1
|
Kirchmeier D, Deng Y, Rieble L, Böni M, Läderach F, Schuhmachers P, Valencia-Camargo AD, Murer A, Caduff N, Chatterjee B, Chijioke O, Zens K, Münz C. Epstein-Barr virus infection induces tissue-resident memory T cells in mucosal lymphoid tissues. JCI Insight 2024; 9:e173489. [PMID: 39264727 PMCID: PMC11530129 DOI: 10.1172/jci.insight.173489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
EBV contributes to around 2% of all tumors worldwide. Simultaneously, more than 90% of healthy human adults persistently carry EBV without clinical symptoms. In most EBV carriers, it is thought that virus-induced tumorigenesis is prevented by cell-mediated immunity. Specifically, memory CD8+ T cells recognize EBV-infected cells during latent and lytic infection. Using a symptomatic primary infection model, similar to infectious mononucleosis (IM), we found EBV-induced CD8+ tissue resident memory T cells (TRMs) in mice with a humanized immune system. These human TRMs were preferentially established after intranasal EBV infection in nasal-associated lymphoid tissues (NALT), equivalent to tonsils, the primary site of EBV infection in humans. They expressed canonical TRM markers, including CD69, CD103, and BLIMP-1, as well as granzyme B, CD107a, and CCL5. Despite cytotoxic activity and cytokine production ex vivo, these TRMs demonstrated reduced CD27 expression and proliferation and failed to control EBV viral loads in the NALT during infection, although effector memory T cells (TEMs) controlled viral titers in spleen and blood. Overall, TRMs are established in mucosal lymphoid tissues by EBV infection, but primarily, systemic CD8+ T cell expansion seems to control viral loads in the context of IM-like infection.
Collapse
Affiliation(s)
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Lisa Rieble
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Michelle Böni
- Viral Immunobiology, Institute of Experimental Immunology, and
| | | | | | | | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, and
| | | | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Kyra Zens
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, and
| |
Collapse
|
2
|
Damei I, Trickovic T, Mami-Chouaib F, Corgnac S. Tumor-resident memory T cells as a biomarker of the response to cancer immunotherapy. Front Immunol 2023; 14:1205984. [PMID: 37545498 PMCID: PMC10399960 DOI: 10.3389/fimmu.2023.1205984] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TIL) often include a substantial subset of CD8+ tissue-resident memory T (TRM) cells enriched in tumor-specific T cells. These TRM cells play a major role in antitumor immune response. They are identified on the basis of their expression of the CD103 (αE(CD103)β7) and/or CD49a (α1(CD49a)β1) integrins, and the C-type lectin CD69, which are involved in tissue residency. TRM cells express several T-cell inhibitory receptors on their surface but they nevertheless react strongly to malignant cells, exerting a strong cytotoxic function, particularly in the context of blocking interactions of PD-1 with PD-L1 on target cells. These TRM cells form stable conjugates with autologous tumor cells and interact with dendritic cells and other T cells within the tumor microenvironment to orchestrate an optimal in situ T-cell response. There is growing evidence to indicate that TGF-β is essential for the formation and maintenance of TRM cells in the tumor, through the induction of CD103 expression on activated CD8+ T cells, and for the regulation of TRM effector functions through bidirectional integrin signaling. CD8+ TRM cells were initially described as a prognostic marker for survival in patients with various types of cancer, including ovarian, lung and breast cancers and melanoma. More recently, these tumor-resident CD8+ T cells have been shown to be a potent predictive biomarker of the response of cancer patients to immunotherapies, including therapeutic cancer vaccines and immune checkpoint blockade. In this review, we will highlight the major characteristics of tumor TRM cell populations and the possibilities for their exploitation in the design of more effective immunotherapy strategies for cancer.
Collapse
|
3
|
Ge W, Dong Y, Deng Y, Chen L, Chen J, Liu M, Wu J, Wang W, Ma X. Potential biomarkers: Identifying powerful tumor specific T cells in adoptive cellular therapy. Front Immunol 2022; 13:1003626. [PMID: 36451828 PMCID: PMC9702804 DOI: 10.3389/fimmu.2022.1003626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/27/2022] [Indexed: 12/01/2023] Open
Abstract
Tumor-specific T cells (TSTs) are essential components for the success of personalized tumor-infiltrating lymphocyte (TIL)-based adoptive cellular therapy (ACT). Therefore, the selection of a common biomarker for screening TSTs in different tumor types, followed by ex vivo expansion to clinical number levels can generate the greatest therapeutic effect. However, studies on shared biomarkers for TSTs have not been realized yet. The present review summarizes the similarities and differences of a number of biomarkers for TSTs in several tumor types studied in the last 5 years, and the advantages of combining biomarkers. In addition, the review discusses the possible shortcomings of current biomarkers and highlights strategies to identify TSTs accurately using intercellular interactions. Finally, the development of TSTs in personalized TIL-based ACT for broader clinical applications is explored.
Collapse
Affiliation(s)
- Wu Ge
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuqian Dong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yao Deng
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lujuan Chen
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Juan Chen
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Muqi Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianmin Wu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoqian Ma
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
4
|
Neuwirth T, Knapp K, Stary G. (Not) Home alone: Antigen presenting cell - T Cell communication in barrier tissues. Front Immunol 2022; 13:984356. [PMID: 36248804 PMCID: PMC9556809 DOI: 10.3389/fimmu.2022.984356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues. This composition of APCs and T cells in tissues is essential for maintaining homeostasis and is known to be skewed in infection and inflammation, leading to pathological T cell responses. This review highlights the commonalities and differences of T cell priming and subsequent effector function in multiple barrier tissues such as the skin, intestine and female reproductive tract. Further, we provide an overview of how this process is altered during tissue-specific infections which are known to cause chronic inflammation and how this knowledge could be harnessed to modify T cell responses in barrier tissue.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
5
|
Lange J, Rivera-Ballesteros O, Buggert M. Human mucosal tissue-resident memory T cells in health and disease. Mucosal Immunol 2022; 15:389-397. [PMID: 34743182 PMCID: PMC8571012 DOI: 10.1038/s41385-021-00467-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023]
Abstract
Memory T cells are fundamental to maintain immune surveillance of the human body. During the past decade, it has become apparent that non-recirculating resident memory T cells (TRMs) form a first line memory response in tissues to tackle re-infections. The fact that TRMs are essential for local immunity highlights the therapeutic potential of targeting this population against tumors and infections. However, similar to other immune subsets, TRMs are heterogenous and may form distinct effector populations with unique functions at diverse tissue sites. Further insight into the mechanisms of how TRM function and respond to pathogens and malignancies at different mucosal sites will help to shape future vaccine and immunotherapeutic approaches. Here, we review the current understanding of TRM function and biology at four major mucosal sites: gastrointestinal tract, lung, head and neck, as well as female reproductive tract. We also summarize our current knowledge of how TRM targets invading pathogens and developing tumor cells at these mucosal sites and contemplate how TRMs may be exploited to protect from infections and cancer.
Collapse
Affiliation(s)
- Joshua Lange
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
van Gisbergen KPJM, Zens KD, Münz C. T-cell memory in tissues. Eur J Immunol 2021; 51:1310-1324. [PMID: 33837521 DOI: 10.1002/eji.202049062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Immunological memory equips our immune system to respond faster and more effectively against reinfections. This acquired immunity was originally attributed to long-lived, memory T and B cells with body wide access to peripheral and secondary lymphoid tissues. In recent years, it has been realized that both innate and adaptive immunity to a large degree depends on resident immune cells that act locally in barrier tissues including tissue-resident memory T cells (Trm). Here, we will discuss the phenotype of these Trm in mice and humans, the tissues and niches that support them, and their function, plasticity, and transcriptional control. Their unique properties enable Trm to achieve long-lived immunological memory that can be deposited in nearly every organ in response to acute and persistent infection, and in response to cancer. However, Trm may also induce substantial immunopathology in allergic and autoimmune disease if their actions remain unchecked. Therefore, inhibitory and activating stimuli appear to balance the actions of Trm to ensure rapid proinflammatory responses upon infection and to prevent damage to host tissues under steady state conditions.
Collapse
Affiliation(s)
- Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kyra D Zens
- Viral Immunobiology, University of Zurich, Zurich, Switzerland.,Department of Public and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.,Department of Infectious Diseases and Hospital Epidemiology, University Hospital, Zurich, Switzerland
| | - Christian Münz
- Viral Immunobiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Resident Memory T Cells and Their Role within the Liver. Int J Mol Sci 2020; 21:ijms21228565. [PMID: 33202970 PMCID: PMC7696659 DOI: 10.3390/ijms21228565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 01/17/2023] Open
Abstract
Immunological memory is fundamental to maintain immunity against re-invading pathogens. It is the basis for prolonged protection induced by vaccines and can be mediated by humoral or cellular responses-the latter largely mediated by T cells. Memory T cells belong to different subsets with specialized functions and distributions within the body. They can be broadly separated into circulating memory cells, which pace the entire body through the lymphatics and blood, and tissue-resident memory T (TRM) cells, which are constrained to peripheral tissues. Retained in the tissues where they form, TRM cells provide a frontline defense against reinfection. Here, we review this population of cells with specific attention to the liver, where TRM cells have been found to protect against infections, in particular those by Plasmodium species that cause malaria.
Collapse
|
8
|
Corgnac S, Malenica I, Mezquita L, Auclin E, Voilin E, Kacher J, Halse H, Grynszpan L, Signolle N, Dayris T, Leclerc M, Droin N, de Montpréville V, Mercier O, Validire P, Scoazec JY, Massard C, Chouaib S, Planchard D, Adam J, Besse B, Mami-Chouaib F. CD103 +CD8 + T RM Cells Accumulate in Tumors of Anti-PD-1-Responder Lung Cancer Patients and Are Tumor-Reactive Lymphocytes Enriched with Tc17. CELL REPORTS MEDICINE 2020; 1:100127. [PMID: 33205076 PMCID: PMC7659589 DOI: 10.1016/j.xcrm.2020.100127] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 07/24/2020] [Accepted: 09/24/2020] [Indexed: 12/23/2022]
Abstract
Accumulation of CD103+CD8+ resident memory T (TRM) cells in human lung tumors has been associated with a favorable prognosis. However, the contribution of TRM to anti-tumor immunity and to the response to immune checkpoint blockade has not been clearly established. Using quantitative multiplex immunofluorescence on cohorts of non-small cell lung cancer patients treated with anti-PD-(L)1, we show that an increased density of CD103+CD8+ lymphocytes in immunotherapy-naive tumors is associated with greatly improved outcomes. The density of CD103+CD8+ cells increases during immunotherapy in most responder, but not in non-responder, patients. CD103+CD8+ cells co-express CD49a and CD69 and display a molecular profile characterized by the expression of PD-1 and CD39. CD103+CD8+ tumor TRM, but not CD103−CD8+ tumor-infiltrating counterparts, express Aiolos, phosphorylated STAT-3, and IL-17; demonstrate enhanced proliferation and cytotoxicity toward autologous cancer cells; and frequently display oligoclonal expansion of TCR-β clonotypes. These results explain why CD103+CD8+ TRM are associated with better outcomes in anti-PD-(L)1-treated patients. A high density of CD103+CD8+ cells in tumors correlates with response to anti-PD-(L)1 The density of CD103+CD8+ cells increases after anti-PD-1 in most responder patients CD103+CD8+ TRM cells are enriched with tumor-specific T cells A subset of CD103+CD8+ TRM cells display a Tc17 differentiation program
Collapse
Affiliation(s)
- Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - Ines Malenica
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - Laura Mezquita
- Department of Cancer Medicine, Gustave Roussy, Institut d'Oncologie Thoracique, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Edouard Auclin
- Gastrointestinal and Medical Oncology Department, Hôpital Européen Georges Pompidou, Paris, France
| | - Elodie Voilin
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - Jamila Kacher
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - Heloise Halse
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - Laetitia Grynszpan
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - Nicolas Signolle
- INSERM Unit U981, Department of Experimental Pathology, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - Thibault Dayris
- Department of Biology and Medical Pathology, Gustave Roussy, 94805 Villejuif, France
| | - Marine Leclerc
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - Nathalie Droin
- Department of Biology and Medical Pathology, Gustave Roussy, 94805 Villejuif, France
| | - Vincent de Montpréville
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France.,Hôpital Marie-Lannelongue, Service d'Anatomie Pathologique, 92350 Le-Plessis-Robinson, France
| | - Olaf Mercier
- Hôpital Marie-Lannelongue, Service d'Anatomie Pathologique, 92350 Le-Plessis-Robinson, France
| | - Pierre Validire
- Institut Mutualiste Montsouris, Service d'Anatomie Pathologique, 75014 Paris, France
| | - Jean-Yves Scoazec
- Department of Biology and Medical Pathology, Gustave Roussy, 94805 Villejuif, France
| | - Christophe Massard
- Drug Development Department, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - David Planchard
- Department of Cancer Medicine, Gustave Roussy, Institut d'Oncologie Thoracique, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Julien Adam
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy, Institut d'Oncologie Thoracique, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| |
Collapse
|
9
|
McHugh D, Caduff N, Murer A, Engelmann C, Deng Y, Zdimerova H, Zens K, Chijioke O, Münz C. Infection and immune control of human oncogenic γ-herpesviruses in humanized mice. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180296. [PMID: 30955487 DOI: 10.1098/rstb.2018.0296] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) comprise the oncogenic human γ-herpesvirus family and are responsible for 2-3% of all tumours in man. With their prominent growth-transforming abilities and high prevalence in the human population, these pathogens have probably shaped the human immune system throughout evolution for near perfect immune control of the respective chronic infections in the vast majority of healthy pathogen carriers. The exclusive tropism of EBV and KSHV for humans has, however, made it difficult in the past to study their infection, tumourigenesis and immune control in vivo. Mice with reconstituted human immune system components (humanized mice) support replication of both viruses with both persisting latent and productive lytic infection. Moreover, B-cell lymphomas can be induced by EBV alone and KSHV co-infection with gene expression hallmarks of human malignancies that are associated with both viruses. Furthermore, cell-mediated immune control by primarily cytotoxic lymphocytes is induced upon infection and can be probed for its functional characteristics as well as putative requirements for its priming. Insights that have been gained from this model and remaining questions will be discussed in this review. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Donal McHugh
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Hana Zdimerova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Kyra Zens
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Obinna Chijioke
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| |
Collapse
|
10
|
Hueber B, Curtis AD, Kroll K, Varner V, Jones R, Pathak S, Lifton M, Van Rompay KKA, De Paris K, Reeves RK. Functional Perturbation of Mucosal Group 3 Innate Lymphoid and Natural Killer Cells in Simian-Human Immunodeficiency Virus/Simian Immunodeficiency Virus-Infected Infant Rhesus Macaques. J Virol 2020; 94:e01644-19. [PMID: 31801861 PMCID: PMC7022363 DOI: 10.1128/jvi.01644-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022] Open
Abstract
Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) via breastfeeding is responsible for nearly half of new infections of children with HIV. Although innate lymphoid cells (ILC) and natural killer (NK) cells are found throughout the oral mucosae, the effects of HIV/simian-human immunodeficiency virus (SHIV) in these tissues are largely unknown. To better understand the mechanics of postnatal transmission, we performed a comprehensive study of simian immunodeficiency virus (SIV)/SHIV-infected infant rhesus macaques (RM) and tracked changes in frequency, trafficking, and function of group 3 ILC (ILC3) and NK cells using polychromatic flow cytometry and cell stimulation assays in colon, tonsil, and oral lymph node samples. Infection led to a 3-fold depletion of ILC3 in the colon and an increase in the levels of NK cells in tonsils and oral lymph nodes. ILC3 and NK cells exhibited alterations in their trafficking repertoires as a result of infection, with increased expression of CD103 in colon NK cells and curtailment of CXCR3, and a significant decrease in α4β7 expression in colon ILC3. SPICE analyses revealed that ILC3 and NK cells displayed distinct functional profiles by tissue in naive samples. Infection perturbed these profiles, with a nearly total loss of interleukin-22 (IL-22) production in the tonsil and colon; an increase in the levels of CD107a, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) from ILC3; and an increase in the levels of CD107a, macrophage inflammatory protein 1 beta (MIP-1β), and TNF-α from NK cells. Collectively, these data reveal that lentivirus infection alters the frequencies, receptor repertoires, and functions of innate cells in the oral and gut mucosa of infants. Further study will be required to delineate the full extent of the effect that these changes have on oral and gut homeostasis, SHIV/SIV pathogenesis, and oral opportunistic disease.IMPORTANCE Vertical transmission of HIV from mother to child accounts for many of the new cases seen worldwide. There is currently no vaccine to mitigate this transmission, and there has been limited research on the effects that lentiviral infection has on the innate immune system in oral tissues of infected children. To fill this knowledge gap, our laboratory studied infant rhesus macaques to evaluate how acute SIV/SHIV infections impacted ILC3 and NK cells, which are immune cells critical for mucosal homeostasis and antimicrobial defense. Our data revealed that SIV/SHIV infection led to a depletion of ILC3 and an increase of NK cells and to a functional shift from a homeostatic to a multifunctional proinflammatory state. Taking the results together, we describe how lentiviral infection perturbs the oral and gastrointestinal mucosae of infant macaques through alterations of resident innate immune cells giving rise to chronic inflammation and potentially exacerbating morbidity and mortality in children living with HIV.
Collapse
Affiliation(s)
- Brady Hueber
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan D Curtis
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kyle Kroll
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Valerie Varner
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rhianna Jones
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sachi Pathak
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michelle Lifton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Koen K A Van Rompay
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, USA
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Local heroes or villains: tissue-resident memory T cells in human health and disease. Cell Mol Immunol 2020; 17:113-122. [PMID: 31969685 DOI: 10.1038/s41423-019-0359-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident memory T (TRM) cells are increasingly associated with the outcomes of health and disease. TRM cells can mediate local immune protection against infections and cancer, which has led to interest in TRM cells as targets for vaccination and immunotherapies. However, these cells have also been implicated in mediating detrimental pro-inflammatory responses in autoimmune skin diseases such as psoriasis, alopecia areata, and vitiligo. Here, we summarize the biology of TRM cells established in animal models and in translational human studies. We review the beneficial effects of TRM cells in mediating protective responses against infection and cancer and the adverse role of TRM cells in driving pathology in autoimmunity. A further understanding of the breadth and mechanisms of TRM cell activity is essential for the safe design of strategies that manipulate TRM cells, such that protective responses can be enhanced without unwanted tissue damage, and pathogenic TRM cells can be eliminated without losing local immunity.
Collapse
|
12
|
Topham DJ, Reilly EC, Emo KL, Sportiello M. Formation and Maintenance of Tissue Resident Memory CD8+ T Cells after Viral Infection. Pathogens 2019; 8:E196. [PMID: 31635290 PMCID: PMC6963622 DOI: 10.3390/pathogens8040196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/17/2023] Open
Abstract
Tissue resident memory (TRM) CD8 T cells comprise a memory population that forms in peripheral, non-lymphoid tissues after an infection that does not recirculate into the bloodstream or other tissues. TRM cells often recognize conserved peptide epitopes shared among different strains of a pathogen and so offer a protective role upon secondary encounter with the same or related pathogens. Several recent studies have begun to shed light on the intrinsic and extrinsic factors regulating TRM. In addition, work is being done to understand how canonical "markers" of TRM actually affect the function of these cells. Many of these markers regulate the generation or persistence of these TRM cells, an important point of study due to the differences in persistence of TRM between tissues, which may impact future vaccine development to cater towards these important differences. In this review, we will discuss recent advances in TRM biology that may lead to strategies designed to promote this important protective immune subset.
Collapse
Affiliation(s)
- David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Emma C Reilly
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Kris Lambert Emo
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Mike Sportiello
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
13
|
Long HM, Meckiff BJ, Taylor GS. The T-cell Response to Epstein-Barr Virus-New Tricks From an Old Dog. Front Immunol 2019; 10:2193. [PMID: 31620125 PMCID: PMC6759930 DOI: 10.3389/fimmu.2019.02193] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) infects most people and establishes life-long infection controlled by the host's immune system. The genetic stability of the virus, deep understanding of the viral antigens and immune epitopes recognized by the host's T-cell system and the fact that recent infection can be identified by the development of symptomatic infectious mononucleosis makes EBV a powerful system in which to study human immunology. The association between EBV and multiple cancers also means that the lessons learned have strong translational potential. Increasing evidence of a role for resident memory T-cells and non-conventional γδ T-cells in controlling EBV infection suggests new opportunities for research and means the virus will continue to provide exciting new insights into human biology and immunology into the future.
Collapse
Affiliation(s)
- Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Welten SPM, Sandu I, Baumann NS, Oxenius A. Memory CD8 T cell inflation vs tissue-resident memory T cells: Same patrollers, same controllers? Immunol Rev 2019; 283:161-175. [PMID: 29664565 DOI: 10.1111/imr.12649] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The induction of long-lived populations of memory T cells residing in peripheral tissues is of considerable interest for T cell-based vaccines, as they can execute immediate effector functions and thus provide protection in case of pathogen encounter at mucosal and barrier sites. Cytomegalovirus (CMV)-based vaccines support the induction and accumulation of a large population of effector memory CD8 T cells in peripheral tissues, in a process called memory inflation. Tissue-resident memory (TRM ) T cells, induced by various infections and vaccination regimens, constitute another subset of memory cells that take long-term residence in peripheral tissues. Both memory T cell subsets have evoked substantial interest in exploitation for vaccine purposes. However, a direct comparison between these two peripheral tissue-localizing memory T cell subsets with respect to their short- and long-term ability to provide protection against heterologous challenge is pending. Here, we discuss communalities and differences between TRM and inflationary CD8 T cells with respect to their development, maintenance, function, and protective capacity. In addition, we discuss differences and similarities between the transcriptional profiles of TRM and inflationary T cells, supporting the notion that they are distinct memory T cell populations.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Nicolas S Baumann
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
15
|
Steinbach K, Vincenti I, Merkler D. Resident-Memory T Cells in Tissue-Restricted Immune Responses: For Better or Worse? Front Immunol 2018; 9:2827. [PMID: 30555489 PMCID: PMC6284001 DOI: 10.3389/fimmu.2018.02827] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Tissue-resident-memory CD8+ T cells (TRM) have been described as a non-circulating memory T cell subset that persists at sites of previous infection. While TRM in all non-lymphoid organs probably share a core signature differentiation pathway, certain aspects of their maintenance and effector functions may vary. It is well-established that TRM provide long-lived protective immunity through immediate effector function and accelerated recruitment of circulating immune cells. Besides immune defense against pathogens, other immunological roles of TRM are less well-studied. Likewise, evidence of a putative detrimental role of TRM for inflammatory diseases is only beginning to emerge. In this review, we discuss the protective and harmful role of TRM in organ-specific immunity and immunopathology as well as prospective implications for immunomodulatory therapy.
Collapse
Affiliation(s)
- Karin Steinbach
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
16
|
Mami-Chouaib F, Blanc C, Corgnac S, Hans S, Malenica I, Granier C, Tihy I, Tartour E. Resident memory T cells, critical components in tumor immunology. J Immunother Cancer 2018; 6:87. [PMID: 30180905 PMCID: PMC6122734 DOI: 10.1186/s40425-018-0399-6] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/16/2018] [Indexed: 12/26/2022] Open
Abstract
CD8+ T lymphocytes are the major anti-tumor effector cells. Most cancer immunotherapeutic approaches seek to amplify cytotoxic T lymphocytes (CTL) specific to malignant cells. A recently identified subpopulation of memory CD8+ T cells, named tissue-resident memory T (TRM) cells, persists in peripheral tissues and does not recirculate. This T-cell subset is considered an independent memory T-cell lineage with a specific profile of transcription factors, including Runx3+, Notch+, Hobit+, Blimp1+, BATF+, AHR+, EOMESneg and Tbetlow. It is defined by expression of CD103 (αE(CD103)β7) and CD49a (VLA-1 or α1β1) integrins and C-type lectin CD69, which are most likely involved in retention of TRM cells in non-lymphoid tissues, including solid tumors. CD103 binds to the epithelial cell marker E-cadherin, thereby favoring the location and retention of TRM in epithelial tumor regions in close contact with malignant cells. The CD103-E-cadherin interaction is required for polarized exocytosis of lytic granules, in particular, when ICAM-1 expression on cancer cells is missing, leading to target cell death. TRM cells also express high levels of granzyme B, IFNγ and TNFα, supporting their cytotoxic features. Moreover, the local route of immunization targeting tissue dendritic cells (DC), and the presence of environmental factors (i.e. TGF-β, IL-33 and IL-15), promote differentiation of this T-cell subtype. In both spontaneous tumor models and engrafted tumors, natural TRM cells or cancer-vaccine-induced TRM directly control tumor growth. In line with these results, TRM infiltration into various human cancers, including lung cancer, are correlated with better clinical outcome in both univariate and multivariate analyses independently of CD8+ T cells. TRM cells also predominantly express checkpoint receptors such as PD-1, CTLA-4 and Tim-3. Blockade of PD-1 with neutralizing antibodies on TRM cells isolated from human lung cancer promotes cytolytic activity toward autologous tumor cells. Thus, TRM cells appear to represent important components in tumor immune surveillance. Their induction by cancer vaccines or other immunotherapeutic approaches may be critical for the success of these treatments. Several arguments, such as their close contact with tumor cells, dominant expression of checkpoint receptors and their recognition of cancer cells, strongly suggest that they may be involved in the success of immune checkpoint inhibitors in various cancers.
Collapse
Affiliation(s)
- Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Faculté de Médecine, University Paris-Sud, Université Paris-Saclay, 39, rue Camille Desmoulins, F-94805, Villejuif, France.
| | - Charlotte Blanc
- INSERM U970, Universite Paris Descartes, Paris, France.,Hôpital européen Georges Pompidou. Service d'Immunologie biologique, 20, Rue Leblanc, 75015, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Faculté de Médecine, University Paris-Sud, Université Paris-Saclay, 39, rue Camille Desmoulins, F-94805, Villejuif, France
| | - Sophie Hans
- INSERM U970, Universite Paris Descartes, Paris, France.,Hôpital européen Georges Pompidou. Service d'Immunologie biologique, 20, Rue Leblanc, 75015, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Ines Malenica
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Faculté de Médecine, University Paris-Sud, Université Paris-Saclay, 39, rue Camille Desmoulins, F-94805, Villejuif, France
| | - Clémence Granier
- INSERM U970, Universite Paris Descartes, Paris, France.,Hôpital européen Georges Pompidou. Service d'Immunologie biologique, 20, Rue Leblanc, 75015, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Isabelle Tihy
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Faculté de Médecine, University Paris-Sud, Université Paris-Saclay, 39, rue Camille Desmoulins, F-94805, Villejuif, France
| | - Eric Tartour
- INSERM U970, Universite Paris Descartes, Paris, France. .,Hôpital européen Georges Pompidou. Service d'Immunologie biologique, 20, Rue Leblanc, 75015, Paris, France. .,Equipe labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
17
|
Chen Z, Chen S, Liu J. The role of T cells in the pathogenesis of Parkinson's disease. Prog Neurobiol 2018; 169:1-23. [PMID: 30114440 DOI: 10.1016/j.pneurobio.2018.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/24/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023]
Abstract
Recent evidence has shown that neuroinflammation plays a key role in the pathogenesis of Parkinson's disease (PD). However, different components of the brain's immune system may exert diverse effects on neuroinflammatory events in PD. The adaptive immune response, especially the T cell response, can trigger type 1 pro-inflammatory activities and suppress type 2 anti-inflammatory activities, eventually resulting in deregulated neuroinflammation and subsequent dopaminergic neurodegeneration. Additionally, studies have increasingly shown that therapies targeting T cells can alleviate neurodegeneration and motor behavior impairment in animal models of PD. Therefore, we conclude that abnormal T cell-mediated immunity is a fundamental pathological process that may be a promising translational therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
18
|
Muruganandah V, Sathkumara HD, Navarro S, Kupz A. A Systematic Review: The Role of Resident Memory T Cells in Infectious Diseases and Their Relevance for Vaccine Development. Front Immunol 2018; 9:1574. [PMID: 30038624 PMCID: PMC6046459 DOI: 10.3389/fimmu.2018.01574] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Background Resident memory T cells have emerged as key players in the immune response generated against a number of pathogens. Their ability to take residence in non-lymphoid peripheral tissues allows for the rapid deployment of secondary effector responses at the site of pathogen entry. This ability to provide enhanced regional immunity has gathered much attention, with the generation of resident memory T cells being the goal of many novel vaccines. Objectives This review aimed to systematically analyze published literature investigating the role of resident memory T cells in human infectious diseases. Known effector responses mounted by these cells are summarized and key strategies that are potentially influential in the rational design of resident memory T cell inducing vaccines have also been highlighted. Methods A Boolean search was applied to Medline, SCOPUS, and Web of Science. Studies that investigated the effector response generated by resident memory T cells and/or evaluated strategies for inducing these cells were included irrespective of published date. Studies must have utilized an established technique for identifying resident memory T cells such as T cell phenotyping. Results While over 600 publications were revealed by the search, 147 articles were eligible for inclusion. The reference lists of included articles were also screened for other eligible publications. This resulted in the inclusion of publications that studied resident memory T cells in the context of over 25 human pathogens. The vast majority of studies were conducted in mouse models and demonstrated that resident memory T cells mount protective immune responses. Conclusion Although the role resident memory T cells play in providing immunity varies depending on the pathogen and anatomical location they resided in, the evidence overall suggests that these cells are vital for the timely and optimal protection against a number of infectious diseases. The induction of resident memory T cells should be further investigated and seriously considered when designing new vaccines.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Harindra D Sathkumara
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Severine Navarro
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Kupz
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
19
|
Gebhardt T, Palendira U, Tscharke DC, Bedoui S. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunol Rev 2018; 283:54-76. [DOI: 10.1111/imr.12650] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology; The University of Melbourne at the Peter Doherty Institute for Infection and Immunity; Melbourne Vic. Australia
| | - Umaimainthan Palendira
- Centenary Institute; The University of Sydney; Sydney NSW Australia
- Sydney Medical School; The University of Sydney; Sydney NSW Australia
| | - David C. Tscharke
- The John Curtin School of Medical Research; The Australian National University; Canberra ACT Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology; The University of Melbourne at the Peter Doherty Institute for Infection and Immunity; Melbourne Vic. Australia
| |
Collapse
|
20
|
Komdeur FL, Wouters MCA, Workel HH, Tijans AM, Terwindt ALJ, Brunekreeft KL, Plat A, Klip HG, Eggink FA, Leffers N, Helfrich W, Samplonius DF, Bremer E, Wisman GBA, Daemen T, Duiker EW, Hollema H, Nijman HW, de Bruyn M. CD103+ intraepithelial T cells in high-grade serous ovarian cancer are phenotypically diverse TCRαβ+ CD8αβ+ T cells that can be targeted for cancer immunotherapy. Oncotarget 2018; 7:75130-75144. [PMID: 27650547 PMCID: PMC5342728 DOI: 10.18632/oncotarget.12077] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022] Open
Abstract
CD103+ tumor-infiltrating lymphocytes (TIL) have been linked to specific epithelial infiltration and a prolonged survival in high-grade serous epithelial ovarian cancer (HGSC). However, whether these cells are induced as part of an ongoing anti-HGSC immune response or represent non-specifically expanded resident or mucosal lymphocytes remains largely unknown. In this study, we first confirmed that CD103+ TIL from HGSC were predominantly localized in the cancer epithelium and were strongly correlated with an improved prognosis. We further demonstrate that CD103+ TIL were almost exclusively CD3+ TCRαβ+ CD8αβ+ CD4- T cells, but heterogeneously expressed T cell memory and differentiation markers. Activation of peripheral T cells in the presence of HGSC was sufficient to trigger induction of CD103 in over 90% of all CD8+ cells in a T cell receptor (TCR)- and TGFβR1-dependent manner. Finally, CD103+ TIL isolated from primary HGSC showed signs of recent activation and dominantly co-expressed key immunotherapeutic targets PD-1 and CD27. Taken together, our data indicate CD103+ TIL in HGSC are formed as the result of an adaptive anti-tumor immune response that might be reactivated by (dual) checkpoint inhibition.
Collapse
Affiliation(s)
- Fenne L Komdeur
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Maartje C A Wouters
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, The Netherlands
| | - Hagma H Workel
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Aline M Tijans
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Anouk L J Terwindt
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Kim L Brunekreeft
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Annechien Plat
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Harry G Klip
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Florine A Eggink
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Ninke Leffers
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Wijnand Helfrich
- University of Groningen, University Medical Center Groningen, Department of Surgery, The Netherlands
| | - Douwe F Samplonius
- University of Groningen, University Medical Center Groningen, Department of Surgery, The Netherlands
| | - Edwin Bremer
- University of Groningen, University Medical Center Groningen, Department of Surgery, The Netherlands
| | - G Bea A Wisman
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Toos Daemen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, The Netherlands
| | - Evelien W Duiker
- University of Groningen, University Medical Center Groningen, Department of Pathology, The Netherlands
| | - Harry Hollema
- University of Groningen, University Medical Center Groningen, Department of Pathology, The Netherlands
| | - Hans W Nijman
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| | - Marco de Bruyn
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, The Netherlands
| |
Collapse
|
21
|
Gabrielli S, Sun M, Bell A, Zook EC, de Pooter RF, Zamai L, Kee BL. Murine thymic NK cells are distinct from ILC1s and have unique transcription factor requirements. Eur J Immunol 2017; 47:800-805. [PMID: 28276053 DOI: 10.1002/eji.201646871] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/14/2017] [Accepted: 03/06/2017] [Indexed: 11/08/2022]
Abstract
Group 1 innate lymphoid cells include natural killer (NK) cells and ILC1s, which mediate the response to intracellular pathogens. Thymic NK (tNK) cells were described with hybrid features of immature NK cells and ILC1 but whether these cells are related to NK cells or ILC1 has not been fully investigated. We report that murine tNK cells expressed the NK-cell associated transcription factor EOMES and developed independent of the essential ILC1 factor TBET, confirming their placement within the NK lineage. Moreover, tNK cells resemble NK cells rather than ILC1 in their requirements for the E protein transcription factor inhibitor ID2. We provide further insight into the mechanisms governing tNK-cell development by showing that the transcription factor ETS1 prevented tNK cell acquisition of the conventional NK-cell maturation markers CD11b and KLRG1. Our data reveal few ILC1 in the thymus and clarify the identity and developmental requirements of tNK cells.
Collapse
Affiliation(s)
- Sara Gabrielli
- Department of Biomolecular Sciences (DiSB), University of Urbino "Carlo Bo", Urbino, Italy
| | - Mengxi Sun
- Department of Pathology, University of Chicago, Chicago, IL, USA.,Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - April Bell
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Erin C Zook
- Department of Pathology, University of Chicago, Chicago, IL, USA.,Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Renee F de Pooter
- Department of Pathology, University of Chicago, Chicago, IL, USA.,Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Loris Zamai
- Department of Biomolecular Sciences (DiSB), University of Urbino "Carlo Bo", Urbino, Italy
| | - Barbara L Kee
- Department of Pathology, University of Chicago, Chicago, IL, USA.,Committee on Immunology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
22
|
Woon HG, Braun A, Li J, Smith C, Edwards J, Sierro F, Feng CG, Khanna R, Elliot M, Bell A, Hislop AD, Tangye SG, Rickinson AB, Gebhardt T, Britton WJ, Palendira U. Compartmentalization of Total and Virus-Specific Tissue-Resident Memory CD8+ T Cells in Human Lymphoid Organs. PLoS Pathog 2016; 12:e1005799. [PMID: 27540722 PMCID: PMC4991796 DOI: 10.1371/journal.ppat.1005799] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022] Open
Abstract
Disruption of T cell memory during severe immune suppression results in reactivation of chronic viral infections, such as Epstein Barr virus (EBV) and Cytomegalovirus (CMV). How different subsets of memory T cells contribute to the protective immunity against these viruses remains poorly defined. In this study we examined the compartmentalization of virus-specific, tissue resident memory CD8+ T cells in human lymphoid organs. This revealed two distinct populations of memory CD8+ T cells, that were CD69+CD103+ and CD69+CD103-, and were retained within the spleen and tonsils in the absence of recent T cell stimulation. These two types of memory cells were distinct not only in their phenotype and transcriptional profile, but also in their anatomical localization within tonsils and spleen. The EBV-specific, but not CMV-specific, CD8+ memory T cells preferentially accumulated in the tonsils and acquired a phenotype that ensured their retention at the epithelial sites where EBV replicates. In vitro studies revealed that the cytokine IL-15 can potentiate the retention of circulating effector memory CD8+ T cells by down-regulating the expression of sphingosine-1-phosphate receptor, required for T cell exit from tissues, and its transcriptional activator, Kruppel-like factor 2 (KLF2). Within the tonsils the expression of IL-15 was detected in regions where CD8+ T cells localized, further supporting a role for this cytokine in T cell retention. Together this study provides evidence for the compartmentalization of distinct types of resident memory T cells that could contribute to the long-term protection against persisting viral infections.
Collapse
Affiliation(s)
- Heng Giap Woon
- Centenary Institute, The University of Sydney, Newtown, New South Wales, Australia
| | - Asolina Braun
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jane Li
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Corey Smith
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jarem Edwards
- Centenary Institute, The University of Sydney, Newtown, New South Wales, Australia
| | - Frederic Sierro
- Centenary Institute, The University of Sydney, Newtown, New South Wales, Australia
| | - Carl G. Feng
- Centenary Institute, The University of Sydney, Newtown, New South Wales, Australia
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Newtown, New South Wales, Australia
| | - Rajiv Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michael Elliot
- Chris O’Brien Lifehouse Cancer Centre, Royal Prince Alfred Hospital, Camperdown, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Newtown, New South Wales, Australia
| | - Andrew Bell
- School of Cancer Sciences and MRC Centre for Immune Regulation, University of Birmingham, Edgbaston, United Kingdom
| | - Andrew D. Hislop
- School of Cancer Sciences and MRC Centre for Immune Regulation, University of Birmingham, Edgbaston, United Kingdom
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent’s Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Alan B. Rickinson
- School of Cancer Sciences and MRC Centre for Immune Regulation, University of Birmingham, Edgbaston, United Kingdom
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Warwick J. Britton
- Centenary Institute, The University of Sydney, Newtown, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Newtown, New South Wales, Australia
| | - Umaimainthan Palendira
- Centenary Institute, The University of Sydney, Newtown, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Newtown, New South Wales, Australia
| |
Collapse
|
23
|
Mullin J, Ahmed MS, Sharma R, Upile N, Beer H, Achar P, Puksuriwong S, Ferrara F, Temperton N, McNamara P, Lambe T, Gilbert SC, Zhang Q. Activation of cross-reactive mucosal T and B cell responses in human nasopharynx-associated lymphoid tissue in vitro by Modified Vaccinia Ankara-vectored influenza vaccines. Vaccine 2016; 34:1688-95. [DOI: 10.1016/j.vaccine.2016.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/14/2016] [Accepted: 02/10/2016] [Indexed: 01/09/2023]
|
24
|
Di Rosa F, Gebhardt T. Bone Marrow T Cells and the Integrated Functions of Recirculating and Tissue-Resident Memory T Cells. Front Immunol 2016; 7:51. [PMID: 26909081 PMCID: PMC4754413 DOI: 10.3389/fimmu.2016.00051] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Abstract
Changes in T cell trafficking accompany the naive to memory T cell antigen-driven differentiation, which remains an incompletely defined developmental step. Upon priming, each naive T cell encounters essential signals – i.e., antigen, co-stimuli and cytokines – in a secondary lymphoid organ; nevertheless, its daughter effector and memory T cells recirculate and receive further signals during their migration through various lymphoid and non-lymphoid organs. These additional signals from tissue microenvironments have an impact on immune response features, including T cell effector function, expansion and contraction, memory differentiation, long-term maintenance, and recruitment upon antigenic rechallenge into local and/or systemic responses. The critical role of T cell trafficking in providing efficient T cell memory has long been a focus of interest. It is now well recognized that naive and memory T cells have different migratory pathways, and that memory T cells are heterogeneous with respect to their trafficking. We and others have observed that, long time after priming, memory T cells are preferentially found in certain niches such as the bone marrow (BM) or at the skin/mucosal site of pathogen entry, even in the absence of residual antigen. The different underlying mechanisms and peculiarities of resulting immunity are currently under study. In this review, we summarize key findings on BM and tissue-resident memory (TRM) T cells and revisit some issues in memory T cell maintenance within such niches. Moreover, we discuss BM seeding by memory T cells in the context of migration patterns and protective functions of either recirculating or TRM T cells.
Collapse
Affiliation(s)
- Francesca Di Rosa
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, c/o Department of Molecular Medicine Sapienza University , Rome , Italy
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
25
|
Abstract
Epstein-Barr virus (EBV) is arguably one of the most successful pathogens of humans, persistently infecting over ninety percent of the world's population. Despite this high frequency of carriage, the virus causes apparently few adverse effects in the vast majority of infected individuals. Nevertheless, the potent growth transforming ability of EBV means the virus has the potential to cause malignancies in infected individuals. Indeed, EBV is thought to cause 1% of human malignancies, equating to 200,000 malignancies each year. A clear factor as to why virus-induced disease is relatively infrequent in healthy infected individuals is the presence of a potent immune response to EBV, in particular, that mediated by T cells. Thus, patient groups with immunodeficiencies or whose cellular immune response is suppressed have much higher frequencies of EBV-induced disease and, in at least some cases, these diseases can be controlled by restoration of the T-cell compartment. In this chapter, we will primarily review the role the αβ subset of T cells in the control of EBV in healthy and diseased individuals.
Collapse
Affiliation(s)
- Andrew D Hislop
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Graham S Taylor
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
26
|
Meyer M, Garron T, Lubaki NM, Mire CE, Fenton KA, Klages C, Olinger GG, Geisbert TW, Collins PL, Bukreyev A. Aerosolized Ebola vaccine protects primates and elicits lung-resident T cell responses. J Clin Invest 2015; 125:3241-55. [PMID: 26168222 DOI: 10.1172/jci81532] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/28/2015] [Indexed: 01/05/2023] Open
Abstract
Direct delivery of aerosolized vaccines to the respiratory mucosa elicits both systemic and mucosal responses. This vaccine strategy has not been tested for Ebola virus (EBOV) or other hemorrhagic fever viruses. Here, we examined the immunogenicity and protective efficacy of an aerosolized human parainfluenza virus type 3-vectored vaccine that expresses the glycoprotein (GP) of EBOV (HPIV3/EboGP) delivered to the respiratory tract. Rhesus macaques were vaccinated with aerosolized HPIV3/EboGP, liquid HPIV3/EboGP, or an unrelated, intramuscular, Venezuelan equine encephalitis replicon vaccine expressing EBOV GP. Serum and mucosal samples from aerosolized HPIV3/EboGP recipients exhibited high EBOV-specific IgG, IgA, and neutralizing antibody titers, which exceeded or equaled titers observed in liquid recipients. The HPIV3/EboGP vaccine induced an EBOV-specific cellular response that was greatest in the lungs and yielded polyfunctional CD8+ T cells, including a subset that expressed CD103 (αE integrin), and CD4+ T helper cells that were predominately type 1. The magnitude of the CD4+ T cell response was greater in aerosol vaccinees. The HPIV3/EboGP vaccine produced a more robust cell-mediated and humoral immune response than the systemic replicon vaccine. Moreover, 1 aerosol HPIV3/EboGP dose conferred 100% protection to macaques exposed to EBOV. Aerosol vaccination represents a useful and feasible vaccination mode that can be implemented with ease in a filovirus disease outbreak situation.
Collapse
|
27
|
Djenidi F, Adam J, Goubar A, Durgeau A, Meurice G, de Montpréville V, Validire P, Besse B, Mami-Chouaib F. CD8+CD103+ Tumor–Infiltrating Lymphocytes Are Tumor-Specific Tissue-Resident Memory T Cells and a Prognostic Factor for Survival in Lung Cancer Patients. THE JOURNAL OF IMMUNOLOGY 2015; 194:3475-86. [PMID: 25725111 DOI: 10.4049/jimmunol.1402711] [Citation(s) in RCA: 447] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fayçal Djenidi
- INSERM Unité 1186, 94805 Villejuif, France; Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France; Université Paris-Sud, 91400 Orsay, France
| | - Julien Adam
- Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France; Université Paris-Sud, 91400 Orsay, France; INSERM Unité 981, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Aïcha Goubar
- Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France; Université Paris-Sud, 91400 Orsay, France; INSERM Unité 981, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Aurélie Durgeau
- INSERM Unité 1186, 94805 Villejuif, France; Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France; Université Paris-Sud, 91400 Orsay, France
| | - Guillaume Meurice
- Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France; Université Paris-Sud, 91400 Orsay, France; Institut de Cancérologie Gustave Roussy, Plateforme de Bioinformatique, 94805 Villejuif, France
| | - Vincent de Montpréville
- INSERM Unité 1186, 94805 Villejuif, France; Centre Chirurgical Marie-Lannelongue, Service d'Anatomie Pathologique, 92350 Le-Plessis-Robinson, France
| | - Pierre Validire
- Institut Mutualiste Montsouris, Service d'Anatomie Pathologique, 75014 Paris, France; and
| | - Benjamin Besse
- Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France; Université Paris-Sud, 91400 Orsay, France; Département de Médecine, Institut de Cancérologie Gustave Roussy, 95805 Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM Unité 1186, 94805 Villejuif, France; Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France; Université Paris-Sud, 91400 Orsay, France;
| |
Collapse
|
28
|
Profile of CD103 expression in T-cell neoplasms: immunoreactivity is not restricted to enteropathy-associated T-cell lymphoma. Am J Surg Pathol 2014; 38:1557-70. [PMID: 25025448 DOI: 10.1097/pas.0000000000000296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intestinal intraepithelial T lymphocytes express the α E subunit of integrin αEβ7, which is detected by antibodies to CD103. Accordingly, within T-cell neoplasms, CD103 reactivity has most frequently been reported in enteropathy-associated T-cell lymphomas, which are postulated to arise from intestinal intraepithelial T lymphocytes. However, prior studies of CD103 expression in T-cell neoplasms have been limited by the requirement for fresh or frozen tissue, given the historic lack of an antibody to CD103 for use in paraffin-embedded sections. Thus, a thorough assessment of CD103 expression in a broad spectrum of T-cell neoplasms as categorized by the current classification system has not yet been performed. This study uses a newly described antibody to define the profile of CD103 immunoreactivity in paraffin sections of a wide variety of T-cell neoplasms (184 cases). Overall, 22 T-cell neoplasms (12%) were CD103 positive, including 7 of 15 gastrointestinal lymphomas (3.8% of total cases; 46% of gastrointestinal cases). In intestinal cases, CD103 positivity did not correlate with morphology, presence or absence of enteropathy, or immunohistochemical profile. A history of celiac disease was not documented in any case. Frequent but inconsistent reactivity was also noted for adult T-cell leukemia/lymphoma with 4 of 10 cases (40%) positive. In the remaining T-cell neoplasms representing most entities within the current World Health Organization classification, CD103 reactivity was sporadically observed in 11 of 159 cases (6.9%). CD103 positivity is an unusual feature in T-cell neoplasms and tends to occur in gastrointestinal lymphomas and adult T-cell leukemia/lymphoma but is not a consistent characteristic of these neoplasms.
Collapse
|
29
|
Benechet AP, Menon M, Khanna KM. Visualizing T Cell Migration in situ. Front Immunol 2014; 5:363. [PMID: 25120547 PMCID: PMC4114210 DOI: 10.3389/fimmu.2014.00363] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/14/2014] [Indexed: 12/16/2022] Open
Abstract
Mounting a protective immune response is critically dependent on the orchestrated movement of cells within lymphoid tissues. The structure of secondary lymphoid organs regulates immune responses by promoting optimal cell-cell and cell-extracellular matrix interactions. Naïve T cells are initially activated by antigen presenting cells in secondary lymphoid organs. Following priming, effector T cells migrate to the site of infection to exert their functions. Majority of the effector cells die while a small population of antigen-specific T cells persists as memory cells in distinct anatomical locations. The persistence and location of memory cells in lymphoid and non-lymphoid tissues is critical to protect the host from re-infection. The localization of memory T cells is carefully regulated by several factors including the highly organized secondary lymphoid structure, the cellular expression of chemokine receptors and compartmentalized secretion of their cognate ligands. This balance between the anatomy and the ordered expression of cell surface and soluble proteins regulates the subtle choreography of T cell migration. In recent years, our understanding of cellular dynamics of T cells has been advanced by the development of new imaging techniques allowing in situ visualization of T cell responses. Here, we review the past and more recent studies that have utilized sophisticated imaging technologies to investigate the migration dynamics of naïve, effector, and memory T cells.
Collapse
Affiliation(s)
- Alexandre P. Benechet
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Manisha Menon
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Kamal M. Khanna
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
30
|
Hepatitis E rORF2p stimulated and unstimulated peripheral expression profiling in patients with self-limiting hepatitis E infection. J Immunol Res 2014; 2014:565284. [PMID: 24963498 PMCID: PMC4052084 DOI: 10.1155/2014/565284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/15/2014] [Accepted: 04/24/2014] [Indexed: 01/07/2023] Open
Abstract
To improve the current knowledge on the involvement of peripheral lymphocytes in hepatitis E virus (HEV) associated pathogenesis, we analyzed alterations in (1) immunophenotypic expressions (by flow cytometry) and (2) gene expression patterns (by TaqMan Low Density Array) of activatory, inhibitory, integrin, homing, ectonucleotidase machinery, costimulatory, inflammatory markers, and T regulatory cells (Treg) associated cytokines on HEV rORF2p stimulated and unstimulated PBMCs of 43 acute HEV patients, 30 recovered individuals, and 43 controls.
The phenotypic expressions of key molecules CTLA-4, GITR, CD103, CD25, CD69, IL10 and TGF-β1 in the acute patients and TGF-β1 in the recovered individuals were significantly elevated on both unstimulated and stimulated PBMCs. Gene expression array data revealed upregulations of CD25, PD1, CD103, CCR4, IL10, and TGF-β1 on both unstimulated and HEV rORF2p stimulated PBMCs of acute patients. The observed upregulations of inhibitory, integrin, activatory, and Treg-associated cytokine genes on the PBMCs of acute HEV patients complemented by their frequency data suggest them as the major players in the fine-tuning of immune response in self-limiting hepatitis E infection.
Collapse
|
31
|
Webb JR, Milne K, Watson P, Deleeuw RJ, Nelson BH. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin Cancer Res 2013; 20:434-44. [PMID: 24190978 DOI: 10.1158/1078-0432.ccr-13-1877] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The presence of CD8(+) tumor-infiltrating lymphocytes (TIL) is associated with prolonged survival in high-grade serous ovarian cancer (HGSC) and other epithelial cancers. Survival is most strongly associated with intraepithelial versus intrastromal CD8(+) TILs; however, the mechanisms that promote the intraepithelial localization of TILs remain poorly understood. We hypothesized that intraepithelial CD8(+) TILs, like normal mucosal intraepithelial lymphocytes, might express CD103, a subunit of αE/β7 integrin, which binds E-cadherin on epithelial cells. METHODS A large collection of primary ovarian tumors (HGSC, endometrioid, mucinous, and clear cell) was analyzed by immunohistochemistry for the presence of TIL-expressing CD103. The activation and differentiation status of CD103(+) TILs were assessed by flow cytometry. The prognostic significance of TIL subsets was evaluated by Kaplan-Meier analysis. RESULTS CD103(+) TILs were present in all major ovarian cancer subtypes and were most abundant in HGSC. CD103(+) TILs were preferentially localized to epithelial regions of tumors and were comprised predominantly of CD8(+) T cells expressing activation (HLA-DR, Ki-67, PD-1) and cytolytic (TIA-1) markers, as well as CD56(+) NK cells. Tumor infiltration by CD103(+) TILs was strongly associated with patient survival in HGSC. Tumors containing CD8(+) TILs that were CD103(-) showed poor prognosis equivalent to tumors lacking CD8(+) TILs altogether. CONCLUSIONS CD103(+) TILs comprise intraepithelial, activated CD8(+) T cells, and NK cells and are strongly associated with patient survival in HGSC. CD103 may serve as a useful marker for enriching the most beneficial subsets of TILs for immunotherapy.
Collapse
Affiliation(s)
- John R Webb
- Authors' Affiliations: Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency; Department of Biochemistry and Microbiology, University of Victoria; Departments of Pathology and Laboratory Medicine and Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
32
|
Ruiz-Riol M, Mothe B, Gandhi RT, Bhardwaj N, Scadden DT, Sanchez-Merino V, Brander C. Influenza, but not HIV-specific CTL epitopes, elicits delayed-type hypersensitivity (DTH) reactions in HIV-infected patients. Eur J Immunol 2013; 43:1545-54. [PMID: 23504637 DOI: 10.1002/eji.201242732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 02/15/2013] [Accepted: 03/08/2013] [Indexed: 01/19/2023]
Abstract
The induction of cytotoxic T lymphocytes (CTLs) is believed to be an important defense mechanism against viral infections. The availability of simple, sensitive, specific and physiologically informative in vivo tests, applicable to humans, would greatly elucidate the nature of protective immune responses and facilitate immune monitoring in large vaccine trials. Here we studied the possibility of using defined HLA-A*02:01-restricted CTL epitopes from influenza matrix protein (GL9, GILGFVFTL) and HIV Gag p17 (SL9, SLYNTVATL) to elicit a cutaneous delayed-type hypersensitivity (DTH) reaction. Our results show that the GL9 but not the SL9 epitope was able to induce a DTH reaction. HIV infection status, HIV RNA level and CD4(+) T-cell counts were not predictive of the extent of DTH reactions. However, a markedly reduced expression of skin homing markers CD103 and cutaneous lymphocyte associated Ag (CLA) on epitope-specific CTL populations was associated with a lack of SL9 DTH reactivity. These data demonstrate that DTH reactions can be elicited by optimally defined CTL epitopes per se and point towards specific homing markers that are required for such reactions. These data may offer new insights into the immune pathogenesis of HIV infection and provide the basis of novel immune monitoring approaches for large-scale HIV vaccine trials.
Collapse
Affiliation(s)
- Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute - HIVACAT, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Morgan EA, Yu H, Pinkus JL, Pinkus GS. Immunohistochemical detection of hairy cell leukemia in paraffin sections using a highly effective CD103 rabbit monoclonal antibody. Am J Clin Pathol 2013; 139:220-30. [PMID: 23355207 DOI: 10.1309/ajcphw7rulizt2gb] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Detection of the integrin subunit CD103 is a useful diagnostic tool in the diagnosis of hairy cell leukemia (HCL). Currently, flow cytometric analysis (FC) and frozen section immunohistochemistry (IHC) represent the only available methods of detection. This study is the first to describe the successful use of a CD103 antibody to identify HCL and HCL-variant in paraffin sections of formalin- or Bouin solution- fixed specimens (n = 68) using an immunoperoxidase technique. In other B-cell lymphoproliferative disorders that morphologically may resemble HCL, including chronic lymphocytic leukemia/small lymphocytic lymphoma (n = 32), mantle cell lymphoma (n = 23), lymphoplasmacytic lymphoma (n = 27), follicular lymphoma (n = 7), and marginal zone lymphoma (n = 13), lymphoid cells are nonreactive for CD103. In HCL, the CD103 staining pattern is predominantly membranous with delineation of delicate cytoplasmic projections. This CD103 antibody is an extremely valuable addition to the IHC panel for the diagnosis of HCL, especially in cases lacking FC analysis.
Collapse
Affiliation(s)
- Elizabeth A. Morgan
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Hongbo Yu
- Department of Pathology, UMass Memorial Medical Center and University of Massachusetts Medical School, Worcester
| | - Jack L. Pinkus
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Geraldine S. Pinkus
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
34
|
Tissue-infiltrating lymphocytes analysis reveals large modifications of the duodenal "immunological niche" in coeliac disease after gluten-free diet. Clin Transl Gastroenterol 2012; 3:e28. [PMID: 23324655 PMCID: PMC3535075 DOI: 10.1038/ctg.2012.22] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The role of T lymphocytes in the pathogenesis of Celiac disease (CD) is well established. However, the mechanisms of T-cell involvement remain elusive. Little is known on the distribution of T subpopulations: T-regulatory (Treg), Th17, CD103, and CD62L cells at disease onset and after gluten-free diet (GFD). We investigated the involvement of several T subpopulations in the pathogenesis of CD. METHODS We studied T cells both in the peripheral blood (PB) and the tissue-infiltrating lymphocytes (TILs) from the mucosa of 14 CD patients at presentation and after a GFD, vs. 12 controls. RESULTS Our results extend the involvement of Treg, Th1, and Th17 cells in active CD inflammation both in the PB and at the TILs. At baseline, Tregs, Th1, and Th17 cells are significantly higher in active CD patients in TILs and PB. They decreased after diet. Moreover, CD62L+ TILs were increased at diagnosis as compared with GFD patients. CONCLUSIONS Our data show significant modifications of the above-mentioned subpopulations both in the PB and TILs. The increase of suppressive Tregs in active CD both in the PB and TILs is intriguing. T lymphocytes are known to have a crucial role in the pathogenesis of CD. We have shown that gluten trigger results in systemic recruitment of T lymphocytes, the unbalance between pro-inflammatory and anti-inflammatory populations and the increase of CD62L+ T cells in TILs. Our results delineate a more complete picture of T-cell subsets in active vs. GFD disease. Our data of T-cell subpopulations, combined with known data on cytokine production, support the concept that duodenal micro-environment acts as an immunological niche and this recognition may have an important role in the diagnosis, prognosis and therapeutical approach of CD.
Collapse
|
35
|
Gebhardt T, Mackay LK. Local immunity by tissue-resident CD8(+) memory T cells. Front Immunol 2012; 3:340. [PMID: 23162555 PMCID: PMC3493987 DOI: 10.3389/fimmu.2012.00340] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/23/2012] [Indexed: 12/18/2022] Open
Abstract
Microbial infection primes a CD8+ cytotoxic T cell response that gives rise to a long-lived population of circulating memory cells able to provide protection against systemic reinfection. Despite this, effective CD8+ T cell surveillance of barrier tissues such as skin and mucosa typically wanes with time, resulting in limited T cell-mediated protection in these peripheral tissues. However, recent evidence suggests that a specialized subset of CD103+ memory T cells can permanently lodge and persist in peripheral tissues, and that these cells can compensate for the loss of peripheral immune surveillance by circulating memory T cells. Here, we review evolving concepts regarding the generation and long-term persistence of these tissue-resident memory T cells (TRM) in epithelial and neuronal tissues. We further discuss the role of TRM cells in local infection control and their contribution to localized immune phenomena, in both mice and humans.
Collapse
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology, The University of Melbourne Melbourne, VIC, Australia
| | | |
Collapse
|
36
|
Torti N, Oxenius A. T cell memory in the context of persistent herpes viral infections. Viruses 2012; 4:1116-43. [PMID: 22852044 PMCID: PMC3407898 DOI: 10.3390/v4071116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 12/16/2022] Open
Abstract
The generation of a functional memory T cell pool upon primary encounter with an infectious pathogen is, in combination with humoral immunity, an essential process to confer protective immunity against reencounters with the same pathogen. A prerequisite for the generation and maintenance of long-lived memory T cells is the clearance of antigen after infection, which is fulfilled upon resolution of acute viral infections. Memory T cells play also a fundamental role during persistent viral infections by contributing to relative control and immuosurveillance of active replication or viral reactivation, respectively. However, the dynamics, the phenotype, the mechanisms of maintenance and the functionality of memory T cells which develop upon acute/resolved infection as opposed to chronic/latent infection differ substantially. In this review we summarize current knowledge about memory CD8 T cell responses elicited during α-, β-, and γ-herpes viral infections with major emphasis on the induction, maintenance and function of virus-specific memory CD8 T cells during viral latency and we discuss how the peculiar features of these memory CD8 T cell responses are related to the biology of these persistently infecting viruses.
Collapse
Affiliation(s)
- Nicole Torti
- Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | |
Collapse
|
37
|
Munir S, Hillyer P, Le Nouën C, Buchholz UJ, Rabin RL, Collins PL, Bukreyev A. Respiratory syncytial virus interferon antagonist NS1 protein suppresses and skews the human T lymphocyte response. PLoS Pathog 2011; 7:e1001336. [PMID: 21533073 PMCID: PMC3080852 DOI: 10.1371/journal.ppat.1001336] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 03/23/2011] [Indexed: 12/17/2022] Open
Abstract
We recently demonstrated that the respiratory syncytial virus (RSV) NS1 protein, an antagonist of host type I interferon (IFN-I) production and signaling, has a suppressive effect on the maturation of human dendritic cells (DC) that was only partly dependent on released IFN-I. Here we investigated whether NS1 affects the ability of DC to activate CD8+ and CD4+ T cells. Human DC were infected with RSV deletion mutants lacking the NS1 and/or NS2 genes and assayed for the ability to activate autologous T cells in vitro, which were analyzed by multi-color flow cytometry. Deletion of the NS1, but not NS2, protein resulted in three major effects: (i) an increased activation and proliferation of CD8+ T cells that express CD103, a tissue homing integrin that directs CD8+ T cells to mucosal epithelial cells of the respiratory tract and triggers cytolytic activity; (ii) an increased activation and proliferation of Th17 cells, which have recently been shown to have anti-viral effects and also indirectly attract neutrophils; and (iii) decreased activation of IL-4-producing CD4+ T cells--which are associated with enhanced RSV disease--and reduced proliferation of total CD4+ T cells. Except for total CD4+ T cell proliferation, none of the T cell effects appeared to be due to increased IFN-I signaling. In the infected DC, deletion of the NS1 and NS2 genes strongly up-regulated the expression of cytokines and other molecules involved in DC maturation. This was partly IFN-I-independent, and thus might account for the T cell effects. Taken together, these data demonstrate that the NS1 protein suppresses proliferation and activation of two of the protective cell populations (CD103+ CD8+ T cells and Th17 cells), and promotes proliferation and activation of Th2 cells that can enhance RSV disease.
Collapse
Affiliation(s)
- Shirin Munir
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Philippa Hillyer
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Cyril Le Nouën
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ronald L. Rabin
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander Bukreyev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Yamashiro H, Yoshizaki S, Tadaki T, Egawa K, Seo N. Stimulation of human butyrophilin 3 molecules results in negative regulation of cellular immunity. J Leukoc Biol 2010; 88:757-67. [DOI: 10.1189/jlb.0309156] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
| | - Shinji Yoshizaki
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | - Naohiro Seo
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
39
|
Ibarrondo J, Brander C. Profiles of cytotoxic granules in memory CD8 T cells correlate with function, differentiation stage and antigen exposure. Future Virol 2009. [DOI: 10.2217/fvl.09.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of: Harari A, Enders FB, Cellerai C et al.: Distinct profiles of cytotoxic granules CD8 T cells correlate with function, differentiation stage, and antigen exposure. J. Virol. 83(7), 2862–2871 (2009). The likely main effector function by which CD8+ T cells exert their role in the immune surveillance of infected and tumorogenic cells is mediated by the production of cytokines and cytotoxic secretory granules. These cytolytic activities complement ligand-mediated mechanisms of cell death, including Fas/Fas ligand-induced apoptosis. The cytotoxic granules contain perforin, which destabilizes the cell membrane of the target cell and proteases, specifically granzymes (Grms), which once have entered the target cell, provoke rapid cell death. There are currently five different Grms known that are referred to as Grms A, B, H, K and M. Despite some detailed studies, their respective role in the different stages of the cytotoxic process is poorly understood. Harari and colleagues have analyzed the expression of three Grms (i.e., Grms A, B and K) in CD8+ T cells specific for influenza virus, Epstein–Barr virus, cytomegalovirus and HIV-1. Their results describe differential expression patterns of perforin, Grm B and Grm K, depending on the virus specificity of the cytotoxic T lymphocytes. Analyses of the T-cell maturation phenotypes revealed a direct correlation between the differentiation stage of the memory T cells and the expression of perforin, Grm B and Grm K. Linking the differentiation phenotype with different viral infections indicated that antigen persistence is a driving force behind the variable Grm composition of the cytolytic granules. The data also associate a differential cytotoxic pattern with the different differentiation stages of the virus-specific memory CD8+ T-cell populations, thus providing a much improved understanding of how antigen persistence, T-cell differentiation and maturation, as well as cytolytic effector functions are interlinked.
Collapse
Affiliation(s)
- Javier Ibarrondo
- Irsicaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Christian Brander
- Christian Brander Irsicaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain and Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| |
Collapse
|
40
|
CD8+ T cell immunity to Epstein-Barr virus and Kaposi's sarcoma-associated herpes virus. Semin Cancer Biol 2008; 18:416-22. [PMID: 19007888 DOI: 10.1016/j.semcancer.2008.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/16/2008] [Indexed: 12/27/2022]
Abstract
Gammaherpesviruses are agents which have evolved to persist within the lymphoid system and many have oncogenic potential; studying gammaherpesvirus infections therefore has the potential to reveal much about the workings of the immune system and the control over viral oncogenesis. The lymphocryptovirus Epstein-Barr virus (EBV) and the rhadinovirus Kaposi's sarcoma-associated herpesvirus (KSHV, also known as human herpesvirus 8) are the two human gammaherpesviruses. Analysis of the T cell response to EBV has guided understanding of immunity to infection and disease caused by this virus, as well as directed the development of vaccination and therapeutic interventions in EBV-associated disease. Less is known about the T cell response to KSHV and its exact role in controlling virus infection and disease. Here we discuss the CD8+ T cell response to these two gammaherpesviruses.
Collapse
|
41
|
Scherrenburg J, Piriou ERWAN, Nanlohy NM, van Baarle D. Detailed analysis of Epstein-Barr virus-specific CD4+ and CD8+ T cell responses during infectious mononucleosis. Clin Exp Immunol 2008; 153:231-9. [PMID: 18549439 DOI: 10.1111/j.1365-2249.2008.03699.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We studied simultaneously Epstein-Barr virus (EBV)-specific CD4(+) and CD8(+) T cell responses during and after infectious mononucleosis (IM), using a previously described 12-day stimulation protocol with EBNA1 or BZLF1 peptide pools. Effector function of EBV-specific T cells was determined after restimulation by measuring intracellular interferon-gamma production. During IM, BZLF1-specifc CD4(+) T cell responses were dominant compared with CD8(+) T cell responses. EBNA1-specific CD4(+) and CD8(+) T cell responses were low and remained similar for 6 months. However, 6 months after IM, BZLF1-specific CD4(+) T cell responses had declined, but CD8(+) T cell responses had increased. At diagnosis, EBV-specific CD8(+) T cells as studied by human leucocyte antigen class I tetramer staining comprised a tetramer(bright)CD8(bright) population consisting mainly of CD27(+) memory T cells and a tetramer(dim)CD8(dim) population consisting primarily of CD27(-) effector T cells. The remaining EBV-specific CD8(+) T cell population 6 months after the diagnosis of IM consisted mainly of tetramer(bright)CD8(bright) CD27(+) T cells, suggesting preferential preservation of memory T cells after contraction of the EBV-specific T cell pool.
Collapse
Affiliation(s)
- J Scherrenburg
- Department of Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | |
Collapse
|
42
|
Suvas PK, Dech HM, Sambira F, Zeng J, Onami TM. Systemic and mucosal infection program protective memory CD8 T cells in the vaginal mucosa. THE JOURNAL OF IMMUNOLOGY 2008; 179:8122-7. [PMID: 18056354 DOI: 10.4049/jimmunol.179.12.8122] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Whether mucosal immunization is required for optimal protective CD8 T cell memory at mucosal surfaces is controversial. In this study, using an adoptive transfer system, we compare the efficacy of two routes of acute lymphocytic choriomeningitis viral infection on the generation, maintenance, and localization of Ag-specific CD8 T cells in tissues, including the vaginal mucosa. Surprisingly, at day 8, i.p. infection results in higher numbers of Ag-specific CD8 T cells in the vaginal mucosa and iliac lymph node, as well as 2-3x more Ag-specific CD8 T cells that coexpress both IFN-gamma and TNF-alpha in comparison to the intranasal route of infection. Expression of the integrin/activation marker CD103 (alphaEbeta7) is low on vaginal mucosal Ag-specific CD8 T cells in comparison to gut mucosal intraepithelial lymphocytes. At memory, no differences are evident in the number, cytokine production, or protective function of Ag-specific CD8 T cells in the vaginal mucosa comparing the two routes of infection. However, differences persist in the cytokine profile of genital tract vs peripheral Ag-specific CD8 T cells. So although the initial route of infection, as well as tissue microenvironment, appear to influence both the magnitude and quality of the effector CD8 T cell response, both systemic and mucosal infection are equally effective in the differentiation of protective memory CD8 T cell responses against vaginal pathogenic challenge.
Collapse
|
43
|
Hislop AD, Taylor GS, Sauce D, Rickinson AB. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 2007; 25:587-617. [PMID: 17378764 DOI: 10.1146/annurev.immunol.25.022106.141553] [Citation(s) in RCA: 557] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV) provides a useful model to study cellular immunity to a genetically stable, persistent human virus. Different sets of proteins expressed during EBV's lytic and cell transforming infections induce qualitatively different cellular immune responses. The factors governing immunodominance hierarchies and the biological effectiveness of these different responses are now being revealed. Analysis of infectious mononucleosis (IM), a clinical syndrome that can arise during primary EBV infection, has allowed the evolution of the responses to be tracked over time, giving an understanding of the immune response kinetics and of those determinants affecting selection into memory. Furthermore, following IM, expression of the receptor for the homeostatic cytokine IL-15 on NK and T cells is lost within these individuals. This experiment of nature provides a system to advance understanding of immunological homeostasis in humans, illustrating how data obtained from the study of EBV have wider significance to the immunological community.
Collapse
Affiliation(s)
- Andrew D Hislop
- CRUK Institute for Cancer Studies and MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK B15 2TT
| | | | | | | |
Collapse
|
44
|
Brainard DM, Tager AM, Misdraji J, Frahm N, Lichterfeld M, Draenert R, Brander C, Walker BD, Luster AD. Decreased CXCR3+ CD8 T cells in advanced human immunodeficiency virus infection suggest that a homing defect contributes to cytotoxic T-lymphocyte dysfunction. J Virol 2007; 81:8439-50. [PMID: 17553894 PMCID: PMC1951383 DOI: 10.1128/jvi.00199-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To exert their cytotoxic function, cytotoxic T-lymphocytes (CTL) must be recruited into infected lymphoid tissue where the majority of human immunodeficiency virus (HIV) replication occurs. Normally, effector T cells exit lymph nodes (LNs) and home to peripheral sites of infection. How HIV-specific CTL migrate into lymphoid tissue from which they are normally excluded is unknown. We investigated which chemokines and receptors mediate this reverse homing and whether impairment of this homing could contribute to CTL dysfunction as HIV infection progresses. Analysis of CTL chemokine receptor expression in the blood and LNs of untreated HIV-infected individuals with stable, chronic infection or advanced disease demonstrated that LNs were enriched for CXCR3(+) CD8 T cells in all subjects, suggesting a key role for this receptor in CTL homing to infected lymphoid tissue. Compared to subjects with chronic infection, however, subjects with advanced disease had fewer CXCR3(+) CD8 T cells in blood and LNs. CXCR3 expression on bulk and HIV-specific CD8 T cells correlated positively with CD4 count and negatively with viral load. In advanced infection, there was an accumulation of HIV-specific CD8 T cells at the effector memory stage; however, decreased numbers of CXCR3(+) CD8 T cells were seen across all maturation subsets. Plasma CXCL9 and CXCL10 were elevated in both infected groups in comparison to the levels in uninfected controls, whereas lower mRNA levels of CXCR3 ligands and CD8 in LNs were seen in advanced infection. These data suggest that both CXCR3(+) CD8 T cells and LN CXCR3 ligands decrease as HIV infection progresses, resulting in reduced homing of CTL into LNs and contributing to immune dysfunction.
Collapse
Affiliation(s)
- Diana M Brainard
- Massachusetts General Hospital, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Le Floc'h A, Jalil A, Vergnon I, Le Maux Chansac B, Lazar V, Bismuth G, Chouaib S, Mami-Chouaib F. Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. ACTA ACUST UNITED AC 2007; 204:559-70. [PMID: 17325197 PMCID: PMC2137907 DOI: 10.1084/jem.20061524] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Various T cell adhesion molecules and their cognate receptors on target cells promote T cell receptor (TCR)–mediated cell killing. In this report, we demonstrate that the interaction of epithelial cell marker E-cadherin with integrin αE(CD103)β7, often expressed by tumor-infiltrating lymphocytes (TILs), plays a major role in effective tumor cell lysis. Indeed, we found that although tumor-specific CD103+ TIL-derived cytotoxic T lymphocyte (CTL) clones are able to kill E-cadherin+/intercellular adhesion molecule 1− autologous tumor cells, CD103− peripheral blood lymphocyte (PBL)-derived counterparts are inefficient. This cell killing is abrogated after treatment of the TIL clones with a blocking anti-CD103 monoclonal antibody or after targeting E-cadherin in the tumor using ribonucleic acid interference. Confocal microscopy analysis also demonstrated that αEβ7 is recruited at the immunological synapse and that its interaction with E-cadherin is required for cytolytic granule polarization and subsequent exocytosis. Moreover, we report that the CD103− profile, frequently observed in PBL-derived CTL clones and associated with poor cytotoxicity against the cognate tumor, is up-regulated upon TCR engagement and transforming growth factor β1 treatment, resulting in strong potentiation of antitumor lytic function. Thus, CD8+/CD103+ tumor-reactive T lymphocytes infiltrating epithelial tumors most likely play a major role in antitumor cytotoxic response through αEβ7–E-cadherin interactions.
Collapse
Affiliation(s)
- Audrey Le Floc'h
- Institut National de la Santé et de la Recherche Médicale (INSERM) U753 and 2Unité de génomique fonctionnelle, Institut Fédératif de Recherche (IFR)-54, Institut Gustave Roussy, Villejuif Cedex 94805, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ivakine EA, Mortin-Toth SM, Gulban OM, Valova A, Canty A, Scott C, Danska JS. The idd4 locus displays sex-specific epistatic effects on type 1 diabetes susceptibility in nonobese diabetic mice. Diabetes 2006; 55:3611-9. [PMID: 17130511 DOI: 10.2337/db06-0758] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The nonobese diabetic (NOD) mouse recapitulates many aspects of the pathogenesis of type 1 diabetes in humans, including inheritance as a complex trait. More than 20 Idd loci have been linked to type 1 diabetes susceptibility in NOD mice. Previously, we used linkage analysis of NOD crossed to the nonobese diabetes-resistant (NOR) strain and NOD congenic strains to map susceptibility to both spontaneous and cyclophosphamide-accelerated type 1 diabetes to the Idd4 locus on chromosome 11 that displayed a sex-specific effect on diabetes susceptibility. Here, we elucidate the complex genetic architecture of Idd4 by analysis of congenic strains on the NOD and NOR backgrounds. We previously refined Idd4.1 to 1.4 Mb and demonstrated an impact of this interval on type 1 interferon pathways in antigen-presenting cells. Here, we identify a second subregion, the 0.92 Mb Idd4.2 locus located telomeric to Idd4.1. Strikingly, Idd4.2 displayed a sex-specific, epistatic interaction with Idd4.1 in NOR.NOD congenic females that was not observed in syngenic males. Idd4.2 contains 29 genes, and promising candidates for the Idd4.2 effect on type 1 diabetes are described. These data demonstrate sex-dependent interaction effects on type 1 diabetes susceptibility and provide a framework for functional analysis of Idd4.2 candidate genes.
Collapse
Affiliation(s)
- Evgueni A Ivakine
- Program in Developmental Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Uss E, Rowshani AT, Hooibrink B, Lardy NM, van Lier RAW, ten Berge IJM. CD103 is a marker for alloantigen-induced regulatory CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:2775-83. [PMID: 16920912 DOI: 10.4049/jimmunol.177.5.2775] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The alphaEbeta7 integrin CD103 may direct lymphocytes to its ligand E-cadherin. CD103 is expressed on T cells in lung and gut and on allograft-infiltrating T cells. Moreover, recent studies have documented expression of CD103 on CD4+ regulatory T cells. Approximately 4% of circulating CD8+ T cells bear the CD103 molecule. In this study, we show that the absence or presence of CD103 was a stable trait when purified CD103- and CD103+ CD8+ T cell subsets were stimulated with a combination of CD3 and CD28 mAbs. In contrast, allostimulation induced CD103 expression on approximately 25% of purified CD103- CD8+ T cells. Expression of CD103 on alloreactive cells was found to be augmented by IL-4, IL-10, or TGF-beta and decreased by addition of IL-12 to MLCs. The alloantigen-induced CD103+ CD8+ T cell population appeared to be polyclonal and retained CD103 expression after restimulation. Markedly, in vitro-expanded CD103+ CD8+ T cells had low proliferative and cytotoxic capacity, yet produced considerable amounts of IL-10. Strikingly, they potently suppressed T cell proliferation in MLC via a cell-cell contact-dependent mechanism. Thus, human alloantigen-induced CD103+ CD8+ T cells possess functional features of regulatory T cells.
Collapse
Affiliation(s)
- Elena Uss
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Brander C, Frahm N, Walker BD. The challenges of host and viral diversity in HIV vaccine design. Curr Opin Immunol 2006; 18:430-7. [PMID: 16777397 DOI: 10.1016/j.coi.2006.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 05/31/2006] [Indexed: 02/03/2023]
Abstract
Rational HIV vaccine design is crucially dependent on a number of factors, including a detailed understanding of the immune responses that control infection in individuals that have non-progressing disease, the impact of host genetics on these responses, and the degree of immunological cross-reactivity between the vaccine immunogen and the encountered virus antigens. Significant progress has been made in a number of these areas over the past five years, which might help in the generation of a more effective immunogen design and will provide opportunities for novel vaccine delivery options. However, the understanding of immune response(s) that can mediate protection from infection or, if infection ensues, that slow the rate of HIV disease progression is still incomplete and will require detailed studies in unprecedentedly large populations infected with different HIV clades, combining advances in virology, immunology, human host genetics and bioinformatics analyses for the optimal design of vaccine immunogens.
Collapse
Affiliation(s)
- Christian Brander
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School Charlestown, 02192, USA.
| | | | | |
Collapse
|
49
|
Bihl F, Frahm N, Di Giammarino L, Sidney J, John M, Yusim K, Woodberry T, Sango K, Hewitt HS, Henry L, Linde CH, Chisholm JV, Zaman TM, Pae E, Mallal S, Walker BD, Sette A, Korber BT, Heckerman D, Brander C. Impact of HLA-B Alleles, Epitope Binding Affinity, Functional Avidity, and Viral Coinfection on the Immunodominance of Virus-Specific CTL Responses. THE JOURNAL OF IMMUNOLOGY 2006; 176:4094-101. [PMID: 16547245 DOI: 10.4049/jimmunol.176.7.4094] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunodominance is variably used to describe either the most frequently detectable response among tested individuals or the strongest response within a single individual, yet factors determining either inter- or intraindividual immunodominance are still poorly understood. More than 90 individuals were tested against 184 HIV- and 92 EBV-derived, previously defined CTL epitopes. The data show that HLA-B-restricted epitopes were significantly more frequently recognized than HLA-A- or HLA-C-restricted epitopes. HLA-B-restricted epitopes also induced responses of higher magnitude than did either HLA-A- or HLA-C-restricted epitopes, although this comparison only reached statistical significance for EBV epitopes. For both viruses, the magnitude and frequency of recognition were correlated with each other, but not with the epitope binding affinity to the restricting HLA allele. The presence or absence of HIV coinfection did not impact EBV epitope immunodominance patterns significantly. Peptide titration studies showed that the magnitude of responses was associated with high functional avidity, requiring low concentration of cognate peptide to respond in in vitro assays. The data support the important role of HLA-B alleles in antiviral immunity and afford a better understanding of the factors contributing to inter- and intraindividual immunodominance.
Collapse
Affiliation(s)
- Florian Bihl
- Partners AIDS Research Center, Massachusetts General Hospital, Charlestown, 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|