-cells. Although a variety of tumor-associated antigens have been identified and many immunotherapeutic strategies have been tested, objective clinical responses are rare. The reasons for this include the inability of current immunotherapy approaches to generate efficient T-cell responses, the presence of regulatory cells that inhibit T-cell responses, and other tumor escape mechanisms. The activation of effector T-cells depends on interactions between the T-cell receptor (TCR) and cognate antigen presented as peptides within the major histocompatibility complex (MHC) and costimulatory signals delivered by CD28, which binds to B7.1 and B7.2. More recently, several new molecular receptors and ligands have been identified that integrate into stimulatory or inhibitory activity for T-cells. These signals have been loosely associated with the costimulatory molecules but actually represent a diverse group of molecular pathways that have unique and overlapping functions. This review will focus on these pathways and emphasize their role in mediating T-cell activation for the purpose of enhancing tumor immunotherapy. As we gain a better understanding of the molecular and cellular consequences of T-cell signaling through the costimulatory pathways, a more rational approach to the activation or inhibition of T-cell responses can be developed for the treatment of cancer and other immune-mediated diseases.
Collapse
Affiliation(s)
- Robert C Ward
- The Tumor Immunology Laboratory, Division of Surgical Oncology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
22
|
Calpe S, Wang N, Romero X, Berger SB, Lanyi A, Engel P, Terhorst C. The SLAM and SAP gene families control innate and adaptive immune responses. Adv Immunol 2008; 97:177-250. [PMID: 18501771 DOI: 10.1016/s0065-2776(08)00004-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nine SLAM-family genes, SLAMF1-9, a subfamily of the immunoglobulin superfamily, encode differentially expressed cell-surface receptors of hematopoietic cells. Engagement with their ligands, which are predominantly homotypic, leads to distinct signal transduction events, for instance those that occur in the T or NK cell immune synapse. Upon phosphorylation of one or more copies of a unique tyrosine-based signaling motif in their cytoplasmic tails, six of the SLAM receptors recruit the highly specific single SH2-domain adapters SLAM-associated protein (SAP), EAT-2A, and/or EAT-2B. These adapters in turn bind to the tyrosine kinase Fyn and/or other protein tyrosine kinases connecting the receptors to signal transduction networks. Individuals deficient in the SAP gene, SH2D1A, develop an immunodeficiency syndrome: X-linked lympho-proliferative disease. In addition to operating in the immune synapse, SLAM receptors initiate or partake in multiple effector functions of hematopoietic cells, for example, neutrophil and macrophage killing and platelet aggregation. Here we discuss the current understanding of the structure and function of these recently discovered receptors and adapter molecules in the regulation of adaptive and innate immune responses.
Collapse
Affiliation(s)
- Silvia Calpe
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ha SJ, West EE, Araki K, Smith KA, Ahmed R. Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections. Immunol Rev 2008; 223:317-33. [PMID: 18613845 DOI: 10.1111/j.1600-065x.2008.00638.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
SUMMARY One potentially promising strategy to control chronic infections such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus is therapeutic vaccination, which aims to reduce persisting virus by stimulating a patient's own antiviral immune responses. However, this approach has fallen short of expectations, because antiviral T cells generated during chronic infections often become functionally exhausted and thus do not respond properly to therapeutic vaccination. Therefore, it is necessary to develop a therapeutic vaccine strategy to more effectively boost endogenous T-cell responses to control persistent viral infections. Studies to elucidate the cause of impaired T-cell function have pointed to sustained inhibitory receptor signaling through T-cell expression of programmed death 1 (PD-1). Recently, another inhibitory molecule, cytotoxic T lymphocyte antigen 4 (CTLA-4), and also an immunosuppressive cytokine, interleukin 10 (IL-10), have been reported to be potential factors of establishing immune suppression and viral persistence. Blocking these negative signaling pathways could restore the host immune system, enabling it to respond to further stimulation. Indeed, combining therapeutic vaccination along with the blockade of inhibitory signals could synergistically enhance functional CD8(+) T-cell responses and improve viral control in chronically infected mice, providing a promising strategy for the treatment of chronic viral infections. Furthermore, not only the ablation of negative signals but also the addition of stimulatory signals, such as interleukin 2 (IL-2), might prove to be a potentially promising strategy to augment the efficacy of therapeutic vaccination against chronic viral infections.
Collapse
Affiliation(s)
- Sang-Jun Ha
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
24
|
Wang M, Windgassen D, Papoutsakis ET. Comparative analysis of transcriptional profiling of CD3+, CD4+ and CD8+ T cells identifies novel immune response players in T-cell activation. BMC Genomics 2008; 9:225. [PMID: 18485203 PMCID: PMC2396644 DOI: 10.1186/1471-2164-9-225] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 05/16/2008] [Indexed: 11/29/2022] Open
Abstract
Background T-cell activation is an essential step of the immune response and relies on the tightly controlled orchestration of hundreds of genes/proteins, yet the cellular and molecular events underlying this complex process are not fully understood, especially at the genome-scale. Significantly, a comparative genome-scale transcriptional analysis of two T-cell subsets (CD4+ and CD8+) against each other and against the naturally mixed population (CD3+ cells) remains unexplored. Results Comparison of the microarray-based gene expression patterns between CD3+ T cells, and the CD4+ and CD8+ subsets revealed largely conserved, but not identical, transcriptional patterns. We employed a Gene-Ontology-driven transcriptional analysis coupled with protein abundance assays in order to identify novel T-cell activation genes and cell-type-specific genes associated with the immune response. We identified potential genes involved in the communication between the two subsets (including IL23A, NR4A2, CD83, PSMB2, -8, MIF, IFI16, TNFAIP1, POU2AF1, and OTUB1) and would-be effector-function-specific genes (XCL2, SLAMF7, TNFSF4, -5, -9, CSF3, CD48 and CD244). Chemokines induced during T-cell activation, but not previously identified in T cells, include CCL20, CXCL9, -10, -11 (in all three populations), and XCL2 (preferentially in CD8+ T cells). Increased expression of other unexpected cytokines (GPI, OSM and MIF) suggests their involvement in T-cell activation with their functions yet to be examined. Differential expression of many receptors, not previously reported in the context of T-cell activation, including CCR5, CCR7, IL1R2, IL1RAP, IL6R, TNFRSF25 and TNFRSF1A, suggests their role in this immune process. Several receptors involved in TCR activation (CD3D, CD3G, TRAT1, ITGAL, ITGB1, ITGB2, CD8A and B (CD8+ T-cell specific) along with LCK, ZAP70 and TYROBP were synchronously downregulated. Members of cell-surface receptors (HLA-Ds and KLRs), none previously identified in the context of T-cell activation, were also downregulated. Conclusion This comparative genome-scale, transcriptional analysis of T-cell activation in the CD4+ and CD8+ subsets and the mixed CD3+ populations made possible the identification of many immune-response genes not previously identified in the context of T-cell activation. Significantly, it made possible to identify the temporal patterns of many previously known T-cell activation genes, and also identify genes implicated in effector functions of and communication between CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Min Wang
- Interdepartmental Biological Sciences Program, Northwestern University, Evanston, IL, USA.
| | | | | |
Collapse
|
25
|
Fasth AER, Snir O, Johansson AAT, Nordmark B, Rahbar A, af Klint E, Björkström NK, Ulfgren AK, van Vollenhoven RF, Malmström V, Trollmo C. Skewed distribution of proinflammatory CD4+CD28null T cells in rheumatoid arthritis. Arthritis Res Ther 2008; 9:R87. [PMID: 17825098 PMCID: PMC2212553 DOI: 10.1186/ar2286] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 08/23/2007] [Accepted: 09/07/2007] [Indexed: 12/20/2022] Open
Abstract
Expanded populations of CD4+ T cells lacking the co-stimulatory molecule CD28 (CD4+CD28null T cells) have been reported in several inflammatory disorders. In rheumatoid arthritis, increased frequencies of CD4+CD28null T cells in peripheral blood have previously been associated with extra-articular manifestations and human cytomegalovirus (HCMV) infection, but their presence in and contribution to joint manifestations is not clear. In the present article we investigated the distribution of CD4+CD28null T cells in the synovial membrane, synovial fluid and peripheral blood of RA patients, and analysed the association with erosive disease and anti-citrullinated protein antibodies. CD4+CD28null T cells were infrequent in the synovial membrane and synovial fluid, despite significant frequencies in the circulation. Strikingly, the dominant TCR-Vbeta subsets of CD4+CD28null T cells in peripheral blood were often absent in synovial fluid. CD4+CD28null T cells in blood and synovial fluid showed specificity for HCMV antigens, and their presence was clearly associated with HCMV seropositivity but not with anti-citrullinated protein antibodies in the serum or synovial fluid, nor with erosive disease. Together these data imply a primary role for CD4+CD28null T cells in manifestations elsewhere than in the joints of patients with HCMV-seropositive rheumatoid arthritis.
Collapse
Affiliation(s)
- Andreas ER Fasth
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Omri Snir
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna AT Johansson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Nordmark
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Erik af Klint
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ann-Kristin Ulfgren
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald F van Vollenhoven
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Trollmo
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Skak K, Frederiksen KS, Lundsgaard D. Interleukin-21 activates human natural killer cells and modulates their surface receptor expression. Immunology 2007; 123:575-83. [PMID: 18005035 DOI: 10.1111/j.1365-2567.2007.02730.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Interleukin (IL)-21 is a novel cytokine that has been shown to enhance proliferation and activation of CD8+ T cells, enhance natural killer (NK) cell activity and costimulate anti-CD40-driven B-cell proliferation in mice. Several studies have furthermore demonstrated antitumour effects of IL-21 administration in mouse models. In this study we have investigated how IL-21 affects the survival and cytotoxicity of human NK cells and modulates their expression of surface receptors and of the effector molecules granzyme B and perforin. In contrast to murine NK cells, where IL-21 alone cannot sustain survival, IL-21 and IL-2 were equally efficient in sustaining survival of human NK cells. In the absence of other cytokines, IL-21 had little effect on expression of a panel of surface receptors on human NK cells. However, IL-21 synergized with IL-2 to up-regulate several surface receptors, including NKG2A, CD25, CD86 and CD69. The CD25+ CD86+ NK cells were CD56(bright) and were large and granular. Expression of the effector molecules perforin and granzyme A and B was up-regulated by IL-21 at both mRNA and protein levels. Furthermore, IL-21 increased the cytotoxicity of NK cells against K562 target cells. These findings suggest that IL-21 modulates NK cell activity through induction of intracellular effector molecules as well as modulation of surface receptor expression.
Collapse
Affiliation(s)
- Kresten Skak
- Cancer Pharmacology, Novo Nordisk A/S, Måløv, Denmark.
| | | | | |
Collapse
|
27
|
Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 2007; 27:670-84. [PMID: 17950003 DOI: 10.1016/j.immuni.2007.09.006] [Citation(s) in RCA: 1586] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 07/10/2007] [Accepted: 09/17/2007] [Indexed: 12/15/2022]
Abstract
Chronic viral infections often result in T cell exhaustion. To determine the molecular signature of exhaustion, we compared the gene-expression profiles of dysfunctional lymphocytic choriomeningitis virus (LCMV)-specific CD8(+) T cells from chronic infection to functional LCMV-specific effector and memory CD8(+) T cells generated after acute infection. These data showed that exhausted CD8(+) T cells: (1) overexpressed several inhibitory receptors, including PD-1, (2) had major changes in T cell receptor and cytokine signaling pathways, (3) displayed altered expression of genes involved in chemotaxis, adhesion, and migration, (4) expressed a distinct set of transcription factors, and (5) had profound metabolic and bioenergetic deficiencies. T cell exhaustion was progressive, and gene-expression profiling indicated that T cell exhaustion and anergy were distinct processes. Thus, functional exhaustion is probably due to both active suppression and passive defects in signaling and metabolism. These results provide a framework for designing rational immunotherapies during chronic infections.
Collapse
|
28
|
Velikovsky CA, Deng L, Chlewicki LK, Fernández MM, Kumar V, Mariuzza RA. Structure of natural killer receptor 2B4 bound to CD48 reveals basis for heterophilic recognition in signaling lymphocyte activation molecule family. Immunity 2007; 27:572-84. [PMID: 17950006 DOI: 10.1016/j.immuni.2007.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells eliminate virally infected and tumor cells. Among the receptors regulating NK cell function is 2B4 (CD244), a member of the signaling lymphocyte-activation molecule (SLAM) family that binds CD48. 2B4 is the only heterophilic receptor of the SLAM family, whose other members, e.g., NK-T-B-antigen (NTB-A), are self-ligands. We determined the structure of the complex between the N-terminal domains of mouse 2B4 and CD48, as well as the structures of unbound 2B4 and CD48. The complex displayed an association mode related to, yet distinct from, that of the NTB-A dimer. Binding was accompanied by the rigidification of flexible 2B4 regions containing most of the polymorphic residues across different species and receptor isoforms. We propose a model for 2B4-CD48 interactions that permits the intermixing of SLAM receptors with major histocompatibility complex-specific receptors in the NK cell immune synapse. This analysis revealed the basis for heterophilic recognition within the SLAM family.
Collapse
Affiliation(s)
- C Alejandro Velikovsky
- Center for Advanced Research in Biotechnology, W.M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
29
|
Clarkson NG, Simmonds SJ, Puklavec MJ, Brown MH. Direct and indirect interactions of the cytoplasmic region of CD244 (2B4) in mice and humans with FYN kinase. J Biol Chem 2007; 282:25385-94. [PMID: 17599905 DOI: 10.1074/jbc.m704483200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Engagement of the receptor CD244 (2B4) by its ligand CD48 has inhibitory and activating potential, and this differs depending on experimental systems in mouse and human. We show that, in both mouse and human upon engagement of its ligand CD48, CD244 can give a negative signal to natural killer cells, implying conservation of function between the two species. The signaling mechanisms used by CD244 in both human and mouse are conserved as shown by quantitative analyses of the direct molecular interactions of the SH2 domains of the adaptors SLAM-associated protein (SAP) and EAT-2 and of FYN kinase with CD244 together with the indirect interactions of the FYN SH2 domain with EAT-2. Functional experiments support the biochemical hierarchy of interactions and show that EAT-2 is not inhibitory per se. The data are consistent with a model in which the mechanism of signal transduction by CD244 is to regulate FYN kinase recruitment and/or activity and the outcome of CD48/CD244 interactions is determined by which other receptors are engaged.
Collapse
Affiliation(s)
- Nicholas G Clarkson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
30
|
Betser-Cohen G, Katz G, Gonen-Gross T, Stern N, Arnon TI, Achdout H, Gazit R, Mandelboim O. Reduced KIR2DL1 recognition of MHC class I molecules presenting phosphorylated peptides. THE JOURNAL OF IMMUNOLOGY 2006; 176:6762-9. [PMID: 16709835 DOI: 10.4049/jimmunol.176.11.6762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As initially described by K. Karre and colleagues in the missing self hypothesis, cells expressing self-MHC class I proteins are protected from NK cells attack. In contrast, reduction in the expression of MHC class I molecules due to viral infection or tumor transformation result in the killing of these "abnormal" cells by NK cells via NK-activating receptors. Thus, NK killing of target cells is determined by both negative signals coming from MHC class I proteins and by positive signals derived from the activating ligands. The bound peptide in MHC class I play an important role in the balanced recognition of NK cells. The peptide stabilizes the MHC complex and interacts directly with the NK inhibitory receptors, thus participating in the determination of the fate of the target cells. In this study we demonstrate that posttranslational modifications such as phosphorylation of the presented peptide altered the ability of NK cells to recognize MHC class I molecules. By using a consensus peptide (QYDDAVYKL) that binds HLA-Cw4 in which different positions in the bound peptide were modified by serine phosphorylation, we observed a reduction in KIR2DL1 binding that led to decreased protection from NK killing. Therefore, it might be possible that alteration in the phosphorylation pattern during tumor transformation or viral infection may result in less inhibition and, consequently, improved NK cell killing.
Collapse
MESH Headings
- Acids/pharmacology
- Antigen Presentation/immunology
- Cell Line, Transformed
- Cytotoxicity Tests, Immunologic
- HLA-C Antigens/immunology
- HLA-C Antigens/metabolism
- Humans
- Immunoglobulin G/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Ligands
- Natural Cytotoxicity Triggering Receptor 2
- Oligopeptides/immunology
- Oligopeptides/metabolism
- Phosphorylation
- Protein Binding/immunology
- Protein Processing, Post-Translational/immunology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, KIR2DL1
- Recombinant Fusion Proteins/metabolism
- Up-Regulation/drug effects
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Gili Betser-Cohen
- The Lautenberg Center for General and Tumor Immunology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Vaidya SV, Mathew PA. Of mice and men: Different functions of the murine and human 2B4 (CD244) receptor on NK cells. Immunol Lett 2006; 105:180-4. [PMID: 16621032 DOI: 10.1016/j.imlet.2006.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 01/20/2006] [Accepted: 02/20/2006] [Indexed: 11/28/2022]
Abstract
2B4 was initially discovered on murine NK cells and T cells displaying non-MHC dependent cytotoxicity. Human 2B4 was cloned based on sequence homology with mouse 2B4. Recent evidence suggests that the function of this receptor might be different in the two species. Human 2B4 activates NK cell cytotoxicity and interferon gamma production when engaged by CD48, its ligand, on target cells. This activating function of human 2B4 requires recruitment of the SH2 domain containing molecule, SLAM-associated protein or SAP. In the absence of SAP in human NK cells, as occurs in immature NK cells or NK cells from X-linked lymphoproliferative disorder (XLPD) patients, human 2B4 acts as an inhibitory receptor. In contrast, in vitro and in vivo studies using 2B4-deficient mice suggest that the major function of mouse 2B4 is to inhibit murine NK cell functions when triggered by CD48 on target cells, although there are reports of activating function of murine 2B4. This inhibitory function of murine 2B4 is mediated by EAT-2, ERT and possibly other phosphatases like SHP-1 and SHIP. 2B4-SAP interaction in mouse NK cells might be a low affinity one and might not be physiologically relevant considering the inhibitory function of 2B4. This suggests that mouse and human 2B4 diverged functionally with the evolution of greater affinity between 2B4 and SAP in the human species. We speculate that evolutionary pressure from viral infections, possibly EBV, might have led to the emergence of this association and activating function of 2B4 in humans.
Collapse
Affiliation(s)
- Swapnil V Vaidya
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|