1
|
Deng Y, Zhao Q, Zhou HY, Zhang ZQ, Zhan Y. Activation of ASIC3/ERK pathway by paeoniflorin improves intestinal fluid metabolism and visceral sensitivity in slow transit constipated rats. Kaohsiung J Med Sci 2024; 40:561-574. [PMID: 38634140 DOI: 10.1002/kjm2.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Slow transit constipation (STC) is one of the most common gastrointestinal disorders in children and adults worldwide. Paeoniflorin (PF), a monoterpene glycoside compound extracted from the dried root of Paeonia lactiflora, has been found to alleviate STC, but the mechanisms of its effect remain unclear. The present study aimed to investigate the effects and mechanisms of PF on intestinal fluid metabolism and visceral sensitization in rats with compound diphenoxylate-induced STC. Based on the evaluation of the laxative effect, the abdominal withdrawal reflex test, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry were used to detect the visceral sensitivity, fluid metabolism-related proteins, and acid-sensitive ion channel 3/extracellular signal-regulated kinase (ASIC3/ERK) pathway-related molecules. PF treatment not only attenuated compound diphenoxylate-induced constipation symptoms and colonic pathological damage in rats but also ameliorated colonic fluid metabolic disorders and visceral sensitization abnormalities, as manifested by increased colonic goblet cell counts and mucin2 protein expression, decreased aquaporin3 protein expression, improved abdominal withdrawal reflex scores, reduced visceral pain threshold, upregulated serum 5-hydroxytryptamine, and downregulated vasoactive intestinal peptide levels. Furthermore, PF activated the colonic ASIC3/ERK pathway in STC rats, and ASIC3 inhibition partially counteracted PF's modulatory effects on intestinal fluid and visceral sensation. In conclusion, PF alleviated impaired intestinal fluid metabolism and abnormal visceral sensitization in STC rats and thus relieved their symptoms through activation of the ASIC3/ERK pathway.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Chinese Pediatrics, College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Zhao
- Department of Chinese Pediatrics, College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pediatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Yun Zhou
- Department of Pediatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zi-Qi Zhang
- Department of Chinese Pediatrics, College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zhan
- Department of Anorectal, Chengdu First People's Hospital, Chengdu, China
| |
Collapse
|
2
|
Ng GYQ, Loh ZWL, Fann DY, Mallilankaraman K, Arumugam TV, Hande MP. Role of Mitogen-Activated Protein (MAP) Kinase Pathways in Metabolic Diseases. Genome Integr 2024; 15:e20230003. [PMID: 38770527 PMCID: PMC11102075 DOI: 10.14293/genint.14.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Physiological processes that govern the normal functioning of mammalian cells are regulated by a myriad of signalling pathways. Mammalian mitogen-activated protein (MAP) kinases constitute one of the major signalling arms and have been broadly classified into four groups that include extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and ERK5. Each signalling cascade is governed by a wide array of external and cellular stimuli, which play a critical part in mammalian cells in the regulation of various key responses, such as mitogenic growth, differentiation, stress responses, as well as inflammation. This evolutionarily conserved MAP kinase signalling arm is also important for metabolic maintenance, which is tightly coordinated via complicated mechanisms that include the intricate interaction of scaffold proteins, recognition through cognate motifs, action of phosphatases, distinct subcellular localisation, and even post-translational modifications. Aberration in the signalling pathway itself or their regulation has been implicated in the disruption of metabolic homeostasis, which provides a pathophysiological foundation in the development of metabolic syndrome. Metabolic syndrome is an umbrella term that usually includes a group of closely associated metabolic diseases such as hyperglycaemia, hyperlipidaemia, and hypertension. These risk factors exacerbate the development of obesity, diabetes, atherosclerosis, cardiovascular diseases, and hepatic diseases, which have accounted for an increase in the worldwide morbidity and mortality rate. This review aims to summarise recent findings that have implicated MAP kinase signalling in the development of metabolic diseases, highlighting the potential therapeutic targets of this pathway to be investigated further for the attenuation of these diseases.
Collapse
Affiliation(s)
- Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zachary Wai-Loon Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - M. Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
3
|
Lakhssassi K, Sarto MP, Lahoz B, Alabart JL, Folch J, Serrano M, Calvo JH. Blood transcriptome of Rasa Aragonesa rams with different sexual behavior phenotype reveals CRYL1 and SORCS2 as genes associated with this trait. J Anim Sci 2023; 101:skad098. [PMID: 36996265 PMCID: PMC10118393 DOI: 10.1093/jas/skad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Reproductive fitness of rams is seasonal, showing the highest libido during short days coinciding with the ovarian cyclicity resumption in the ewe. However, the remarkable variation in sexual behavior between rams impair farm efficiency and profitability. Intending to identify in vivo sexual behavior biomarkers that may aid farmers to select active rams, transcriptome profiling of blood was carried out by analyzing samples from 6 sexually active (A) and 6 nonactive (NA) Rasa Aragonesa rams using RNA-Seq technique. A total of 14,078 genes were expressed in blood but only four genes were differentially expressed (FDR < 0.10) in the A vs. NA rams comparison. The genes, acrosin inhibitor 1 (ENSOARG00020023278) and SORCS2, were upregulated (log2FC > 1) in active rams, whereas the CRYL1 and immunoglobulin lambda-1 light chain isoform X47 (ENSOARG00020025518) genes were downregulated (log2FC < -1) in this same group. Gene set Enrichment Analysis (GSEA) identified 428 signaling pathways, predominantly related to biological processes. The lysosome pathway (GO:0005764) was the most enriched, and may affect fertility and sexual behavior, given the crucial role played by lysosomes in steroidogenesis, being the SORCS2 gene related to this signaling pathway. Furthermore, the enriched positive regulation of ERK1 and ERK2 cascade (GO:0070374) pathway is associated with reproductive phenotypes such as fertility via modulation of hypothalamic regulation and GnRH-mediated production of pituitary gonadotropins. Furthermore, external side of plasma membrane (GO:0009897), fibrillar center (GO:0001650), focal adhesion (GO:0005925), and lamellipodium (GO:0030027) pathways were also enriched, suggesting that some molecules of these pathways might also be involved in rams' sexual behavior. These results provide new clues for understanding the molecular regulation of sexual behavior in rams. Further investigations will be needed to confirm the functions of SORCS2 and CRYL1 in relation to sexual behavior.
Collapse
Affiliation(s)
- Kenza Lakhssassi
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
- INRA Instituts, 6356 Rabat, Morocco
| | - María Pilar Sarto
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - Belén Lahoz
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - José Luis Alabart
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - José Folch
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - Malena Serrano
- Department of Animal Breeding and Genetics, INIA-CSIC, 28040 Madrid, Spain
| | - Jorge Hugo Calvo
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
- ARAID, 50018 Zaragoza, Spain
| |
Collapse
|
4
|
Zhang YT, Tian W, Lu YS, Li ZM, Ren DD, Zhang Y, Sha JY, Huo XH, Li SS, Sun YS. American ginseng with different processing methods ameliorate immunosuppression induced by cyclophosphamide in mice via the MAPK signaling pathways. Front Immunol 2023; 14:1085456. [PMID: 37153583 PMCID: PMC10160487 DOI: 10.3389/fimmu.2023.1085456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
This study aimed to clarify the effects of two processed forms of American ginseng (Panax quinquefolius L.) on immunosuppression caused by cyclophosphamide (CTX) in mice. In the CTX-induced immunosuppressive model, mice were given either steamed American ginseng (American ginseng red, AGR) or raw American ginseng (American ginseng soft branch, AGS) by intragastric administration. Serum and spleen tissues were collected, and the pathological changes in mice spleens were observed by conventional HE staining. The expression levels of cytokines were detected by ELISA, and the apoptosis of splenic cells was determined by western blotting. The results showed that AGR and AGS could relieve CTX-induced immunosuppression through the enhanced immune organ index, improved cell-mediated immune response, increased serum levels of cytokines (TNF-α, IFN-γ, and IL-2) and immunoglobulins (IgG, IgA, and IgM), as well as macrophage activities including carbon clearance and phagocytic index. AGR and AGS downregulated the expression of BAX and elevated the expression of Bcl-2, p-P38, p-JNK, and p-ERK in the spleens of CTX-injected animals. Compared to AGS, AGR significantly improved the number of CD4+CD8-T lymphocytes, the spleen index, and serum levels of IgA, IgG, TNF-α, and IFN-γ. The expression of the ERK/MAPK pathway was markedly increased. These findings support the hypothesis that AGR and AGS are effective immunomodulatory agents capable of preventing immune system hypofunction. Future research may investigate the exact mechanism to rule out any unforeseen effects of AGR and AGS.
Collapse
Affiliation(s)
- Yan-Ting Zhang
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Wei Tian
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Yu-Shun Lu
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Zhi-Man Li
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Duo-Duo Ren
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Yue Zhang
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Ji-Yue Sha
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Xiao-Hui Huo
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
| | - Shan-Shan Li
- Institute of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
- *Correspondence: Shan-Shan Li, ; Yin-Shi Sun,
| | - Yin-Shi Sun
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Shan-Shan Li, ; Yin-Shi Sun,
| |
Collapse
|
5
|
Wnt-Dependent Activation of ERK Mediates Repression of Chondrocyte Fate during Calvarial Development. J Dev Biol 2021; 9:jdb9030023. [PMID: 34199092 PMCID: PMC8293402 DOI: 10.3390/jdb9030023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 01/05/2023] Open
Abstract
Wnt signaling regulates cell fate decisions in diverse contexts during development, and loss of Wnt signaling in the cranial mesenchyme results in a robust and binary cell fate switch from cranial bone to ectopic cartilage. The Extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) and Wnt signaling pathways are activated during calvarial osteoblast cell fate selection. Here, we test the hypothesis that ERK signaling is a mediator of Wnt-dependent cell fate decisions in the cranial mesenchyme. First, we show that loss of Erk1/2 in the cranial mesenchyme results in a diminished domain of osteoblast marker expression and increased expression of cartilage fate markers and ectopic cartilage formation in the frontal bone primordia. Second, we show that mesenchyme Wnt/β-catenin signaling and Wntless are required for ERK activation in calvarial osteoblasts. Third, we demonstrate that Wnt and ERK signaling pathways function together to repress SOX9 expression in mouse cranial mesenchyme. Our results demonstrate an interaction between the Wnt and ERK signaling pathways in regulating lineage selection in a subset of calvarial cells and provide new insights into Wnt-dependent cell fate decisions.
Collapse
|
6
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
7
|
Drosten M, Barbacid M. Targeting the MAPK Pathway in KRAS-Driven Tumors. Cancer Cell 2020; 37:543-550. [PMID: 32289276 DOI: 10.1016/j.ccell.2020.03.013] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
KRAS mutations occur in a quarter of all of human cancers, yet no selective drug has been approved to treat these tumors. Despite the recent development of drugs that block KRASG12C, the majority of KRAS oncoproteins remain undruggable. Here, we review recent efforts to validate individual components of the mitogen-activated protein kinase (MAPK) pathway as targets to treat KRAS-mutant cancers by comparing genetic information derived from experimental mouse models of KRAS-driven lung and pancreatic tumors with the outcome of selective MAPK inhibitors in clinical trials. We also review the potential of RAF1 as a key target to block KRAS-mutant cancers.
Collapse
Affiliation(s)
- Matthias Drosten
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Mariano Barbacid
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
8
|
Miningou N, Blackwell KT. The road to ERK activation: Do neurons take alternate routes? Cell Signal 2020; 68:109541. [PMID: 31945453 PMCID: PMC7127974 DOI: 10.1016/j.cellsig.2020.109541] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 01/29/2023]
Abstract
The ERK cascade is a central signaling pathway that regulates a wide variety of cellular processes including proliferation, differentiation, learning and memory, development, and synaptic plasticity. A wide range of inputs travel from the membrane through different signaling pathway routes to reach activation of one set of output kinases, ERK1&2. The classical ERK activation pathway beings with growth factor activation of receptor tyrosine kinases. Numerous G-protein coupled receptors and ionotropic receptors also lead to ERK through increases in the second messengers calcium and cAMP. Though both types of pathways are present in diverse cell types, a key difference is that most stimuli to neurons, e.g. synaptic inputs, are transient, on the order of milliseconds to seconds, whereas many stimuli acting on non-neural tissue, e.g. growth factors, are longer duration. The ability to consolidate these inputs to regulate the activation of ERK in response to diverse signals raises the question of which factors influence the difference in ERK activation pathways. This review presents both experimental studies and computational models aimed at understanding the control of ERK activation and whether there are fundamental differences between neurons and other cells. Our main conclusion is that differences between cell types are quite subtle, often related to differences in expression pattern and quantity of some molecules such as Raf isoforms. In addition, the spatial location of ERK is critical, with regulation by scaffolding proteins producing differences due to colocalization of upstream molecules that may differ between neurons and other cells.
Collapse
Affiliation(s)
- Nadiatou Miningou
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, United States of America
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience and Bioengineering Department, George Mason University, Fairfax, VA 22030, United States of America.
| |
Collapse
|
9
|
Kumar S, Principe DR, Singh SK, Viswakarma N, Sondarva G, Rana B, Rana A. Mitogen-Activated Protein Kinase Inhibitors and T-Cell-Dependent Immunotherapy in Cancer. Pharmaceuticals (Basel) 2020; 13:E9. [PMID: 31936067 PMCID: PMC7168889 DOI: 10.3390/ph13010009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/13/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling networks serve to regulate a wide range of physiologic and cancer-associated cell processes. For instance, a variety of oncogenic mutations often lead to hyperactivation of MAPK signaling, thereby enhancing tumor cell proliferation and disease progression. As such, several components of the MAPK signaling network have been proposed as viable targets for cancer therapy. However, the contributions of MAPK signaling extend well beyond the tumor cells, and several MAPK effectors have been identified as key mediators of the tumor microenvironment (TME), particularly with respect to the local immune infiltrate. In fact, a blockade of various MAPK signals has been suggested to fundamentally alter the interaction between tumor cells and T lymphocytes and have been suggested a potential adjuvant to immune checkpoint inhibition in the clinic. Therefore, in this review article, we discuss the various mechanisms through which MAPK family members contribute to T-cell biology, as well as circumstances in which MAPK inhibition may potentiate or limit cancer immunotherapy.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Daniel R. Principe
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Gautam Sondarva
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Nitration-induced ubiquitination and degradation control quality of ERK1. Biochem J 2019; 476:1911-1926. [PMID: 31196894 PMCID: PMC6604951 DOI: 10.1042/bcj20190240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
The mitogen-activated protein kinase ERK1/2 (ERKs, extracellular-regulated protein kinases) plays important roles in a wide spectrum of cellular processes and have been implicated in many disease states. The spatiotemporal regulation of ERK activity has been extensively studied. However, scarce information has been available regarding the quality control of the kinases to scavenge malfunctioning ERKs. Using site-specific mutagenesis and mass spectrometry, we found that the disruption of the conserved H-bond between Y210 and E237 of ERK1 through point mutation at or naturally occurring nitration on Y210 initiates a quality control program dependent on chaperon systems and CHIP (C-terminal of Hsp70-interacting protein)-mediated ubiquitination and degradation. The H-bond is also important for the quality control of ERK2, but through a distinct mechanism. These findings clearly demonstrate how malfunctioning ERKs are eliminated when cells are in certain stress conditions or unhealthy states, and could represent a general mechanism for scavenging malfunctioning kinases in stress conditions.
Collapse
|
11
|
Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to Potentiate Tumour Responses to Radiation. Int J Mol Sci 2019; 20:ijms20102530. [PMID: 31126017 PMCID: PMC6567863 DOI: 10.3390/ijms20102530] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
ERK1 and ERK2 (ERKs), two extracellular regulated kinases (ERK1/2), are evolutionary-conserved and ubiquitous serine-threonine kinases involved in regulating cell signalling in normal and pathological tissues. The expression levels of these kinases are almost always different, with ERK2 being the more prominent. ERK1/2 activation is fundamental for the development and progression of cancer. Since their discovery, much research has been dedicated to their role in mitogen-activated protein kinases (MAPK) pathway signalling and in their activation by mitogens and mutated RAF or RAS in cancer cells. In order to gain a better understanding of the role of ERK1/2 in MAPK pathway signalling, many studies have been aimed at characterizing ERK1/2 splicing isoforms, mutants, substrates and partners. In this review, we highlight the differences between ERK1 and ERK2 without completely discarding the hypothesis that ERK1 and ERK2 exhibit functional redundancy. The main goal of this review is to shed light on the role of ERK1/2 in targeted therapy and radiotherapy and highlight the importance of identifying ERK inhibitors that may overcome acquired resistance. This is a highly relevant therapeutic issue that needs to be addressed to combat tumours that rely on constitutively active RAF and RAS mutants and the MAPK pathway.
Collapse
|
12
|
Zakeri A, Hansen EP, Andersen SD, Williams AR, Nejsum P. Immunomodulation by Helminths: Intracellular Pathways and Extracellular Vesicles. Front Immunol 2018; 9:2349. [PMID: 30369927 PMCID: PMC6194161 DOI: 10.3389/fimmu.2018.02349] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites are masters at manipulating host immune responses, using an array of sophisticated mechanisms. One of the major mechanisms enabling helminths to establish chronic infections is the targeting of pattern recognition receptors (PRRs) including toll-like receptors, C-type lectin receptors, and the inflammasome. Given the critical role of these receptors and their intracellular pathways in regulating innate inflammatory responses, and also directing adaptive immunity toward Th1 and Th2 responses, recognition of the pathways triggered and/or modulated by helminths and their products will provide detailed insights about how helminths are able to establish an immunoregulatory environment. However, helminths also target PRRs-independent mechanisms (and most likely other yet unknown mechanisms and pathways) underpinning the battery of different molecules helminths produce. Herein, the current knowledge on intracellular pathways in antigen presenting cells activated by helminth-derived biomolecules is reviewed. Furthermore, we discuss the importance of helminth-derived vesicles as a less-appreciated components released during infection, their role in activating these host intracellular pathways, and their implication in the development of new therapeutic approaches for inflammatory diseases and the possibility of designing a new generation of vaccines.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Eline P. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sidsel D. Andersen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Thei L, Rocha-Ferreira E, Peebles D, Raivich G, Hristova M. Extracellular signal-regulated kinase 2 has duality in function between neuronal and astrocyte expression following neonatal hypoxic-ischaemic cerebral injury. J Physiol 2018; 596:6043-6062. [PMID: 29873394 PMCID: PMC6265549 DOI: 10.1113/jp275649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023] Open
Abstract
Key points This study identifies phosphorylated extracellular signal‐regulated kinase (ERK) to be immediately diminished followed by a rapid if transient increase for up to 4 h following hypoxic–ischaemic insult (HI) in the neonatal mouse. Phosphorylated ERK up‐regulation was prevented with systemic injection of the mitogen‐activated protein kinase kinase (MEK) inhibitor SL327. Treatment with SL327 both pre‐ and post‐HI gave a strong reduction in the number of dying cells and microgliosis. By utilising transgenic mouse mutations, we observe that neuronal ERK2 significantly contributes to tissue damage, while ERK1 and astrocytic ERK2 are neuroprotective. Compared to global inactivation, selective cell‐specific interference with ERK activity could result in stronger neuroprotection.
Abstract Hypoxia–ischaemia (HI) is a major cause of neonatal brain injury resulting in cerebral palsy, epilepsy, cognitive impairment and other neurological disabilities. The role of extracellular signal‐regulated kinase (ERK) isoforms and their mitogen‐activated protein kinase kinase (MEK)‐dependent phosphorylation in HI has previously been explored but remains unresolved at cellular level. This is pertinent given the growing awareness of the role of non‐neuronal cells in neuroprotection. Using a modified Rice–Vannucci model of HI in the neonatal mouse we observed time‐ and cell‐dependent ERK phosphorylation (pERK), with strongly up‐regulated pERK immunoreactivity first in periventricular white matter axons within 15–45 min of HI, followed by forebrain astrocytes and neurons (1–4 h post‐HI), and return to baseline by 16 h. We explored the effects of pharmacological ERK blockade through the MEK inhibitor SL327 on neonatal HI‐brain damage following HI alone (30 or 60 min) or lipopolysaccharide (LPS)‐sensitised HI insult (30 min). Global inhibition of ERK phosphorylation with systemically applied SL327 abolished forebrain pERK immunoreactivity, and significantly reduced cell death and associated microglial activation at 48 h post‐HI. We then explored the effects of cell‐specific ERK2 deletion alone or in combination with global ERK1 knockout under the same conditions of HI insult. Neuronal ERK2 deletion strongly decreased infarct size, neuronal cell death and microglial activation in grey matter following both HI alone or LPS‐sensitised HI. ERK1 deletion attenuated the protective effect of neuronal ERK2 deletion. Removal of astroglial ERK2 produced a reverse response, with a 3‐ to 4‐fold increase in microglial activation and cell death. Our data suggest a cell‐specific and time‐dependent role of ERK in neonatal HI, with a predominant, neurotoxic effect of neuronal ERK2, which is counteracted by neuroprotection by ERK1 and astrocytic ERK2. Overall, global pharmacological inhibition of ERK phosphorylation is strongly neuroprotective. This study identifies phosphorylated extracellular signal‐regulated kinase (ERK) to be immediately diminished followed by a rapid if transient increase for up to 4 h following hypoxic–ischaemic insult (HI) in the neonatal mouse. Phosphorylated ERK up‐regulation was prevented with systemic injection of the mitogen‐activated protein kinase kinase (MEK) inhibitor SL327. Treatment with SL327 both pre‐ and post‐HI gave a strong reduction in the number of dying cells and microgliosis. By utilising transgenic mouse mutations, we observe that neuronal ERK2 significantly contributes to tissue damage, while ERK1 and astrocytic ERK2 are neuroprotective. Compared to global inactivation, selective cell‐specific interference with ERK activity could result in stronger neuroprotection.
Collapse
Affiliation(s)
- Laura Thei
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK.,School of Pharmacy, University of Reading, Reading, RG6 6UA, UK
| | - Eridan Rocha-Ferreira
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK.,Institute of Clinical Sciences, University of Gothenburg, Gothenburg, SE 416 85, Sweden
| | - Donald Peebles
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK
| | - Gennadij Raivich
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK
| | - Mariya Hristova
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK
| |
Collapse
|
14
|
Kahnamouyi S, Nouri M, Farzadi L, Darabi M, Hosseini V, Mehdizadeh A. The role of mitogen-activated protein kinase-extracellular receptor kinase pathway in female fertility outcomes: a focus on pituitary gonadotropins regulation. Ther Adv Endocrinol Metab 2018; 9:209-215. [PMID: 29977499 PMCID: PMC6022971 DOI: 10.1177/2042018818772775] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/30/2018] [Indexed: 11/16/2022] Open
Abstract
Mammalian reproduction systems are largely regulated by the secretion of two gonadotropins, that is, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The main action of LH and FSH on the ovary is to stimulate secretion of estradiol and progesterone, which play an important role in the ovarian function and reproductive cycle control. FSH and LH secretions are strictly controlled by the gonadotropin-releasing hormone (GnRH), which is secreted from the hypothalamus into the pituitary vascular system. Maintaining normal secretion of LH and FSH is dependent on pulsatile secretion of GnRH. Extracellular signal-regulated kinase (ERK) proteins, as the main components of mitogen-activated protein kinase (MAPK) signaling pathways, are involved in the primary regulation of GnRH-stimulated transcription of the gonadotropins' α subunit in the pituitary cells. However, GnRH-stimulated expression of the β subunit has not yet been reported. Furthermore, GnRH-mediated stimulation of ERK1 and ERK2 leads to several important events such as cell proliferation and differentiation. In this review, we briefly introduce the relationship between ERK signaling and gonadotropin secretion, and its importance in female infertility.
Collapse
Affiliation(s)
- Samira Kahnamouyi
- Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Laya Farzadi
- Women Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
15
|
Vithayathil J, Pucilowska J, Friel D, Landreth GE. Chronic impairment of ERK signaling in glutamatergic neurons of the forebrain does not affect spatial memory retention and LTP in the same manner as acute blockade of the ERK pathway. Hippocampus 2017; 27:1239-1249. [PMID: 28833860 DOI: 10.1002/hipo.22769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 11/10/2022]
Abstract
The ERK/MAPK signaling pathway has been extensively studied in the context of learning and memory. Defects in this pathway underlie genetic diseases associated with intellectual disability, including impaired learning and memory. Numerous studies have investigated the impact of acute ERK/MAPK inhibition on long-term potentiation and spatial memory. However, genetic knockouts of the ERKs have not been utilized to determine whether developmental perturbations of ERK/MAPK signaling affect LTP and memory formation in postnatal life. In this study, two different ERK2 conditional knockout mice were generated that restrict loss of ERK2 to excitatory neurons in the forebrain, but at different time-points (embryonically and post-natally). We found that embryonic loss of ERK2 had minimal effect on spatial memory retention and novel object recognition, while loss of ERK2 post-natally had more pronounced effects in these behaviors. Loss of ERK2 in both models showed intact LTP compared to control animals, while loss of both ERK1 and ERK2 impaired late phase LTP. These findings indicate that ERK2 is not necessary for LTP and spatial memory retention and provide new insights into the functional deficits associated with the chronic impairment of ERK signaling.
Collapse
Affiliation(s)
- Joseph Vithayathil
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
| | - Joanna Pucilowska
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
| | - David Friel
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
| | - Gary E Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
16
|
ERK/MAPK Signaling Is Required for Pathway-Specific Striatal Motor Functions. J Neurosci 2017; 37:8102-8115. [PMID: 28733355 DOI: 10.1523/jneurosci.0473-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/29/2017] [Accepted: 07/01/2017] [Indexed: 12/15/2022] Open
Abstract
The ERK/MAPK intracellular signaling pathway is hypothesized to be a key regulator of striatal activity via modulation of synaptic plasticity and gene transcription. However, prior investigations into striatal ERK/MAPK functions have yielded conflicting results. Further, these studies have not delineated the cell-type-specific roles of ERK/MAPK signaling due to the reliance on globally administered pharmacological ERK/MAPK inhibitors and the use of genetic models that only partially reduce total ERK/MAPK activity. Here, we generated mouse models in which ERK/MAPK signaling was completely abolished in each of the two distinct classes of medium spiny neurons (MSNs). ERK/MAPK deletion in D1R-MSNs (direct pathway) resulted in decreased locomotor behavior, reduced weight gain, and early postnatal lethality. In contrast, loss of ERK/MAPK signaling in D2R-MSNs (indirect pathway) resulted in a profound hyperlocomotor phenotype. ERK/MAPK-deficient D2R-MSNs exhibited a significant reduction in dendritic spine density, markedly suppressed electrical excitability, and suppression of activity-associated gene expression even after pharmacological stimulation. Our results demonstrate the importance of ERK/MAPK signaling in governing the motor functions of the striatal direct and indirect pathways. Our data further show a critical role for ERK in maintaining the excitability and plasticity of D2R-MSNs.SIGNIFICANCE STATEMENT Alterations in ERK/MAPK activity are associated with drug abuse, as well as neuropsychiatric and movement disorders. However, genetic evidence defining the functions of ERK/MAPK signaling in striatum-related neurophysiology and behavior is lacking. We show that loss of ERK/MAPK signaling leads to pathway-specific alterations in motor function, reduced neuronal excitability, and the inability of medium spiny neurons to regulate activity-induced gene expression. Our results underscore the potential importance of the ERK/MAPK pathway in human movement disorders.
Collapse
|
17
|
Saba-El-Leil MK, Frémin C, Meloche S. Redundancy in the World of MAP Kinases: All for One. Front Cell Dev Biol 2016; 4:67. [PMID: 27446918 PMCID: PMC4921452 DOI: 10.3389/fcell.2016.00067] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/10/2016] [Indexed: 11/13/2022] Open
Abstract
The protein kinases ERK1 and ERK2 are the effector components of the prototypical ERK1/2 mitogen-activated protein (MAP) kinase pathway. This signaling pathway regulates cell proliferation, differentiation and survival, and is essential for embryonic development and cellular homeostasis. ERK1 and ERK2 homologs share similar biochemical properties but whether they exert specific physiological functions or act redundantly has been a matter of controversy. However, recent studies now provide compelling evidence in support of functionally redundant roles of ERK1 and ERK2 in embryonic development and physiology. In this review, we present a critical assessment of the evidence for the functional specificity or redundancy of MAP kinase isoforms. We focus on the ERK1/ERK2 pathway but also discuss the case of JNK and p38 isoforms.
Collapse
Affiliation(s)
- Marc K Saba-El-Leil
- Institute for Research in Immunology and Cancer, Université de Montréal Montréal, QC, Canada
| | - Christophe Frémin
- Institute for Research in Immunology and Cancer, Université de MontréalMontréal, QC, Canada; Institute for Research in Cancer of MontpellierMontpellier, France
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Université de MontréalMontréal, QC, Canada; Molecular Biology Program, Université de MontréalMontréal, QC, Canada; Department of Pharmacology, Université de MontréalMontréal, QC, Canada
| |
Collapse
|
18
|
Buscà R, Pouysségur J, Lenormand P. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? Front Cell Dev Biol 2016; 4:53. [PMID: 27376062 PMCID: PMC4897767 DOI: 10.3389/fcell.2016.00053] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022] Open
Abstract
The MAP kinase signaling cascade Ras/Raf/MEK/ERK has been involved in a large variety of cellular and physiological processes that are crucial for life. Many pathological situations have been associated to this pathway. More than one isoform has been described at each level of the cascade. In this review we devoted our attention to ERK1 and ERK2, which are the effector kinases of the pathway. Whether ERK1 and ERK2 specify functional differences or are in contrast functionally redundant, constitutes an ongoing debate despite the huge amount of studies performed to date. In this review we compiled data on ERK1 vs. ERK2 gene structures, protein sequences, expression levels, structural and molecular mechanisms of activation and substrate recognition. We have also attempted to perform a rigorous analysis of studies regarding the individual roles of ERK1 and ERK2 by the means of morpholinos, siRNA, and shRNA silencing as well as gene disruption or gene replacement in mice. Finally, we comment on a recent study of gene and protein evolution of ERK isoforms as a distinct approach to address the same question. Our review permits the evaluation of the relevance of published studies in the field especially when measurements of global ERK activation are taken into account. Our analysis favors the hypothesis of ERK1 and ERK2 exhibiting functional redundancy and points to the concept of the global ERK quantity, and not isoform specificity, as being the essential determinant to achieve ERK function.
Collapse
Affiliation(s)
- Roser Buscà
- Centre National de la Recherche Scientifique UMR7284, Institut National de la Santé et de la Recherche Médicale, Centre A. Lacassagne, Institute for Research on Cancer and Ageing of Nice, University of Nice-Sophia Antipolis Nice, France
| | - Jacques Pouysségur
- Centre National de la Recherche Scientifique UMR7284, Institut National de la Santé et de la Recherche Médicale, Centre A. Lacassagne, Institute for Research on Cancer and Ageing of Nice, University of Nice-Sophia AntipolisNice, France; Centre Scientifique de MonacoMonaco, Monaco
| | - Philippe Lenormand
- Centre National de la Recherche Scientifique UMR7284, Institut National de la Santé et de la Recherche Médicale, Centre A. Lacassagne, Institute for Research on Cancer and Ageing of Nice, University of Nice-Sophia Antipolis Nice, France
| |
Collapse
|
19
|
Ku MC, Edes I, Bendix I, Pohlmann A, Waiczies H, Prozorovski T, Günther M, Martin C, Pagès G, Wolf SA, Kettenmann H, Uckert W, Niendorf T, Waiczies S. ERK1 as a Therapeutic Target for Dendritic Cell Vaccination against High-Grade Gliomas. Mol Cancer Ther 2016; 15:1975-87. [PMID: 27256374 DOI: 10.1158/1535-7163.mct-15-0850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
Abstract
Glioma regression requires the recruitment of potent antitumor immune cells into the tumor microenvironment. Dendritic cells (DC) play a role in immune responses to these tumors. The fact that DC vaccines do not effectively combat high-grade gliomas, however, suggests that DCs need to be genetically modified specifically to promote their migration to tumor relevant sites. Previously, we identified extracellular signal-regulated kinase (ERK1) as a regulator of DC immunogenicity and brain autoimmunity. In the current study, we made use of modern magnetic resonance methods to study the role of ERK1 in regulating DC migration and tumor progression in a model of high-grade glioma. We found that ERK1-deficient mice are more resistant to the development of gliomas, and tumor growth in these mice is accompanied by a higher infiltration of leukocytes. ERK1-deficient DCs exhibit an increase in migration that is associated with sustained Cdc42 activation and increased expression of actin-associated cytoskeleton-organizing proteins. We also demonstrated that ERK1 deletion potentiates DC vaccination and provides a survival advantage in high-grade gliomas. Considering the therapeutic significance of these results, we propose ERK1-deleted DC vaccines as an additional means of eradicating resilient tumor cells and preventing tumor recurrence. Mol Cancer Ther; 15(8); 1975-87. ©2016 AACR.
Collapse
Affiliation(s)
- Min-Chi Ku
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Inan Edes
- Department of Molecular Cell Biology and Gene Therapy, Humboldt-University Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Tim Prozorovski
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Günther
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Gilles Pagès
- University Nice-Sophia Antipolis, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Susanne A Wolf
- Department of Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Helmut Kettenmann
- Department of Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Wolfgang Uckert
- Department of Molecular Cell Biology and Gene Therapy, Humboldt-University Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
20
|
Taherian A, Haas TA, Davoodabadi A. Substrate-Dependent Activity of ERK and MEK Proteins in Breast Cancer (MCF7), and Kidney Embryonic (Hek-293) Cell Lines, Cultured on Different Substrates. IRANIAN JOURNAL OF CANCER PREVENTION 2015; 8:e3909. [PMID: 26634110 PMCID: PMC4667236 DOI: 10.17795/ijcp-3909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/04/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Breast cancer has been one of the most common types of cancer, as the leading cause of women death in world. Breast cancer has known as a heterogenic disease that the clinical path in different patients would be very different. Since the current classification has not covered the diverse clinical course of breast cancer, lots of efforts has done to find new biological markers. Integrins are hetero dimmer proteins of α and β subunits on cell membrane. After binding to extra cellular matrix (ECM), integrins activate MAPK pathway that regulated different activities like survival, differentiation, migration, immunologic response. The interaction of integrins and ECM have a key role in cancer cell activities like survival and metastasis. OBJECTIVES In this study the expression of αvβ3 integrin, substrate -dependent morphology and ERK and p-ERK activation was compared in MCF7 and Hek-293 cells lines. MATERIALS AND METHODS The expression of αvβ3 integrin was assayed by flow cytometry. These cell lines were cultured on pre-covered plates with fibronectin (FN), fibrinogen (Fg) or collagen (Col) and the expression of ERK and p-ERK proteins was assessed in attached and free cells for each substrate after 1 hour incubation. The morphology of the cells have examined under an inverted phase contrast microscope at 15 min, 1 hour, 3 hours, 5 hours and 1 day of incubatioon. RESULTS Different substrate induced the expression ERK or p-ERK differently in the two cell lines. In MCF7 cells, substrates induced the expression of ERK in all the attached cells but free cells in BSA, collagen and Fg showed a lower expression of ERK. In comparison with Hek-293 cells althought all the attached cells have expressed ERK peotein but only free cells in collagen plates showed the expression of ERK. None of the cell lines has shown any expression of ERK and p-ERK in attached or free cells except for the Hek-293 free cells in collagen platees that have shown a weak signal for p-ERK. CONCLUSIONS Overall the breast cancer cell lines MCF7 and Hek-293 cells have differently responded on similar substrates regarding morpology or ERK and MEK expressions.
Collapse
Affiliation(s)
- Aliakbar Taherian
- Kashan Gametogenesis Research Centre, Kashan University of Medical Sciences, Kashan, IR Iran
| | - Thomas A Haas
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
21
|
Richardson ET, Shukla S, Nagy N, Boom WH, Beck RC, Zhou L, Landreth GE, Harding CV. ERK Signaling Is Essential for Macrophage Development. PLoS One 2015; 10:e0140064. [PMID: 26445168 PMCID: PMC4596867 DOI: 10.1371/journal.pone.0140064] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/20/2015] [Indexed: 11/25/2022] Open
Abstract
Macrophages depend on colony stimulating factor 1 (also known as M-CSF) for their growth and differentiation, but the requirements for intracellular signals that lead to macrophage differentiation and function remain unclear. M-CSF is known to activate ERK1 and ERK2, but the importance of this signaling pathway in macrophage development is unknown. In these studies, we characterized a novel model of Erk1-/-Erk2flox/floxLyz2Cre/Cre mice in which the ERK2 isoform is deleted from macrophages in the background of global ERK1 deficiency. Cultures of M-CSF-stimulated bone marrow precursors from these mice yielded reduced numbers of macrophages. Whereas macrophages developing from M-CSF-stimulated bone marrow of Erk2flox/floxLyz2Cre/Cre mice showed essentially complete loss of ERK2 expression, the reduced number of macrophages that develop from Erk1-/-Erk2flox/floxLyz2Cre/Cre bone marrow show retention of ERK2 expression, indicating selective outgrowth of a small proportion of precursors in which Cre-mediated deletion failed to occur. The bone marrow of Erk1-/-Erk2flox/floxLyz2Cre/Cre mice was enriched for CD11b+ myeloid cells, CD11bhi Gr-1hi neutrophils, Lin- c-Kit+ Sca–1+ hematopoietic stem cells, and Lin- c-Kit+ CD34+ CD16/32+ granulocyte-macrophage progenitors. Culture of bone marrow Lin- cells under myeloid-stimulating conditions yielded reduced numbers of monocytes. Collectively, these data indicate that the defect in production of macrophages is not due to a reduced number of progenitors, but rather due to reduced ability of progenitors to proliferate and produce macrophages in response to M-CSF-triggered ERK signaling. Macrophages from Erk1-/-Erk2flox/floxLyz2Cre/Cre bone marrow showed reduced induction of M-CSF-regulated genes that depend on the ERK pathway for their expression. These data demonstrate that ERK1/ERK2 play a critical role in driving M-CSF-dependent proliferation of bone marrow progenitors for production of macrophages.
Collapse
Affiliation(s)
- Edward T. Richardson
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Medical Scientist Training Program, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Supriya Shukla
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Nancy Nagy
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - W. Henry Boom
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Center for AIDS Research, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Rose C. Beck
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Gary E. Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Clifford V. Harding
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Center for AIDS Research, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
UNLABELLED Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are highly homologous yet distinct components of signal transduction pathways known to regulate cell survival and function. Recent evidence indicates an isoform-specific role for ERK2 in pain processing and peripheral sensitization. However, the function of ERK2 in primary sensory neurons has not been directly tested. To dissect the isoform-specific function of ERK2 in sensory neurons, we used mice with Cre-loxP-mediated deletion of ERK2 in Nav1.8(+) sensory neurons that are predominantly nociceptors. We find that ERK2, unlike ERK1, is required for peripheral sensitization and cold sensation. We also demonstrate that ERK2, but not ERK1, is required to preserve epidermal innervation in a subset of peptidergic neurons. Additionally, deletion of both ERK isoforms in Nav1.8(+) sensory neurons leads to neuron loss not observed with deletion of either isoform alone, demonstrating functional redundancy in the maintenance of sensory neuron survival. Thus, ERK1 and ERK2 exhibit both functionally distinct and redundant roles in sensory neurons. SIGNIFICANCE STATEMENT ERK1/2 signaling affects sensory neuron function and survival. However, it was not clear whether ERK isoform-specific roles exist in these processes postnatally. Previous work from our laboratory suggested either functional redundancy of ERK isoforms or a predominant role for ERK2 in pain; however, the tools to discriminate between these possibilities were not available at the time. In the present study, we use new genetic knock-out lines to demonstrate that ERK2 in sensory neurons is necessary for development of inflammatory pain and for postnatal maintenance of peptidergic epidermal innervation. Interestingly, postnatal loss of both ERK isoforms leads to a profound loss of sensory neurons. Therefore, ERK1 and ERK2 display both functionally distinct and redundant roles in sensory neurons.
Collapse
|
23
|
Dentate Gyrus Development Requires ERK Activity to Maintain Progenitor Population and MAPK Pathway Feedback Regulation. J Neurosci 2015; 35:6836-48. [PMID: 25926459 DOI: 10.1523/jneurosci.4196-14.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ERK/MAPK pathway is an important developmental signaling pathway. Mutations in upstream elements of this pathway result in neuro-cardio-facial cutaneous (NCFC) syndromes, which are typified by impaired neurocognitive abilities that are reliant upon hippocampal function. The role of ERK signaling during hippocampal development has not been examined and may provide critical insight into the cause of hippocampal dysfunction in NCFC syndromes. In this study, we have generated ERK1 and conditional ERK2 compound knock-out mice to determine the role of ERK signaling during development of the hippocampal dentate gyrus. We found that loss of both ERK1 and ERK2 resulted in 60% fewer granule cells and near complete absence of neural progenitor pools in the postnatal dentate gyrus. Loss of ERK1/2 impaired maintenance of neural progenitors as they migrate from the dentate ventricular zone to the dentate gyrus proper, resulting in premature depletion of neural progenitor cells beginning at E16.5, which prevented generation of granule cells later in development. Finally, loss of ERK2 alone does not impair development of the dentate gyrus as animals expressing only ERK1 developed a normal hippocampus. These findings establish that ERK signaling regulates maintenance of progenitor cells required for development of the dentate gyrus.
Collapse
|
24
|
The 16p11.2 deletion mouse model of autism exhibits altered cortical progenitor proliferation and brain cytoarchitecture linked to the ERK MAPK pathway. J Neurosci 2015; 35:3190-200. [PMID: 25698753 DOI: 10.1523/jneurosci.4864-13.2015] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorders are complex, highly heritable neurodevelopmental disorders affecting ∼1 in 100 children. Copy number variations of human chromosomal region 16p11.2 are genetically linked to 1% of autism-related disorders. This interval contains the MAPK3 gene, which encodes the MAP kinase, ERK1. Mutations in upstream elements regulating the ERK pathway are genetically linked to autism and other disorders of cognition including the neuro-cardio-facial cutaneous syndromes and copy number variations. We report that a murine model of human 16p11.2 deletion exhibits a reduction in brain size and perturbations in cortical cytoarchitecture. We observed enhanced progenitor proliferation and premature cell cycle exit, which are a consequence of altered levels of downstream ERK effectors cyclin D1 and p27(Kip1) during mid-neurogenesis. The increased progenitor proliferation and cell cycle withdrawal resulted in premature depletion of progenitor pools, altering the number and frequency of neurons ultimately populating cortical lamina. Specifically, we found a reduced number of upper layer pyramidal neurons and an increase in layer VI corticothalamic projection neurons, reflecting the altered cortical progenitor proliferation dynamics in these mice. Importantly, we observed a paradoxical increase in ERK signaling in mid-neurogenesis in the 16p11.2del mice, which is coincident with the development of aberrant cortical cytoarchitecture. The 16p11.2del mice exhibit anxiety-like behaviors and impaired memory. Our findings provide evidence of ERK dysregulation, developmental abnormalities in neurogenesis, and behavioral impairment associated with the 16p11.2 chromosomal deletion.
Collapse
|
25
|
Zhu M, Duan H, Gao M, Zhang H, Peng Y. Both ERK1 and ERK2 are required for enterovirus 71 (EV71) efficient replication. Viruses 2015; 7:1344-56. [PMID: 25803100 PMCID: PMC4379574 DOI: 10.3390/v7031344] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 12/16/2022] Open
Abstract
It has been demonstrated that MEK1, one of the two MEK isoforms in Raf-MEK-ERK1/2 pathway, is essential for successful EV71 propagation. However, the distinct function of ERK1 and ERK2 isoforms, the downstream kinases of MEKs, remains unclear in EV71 replication. In this study, specific ERK siRNAs and selective inhibitor U0126 were applied. Silencing specific ERK did not significantly impact on the EV71-caused biphasic activation of the other ERK isoform, suggesting the EV71-induced activations of ERK1 and ERK2 were non-discriminative and independent to one another. Knockdown of either ERK1 or ERK2 markedly impaired progeny EV71 propagation (both by more than 90%), progeny viral RNA amplification (either by about 30% to 40%) and protein synthesis (both by around 70%), indicating both ERK1 and ERK2 were critical and not interchangeable to EV71 propagation. Moreover, suppression of EV71 replication by inhibiting both early and late phases of ERK1/2 activation showed no significant difference from that of only blocking the late phase, supporting the late phase activation was more importantly responsible for EV71 life cycle. Taken together, this study for the first time identified both ERK1 and ERK2 were required for EV71 efficient replication and further verified the important role of MEK1-ERK1/2 in EV71 replication.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Hao Duan
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Meng Gao
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Hao Zhang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Yihong Peng
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
26
|
Microwave & magnetic (M2) proteomics reveals CNS-specific protein expression waves that precede clinical symptoms of experimental autoimmune encephalomyelitis. Sci Rep 2014; 4:6210. [PMID: 25182730 PMCID: PMC4152753 DOI: 10.1038/srep06210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/28/2014] [Indexed: 11/09/2022] Open
Abstract
Central nervous system-specific proteins (CSPs), transported across the damaged blood-brain-barrier (BBB) to cerebrospinal fluid (CSF) and blood (serum), might be promising diagnostic, prognostic and predictive protein biomarkers of disease in individual multiple sclerosis (MS) patients because they are not expected to be present at appreciable levels in the circulation of healthy subjects. We hypothesized that microwave &magnetic (M(2)) proteomics of CSPs in brain tissue might be an effective means to prioritize putative CSP biomarkers for future immunoassays in serum. To test this hypothesis, we used M(2) proteomics to longitudinally assess CSP expression in brain tissue from mice during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Confirmation of central nervous system (CNS)-infiltrating inflammatory cell response and CSP expression in serum was achieved with cytokine ELISPOT and ELISA immunoassays, respectively, for selected CSPs. M(2) proteomics (and ELISA) revealed characteristic CSP expression waves, including synapsin-1 and α-II-spectrin, which peaked at day 7 in brain tissue (and serum) and preceded clinical EAE symptoms that began at day 10 and peaked at day 20. Moreover, M(2) proteomics supports the concept that relatively few CNS-infiltrating inflammatory cells can have a disproportionally large impact on CSP expression prior to clinical manifestation of EAE.
Collapse
|
27
|
Yang CY, Li JP, Chiu LL, Lan JL, Chen DY, Chuang HC, Huang CY, Tan TH. Dual-specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting TAB1 activation. THE JOURNAL OF IMMUNOLOGY 2014; 192:1547-57. [PMID: 24403530 DOI: 10.4049/jimmunol.1300989] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
T cell activation is dependent upon phosphorylation of MAPKs, which play a critical role in the regulation of immune responses. Dual-specificity phosphatase 14 (DUSP14; also known as MKP6) is classified as a MAPK phosphatase. The in vivo functions of DUSP14 remain unclear. Thus, we generated DUSP14-deficient mice and characterized the roles of DUSP14 in T cell activation and immune responses. DUSP14 deficiency in T cells resulted in enhanced T cell proliferation and increased cytokine production upon T cell activation. DUSP14 directly interacted with TGF-β-activated kinase 1 (TAK1)-binding protein 1 (TAB1) and dephosphorylated TAB1 at Ser(438), leading to TAB1-TAK1 complex inactivation in T cells. The phosphorylation levels of the TAB1-TAK1 complex and its downstream molecules, including JNK and IκB kinase, were enhanced in DUSP14-deficient T cells upon stimulation. The enhanced JNK and IκB kinase activation in DUSP14-deficient T cells was attenuated by TAB1 short hairpin RNA knockdown. Consistent with that, DUSP14-deficient mice exhibited enhanced immune responses and were more susceptible to experimental autoimmune encephalomyelitis induction. Thus, DUSP14 negatively regulates TCR signaling and immune responses by inhibiting TAB1 activation.
Collapse
Affiliation(s)
- Chia-Yu Yang
- Immunology Research Center, National Health Research Institutes, Zhunan 35053, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Diacylglycerol (DAG), a second messenger generated by phospholipase Cγ1 activity upon engagement of a T-cell receptor, triggers several signaling cascades that play important roles in T cell development and function. A family of enzymes called DAG kinases (DGKs) catalyzes the phosphorylation of DAG to phosphatidic acid, acting as a braking mechanism that terminates DAG-mediated signals. Two DGK isoforms, α and ζ, are expressed predominantly in T cells and synergistically regulate the development of both conventional αβ T cells and invariant natural killer T cells in the thymus. In mature T cells, the activity of these DGK isoforms aids in the maintenance of self-tolerance by preventing T-cell hyperactivation upon T cell receptor stimulation and by promoting T-cell anergy. In CD8 cells, reduced DGK activity is associated with enhanced primary responses against viruses and tumors. Recent work also has established an important role for DGK activity at the immune synapse and identified partners that modulate DGK function. In addition, emerging evidence points to previously unappreciated roles for DGK function in directional secretion and T-cell adhesion. This review describes the multitude of roles played by DGKs in T cell development and function and emphasizes recent advances in the field.
Collapse
Affiliation(s)
- Sruti Krishna
- Department of Pediatrics, Division of Allergy and Immunology and Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
29
|
Costanza M, Musio S, Abou-Hamdan M, Binart N, Pedotti R. Prolactin is not required for the development of severe chronic experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:2082-8. [PMID: 23885109 DOI: 10.4049/jimmunol.1301128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Predominance of multiple sclerosis (MS) in women, reductions of disease flares during pregnancy, and their increase in the postpartum period have suggested a hormonal influence on MS activity. The hormone prolactin (PRL) has long been debated as a potential immune-stimulating factor in several autoimmune disorders, including MS and its animal model experimental autoimmune encephalomyelitis (EAE). However, to date, no data clearly ascribe a pathogenic role to PRL in these diseases. Using PRL receptor-deficient (Prlr(-/-)) and PRL-deficient (Prl(-/-)) mice, we show that PRL plays a redundant role in the development of chronic EAE. In Prlr(-/-) and Prl(-/-) mice, EAE developed with a delayed onset compared with littermate control mice, but with full clinical severity. In line with the clinical outcome, T cell proliferation and production of IFN-γ, IL-17A, and IL-6 induced by myelin Ag were delayed in Prlr(-/-) and Prl(-/-) mice. Ag-specific IgG Ab responses were not affected by PRLR or PRL deficiency. We also show that mouse lymph node cells and purified CD4(+) T cells express transcript for Prlr, but not for Prl. These results reveal that PRL does not play a central role in the development of chronic EAE and optimal Th1 and Th17 responses against myelin. Moreover, they also rule out a possible contribution of PRL secreted by immune cells to the modulation of autoreactive T cell response in this model.
Collapse
Affiliation(s)
- Massimo Costanza
- Neuroimmunology and Neuromuscular Disorder Unit, Foundation IRCCS Neurological Institute Carlo Besta, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
30
|
Raphael I, Mahesula S, Kalsaria K, Kotagiri V, Purkar AB, Anjanappa M, Shah D, Pericherla V, Jadhav YLA, Raghunathan R, Vaynberg M, Noriega D, Grimaldo NH, Wenk C, Gelfond JAL, Forsthuber TG, Haskins WE. Microwave and magnetic (M(2) ) proteomics of the experimental autoimmune encephalomyelitis animal model of multiple sclerosis. Electrophoresis 2013; 33:3810-9. [PMID: 23161666 DOI: 10.1002/elps.201200200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/12/2022]
Abstract
We hypothesized that quantitative MS/MS-based proteomics at multiple time points, incorporating rapid microwave and magnetic (M(2) ) sample preparation, could enable relative protein expression to be correlated to disease progression in the experimental autoimmune encephalomyelitis (EAE) animal model of multiple sclerosis. To test our hypothesis, microwave-assisted reduction/alkylation/digestion of proteins from brain tissue lysates bound to C8 magnetic beads and microwave-assisted isobaric chemical labeling were performed of released peptides, in 90 s prior to unbiased proteomic analysis. Disease progression in EAE was assessed by scoring clinical EAE disease severity and confirmed by histopathologic evaluation for central nervous system inflammation. Decoding the expression of 283 top-ranked proteins (p <0.05) at each time point relative to their expression at the peak of disease, from a total of 1191 proteins observed in four technical replicates, revealed a strong statistical correlation to EAE disease score, particularly for the following four proteins that closely mirror disease progression: 14-3-3ε (p = 3.4E-6); GPI (p = 2.1E-5); PLP1 (p = 8.0E-4); PRX1 (p = 1.7E-4). These results were confirmed by Western blotting, signaling pathway analysis, and hierarchical clustering of EAE risk groups. While validation in a larger cohort is underway, we conclude that M(2) proteomics is a rapid method to quantify putative prognostic/predictive protein biomarkers and therapeutic targets of disease progression in the EAE animal model of multiple sclerosis.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Meister M, Tomasovic A, Banning A, Tikkanen R. Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. Int J Mol Sci 2013; 14:4854-84. [PMID: 23455463 PMCID: PMC3634400 DOI: 10.3390/ijms14034854] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is the canonical signaling pathway for many receptor tyrosine kinases, such as the Epidermal Growth Factor Receptor. Downstream of the receptors, this pathway involves the activation of a kinase cascade that culminates in a transcriptional response and affects processes, such as cell migration and adhesion. In addition, the strength and duration of the upstream signal also influence the mode of the cellular response that is switched on. Thus, the same components can in principle coordinate opposite responses, such as proliferation and differentiation. In recent years, it has become evident that MAPK signaling is regulated and fine-tuned by proteins that can bind to several MAPK signaling proteins simultaneously and, thereby, affect their function. These so-called MAPK scaffolding proteins are, thus, important coordinators of the signaling response in cells. In this review, we summarize the recent advances in the research on MAPK/extracellular signal-regulated kinase (ERK) pathway scaffolders. We will not only review the well-known members of the family, such as kinase suppressor of Ras (KSR), but also put a special focus on the function of the recently identified or less studied scaffolders, such as fibroblast growth factor receptor substrate 2, flotillin-1 and mitogen-activated protein kinase organizer 1.
Collapse
Affiliation(s)
- Melanie Meister
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ana Tomasovic
- Department of Molecular Hematology, University of Frankfurt, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; E-Mail:
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-641-9947-420; Fax: +49-641-9947-429
| |
Collapse
|
32
|
Erk1 and Erk2 are required for maintenance of hematopoietic stem cells and adult hematopoiesis. Blood 2013; 121:3594-8. [PMID: 23444405 DOI: 10.1182/blood-2012-12-476200] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular signal-regulated kinase 1 (Erk1) and Erk2 play crucial roles in cell survival, proliferation, cell adhesion, migration, and differentiation in many tissues. Here, we report that the absence of Erk1 and Erk2 in murine hematopoietic cells leads to bone marrow aplasia, leukopenia, anemia, and early lethality. Mice doubly-deficient in Erk1 and Erk2 show rapid attrition of hematopoietic stem cells and immature progenitors in a cell-autonomous manner. Reconstitution studies show that Erk1 and Erk2 play redundant and kinase-dependent functions in hematopoietic progenitor cells. Moreover, in cells transformed by the oncogenic KRas(G12D) allele, the presence of either Erk1 or Erk2 with intact kinase activity is sufficient to promote cytokine-independent proliferation.
Collapse
|
33
|
Hahn B, D'Alessandro LA, Depner S, Waldow K, Boehm ME, Bachmann J, Schilling M, Klingmüller U, Lehmann WD. Cellular ERK phospho-form profiles with conserved preference for a switch-like pattern. J Proteome Res 2012; 12:637-46. [PMID: 23210697 DOI: 10.1021/pr3007232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ERK is a member of the MAPK pathway with essential functions in cell proliferation, differentiation, and survival. Complete ERK activation by the kinase MEK requires dual phosphorylation at T and Y within the activation motif TEY. We show that exposure of primary mouse hepatocytes to hepatocyte growth factor (HGF) results in phosphorylation at the activation motif, but not of other residues nearby. To determine the relative abundances of unphosphorylated ERK and the three ERK phospho-forms pT, pY, and pTpY, we employed an extended one-source peptide/phosphopeptide standard method in combination with nanoUPLC-MS. This method enabled us to determine the abundances of phospho-forms with a relative variability of ≤5% (SD). We observed a switch-like preference of ERK phospho-form abundances toward the active, doubly phosphorylated and the inactive, unphosphorylated form. Interestingly, ERK phospho-form profiles were similar upon growth factor and cytokine stimulation. A screening of several murine and human cell systems revealed that the balance between TY- and pTpY-ERK is conserved while the abundances of pT- and pY-ERK are more variable within cell types. We show that the phospho-form profiles do not change by blocking MEK activity suggesting that cellular phosphatases determine the ERK phospho-form distribution. This study provides novel quantitative insights into multisite phosphorylation.
Collapse
Affiliation(s)
- Bettina Hahn
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mahesula S, Raphael I, Raghunathan R, Kalsaria K, Kotagiri V, Purkar AB, Anjanappa M, Shah D, Pericherla V, Jadhav YLA, Gelfond JA, Forsthuber TG, Haskins WE. Immunoenrichment microwave and magnetic proteomics for quantifying CD47 in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Electrophoresis 2012; 33:3820-9. [PMID: 23160929 PMCID: PMC3724470 DOI: 10.1002/elps.201200515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 09/30/2012] [Accepted: 09/30/2012] [Indexed: 01/21/2023]
Abstract
We hypothesized that quantitative MS/MS-based proteomics at multiple time points, incorporating immunoenrichment prior to rapid microwave and magnetic (IM(2) ) sample preparation, might enable correlation of the relative expression of CD47 and other low abundance proteins to disease progression in the experimental autoimmune encephalomyelitis (EAE) animal model of multiple sclerosis. To test our hypothesis, anti-CD47 antibodies were used to enrich for low abundance CD47 prior to microwave and magnetic proteomics in EAE. Decoding protein expression at each time point, with CD47-immunoenriched samples and targeted proteomic analysis, enabled peptides from the low abundance proteins to be precisely quantified throughout disease progression, including: CD47: 86-99, corresponding to the "marker of self" overexpressed by myelin that prevents phagocytosis, or "cellular devouring," by microglia and macrophages; myelin basic protein: 223-228, corresponding to myelin basic protein; and migration inhibitory factor: 79-87, corresponding to a proinflammatory cytokine that inhibits macrophage migration. While validation in a larger cohort is underway, we conclude that IM(2) proteomics is a rapid method to precisely quantify peptides from CD47 and other low abundance proteins throughout disease progression in EAE. This is likely due to improvements in selectivity and sensitivity, necessary to partially overcome masking of low abundance proteins by high abundance proteins and improve dynamic range.
Collapse
Affiliation(s)
- Swetha Mahesula
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Itay Raphael
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Rekha Raghunathan
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Karan Kalsaria
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Venkat Kotagiri
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Anjali B. Purkar
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Manjushree Anjanappa
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Darshit Shah
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Vidya Pericherla
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Yeshwant Lal Avinash Jadhav
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Jonathan A.L. Gelfond
- Department of Epidemiology & Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229
| | - Thomas G. Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
| | - William E. Haskins
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249
- RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249
- Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Medicine, Division of Hematology & Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229
- Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229
| |
Collapse
|
35
|
Zassadowski F, Rochette-Egly C, Chomienne C, Cassinat B. Regulation of the transcriptional activity of nuclear receptors by the MEK/ERK1/2 pathway. Cell Signal 2012; 24:2369-77. [PMID: 22906493 DOI: 10.1016/j.cellsig.2012.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/09/2012] [Indexed: 01/08/2023]
Abstract
Cells undergo continuous and simultaneous external influences regulating their behavior. As an example, during differentiation, they go through different stages of maturation and gene expression is regulated by several simultaneous signaling pathways. We often tend at separating the nuclear pathways from the signaling ones initiated at membrane receptors. However, it is essential to keep in mind that all these pathways are interconnected to achieve a fine regulation of cell functions. The regulation of transcription by nuclear receptors has been thoroughly studied, but it now appears that a critical level of this regulation involves the action of several kinases that target the nuclear receptors themselves as well as their partners. The purpose of this review is to highlight the importance of one family of the mitogen-activated protein kinase (MAPK) superfamily, the MEK/ERK1/2 pathway, in the transcriptional activity of nuclear receptors.
Collapse
|
36
|
Chang CF, D'Souza WN, Ch'en IL, Pages G, Pouyssegur J, Hedrick SM. Polar opposites: Erk direction of CD4 T cell subsets. THE JOURNAL OF IMMUNOLOGY 2012; 189:721-31. [PMID: 22675204 DOI: 10.4049/jimmunol.1103015] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Effective immune responses depend upon appropriate T cell differentiation in accord with the nature of an infectious agent, and the contingency of differentiation depends minimally on TCR, coreceptor, and cytokine signals. In this reverse genetic study, we show that the MAPK Erk2 is not essential for T cell proliferation in the presence of optimum costimulation. Instead, it has opposite effects on T-bet and Gata3 expression and, hence, on Th1 and Th2 differentiation. Alternatively, in the presence of TGF-β, the Erk pathway suppresses a large program of gene expression, effectively limiting the differentiation of Foxp3(+) regulatory T cells. In the latter case, the mechanisms involved include suppression of Gata3 and Foxp3, induction of Tbx21, phosphorylation of Smad2,3, and possibly suppression of Socs2, a positive inducer of Stat5 signaling. Consequently, loss of Erk2 severely impeded Th1 differentiation while enhancing the development of Foxp3(+)-induced T regulatory cells. Selected profiles of gene expression under multiple conditions of T cell activation illustrate the opposing consequences of Erk pathway signaling.
Collapse
|
37
|
Abstract
After their development in the thymus, mature T cells are maintained in the periphery by two sets of survival signals, namely TCR signals from contact with self-peptide/MHC ligands and the cytokine receptor signals from binding IL-7 and IL-15. These signals cooperate to maximize the utility of finite resources to support a diverse pool of mature T cells. It is becoming increasingly clear that multiple mechanisms exist to regulate expression of IL-7R at the transcriptional and post-translational levels. The interplay between TCR signals and IL-7R signals are also important in regulation of IL-7R expression. This review will focus on regulation of T cell homeostasis by IL-7R signaling, with an emphasis on the cross talk between signals from TCR and IL-7R.
Collapse
Affiliation(s)
- Florent Carrette
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles D. Surh
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
- WCU program, Division of IBB, POSTECH, Pohang, 790-784, Korea
| |
Collapse
|
38
|
ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 2012; 66:105-43. [PMID: 22569528 DOI: 10.1016/j.phrs.2012.04.005] [Citation(s) in RCA: 1139] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/21/2022]
Abstract
ERK1 and ERK2 are related protein-serine/threonine kinases that participate in the Ras-Raf-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including cell adhesion, cell cycle progression, cell migration, cell survival, differentiation, metabolism, proliferation, and transcription. MEK1/2 catalyze the phosphorylation of human ERK1/2 at Tyr204/187 and then Thr202/185. The phosphorylation of both tyrosine and threonine is required for enzyme activation. Whereas the Raf kinase and MEK families have narrow substrate specificity, ERK1/2 catalyze the phosphorylation of hundreds of cytoplasmic and nuclear substrates including regulatory molecules and transcription factors. ERK1/2 are proline-directed kinases that preferentially catalyze the phosphorylation of substrates containing a Pro-Xxx-Ser/Thr-Pro sequence. Besides this primary structure requirement, many ERK1/2 substrates possess a D-docking site, an F-docking site, or both. A variety of scaffold proteins including KSR1/2, IQGAP1, MP1, β-Arrestin1/2 participate in the regulation of the ERK1/2 MAP kinase cascade. The regulatory dephosphorylation of ERK1/2 is mediated by protein-tyrosine specific phosphatases, protein-serine/threonine phosphatases, and dual specificity phosphatases. The combination of kinases and phosphatases make the overall process reversible. The ERK1/2 catalyzed phosphorylation of nuclear transcription factors including those of Ets, Elk, and c-Fos represents an important function and requires the translocation of ERK1/2 into the nucleus by active and passive processes involving the nuclear pore. These transcription factors participate in the immediate early gene response. The activity of the Ras-Raf-MEK-ERK cascade is increased in about one-third of all human cancers, and inhibition of components of this cascade by targeted inhibitors represents an important anti-tumor strategy. Thus far, however, only inhibition of mutant B-Raf (Val600Glu) has been found to be therapeutically efficacious.
Collapse
|
39
|
|
40
|
Oh S, Woo JI, Lim DJ, Moon SK. ERK2-dependent activation of c-Jun is required for nontypeable Haemophilus influenzae-induced CXCL2 upregulation in inner ear fibrocytes. THE JOURNAL OF IMMUNOLOGY 2012; 188:3496-505. [PMID: 22379036 DOI: 10.4049/jimmunol.1103182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inner ear, composed of the cochlea and the vestibule, is a specialized sensory organ for hearing and balance. Although the inner ear has been known as an immune-privileged organ, there is emerging evidence indicating an active immune reaction of the inner ear. Inner ear inflammation can be induced by the entry of proinflammatory molecules derived from middle ear infection. Because middle ear infection is highly prevalent in children, middle ear infection-induced inner ear inflammation can impact the normal development of language and motor coordination. Previously, we have demonstrated that the inner ear fibrocytes (spiral ligament fibrocytes) are able to recognize nontypeable Haemophilus influenzae, a major pathogen of middle ear infection, and upregulate a monocyte-attracting chemokine through TLR2-dependent NF-κB activation. In this study, we aimed to determine the molecular mechanism involved in nontypeable H. influenzae-induced cochlear infiltration of polymorphonuclear cells. The rat spiral ligament fibrocytes were found to release CXCL2 in response to nontypeable H. influenzae via activation of c-Jun, leading to the recruitment of polymorphonuclear cells to the cochlea. We also demonstrate that MEK1/ERK2 signaling pathway is required for nontypeable H. influenzae-induced CXCL2 upregulation in the rat spiral ligament fibrocytes. Two AP-1 motifs in the 5'-flanking region of CXCL2 appeared to function as a nontypeable H. influenzae-responsive element, and the proximal AP-1 motif was found to have a higher binding affinity to nontypeable H. influenzae-activated c-Jun than that of the distal one. Our results will enable us better to understand the molecular pathogenesis of middle ear infection-induced inner ear inflammation.
Collapse
Affiliation(s)
- Sejo Oh
- Division of Clinical and Translational Research, House Research Institute, Los Angeles, CA 90057, USA
| | | | | | | |
Collapse
|
41
|
Goplen N, Karim Z, Guo L, Zhuang Y, Huang H, Gorska MM, Gelfand E, Pagés G, Pouysségur J, Alam R. ERK1 is important for Th2 differentiation and development of experimental asthma. FASEB J 2012; 26:1934-45. [PMID: 22262639 DOI: 10.1096/fj.11-196477] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ERK1/2 signaling pathway regulates a variety of T-cell functions. We observed dynamic changes in the expression of ERK1/2 during T-helper cell differentiation. Specifically, the expression of ERK1/2 was decreased and increased by IL-12 and IL-4, respectively. To address this subject further, we examined the specific role of ERK1 in Th2 differentiation and development of experimental asthma using ERK1(-/-) mice. ERK1(-/-) mice were unable to mount airway inflammation and hyperreactivity in two different models of asthma, acute and chronic. ERK1(-/-) mice had reduced expression of Th2 cytokines IL-4 and IL-5 but not IL-17A or IFN-γ. They had reduced levels of allergen-specific IgE and blood eosinophils. T cells from immunized ERK1(-/-) mice manifested reduced proliferation in response to the sensitizing allergen. ERK1(-/-) T cells had reduced and short-lived expression of JunB following TCR stimulation, which likely contributed to their impaired Th2 differentiation. Immunized ERK1(-/-) mice showed reduced numbers of CD44(high) CD4 T cells in the spleen. In vitro studies demonstrated that Th2 but not Th1 cells from ERK1(-/-) mice had reduced numbers of CD44(high) cells. Finally, CD4 T cells form ERK1(-/-) mice expressed higher levels of BIM under growth factor-deprived conditions and reduced Mcl-1 on stimulation. As a result, the survival of CD4 T cells, especially CD44(high) Th2 cells, was much reduced in ERK1(-/-) mice. We conclude that ERK1 plays a nonredundant role in Th2 differentiation and development of experimental asthma. ERK1 controls Th2 differentiation and survival through its effect on JunB and BIM, respectively.
Collapse
Affiliation(s)
- Nicholas Goplen
- Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wierman ME, Xu M, Pierce A, Bliesner B, Bliss SP, Roberson MS. Extracellular signal-regulated kinase 1 and 2 are not required for GnRH neuron development and normal female reproductive axis function in mice. Neuroendocrinology 2012; 95:289-96. [PMID: 22156655 DOI: 10.1159/000331389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Selective deletion of extracellular signal-regulated kinase (ERK) 1 and ERK2 in the pituitary gonadotrope and ovarian granulosa cells disrupts female reproductive axis function. Thus, we asked if ERK1 and ERK2 are critical for GnRH neuron ontogeny or the central control of female reproductive function. METHODS GnRH-Cre-recombinase (Cre+) expressing mice were crossed with mice with a global deletion of ERK1 and a floxed ERK2 allele (Erk1-/Erk2fl/fl) to selectively delete ERK2 in GnRH neurons. RESULTS Cre-recombinase mRNA was selectively expressed in the brain of Cre+ mice. GnRH neuron number and location were determined during embryogenesis and in the adult. GnRH neuron counts at E15 did not differ between experimental and control groups (1,198 ± 65 and 1,160 ± 80 respectively, p = NS). In adults, numbers of GnRH neurons in the GnRHCre+Erk1-/Erk2- mice (741 ± 157) were similar to those in controls (756 ± 7), without alteration in their distribution across the forebrain. ERK1 and 2 deficiency did not alter the timing of vaginal opening, age at first estrus, or estrous cyclicity. CONCLUSIONS Although ERK1 and 2 are components of a dominant signaling pathway in GnRH neuronal cells that modulates survival and control of GnRH gene expression, other signaling pathways compensate for their deletion in vivo to allow GnRH neuron survival and targeting and normal onset of female sexual maturation and reproductive function. In contrast to effects at the pituitary and the ovary, ERK1 and ERK2 are dispensable at the level of the GnRH neuron.
Collapse
|
43
|
The ERK2 mitogen-activated protein kinase regulates the timing of oligodendrocyte differentiation. J Neurosci 2011; 31:843-50. [PMID: 21248107 DOI: 10.1523/jneurosci.3239-10.2011] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oligodendrocyte development is tightly controlled by a variety of extracellular growth and differentiation factors. The mitogen-activated protein kinases (MAPKs), ERK1 and ERK2, are critical intracellular signaling molecules important for transducing these extracellular signals. The extracellular signal-regulated kinases (ERKs) are ubiquitously expressed, coordinately regulated, and highly similar, but Erk2 deletion in mice is embryonic lethal whereas Erk1 deletion is not. Several studies have suggested that MAPK signaling is important for oligodendrocyte differentiation, although specific roles for the two ERK isoforms have not been investigated. In this study, we deleted Erk2 in the developing mouse cortex from GFAP-expressing radial glia that generate neurons and oligodendrocytes. In vitro analysis revealed that loss of ERK2 resulted in fewer galactocerebroside-expressing mature oligodendrocytes in cortical cultures. In vivo, a delay in the expression of the myelin protein MBP was observed in the corpus callosum at postnatal day 10 (P10). In contrast, Erk1 deletion did not affect oligodendrocyte differentiation. By P21, MBP expression was restored to wild-type levels, demonstrating that the loss of ERK2 results in a delay but not a complete arrest in the appearance of differentiated oligodendrocytes in vivo. Importantly, both the proliferation and total number of oligodendrocyte progenitor cells (OPCs) appeared normal in the Erk2 conditional knock-out cortex, demonstrating that ERK2 plays a specific role in the timing of forebrain myelination but is not critical for the proliferation or survival of OPCs. Oligodendrocyte-specific deletion of Erk2 also resulted in decreased levels of MBP, indicating a cell-autonomous effect of ERK2 in the oligodendrocyte lineage.
Collapse
|
44
|
Newbern JM, Li X, Shoemaker SE, Zhou J, Zhong J, Wu Y, Bonder D, Hollenback S, Coppola G, Geschwind DH, Landreth GE, Snider WD. Specific functions for ERK/MAPK signaling during PNS development. Neuron 2011; 69:91-105. [PMID: 21220101 DOI: 10.1016/j.neuron.2010.12.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
We have established functions of the stimulus-dependent MAPKs, ERK1/2 and ERK5, in DRG, motor neuron, and Schwann cell development. Surprisingly, many aspects of early DRG and motor neuron development were found to be ERK1/2 independent, and Erk5 deletion had no obvious effect on embryonic PNS. In contrast, Erk1/2 deletion in developing neural crest resulted in peripheral nerves that were devoid of Schwann cell progenitors, and deletion of Erk1/2 in Schwann cell precursors caused disrupted differentiation and marked hypomyelination of axons. The Schwann cell phenotypes are similar to those reported in neuregulin-1 and ErbB mutant mice, and neuregulin effects could not be elicited in glial precursors lacking Erk1/2. ERK/MAPK regulation of myelination was specific to Schwann cells, as deletion in oligodendrocyte precursors did not impair myelin formation, but reduced precursor proliferation. Our data suggest a tight linkage between developmental functions of ERK/MAPK signaling and biological actions of specific RTK-activating factors.
Collapse
|
45
|
Alam R, Gorska MM. Mitogen-activated protein kinase signalling and ERK1/2 bistability in asthma. Clin Exp Allergy 2010; 41:149-59. [PMID: 21121982 DOI: 10.1111/j.1365-2222.2010.03658.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) integrate signals from numerous receptors and translate these signals into cell functions. MAPKs are critical for immune cell metabolism, migration, production of pro-inflammatory mediators, survival and differentiation. We provide a concise review of the involvement of MAPK in important cells of the immune system. Certain cell functions, e.g. production of pro-inflammatory mediators resolve quickly and may require a transient MAPK activation, other processes such as cell differentiation and long-term survival may require persistent MAPK signal. The persistent MAPK signal is frequently a consequence of positive feedback loops or double negative feedback loops which perpetuate the signal after removal of an external cell stimulus. This self-perpetuated activation of a signalling circuit is a manifestation of its bistability. Bistable systems can exist in 'on' and 'off' states and both states are stable. We have demonstrated the existence of self-perpetuated activation mechanism for ERK1/2 in bronchial epithelial cells. This sustained activation of ERK1/2 supports long-term survival of these cells and primes them for cytokine transcription. ERK1/2 bistability arises from repetitive stimulation of the cell. The repeated stimulation (e.g. repeated viral infection or repeated allergen exposure) seems to be a common theme in asthma and other chronic illnesses. We thus hypothesize that the self-perpetuated ERK1/2 signal plays an important role in the pathogenesis of asthma.
Collapse
Affiliation(s)
- R Alam
- Department of Medicine, Division of Allergy & Immunology, National Jewish Health, Denver, CO 80206, USA.
| | | |
Collapse
|
46
|
Abstract
The extracellular signal-regulated kinase (ERK) isoforms, ERK1 and ERK2, are believed to be key signaling molecules in nociception and nociceptive sensitization. Studies using inhibitors targeting the shared ERK1/2 upstream activator, mitogen-activated protein kinase kinase (MEK), and transgenic mice expressing a dominant-negative form of MEK have established the importance of ERK1/2 signaling. However, these techniques do not discriminate between ERK1 and ERK2. To dissect the function of each isoform in pain, we used mice with a targeted genetic deletion of ERK1 [ERK1 knock-out (KO)] to test the hypothesis that ERK1 is required for behavioral sensitization in rodent pain models. Despite activation (phosphorylation) of ERK1 after acute noxious stimulation and in models of chronic pain, we found that ERK1 was not required for formalin-induced spontaneous behaviors, complete Freund's adjuvant-induced heat and mechanical hypersensitivity, and spared nerve injury-induced mechanical hypersensitivity. However, ERK1 deletion did delay formalin-induced long-term heat hypersensitivity, without affecting formalin-induced mechanical hypersensitivity, suggesting that ERK1 partially shapes long-term responses to formalin. Interestingly, ERK1 deletion resulted in elevated basal ERK2 phosphorylation. However, this did not appear to influence nociceptive processing, since inflammation-induced ERK2 phosphorylation and pERK1/2 immunoreactivity in spinal cord were not elevated in ERK1 KO mice. Additionally, systemic MEK inhibition with SL327 (alpha-[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile) attenuated formalin-induced spontaneous behaviors similarly in wild-type and ERK1 KO mice, indicating that unrelated signaling pathways do not functionally compensate for the loss of ERK1. Together, these results suggest that ERK1 plays a limited role in nociceptive sensitization and support a predominant role for ERK2 in these processes.
Collapse
|
47
|
Bliss SP, Navratil AM, Xie J, Roberson MS. GnRH signaling, the gonadotrope and endocrine control of fertility. Front Neuroendocrinol 2010; 31:322-40. [PMID: 20451543 PMCID: PMC2923852 DOI: 10.1016/j.yfrne.2010.04.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 04/26/2010] [Accepted: 04/30/2010] [Indexed: 11/28/2022]
Abstract
Mammalian reproductive cycles are controlled by an intricate interplay between the hypothalamus, pituitary and gonads. Central to the function of this axis is the ability of the pituitary gonadotrope to appropriately respond to stimulation by gonadotropin-releasing hormone (GnRH). This review focuses on the role of cell signaling and in particular, mitogen-activated protein kinase (MAPK) activities regulated by GnRH that are necessary for normal fertility. Recently, new mouse models making use of conditional gene deletion have shed new light on the relationships between GnRH signaling and fertility in both male and female mice. Within the reproductive axis, GnRH signaling is initiated through discrete membrane compartments in which the receptor resides leading to the activation of the extracellular signal-regulated kinases (ERKs 1/2). As defined by gonadotrope-derived cellular models, the ERKs appear to play a central role in the regulation of a cohort of immediate early genes that regulate the expression of late genes that, in part, define the differentiated character of the gonadotrope. Recent data would suggest that in vivo, conditional, pituitary-specific disruption of ERK signaling by GnRH leads to a gender-specific perturbation of fertility. Double ERK knockout in the anterior pituitary leads to female infertility due to LH biosynthesis deficiency and a failure in ovulation. In contrast, male mice are modestly LH deficient; however, this does not have an appreciable impact on fertility.
Collapse
Affiliation(s)
- Stuart P Bliss
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | | | | | | |
Collapse
|
48
|
Bendix I, Pfueller CF, Leuenberger T, Glezeva N, Siffrin V, Müller Y, Prozorovski T, Hansen W, Topphoff US, Loddenkemper C, Zipp F, Waiczies S. MAPK3 deficiency drives autoimmunity
via
DC arming. Eur J Immunol 2010; 40:1486-95. [DOI: 10.1002/eji.200939930] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ivo Bendix
- Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Caspar F. Pfueller
- Max Delbruck Center for Molecular Medicine, Berlin, Germany
- NeuroCure Clinical Research Center, Charité ‐ University Hospital Berlin, Berlin, Germany
| | | | | | - Volker Siffrin
- Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Yasmin Müller
- Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | | | - Wiebke Hansen
- Immunregulation Group, Institute of Medical Microbiology, University Hospital Essen, Essen, Germany
| | | | - Christoph Loddenkemper
- Department of Pathology/Research Center ImmunoSciences, Charité ‐ University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Frauke Zipp
- Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Department of Neurology, University Medicine Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Sonia Waiczies
- Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Department of Anatomy, University of Malta, Msida, Malta
| |
Collapse
|
49
|
Genetic demonstration of a redundant role of extracellular signal-regulated kinase 1 (ERK1) and ERK2 mitogen-activated protein kinases in promoting fibroblast proliferation. Mol Cell Biol 2010; 30:2918-32. [PMID: 20368360 DOI: 10.1128/mcb.00131-10] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular signal-regulated kinase 1 and 2 (ERK1/2) mitogen-activated protein (MAP) kinase signaling pathway plays an important role in the proliferative response of mammalian cells to mitogens. However, the individual contribution of the isoforms ERK1 and ERK2 to cell proliferation control is unclear. The two ERK isoforms have similar biochemical properties and recognize the same primary sequence determinants on substrates. On the other hand, analysis of mice lacking individual ERK genes suggests that ERK1 and ERK2 may have evolved unique functions. In this study, we used a robust genetic approach to analyze the individual functions of ERK1 and ERK2 in cell proliferation using genetically matched primary embryonic fibroblasts. We show that individual loss of either ERK1 or ERK2 slows down the proliferation rate of fibroblasts to an extent reflecting the expression level of the kinase. Moreover, RNA interference-mediated silencing of ERK1 or ERK2 expression in cells genetically disrupted for the other isoform similarly reduces cell proliferation. We generated fibroblasts genetically deficient in both Erk1 and Erk2. Combined loss of ERK1 and ERK2 resulted in a complete arrest of cell proliferation associated with G(1) arrest and premature replicative senescence. Together, our findings provide compelling genetic evidence for a redundant role of ERK1 and ERK2 in promoting cell proliferation.
Collapse
|
50
|
Tan AHM, Lam KP. Pharmacologic inhibition of MEK-ERK signaling enhances Th17 differentiation. THE JOURNAL OF IMMUNOLOGY 2010; 184:1849-57. [PMID: 20061405 DOI: 10.4049/jimmunol.0901509] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cytokines and transcription factors that promote Th17 cell development have been extensively studied. However, the signaling pathways that antagonize Th17 differentiation remain poorly characterized. In this study, we report that pharmacologic inhibition of MEK-ERK signaling enhances the in vitro differentiation of Th17 cells and increases their gene expression of il-17a, il-17f, il-21, il-22, and il-23r. IL-2, which suppresses Th17 differentiation via STAT5 activation, also acts through ERK signaling to inhibit Th17 generation. In turn, ERK signaling is found to potentiate the production of IL-2 and activate STAT5, suggesting the existence of an autoregulatory loop to constrain Th17 development. Finally, compared with the transfer of untreated Th17 cells, the transfer of ERK-inhibited Th17 cells leads to accelerated onset and exacerbated colitis in immunodeficient mice. Our data indicate that MEK-ERK signaling negatively regulates Th17 differentiation in a Th cell-intrinsic manner.
Collapse
Affiliation(s)
- Andy Hee-Meng Tan
- Immunology Group, Bioprocessing Technology Institute, Centros, Singapore
| | | |
Collapse
|