1
|
Reis LR, Silva-Moraes V, Teixeira-Carvalho A, Ross TM. B-cell dynamics underlying poor response upon split-inactivated influenza virus vaccination. Front Immunol 2024; 15:1481910. [PMID: 39635527 PMCID: PMC11614812 DOI: 10.3389/fimmu.2024.1481910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
This investigation elucidated the differences in humoral and H1N1 HA-specific memory B-cells response in participants exhibiting distinct immune response patterns prior to and after vaccination with Fluzone, the quadrivalent split-inactivated seasonal influenza virus vaccine. Participants were categorized into persistent non-responders and persistent responders based on their hemagglutination-inhibition (HAI) antibody titers to the H1N1 component from each vaccine administered between the 2019-2020 to 2023-2024 seasons. Persistent responders had higher fold change in H1N1 HA-specific CD21 expressing B-cells, plasmablasts, and plasma cells. A significant increase in H1N1 HA-specific transitional B-cells in persistent non-responders was observed. The frequency and fold change of H1N1-specific IgM-expressing memory B-cells was higher in persistent non-responders. Dimensionality reduction analysis also demonstrated higher IgM expression for persistent non-responders than persistent responders. Furthermore, persistent non-responders had a significant fold change increase in IgA tissue-like memory, IgG exhausted tissue-like memory, and double negative (DN) activated memory cells. In contrast, persistent responders had increased frequency of IgG-activated memory B-cells, IgG resting B-cells and DN resting B-cells. Correlation analysis revealed a positive correlation between HAI titers and DN memory B-cells and a negative correlation between HAI titers and IgG-expressing memory B-cells in persistent non-responders. Conversely, persistent responders had a positive correlation between HAI titers and IgA resting memory B-cells and a negative correlation between IgG memory B-cells and DN memory B-cells. Overall, this study provided valuable insights into the differential immune memory B-cell responses following influenza virus vaccination and paves the way for future research to further unravel the complexities of vaccine-induced memory B-cells and ultimately improve vaccination strategies against influenza virus infection.
Collapse
Affiliation(s)
- Laise Rodrigues Reis
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, United States
| | - Vanessa Silva-Moraes
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, United States
| | | | - Ted M. Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, United States
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Tzovara I, Papadatou I, Tzanoudaki M, Piperi C, Kanaka-Gantenbein C, Spoulou V. The Divergent Effect of Different Infant Vaccination Schedules of the 13-Valent Pneumococcal Conjugate Vaccine on Serotype-Specific Immunological Memory. Vaccines (Basel) 2024; 12:1024. [PMID: 39340054 PMCID: PMC11435716 DOI: 10.3390/vaccines12091024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Pneumococcal vaccination schedules are traditionally assessed based on the antibody response. The Memory B Cell (MBC) response has been less studied, despite its role in the magnitude and longevity of protection. We compared the immune response to different vaccination schedules with the 13-valent Pneumococcal Conjugate Vaccine (PCV13) and investigated the relationship between MBCs and the antibody response. Total and pneumococcal serotype (PS)-specific MBCs, their subsets and PS-specific IgG antibodies induced by a 3 + 0 (group A), 2 + 1 (group B) or 3 + 1 (group C) schedule in healthy infants were studied before and 1 month after the last PCV13. The relatively immature IgM+IgD+ MBC subset was the predominant subset in all groups but was larger in group A compared to group B and group C, indicating that age might be a significant parameter of the composition of the MBC pool. PS-specific MBCs at baseline were higher in group A, but they increased significantly only in the groups receiving the booster schedules (groups B and C). PS-specific IgM-only MBCs at baseline positively corelated with the antibody response and the PS-specific swIg MBCs post-immunization. Our findings illustrate the importance of a booster dose for the enrichment of PS-specific immunological memory. IgM-only MBCs and swIg MBCs may serve as additional correlates of vaccine-induced protection.
Collapse
Affiliation(s)
- Irene Tzovara
- Immunobiology and Vaccinology Research Laboratory, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioanna Papadatou
- Immunobiology and Vaccinology Research Laboratory, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Marianna Tzanoudaki
- Department of Immunology and Histocompatibility, Specialized Center and Referral Center for Primary Immunodeficiencies, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Dong X, Tu H, Bai X, Qin S, Li Z. INTRINSIC/EXTRINSIC APOPTOSIS AND PYROPTOSIS CONTRIBUTE TO THE SELECTIVE DEPLETION OF B CELL SUBSETS IN SEPTIC SHOCK PATIENTS. Shock 2023; 60:345-353. [PMID: 37477437 PMCID: PMC10510799 DOI: 10.1097/shk.0000000000002174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
ABSTRACT The depletion of peripheral blood B cells is associated with immunosuppression and poor prognosis during sepsis, and selective depletion occurs when B cell subsets are specifically targeted. In this study, we examined the mechanisms underlying the selective depletion of B cell subsets in the immunosuppressive phase of septic shock patients. Thirty-two septic shock patients were recruited as a septic shock group and 10 healthy volunteers as a control group. The expression of Bcl-2, CD95, cleaved caspase-9/8, and activated caspase-3/1 in the B cell subsets were measured by flow cytometry. Another 23 septic shock patients were recruited to test the remission of caspase-3 (Z-DEVD-FMK) and caspase-1 (VX-765) inhibitors on B cell subset depletion in vitro . In septic shock patients, the Bcl-2 levels in immature/transitional (IM) B cells decreased and the levels of cleaved caspase-9 in IM B cells increased; the levels of CD95 in IM, naive, resting memory (RM), and activated memory (AM) B cells and the levels of cleaved caspase-8 in IM, RM, and AM B cells increased; the levels of activated caspase-3 and caspase-1 in IM, RM, and AM B cells increased. Activated caspase-1 levels in IM B cells were higher compared with activated caspase-3 in septic shock patients, whereas the levels of activated caspase-1 in AM B cells were lower compared with activated caspase-3. Moreover, in vitro experiments showed that Z-DEVD-FMK and VX-765 could alleviate the depletion of IM, AM, and RM B cells. The selective reduction of circulating B cell subsets in septic shock patients could be attributed to intrinsic and extrinsic apoptosis as well as pyroptosis.
Collapse
Affiliation(s)
- Xijie Dong
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Tu
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Bhattarai D, McGinn DE, Crowley TB, Giunta V, Gaiser K, Zackai EH, Emanuel BS, Heimall J, Jyonouchi S, Lee J, Sun D, McDonald-McGinn DM, Sullivan KE. Immunologic, Molecular, and Clinical Profile of Patients with Chromosome 22q11.2 Duplications. J Clin Immunol 2023; 43:794-807. [PMID: 36735193 DOI: 10.1007/s10875-023-01443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE Duplication of chromosome 22q11.2 due to meiotic non-allelic homologous recombination results in a distinct syndrome, chromosome 22q11.2 duplication syndrome that has some overlapping phenotypic features with the corresponding 22q11.2 deletion syndrome. Literature on immunologic aspects of the duplication syndrome is limited. We conducted a retrospective study of 216 patients with this syndrome to better define the key features of the duplication syndrome. METHODS Single-center retrospective record review was performed. Data regarding demographics, clinical details, and immunological tests were compiled, extracted into a predetermined data collection form, and analyzed. RESULTS This cohort comprised 113 (52.3%) males and 103 (47.7%) females. The majority (54.6%) of mapped duplications were between low copy repeat regions A-D (LCR22A to -D). Though T cell subsets were relatively preserved, switched memory B cells, immunoglobulins, and specific antibodies were each found to be decreased in a subset of the cohort. One-fifth (17/79, 21.5%) of patients had at least 2 low immunoglobulin values, and panhypogammaglobulinemia was found in 11.7% (9/79) cases. Four children were on regular immunoglobulin replacement therapy. Asthma and eczema were the predominant atopic symptoms in our cohort. CONCLUSION Significant immunodeficiencies were observed in our cohort, particularly in B cells and antibodies. Our study expands the current clinical understanding and emphasizes the need of immunological studies and multidisciplinary approaches for these patients.
Collapse
Affiliation(s)
- Dharmagat Bhattarai
- Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Daniel E McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - T Blaine Crowley
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Victoria Giunta
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kimberly Gaiser
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer Heimall
- Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Soma Jyonouchi
- Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Juhee Lee
- Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Di Sun
- Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kathleen E Sullivan
- Division of Allergy & Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Zhang Y, Wang J, Hu L, Xuan J, Qu Y, Li Y, Ye X, Yang L, Yang J, Zhang X, Wang J, Wei B. Predictive Value of Immune Cell Subsets for Mortality Risk in Patients With Sepsis. Clin Appl Thromb Hemost 2021; 27:10760296211059498. [PMID: 34755551 PMCID: PMC8586162 DOI: 10.1177/10760296211059498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study investigates the prognostic value of immune cell subsets in assessing the risk of death in patients with sepsis. This retrospective study collected 169 patients from March 2020 to February 2021 at our hospital. Baseline data were collected from patients. The absolute values (Abs) and percentages (%) of immune cell subsets for lymphocytes, T cells, CD4+ cells, CD8+, B cells, NK cells, and NKT cells were measured using flow Cytometry. Among the included patients, 43 patients were in the nonsurvivor group and 126 patients were in the survivor group. The age of patients in the nonsurvivor survivor was higher than that of survivor group patients (P = .020). SOFA, APACHE II, C-reactive protein, and procalcitonin were higher in the nonsurvivor group than in the survivor group (all P values < .05). Multivariate regression analysis showed that lymphocytes (%) and SOFA were independent risk factors affecting patients' prognosis. Lymphocytes (%) have the highest area under the receiver operating characteristic (ROC) curve (0.812). The model area under the ROC curve for immune cell subsets was 0.800, with a sensitivity of 72.09%, and specificity of 79.27% (z = 7.796, P < .001). Analysis of patient prognosis by immune cell subsets diagnostic showed statistically significant differences in the grouping of cut-off values for all 5 indicators (all P < .05). The lymphocytes (%) and SOFA score are independent risk factors affecting the prognosis of patients. A moderate predictive power for mortality in sepsis patients by immune cell subsets model.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Le Hu
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jingchao Xuan
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yifan Qu
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yixuan Li
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xinghua Ye
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Long Yang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jun Yang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiangqun Zhang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Junyu Wang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Bing Wei
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Heck C, Steiner S, Kaebisch EM, Frentsch M, Wittenbecher F, Scheibenbogen C, Hanitsch LG, Nogai A, le Coutre P, Bullinger L, Blau IW, Na IK. CD4+ T Cell Dependent B Cell Recovery and Function After Autologous Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 12:736137. [PMID: 34659226 PMCID: PMC8519398 DOI: 10.3389/fimmu.2021.736137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction High-dose chemotherapy followed by autologous hematopoietic stem cell transplantation (auto-HSCT) represents a standard treatment regime for multiple myeloma (MM) patients. Common and potentially fatal side effects after auto-HSCT are infections due to a severely compromised immune system with hampered humoral and cellular immunity. This study delineates in depth the quantitative and functional B cell defects and investigates underlying extrinsic or intrinsic drivers. Methods Peripheral blood of MM patients undergoing high-dose chemotherapy and auto-HSCT (before high-dose chemotherapy and in early reconstitution after HSCT) was studied. Absolute numbers and distribution of B cell subsets were analyzed ex vivo using flow cytometry. Additionally, B cell function was assessed with T cell dependent (TD) and T cell independent (TI) stimulation assays, analyzing proliferation and differentiation of B cells by flow cytometry and numbers of immunoglobulin secreting cells in ELISpots. Results Quantitative B cell defects including a shift in the B cell subset distribution occurred after auto-HSCT. Functionally, these patients showed an impaired TD as well as TI B cell immune response. Individual functional responses correlated with quantitative alterations of CD19+, CD4+, memory B cells and marginal zone-like B cells. The TD B cell function could be partially restored upon stimulation with CD40L/IL-21, successfully inducing B cell proliferation and differentiation into plasmablasts and immunoglobulin secreting cells. Conclusion Quantitative and functional B cell defects contribute to the compromised immune defense in MM patients undergoing auto-HSCT. Functional recovery upon TD stimulation and correlation with CD4+ T cell numbers, indicate these as extrinsic drivers of the functional B cell defect. Observed correlations of CD4+, CD19+, memory B and MZ-like B cell numbers with the B cell function suggest that these markers should be tested as potential biomarkers in prospective studies.
Collapse
Affiliation(s)
- Clarissa Heck
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sophie Steiner
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eva M Kaebisch
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Marco Frentsch
- Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Friedrich Wittenbecher
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Leif G Hanitsch
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Axel Nogai
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp le Coutre
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Igor-Wolfgang Blau
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Il-Kang Na
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,Experimental and Clinical Research Center, Berlin, Germany
| |
Collapse
|
7
|
Yap JY, Moens L, Lin MW, Kane A, Kelleher A, Toong C, Wu KHC, Sewell WA, Phan TG, Hollway GE, Enthoven K, Gray PE, Casas-Martin J, Wouters C, De Somer L, Hershfield M, Bucciol G, Delafontaine S, Ma CS, Tangye SG, Meyts I. Intrinsic Defects in B Cell Development and Differentiation, T Cell Exhaustion and Altered Unconventional T Cell Generation Characterize Human Adenosine Deaminase Type 2 Deficiency. J Clin Immunol 2021; 41:1915-1935. [PMID: 34657246 PMCID: PMC8604888 DOI: 10.1007/s10875-021-01141-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/22/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Deficiency of adenosine deaminase type 2 (ADA2) (DADA2) is a rare inborn error of immunity caused by deleterious biallelic mutations in ADA2. Clinical manifestations are diverse, ranging from severe vasculopathy with lacunar strokes to immunodeficiency with viral infections, hypogammaglobulinemia and bone marrow failure. Limited data are available on the phenotype and function of leukocytes from DADA2 patients. The aim of this study was to perform in-depth immunophenotyping and functional analysis of the impact of DADA2 on human lymphocytes. METHODS In-depth immunophenotyping and functional analyses were performed on ten patients with confirmed DADA2 and compared to heterozygous carriers of pathogenic ADA2 mutations and normal healthy controls. RESULTS The median age of the patients was 10 years (mean 20.7 years, range 1-44 years). Four out of ten patients were on treatment with steroids and/or etanercept or other immunosuppressives. We confirmed a defect in terminal B cell differentiation in DADA2 and reveal a block in B cell development in the bone marrow at the pro-B to pre-B cell stage. We also show impaired differentiation of CD4+ and CD8+ memory T cells, accelerated exhaustion/senescence, and impaired survival and granzyme production by ADA2 deficient CD8+ T cells. Unconventional T cells (i.e. iNKT, MAIT, Vδ2+ γδT) were diminished whereas pro-inflammatory monocytes and CD56bright immature NK cells were increased. Expression of the IFN-induced lectin SIGLEC1 was increased on all monocyte subsets in DADA2 patients compared to healthy donors. Interestingly, the phenotype and function of lymphocytes from healthy heterozygous carriers were often intermediate to that of healthy donors and ADA2-deficient patients. CONCLUSION Extended immunophenotyping in DADA2 patients shows a complex immunophenotype. Our findings provide insight into the cellular mechanisms underlying some of the complex and heterogenous clinical features of DADA2. More research is needed to design targeted therapy to prevent viral infections in these patients with excessive inflammation as the overarching phenotype.
Collapse
Affiliation(s)
- Jin Yan Yap
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia
| | - Leen Moens
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Herestraat 49, 3000, Leuven, EU, Belgium
| | - Ming-Wei Lin
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia.,Department of Clinical Immunology and Immunopathology, Westmead Hospital, Westmead, NSW, Australia.,Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Alisa Kane
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia.,Department of Immunology, Liverpool Hospital, Allergy and HIV, Liverpool, Sydney, Australia.,HIV and Immunology Unit, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, Sydney, NSW, Australia
| | - Anthony Kelleher
- HIV and Immunology Unit, St Vincent's Hospital, Darlinghurst, NSW, Australia.,The Kirby Institute for Infection and Immunity in Society, Sydney, Australia
| | - Catherine Toong
- Department of Immunology, Liverpool Hospital, Allergy and HIV, Liverpool, Sydney, Australia
| | - Kathy H C Wu
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical Genomics, St Vincent's Hospital Darlinghurst, Darlinghurst, NSW, Australia.,School of Medicine, UNSW Sydney, Sydney, Australia.,Discipline of Genetic Medicine, University of Sydney, Sydney, Australia.,School of Medicine, University of Notre Dame, Fremantle, Australia
| | - William A Sewell
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, Sydney, NSW, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia.,HIV and Immunology Unit, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Georgina E Hollway
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia
| | - Karen Enthoven
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia
| | - Paul E Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jose Casas-Martin
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Herestraat 49, 3000, Leuven, EU, Belgium
| | - Carine Wouters
- Department of Microbiology and Immunology, Herestraat 49, 3000, Leuven, EU, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, EU, Belgium
| | - Lien De Somer
- Department of Microbiology and Immunology, Herestraat 49, 3000, Leuven, EU, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, EU, Belgium
| | - Michael Hershfield
- Department of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Giorgia Bucciol
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Herestraat 49, 3000, Leuven, EU, Belgium.,Department of Pediatrics, Division of Inborn Errors of Immunity, University Hospitals Leuven, Herestraat 49, 3000, Leuven, EU Leuven, Belgium
| | - Selket Delafontaine
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Herestraat 49, 3000, Leuven, EU, Belgium.,Department of Pediatrics, Division of Inborn Errors of Immunity, University Hospitals Leuven, Herestraat 49, 3000, Leuven, EU Leuven, Belgium
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, Sydney, NSW, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. .,Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, NSW, Australia. .,Faculty of Medicine, St Vincent's Clinical School, Sydney, NSW, Australia.
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Herestraat 49, 3000, Leuven, EU, Belgium. .,Department of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
8
|
Carsetti R, Terreri S, Conti MG, Fernandez Salinas A, Corrente F, Capponi C, Albano C, Piano Mortari E. Comprehensive phenotyping of human peripheral blood B lymphocytes in healthy conditions. Cytometry A 2021; 101:131-139. [PMID: 34664397 PMCID: PMC9546334 DOI: 10.1002/cyto.a.24507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
The B cell compartment provides innate and adaptive immune defenses against pathogens. Different B cell subsets, reflecting the maturation stages of B cells, have noninterchangeable functions and roles in innate and adaptive immune responses. In this review, we provide an overview of the B cell subsets present in peripheral blood of healthy individuals. A specific gating strategy is also described to clearly and univocally identify B cell subsets based on the their phenotypic traits by flow cytometric analysis.
Collapse
Affiliation(s)
- Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Terreri
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giulia Conti
- Department of Maternal and Child Health, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ane Fernandez Salinas
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Corrente
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Capponi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Christian Albano
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
9
|
Cardoso CC, Matiollo C, Pereira CHJ, Fonseca JS, Alves HEL, Silva OMD, Menegassi VDS, Schiavon LDL, Santos-Silva MC. B-cell compartment abnormalities are associated with ACLF and mortality in patients with liver cirrhosis. Clin Res Hepatol Gastroenterol 2021; 45:101698. [PMID: 33852953 DOI: 10.1016/j.clinre.2021.101698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Liver cirrhosis profoundly affects the immune system, leading to an immunological imbalance known as cirrhosis-associated immune dysfunction. AIMS This study aimed to investigate B-cell disturbances in patients with acute decompensation (AD) of cirrhosis and assess relationships with prognosis and mortality. METHODS The study included 39 patients with AD of cirrhosis, 29 patients with stable cirrhosis (SC), and 30 healthy controls (CTR). Circulating B-cell subsets and cytokine plasma levels were determined by flow cytometry. RESULTS Cirrhotic groups showed higher percentages of naïve B cells, and lower percentages of CD27+ memory B cells (MBCs) than CTR. Further analysis comparing SC and AD revealed that the latter had higher frequencies of double-negative (DN) B cells and plasmablasts. Patients with more advanced liver disease exhibited a B-cell maturation shift toward MBCs and plasmablasts. Acute-on-chronic liver failure (ACLF) was associated with higher DN frequency. The Kaplan-Meier one-year survival probability was 92.9% in patients with >1.3% of transitional B cells and 27.3% in patients with <1.3%. CONCLUSIONS B-cell subsets are markedly altered in cirrhotic patients, and cell profiles differ between stable and decompensated liver disease. Increased frequencies of DN B cells and reduced proportions of transitional B cells may be of great relevance in predicting ACLF and mortality, respectively.
Collapse
Affiliation(s)
- Chandra Chiappin Cardoso
- Division of Clinical Analysis, Flow Cytometry Service, University Hospital of the Federal University of Santa Catarina, Florianópolis, Brazil; Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Camila Matiollo
- Division of Clinical Analysis, Flow Cytometry Service, University Hospital of the Federal University of Santa Catarina, Florianópolis, Brazil; Postgraduate Program in Medical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Janaina Sant'ana Fonseca
- Division of Gastroenterology, University Hospital of the Federal University of Santa Catarina, Florianópolis, Brazil
| | - Helder Emmanuel Leite Alves
- Division of Gastroenterology, University Hospital of the Federal University of Santa Catarina, Florianópolis, Brazil
| | - Otavio Marcos da Silva
- Division of Gastroenterology, University Hospital of the Federal University of Santa Catarina, Florianópolis, Brazil
| | - Vivian de Souza Menegassi
- Division of Gastroenterology, University Hospital of the Federal University of Santa Catarina, Florianópolis, Brazil
| | - Leonardo de Lucca Schiavon
- Postgraduate Program in Medical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil; Division of Gastroenterology, University Hospital of the Federal University of Santa Catarina, Florianópolis, Brazil
| | - Maria Claudia Santos-Silva
- Division of Clinical Analysis, Flow Cytometry Service, University Hospital of the Federal University of Santa Catarina, Florianópolis, Brazil; Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis, Brazil; Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
10
|
Fu Y, Zhang Z, Yang Z, Jiang Y, Han X, Xu J, Chu Z, Ding H, He S, Shang H. CD27 -CD38 + B cells accumulated in early HIV infection exhibit transitional profile and promote HIV disease progression. Cell Rep 2021; 36:109344. [PMID: 34260905 DOI: 10.1016/j.celrep.2021.109344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 10/13/2020] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Although peripheral B cell dysfunction in early HIV infection is established, how B cell subsets are altered by HIV infection is poorly understood. While investigating B cell subsets among individuals recently infected with HIV, we observe an accumulation of CD27-CD38+ B cells and find that these cells can directly facilitate HIV infection of primary CD4+ T cells in vitro. Comprehensive analyses of the phenotype, function, and transcriptome of the CD27-CD38+ B cell subset is conducted compared with memory and naive B cells. We find that the CD27-CD38+ B cells exhibit a transitional B cell phenotype and an extremely high turnover rate. Importantly, individuals with higher proportions of CD27-CD38+ B cells during early HIV infection tend to become rapid progressors in the chronic infection stage. In this study, we identify a peripheral transitional B cell subset that accumulates during early HIV infection and may contribute to disease progression.
Collapse
Affiliation(s)
- Yajing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Zhijun Yang
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Zhenxing Chu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Sijia He
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China.
| |
Collapse
|
11
|
Ex vivo characterization of Breg cells in patients with chronic Chagas disease. Sci Rep 2021; 11:5511. [PMID: 33750870 PMCID: PMC7943772 DOI: 10.1038/s41598-021-84765-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the growing importance of the regulatory function of B cells in many infectious diseases, their immunosuppressive role remains elusive in chronic Chagas disease (CCD). Here, we studied the proportion of different B cell subsets and their capacity to secrete IL-10 ex vivo in peripheral blood from patients with or without CCD cardiomyopathy. First, we immunophenotyped peripheral blood mononuclear cells from patients according to the expression of markers CD19, CD24, CD38 and CD27 and we showed an expansion of total B cell and transitional CD24highCD38high B cell subsets in CCD patients with cardiac involvement compared to non-infected donors. Although no differences were observed in the frequency of total IL-10 producing B cells (B10) among the groups, CCD patients with cardiac involvement showed an increased proportion of naïve B10 cells and a tendency to a higher frequency of transitional B10 cells compared to non-infected donors. Our research demonstrates that transitional B cells are greatly expanded in patients with the cardiac form of CCD and these cells retain the ability to secrete IL-10. These findings provide insight into the phenotypic distribution of regulatory B cells in CCD, an important step towards new strategies to prevent cardiomyopathy associated with T. cruzi infection.
Collapse
|
12
|
Martinov T, McKenna KM, Tan WH, Collins EJ, Kehret AR, Linton JD, Olsen TM, Shobaki N, Rongvaux A. Building the Next Generation of Humanized Hemato-Lymphoid System Mice. Front Immunol 2021; 12:643852. [PMID: 33692812 PMCID: PMC7938325 DOI: 10.3389/fimmu.2021.643852] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
Since the late 1980s, mice have been repopulated with human hematopoietic cells to study the fundamental biology of human hematopoiesis and immunity, as well as a broad range of human diseases in vivo. Multiple mouse recipient strains have been developed and protocols optimized to efficiently generate these “humanized” mice. Here, we review three guiding principles that have been applied to the development of the currently available models: (1) establishing tolerance of the mouse host for the human graft; (2) opening hematopoietic niches so that they can be occupied by human cells; and (3) providing necessary support for human hematopoiesis. We then discuss four remaining challenges: (1) human hematopoietic lineages that poorly develop in mice; (2) limited antigen-specific adaptive immunity; (3) absent tolerance of the human immune system for its mouse host; and (4) sub-functional interactions between human immune effectors and target mouse tissues. While major advances are still needed, the current models can already be used to answer specific, clinically-relevant questions and hopefully inform the development of new, life-saving therapies.
Collapse
Affiliation(s)
- Tijana Martinov
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Kelly M McKenna
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, United States.,Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Wei Hong Tan
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Emily J Collins
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Allie R Kehret
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jonathan D Linton
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Tayla M Olsen
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Nour Shobaki
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Anthony Rongvaux
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Del Pino-Molina L, López-Granados E, Lecrevisse Q, Torres Canizales J, Pérez-Andrés M, Blanco E, Wentink M, Bonroy C, Nechvatalova J, Milota T, Kienzler AK, Philippé J, Sousa AE, van der Burg M, Kalina T, van Dongen JJM, Orfao A. Dissection of the Pre-Germinal Center B-Cell Maturation Pathway in Common Variable Immunodeficiency Based on Standardized Flow Cytometric EuroFlow Tools. Front Immunol 2021; 11:603972. [PMID: 33679693 PMCID: PMC7925888 DOI: 10.3389/fimmu.2020.603972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/29/2020] [Indexed: 12/03/2022] Open
Abstract
Introduction Common Variable Immunodeficiency (CVID) is characterized by defective antibody production and hypogammaglobulinemia. Flow cytometry immunophenotyping of blood lymphocytes has become of great relevance for the diagnosis and classification of CVID, due to an impaired differentiation of mature post-germinal-center (GC) class-switched memory B-cells (MBC) and severely decreased plasmablast/plasma cell (Pb) counts. Here, we investigated in detail the pre-GC B-cell maturation compartment in blood of CVID patients. Methods In this collaborative multicentric study the EuroFlow PID 8-color Pre-GC B-cell tube, standardized sample preparation procedures (SOPs) and innovative data analysis tools, were used to characterize the maturation profile of pre-GC B-cells in 100 CVID patients, vs 62 age-matched healthy donors (HD). Results The Pre-GC B-cell tube allowed identification within pre-GC B-cells of three subsets of maturation associated immature B-cells and three subpopulations of mature naïve B-lymphocytes. CVID patients showed overall reduced median absolute counts (vs HD) of the two more advanced stages of maturation of both CD5+ CD38+/++ CD21het CD24++ (2.7 vs 5.6 cells/µl, p=0.0004) and CD5+ CD38het CD21+ CD24+ (6.5 vs 17 cells/µl, p<0.0001) immature B cells (below normal HD levels in 22% and 37% of CVID patients). This was associated with an expansion of CD21-CD24- (6.1 vs 0.74 cells/µl, p<0.0001) and CD21-CD24++ (1.8 vs 0.4 cells/µl, p<0.0001) naïve B-cell counts above normal values in 73% and 94% cases, respectively. Additionally, reduced IgMD+ (21 vs 32 cells/µl, p=0.03) and IgMD- (4 vs 35 cells/µl, p<0.0001) MBC counts were found to be below normal values in 25% and 77% of CVID patients, respectively, always together with severely reduced/undetectable circulating blood pb. Comparison of the maturation pathway profile of pre-GC B cells in blood of CVID patients vs HD using EuroFlow software tools showed systematically altered patterns in CVID. These consisted of: i) a normally-appearing maturation pathway with altered levels of expression of >1 (CD38, CD5, CD19, CD21, CD24, and/or smIgM) phenotypic marker (57/88 patients; 65%) for a total of 3 distinct CVID patient profiles (group 1: 42/88 patients, 48%; group 2: 8/88, 9%; and group 3: 7/88, 8%) and ii) CVID patients with a clearly altered pre-GC B cell maturation pathway in blood (group 4: 31/88 cases, 35%). Conclusion Our results show that maturation of pre-GC B-cells in blood of CVID is systematically altered with up to four distinctly altered maturation profiles. Further studies, are necessary to better understand the impact of such alterations on the post-GC defects and the clinical heterogeneity of CVID.
Collapse
Affiliation(s)
- Lucía Del Pino-Molina
- Clinical Immunology Department, La Paz University Hospital and Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| | - Eduardo López-Granados
- Clinical Immunology Department, La Paz University Hospital and Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| | - Quentin Lecrevisse
- Clinical and Translation Research Program, Cancer Research Centre (IBMCC, USAL-CSIC), Department of Medicine, Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) Instituto de salud Carlos III, Madrid, Spain
| | - Juan Torres Canizales
- Clinical Immunology Department, La Paz University Hospital and Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| | - Martín Pérez-Andrés
- Clinical and Translation Research Program, Cancer Research Centre (IBMCC, USAL-CSIC), Department of Medicine, Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) Instituto de salud Carlos III, Madrid, Spain
| | - Elena Blanco
- Clinical and Translation Research Program, Cancer Research Centre (IBMCC, USAL-CSIC), Department of Medicine, Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) Instituto de salud Carlos III, Madrid, Spain
| | - Marjolein Wentink
- Department of Immunology, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Carolien Bonroy
- Department of Laboratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Jana Nechvatalova
- Department of Allergology and Clinical Immunology, Faculty of Medicine, Masaryk University and St Anne's University Hospital in Brno, Brno, Czechia
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Anne-Kathrin Kienzler
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom
| | - Jan Philippé
- Department of Laboratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Tomas Kalina
- CLIP - Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Alberto Orfao
- Clinical and Translation Research Program, Cancer Research Centre (IBMCC, USAL-CSIC), Department of Medicine, Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) Instituto de salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Abdelwahab FA, Hassanein KM, Hetta HF, Abdelmalek MO, Zahran AM, El-Badawy O. Impact of deranged B cell subsets distribution in the development of HCV-related cirrhosis and HCC in type two diabetes mellitus. Sci Rep 2020; 10:20383. [PMID: 33230233 PMCID: PMC7683559 DOI: 10.1038/s41598-020-77416-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Type II diabetes (T2D) may worsen the course of hepatitis C virus infection with a greater risk of liver cirrhosis (LC) and hepatocellular carcinoma (HCC). In chronic viral infections, the deranged B cell subset signifies uncontrolled disease. The study aimed to verify the relation between B cell subsets' distribution and liver disease progression in chronic hepatitis C (CHC) patients with T2D. A total of 67 CHC patients were divided into two groups; 33 non-diabetic and 34 with T2D. Each group was subdivided into CHC-without LC or HCC (N-CHC), CHC-with LC (CHC-LC), and CHC-with HCC (CHC-HCC). Twenty-seven healthy individuals also participated as controls. Flow cytometry was used to analyze CD19+ B cell subsets based on the expression of CD24 and CD38. CD19+CD24hiCD38hi Immature/transitional B cells elevated in diabetic than non-diabetic patients. In diabetic patients, while CD19+CD24+CD38- primarily memory B cells were higher in CHC-N and CHC-HCC groups than LC with a good predictive accuracy of LC, the opposite was observed for CD19+CD24-CD38- new memory B cells. Only in diabetic patients, the CD19+CD24intCD38int naïve mature B cells were high in CHC-HCC patients with good prognostic accuracy of HCC. Merely in diabetic patients, several correlations were observed between B cell subsets and liver function. Immature/transitional B cells increase remarkably in diabetic CHCpatients and might have a role in liver disease progression. Memory and Naïve B cells are good potential predictors of LC and HCCin diabetic CHCpatients, respectively. Further studies are needed to investigate the role of the CD19+CD24-CD38- new memory B cells in disease progression in CHC patients.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/genetics
- ADP-ribosyl Cyclase 1/immunology
- Adult
- Aged
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- B-Lymphocyte Subsets/classification
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- B-Lymphocyte Subsets/virology
- CD24 Antigen/genetics
- CD24 Antigen/immunology
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Case-Control Studies
- Diabetes Mellitus, Type 2
- Female
- Gene Expression
- Hepacivirus/growth & development
- Hepacivirus/pathogenicity
- Hepatitis C, Chronic/complications
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/pathology
- Hepatitis C, Chronic/virology
- Humans
- Immunologic Memory
- Immunophenotyping
- Liver Cirrhosis/etiology
- Liver Cirrhosis/immunology
- Liver Cirrhosis/pathology
- Liver Cirrhosis/virology
- Liver Neoplasms/etiology
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Middle Aged
Collapse
Affiliation(s)
| | - Khaled M Hassanein
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Helal F Hetta
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0595, USA
| | - Mohamed O Abdelmalek
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Omnia El-Badawy
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| |
Collapse
|
15
|
Hamdi L, Creidy R, Boudjemaa S, Hendel-Chavez H, Hugues P, Taoufik Y, Leblanc T, Coulomb A, Krzysiek R, Landman-Parker J, Besson C. Frequent altered distribution of peripheral B-lymphocyte subsets in pediatric and adolescent patients with classical Hodgkin lymphoma. Leuk Lymphoma 2020; 62:300-307. [PMID: 33095090 DOI: 10.1080/10428194.2020.1834090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Peripheral lymphopenia is a well-known negative prognostic marker in classical Hodgkin lymphoma (cHL). We characterized the peripheral B-cell compartment in a prospective cohort of 83 pediatric cHL patients. We observed significantly low total B-cell counts (<100 cells/µl) in 31 of 83 patients (37%). More specifically, there was a smaller peripheral IgDhighCD27- naïve B-cell pool among B-cell lymphopenic patients than for non-B-cell lymphopenic patients (p < 0.01). The B-cell count was lower in patients without in situ Epstein Barr Virus (EBV) expression than among those with in situ EBV expression (p = 0.03). Peripheral B-cell lymphopenia was associated with the presence of poor prognostic features, such as advanced lymphoma stage (p < 0.01) and the presence of B symptoms (p = 0.04). Of interest, B-cell lymphopenia resolved in all six studied patients in long-term remission. Our findings support that cHL tumor-associated factors interfere with the distribution of peripheral B-cell subsets.
Collapse
Affiliation(s)
| | - Rita Creidy
- Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Sabah Boudjemaa
- Service d'Anatomie et de Cytologie Pathologiques, Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Houria Hendel-Chavez
- Service d'Hématologie Biologique, Hôpital Bicêtre, Assistance Publique-Hôpitaux de, Le Kremlin-Bicêtre, Paris, France
| | - Patricia Hugues
- Universite Paris-Saclay, Communaute Paris-Saclay, Villejuif, France
| | - Yassine Taoufik
- Service d'Hématologie Biologique, Hôpital Bicêtre, Assistance Publique-Hôpitaux de, Le Kremlin-Bicêtre, Paris, France
| | - Thierry Leblanc
- Service d'hemato-immunologie; Pole de Pediatrie Medicale, CHU Paris-Hopital Robert Debre, Paris
| | - Aurore Coulomb
- Service d'Anatomie et de Cytologie Pathologiques, Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Roman Krzysiek
- Service d'Hématologie Biologique, Hôpital Bicêtre, Assistance Publique-Hôpitaux de, Le Kremlin-Bicêtre, Paris, France
| | - Judith Landman-Parker
- Service d'hematologie oncologie pediatrique, Sorbonne Universite, Hopital Armand-Trousseau APHP, Paris
| | - Caroline Besson
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe "Exposome et Hérédité", CESP, Villejuif, France.,Hematology-Oncology Unit, Centre Hospitalier de Versailles, Le Chesnay, France
| |
Collapse
|
16
|
Giltiay NV, Giordano D, Clark EA. The Plasticity of Newly Formed B Cells. THE JOURNAL OF IMMUNOLOGY 2020; 203:3095-3104. [PMID: 31818922 DOI: 10.4049/jimmunol.1900928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
Newly formed B cells (NF-B cells) that emerge from the bone marrow to the periphery have often been referred to as immature or transitional B cells. However, NF-B cells have several striking characteristics, including a distinct BCR repertoire, high expression of AID, high sensitivity to PAMPs, and the ability to produce cytokines. A number of findings do not support their designation as immature because NF-B cells have the potential to become Ab-producing cells and to undergo class-switch recombination. In this review, we provide a fresh perspective on NF-B cell functions and describe some of the signals driving their activation. We summarize growing evidence supporting a role for NF-B cells in protection against infections and as a potential source of autoantibody-producing cells in autoimmune diseases such as systemic lupus erythematosus.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109; and
| | - Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
17
|
Zhou Y, Zhang Y, Han J, Yang M, Zhu J, Jin T. Transitional B cells involved in autoimmunity and their impact on neuroimmunological diseases. J Transl Med 2020; 18:131. [PMID: 32183811 PMCID: PMC7079408 DOI: 10.1186/s12967-020-02289-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Transitional B cells (TrB cells) represent a crucial link between immature B cells in the bone marrow and mature peripheral B cells. Although TrB cells represent one of the regulatory B cell subpopulations in healthy individuals, the frequency of CD24hiCD38hi TrB cells in circulation may be altered in individuals with autoimmune diseases, such as multiple sclerosis, neuromyelitisoptica spectrum disorders, systemic lupus erythematosus, Sjögren’s syndrome, rheumatoid arthritis, systemic sclerosis, and juvenile dermatomyositis. Although TrB cells play regulatory roles under inflammatory conditions, consequences of their functional impairment vary across autoimmune diseases. Since the origin, development, and function of TrB cells, especially in humans, remain unclear and controversial, this review aimed to discuss the characteristics of TrB cells at steady state and explore their role in various immune diseases, including autoimmune rheumatic diseases and neuroimmunological diseases.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Ying Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Mengge Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
18
|
Ma CS, Tangye SG. Flow Cytometric-Based Analysis of Defects in Lymphocyte Differentiation and Function Due to Inborn Errors of Immunity. Front Immunol 2019; 10:2108. [PMID: 31552044 PMCID: PMC6737833 DOI: 10.3389/fimmu.2019.02108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
The advent of flow cytometry has revolutionized the way we approach our research and answer specific scientific questions. The flow cytometer has also become a mainstream diagnostic tool in most hospital and pathology laboratories around the world. In particular the application of flow cytometry has been instrumental to the diagnosis of primary immunodeficiencies (PIDs) that result from monogenic mutations in key genes of the hematopoietic, and occasionally non-hematopoietic, systems. The far-reaching applicability of flow cytometry is in part due to the remarkable sensitivity, down to the single-cell level, of flow-based assays and the extremely user-friendly platforms that enable comprehensive analysis, data interpretation, and importantly, robust and rapid methods for diagnosing PIDs. A prime example is the absence of peripheral blood B cells in patients with agammaglobulinemia due to mutations in BTK or related genes in the BCR signaling pathway. Similarly, the development of intracellular staining protocols to detect expression of SAP, XIAP, or DOCK8 expedites the rapid diagnosis of the X-linked lymphoproliferative diseases or an autosomal recessive form of hyper-IgE syndrome (HIES), respectively. It has also become evident that distinct cohorts of PID patients exhibit unique “lymphocyte phenotypic signatures” that are often diagnostic even prior to identifying the genetic lesion. Flow cytometry-based sorting provides a technique for separating specific subsets of immune cells such that they can be studied in isolation. Thus, flow-based assays can be utilized to measure immune cell function in patients with PIDs, such as degranulation by cytotoxic cells, cytokine expression by many immune cells (i.e., CD4+ and CD8+ T cells, macrophages etc.), B-cell differentiation, and phagocyte respiratory burst in vitro. These assays can also be performed using unfractionated PBMCs, provided the caveat that the composition of lymphocytes between healthy donors and the PID patients under investigation is recognized. These functional deficits can assist not only in the clinical diagnosis of PIDs, but also reveal mechanisms of disease pathogenesis. As we move into the next generation of multiparameter flow cytometers, here we review some of our experiences in the use of flow cytometry in the study, diagnosis, and unraveling the pathophysiology of PIDs.
Collapse
Affiliation(s)
- Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Clincial Immunogenomics Research Consortium Australia, Darlinghurst, NSW, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Clincial Immunogenomics Research Consortium Australia, Darlinghurst, NSW, Australia
| |
Collapse
|
19
|
Solders M, Lundell AC, Gorchs L, Gidlöf S, Tiblad E, Kaipe H. Mature naïve B cells are retained in the placental intervillous blood and positively associate with specific chemokines in full-term healthy pregnancy. Am J Reprod Immunol 2019; 82:e13154. [PMID: 31166050 DOI: 10.1111/aji.13154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/25/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Circulating B-cell numbers are lower during pregnancy compared with non-pregnant women, but the underlying reasons for this are unknown. Pregnancy-related hormones could influence B-cell lymphopoiesis in the bone marrow, but B cells may also be recruited to the placenta. To investigate the latter, we examined whether the proportions of total B cells and B cells at different maturational stages in placental intervillous blood (IVB) differ compared with peripheral blood (PB). METHOD OF STUDY From 23 paired samples of PB and IVB following full-term healthy pregnancies, total B cells and immature/transitional, mature/naïve, and memory B cells were identified by flow cytometry. Chemokine levels in blood were analyzed using a Luminex assay. Placental explant-derived supernatant was assayed for B-cell chemotactic activity. RESULTS The proportions of total B cells and mature/naïve B cells were significantly higher in IVB relative to PB, while the fractions of immature/transitional cells and memory B cells were higher in PB. Multivariate factor analysis demonstrated that a specific chemokine profile in IVB, including CCL20, positively associated with higher proportions of mature/naïve B cells in the intervillous space. All B cells expressed CCR6, the corresponding receptor for CCL20, but the intensity of CCR6 expression was significantly higher in mature/naïve B cells relative to immature/transitional B cells. Migration assays showed that placental explant-derived supernatants attract B cells. CONCLUSION These results indicate that B cells, and mature/naïve B cells in particular, are retained in the intervillous blood in response to certain chemokines produced by the placenta during late healthy pregnancy.
Collapse
Affiliation(s)
- Martin Solders
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Laia Gorchs
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Gidlöf
- Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of CLINTEC, Karolinska Institutet, Huddinge, Sweden.,Department of Obstetrics and Gynecology, Gävle Hospital, Gävle, Sweden
| | - Eleonor Tiblad
- Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of CLINTEC, Karolinska Institutet, Huddinge, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Pillay BA, Avery DT, Smart JM, Cole T, Choo S, Chan D, Gray PE, Frith K, Mitchell R, Phan TG, Wong M, Campbell DE, Hsu P, Ziegler JB, Peake J, Alvaro F, Picard C, Bustamante J, Neven B, Cant AJ, Uzel G, Arkwright PD, Casanova JL, Su HC, Freeman AF, Shah N, Hickstein DD, Tangye SG, Ma CS. Hematopoietic stem cell transplant effectively rescues lymphocyte differentiation and function in DOCK8-deficient patients. JCI Insight 2019; 5:127527. [PMID: 31021819 DOI: 10.1172/jci.insight.127527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bi-allelic inactivating mutations in DOCK8 cause a combined immunodeficiency characterised by severe pathogen infections, eczema, allergies, malignancy and impaired humoral responses. These clinical features result from functional defects in most lymphocyte lineages. Thus, DOCK8 plays a key role in immune cell function. Hematopoietic stem cell transplantation (HSCT) is curative for DOCK8 deficiency. While previous reports have described clinical outcomes for DOCK8 deficiency following HSCT, the effect on lymphocyte reconstitution and function has not been investigated. Our study determined whether defects in lymphocyte differentiation and function in DOCK8-deficient patients were restored following HSCT. DOCK8-deficient T and B lymphocytes exhibited aberrant activation and effector function in vivo and in vitro. Frequencies of αβ T and MAIT cells were reduced while γδT cells were increased in DOCK8-deficient patients. HSCT improved, abnormal lymphocyte function in DOCK8-deficient patients. Elevated total and allergen-specific IgE in DOCK8-deficient patients decreased over time following HSCT. Our results document the extensive catalogue of cellular defects in DOCK8-deficient patients, and the efficacy of HSCT to correct these defects, concurrent with improvements in clinical phenotypes. Overall, our findings provide mechanisms at a functional cellular level for improvements in clinical features of DOCK8 deficiency post-HSCT, identify biomarkers that correlate with improved clinical outcomes, and inform the general dynamics of immune reconstitution in patients with monogenic immune disorders following HSCT.
Collapse
Affiliation(s)
- Bethany A Pillay
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Danielle T Avery
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Joanne M Smart
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Theresa Cole
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Sharon Choo
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Damien Chan
- Women and Children's Hosp==ital, Adelaide, South Australia, Australia
| | - Paul E Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Katie Frith
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Richard Mitchell
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Melanie Wong
- Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Dianne E Campbell
- Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Peter Hsu
- Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - John B Ziegler
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Jane Peake
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Frank Alvaro
- Pediatric Hematology, John Hunter Hospital, New Lambton, New South Wales, Australia
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine institut, Paris, France.,Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France.,Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jacinta Bustamante
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine institut, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Institut IMAGINE, Necker Medical School, University Paris Descartes Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Benedicte Neven
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Andrew J Cant
- Great North Children's Hospital, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle upon Tyne University, Newcastle upon Tyne, United Kingdom
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, United Kingdom
| | - Jean-Laurent Casanova
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Institut IMAGINE, Necker Medical School, University Paris Descartes Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, New York, New York, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | - Dennis D Hickstein
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Zwang NA, Ganesh BB, Cardenas KT, Chong AS, Finn PW, Perkins DL. An optimized protocol to quantify signaling in human transitional B cells by phospho flow cytometry. J Immunol Methods 2018; 463:112-121. [PMID: 30321549 DOI: 10.1016/j.jim.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE Phospho flow cytometry is a powerful technique to analyze signaling in rare cell populations. This technique, however, requires harsh conditions for cell fixation and permeabilization, which can denature surface antigens or antibody-conjugated fluorochromes. These are among several technical limitations which have been a barrier to quantify signaling in unique B cell subsets. One such immature subset, transitional B cells (TrBs), may play a role in suppressing solid organ transplant rejection, graft-versus-host disease, autoimmunity, and even the immune response to malignancy. Here we sought to optimize a protocol for quantification of signaling in human TrBs compared with mature B cell subsets. RESULTS TrBs were defined by surface marker expression as CD19+CD24hiCD38hi. Key parameters optimized included antibody clone selection, sequence of surface epitope labeling in relation to paraformaldehyde-based fixation and methanol-based permeabilization, photomultiplier tube (PMT) voltages, and compensation. Special attention was paid to labeling of CD38 with regard to these parameters, and an optimized protocol enabled reliable identification of TrBs, naïve (CD24+CD38+), early memory (CD24hiCD38-), and late memory (CD24-CD38-) B cells. Phospho flow cytometry enabled simultaneous quantification of phosphorylation among at least three different signaling molecules within the same sample. Among normal donors, transitional B cells exhibited diminished mitogen activated protein kinase/extracellular signal-regulated kinase and Akt phospho signaling upon nonspecific stimulation with phorbol 12-myristate 13-acetateand ionomycin stimulation. CONCLUSIONS We optimized an effective protocol to quantify B cell subset signaling upon stimulation. Such a protocol may ultimately serve as the basis for assessing dysfunctional B cell signaling in disease, predict clinical outcomes, and monitor response to B cell-directed therapies.
Collapse
Affiliation(s)
- Nicholas A Zwang
- Division of Nephrology, Department of Medicine, The University of Illinois at Chicago, 820 South Wood Street (MC 793), Chicago, IL 60612, USA.
| | - Balaji B Ganesh
- Flow Cytometry Core, The University of Illinois at Chicago, Medical Science Building, 835 South Wolcott Avenue (E-25C), Chicago, IL 60612, USA
| | - Kim T Cardenas
- BioLegend, 9727 Pacific Heights Blvd, San Diego, CA 92121, USA
| | - Anita S Chong
- Department of Surgery, Section of Transplantation Surgery, The University of Chicago, 5841 South Maryland Avenue (SBRI J547/MC 5026), Chicago, IL 60637, USA
| | - Patricia W Finn
- Department of Medicine, The University of Illinois at Chicago, 840 South Wood Street Suite 1020N (MC 787), Chicago, IL 60612, USA
| | - David L Perkins
- Division of Nephrology, Department of Medicine, The University of Illinois at Chicago, 820 South Wood Street (MC 793), Chicago, IL 60612, USA
| |
Collapse
|
22
|
Patgaonkar M, Herbert F, Powale K, Gandhe P, Gogtay N, Thatte U, Pied S, Sharma S, Pathak S. Vivax infection alters peripheral B-cell profile and induces persistent serum IgM. Parasite Immunol 2018; 40:e12580. [PMID: 30102786 DOI: 10.1111/pim.12580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/03/2018] [Indexed: 01/06/2023]
Abstract
B cell-mediated humoral responses are essential for controlling malarial infection. Studies have addressed the effects of Plasmodium falciparum infection on peripheral B-cell subsets but not much is known for P. vivax infection. Furthermore, majority of the studies investigate changes during acute infection, but not after parasite clearance. In this prospective study, we analysed peripheral B-cell profiles and antibody responses during acute P. vivax infection and upon recovery (30 days post-treatment) in a low-transmission area in India. Dengue patients were included as febrile-condition controls. Both dengue and malaria patients showed a transient increase in atypical memory B cells during acute infection. However, transient B cell-activating factor (BAFF)-independent increase in the percentage of total and activated immature B cells was observed in malaria patients. Naïve B cells from malaria patients also showed increased TLR4 expression. Total IgM levels remained unchanged during acute infection but increased significantly at recovery. Serum antibody profiling showed a parasite-specific IgM response that persisted at recovery. A persistent IgM autoantibody response was also observed in malaria but not dengue patients. Our data suggest that in hypoendemic regions acute P. vivax infection skews peripheral B-cell subsets and results in a persistent parasite-specific and autoreactive IgM response.
Collapse
Affiliation(s)
- Mandar Patgaonkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Fabien Herbert
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Krushali Powale
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Prajakta Gandhe
- Department of Clinical Pharmacology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Nithya Gogtay
- Department of Clinical Pharmacology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Urmila Thatte
- Department of Clinical Pharmacology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Sylviane Pied
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
23
|
Avery DT, Kane A, Nguyen T, Lau A, Nguyen A, Lenthall H, Payne K, Shi W, Brigden H, French E, Bier J, Hermes JR, Zahra D, Sewell WA, Butt D, Elliott M, Boztug K, Meyts I, Choo S, Hsu P, Wong M, Berglund LJ, Gray P, O'Sullivan M, Cole T, Holland SM, Ma CS, Burkhart C, Corcoran LM, Phan TG, Brink R, Uzel G, Deenick EK, Tangye SG. Germline-activating mutations in PIK3CD compromise B cell development and function. J Exp Med 2018; 215:2073-2095. [PMID: 30018075 PMCID: PMC6080914 DOI: 10.1084/jem.20180010] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/15/2018] [Accepted: 06/20/2018] [Indexed: 11/04/2022] Open
Abstract
Gain-of-function (GOF) mutations in PIK3CD, encoding the p110δ subunit of phosphatidylinositide 3-kinase (PI3K), cause a primary immunodeficiency. Affected individuals display impaired humoral immune responses following infection or immunization. To establish mechanisms underlying these immune defects, we studied a large cohort of patients with PIK3CD GOF mutations and established a novel mouse model using CRISPR/Cas9-mediated gene editing to introduce a common pathogenic mutation in Pik3cd In both species, hyperactive PI3K severely affected B cell development and differentiation in the bone marrow and the periphery. Furthermore, PI3K GOF B cells exhibited intrinsic defects in class-switch recombination (CSR) due to impaired induction of activation-induced cytidine deaminase (AID) and failure to acquire a plasmablast gene signature and phenotype. Importantly, defects in CSR, AID expression, and Ig secretion were restored by leniolisib, a specific p110δ inhibitor. Our findings reveal key roles for balanced PI3K signaling in B cell development and long-lived humoral immunity and memory and establish the validity of treating affected individuals with p110δ inhibitors.
Collapse
Affiliation(s)
- Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Alisa Kane
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Department of Immunology and Allergy, Liverpool Hospital, Liverpool, New South Wales, Australia.,South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Tina Nguyen
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Anthony Lau
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Akira Nguyen
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Helen Lenthall
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Wei Shi
- Molecular Immunology and Bioinformatics Divisions, Walter & Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.,University of Melbourne, Parkville, Victoria, Australia
| | - Henry Brigden
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Elise French
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Julia Bier
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Jana R Hermes
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - David Zahra
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - William A Sewell
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Immunology Department, SydPath, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Danyal Butt
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Michael Elliott
- Sydney Medical School, University of Sydney, Sydney, Australia.,Chris O'Brien Lifehouse Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Isabelle Meyts
- Department of Immunology and Microbiology, Childhood Immunology, Department of Pediatrics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Victoria, Australia
| | - Peter Hsu
- Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, New South Wales, Australia
| | - Melanie Wong
- Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, New South Wales, Australia
| | - Lucinda J Berglund
- Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia.,Immunopathology Department, Westmead Hospital, Westmead, New South Wales, Australia.,Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Paul Gray
- Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia.,University of New South Wales School of Women's and Children's Health, New South Wales, Australia
| | - Michael O'Sullivan
- Department of Immunology and Allergy, Princess Margaret Hospital, Subiaco, Western Australia, Australia
| | - Theresa Cole
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Victoria, Australia
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Christoph Burkhart
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Lynn M Corcoran
- Molecular Immunology and Bioinformatics Divisions, Walter & Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.,University of Melbourne, Parkville, Victoria, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia .,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia .,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Dragovich MA, Mor A. The SLAM family receptors: Potential therapeutic targets for inflammatory and autoimmune diseases. Autoimmun Rev 2018; 17:674-682. [PMID: 29729453 DOI: 10.1016/j.autrev.2018.01.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/20/2022]
Abstract
The signaling lymphocytic activation molecule (SLAM) family is comprised of nine distinct receptors (SLAMF1 through SLAMF9) that are expressed on hematopoietic cells. All of these receptors, with the exception of SLAMF4, are homotypic by nature as downstream signaling occurs when hematopoietic cells that express the same SLAM receptor interact. The SLAM family receptor function is largely controlled via SLAM associated protein (SAP) family adaptors. The SAP family adaptors consist of SAP, Ewing sarcoma associated transcript (EAT)-2, and EAT-2-related transducer (ERT). These adaptors associate with the cytoplasmic domain of the SLAM family receptors through phosphorylated tyrosines. Defects in SLAM family members and SAP adaptors have been implicated in causing immune deficiencies. This is exemplified in patients with X-linked lymphoproliferative (XLP) disease, where SAP undergoes a loss of function mutation. Furthermore, evidence has been accumulating that SLAM family members are potential targets for inflammatory and autoimmune diseases. This review will discuss the structure and function of the SLAM family receptors and SAP family adaptors, their role in immune regulation, and potential approaches to target this family of receptors therapeutically.
Collapse
Affiliation(s)
- Matthew A Dragovich
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Adam Mor
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
25
|
Lymphocyte Disturbances in Primary Antiphospholipid Syndrome and Application to Venous Thromboembolism Follow-Up. Clin Rev Allergy Immunol 2018; 53:14-27. [PMID: 27342459 DOI: 10.1007/s12016-016-8568-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Among patients with venous thromboembolism (VTE), the persistent detection of antiphospholipid (aPL) antibodies (Ab) represents an independent high risk factor for recurrence. However, oral anticoagulation vitamin K antagonist therapy, frequently used in these patients, is problematic in assessing and/or confirming a diagnosis of primary aPL syndrome (pAPS), suggesting use of alternative strategies. For this reason, and by analogy with other autoimmune diseases, a flow cytometer approach testing peripheral T cell subsets (CD3, CD4, and CD8), B cell subsets (B1, transitional, naive, and memory), and NK cells can be proposed. As an example and to validate the concept, pAPS patients selected from the monocentric VTE case-control EDITH's cohort were selected during their follow-up. As suspected and in contrast to non-APS VTE patients, other autoimmune diseases, and controls, pAPS VTE patients displayed specific lymphocyte disturbances. Quantitative and qualitative modifications were related to total CD4+ T cell reduction, a lower CD4/CD8 ratio, and disturbance in B cell homeostasis with increased proportions of B1 cells, transitional B cells (CD24++CD38++), and naive B cells (IgD+CD27-), while memory B cells (IgD+CD27+ and IgD-CD27+) were reduced. Interestingly, the absolute number of CD4+ T cells positively correlated with IgG anti-cardiolipin Ab levels. Altogether, disturbances of T and B cell homeostasis characterized pAPS VTE patients during their follow-up. This suggests a means of profiling that could be used in addition to existing criteria to characterize them.
Collapse
|
26
|
Taher TE, Ong VH, Bystrom J, Hillion S, Simon Q, Denton CP, Pers JO, Abraham DJ, Mageed RA. Association of Defective Regulation of Autoreactive Interleukin-6-Producing Transitional B Lymphocytes With Disease in Patients With Systemic Sclerosis. Arthritis Rheumatol 2018; 70:450-461. [PMID: 29193892 DOI: 10.1002/art.40390] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) has the highest case-specific mortality of any rheumatic disease, and no effective therapy is available. A clear manifestation of SSc is the presence of autoantibodies. However, the origin of autoantibody-producing B lymphocytes, their mechanisms of activation and autoantibody production, and their role remain unclear. This study was undertaken to identify mechanisms that contribute to pathogenic B cell generation and involvement in SSc and to assess the altered distribution and function of B cells in SSc patients. METHODS Multicolor flow cytometry was performed to determine B cell subset distribution, cytokine production, and tolerance induction in SSc patients and healthy controls. Cytokine production following stimulation of the cells ex vivo was determined by multiplex assay. RESULTS A range of defects in B lymphocyte tolerance and cytokine production in SSc were noted. There was evidence of altered distribution of transitional B cell subsets, increased production of interleukin-6 (IL-6) and IL-8, and defective tolerance induction in SSc B cells. In addition, B cells from SSc patients had a reduced ability to produce IL-10 when stimulated through innate immune pathways. In contrast to healthy individuals, tolerance checkpoints in SSc patients failed to suppress the emergence of B cells that produce autoantibodies with specificity to the Scl-70 antigen, which is strongly associated with SSc. These defects were paralleled by altered intracellular signaling and apoptosis following B cell receptor engagement. CONCLUSION Our findings provide new insights into mechanisms underlying defective B lymphocyte responses in patients with SSc and their contribution to disease.
Collapse
Affiliation(s)
- Taher E Taher
- Queen Mary University of London, London, UK.,University of Birmingham, Birmingham, UK
| | - Voon H Ong
- University College London, Royal Free Hospital, London, UK
| | | | - Sophie Hillion
- Université de Brest, INSERM, Labex IGO, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Quentin Simon
- Université de Brest, INSERM, Labex IGO, Centre Hospitalier Universitaire de Brest, Brest, France
| | | | - Jacques-Olivier Pers
- Université de Brest, INSERM, Labex IGO, Centre Hospitalier Universitaire de Brest, Brest, France
| | | | | |
Collapse
|
27
|
Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron 2018; 97:742-768. [DOI: 10.1016/j.neuron.2018.01.021] [Citation(s) in RCA: 432] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/25/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
|
28
|
Xiao W, Salem D, McCoy CS, Lee D, Shah NN, Stetler-Stevenson M, Yuan CM. Early recovery of circulating immature B cells in B-lymphoblastic leukemia patients after CD19 targeted CAR T cell therapy: A pitfall for minimal residual disease detection. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017; 94:434-443. [PMID: 28888074 DOI: 10.1002/cyto.b.21591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/14/2017] [Accepted: 09/07/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND CD19-targeted chimeric-antigen receptor-modified T-cells (CAR-T) are promising in the treatment of refractory B-lymphoblastic leukemia (B-ALL). Minimal residual disease (MRD) detection by multicolor flow cytometry (FCM) is critical to distinguish B-ALL MRD from regenerating, non-neoplastic B-cell populations. METHODS FCM was performed on samples from 9 patients with B-ALL treated with CAR-T. RESULTS All 9 patients showed response to CAR-T. Additionally, FCM revealed circulating CD10 + B cells, potentially mimicking MRD. Circulating CD10+ B-cells were detected in blood from 3 days to 3 months after CAR-T, comprising 73% (median) of B-cells (52-83%, 95%CI). They expressed CD19, CD10, CD20, bright CD9, CD22, CD24, moderate CD38 and dim CD58, but were CD34 (-), with bright CD45 and polyclonal surface light chain immunoglobulin (sIg) expression. A similar CD10 + B-cell subpopulation was detected by marrow FCM, amidst abundant B-cell precursors. CONCLUSIONS These circulating CD10 + B-cells are compatible with immature B-cells, and are a reflection of B-cell recovery within the marrow. They are immunophenotypically distinguishable from residual B-ALL. Expression of light chain sIg and key surface antigens characterizing regenerating B-cell precursors can distinguish immature B-cells from B-ALL MRD and prevent misdiagnosis. © 2017 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Wenbin Xiao
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Present address: Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Dalia Salem
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Catharine S McCoy
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel Lee
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Nirali N Shah
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Constance M Yuan
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
de Melo KM, de Moraes-Pinto MI, Andrade LEC, Salomão R, Brunialti MKC, Ferreira VS, Costa-Carvalho BT. Hypogammaglobulinemia in children: a warning sign to look deeply? APMIS 2017; 125:902-909. [PMID: 28929596 DOI: 10.1111/apm.12738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/29/2017] [Indexed: 01/14/2023]
Abstract
This study investigated phenotypic and functional characteristics of lymphocytes in children with common variable immunodeficiency (CVID) and unclassified hypogammaglobulinemia (UH), as well as B-cell subsets in non-consanguineous parents. Blood samples of 30 children, CVID (n = 9), UH (n = 9), healthy donors HD (n = 12), and 19 adults (parents and controls) were labeled by a combination of surface markers to identify CD4, CD8 T-cell and B-cell subpopulations. T-cell cytokine production in children was analyzed in vitro after stimulation with phytohemagglutinin (PHA) and tetanus toxoid. We observed low percentages of switched memory B cells in children with CVID, increase in total CD4+ T-cell counts, and high percentages of transitional B cells only in UH group. Analysis of T-cell immunity showed that CVID children had decreased percentages of CD8+ IFN-γ-producing cells after stimulation with PHA and tetanus toxoid. Parent of children with CVID had low percentages of naive B cell and increased percentages of memory B cells in comparison with controls. These results suggest that (i) early combined immune defect in children with CVID and (ii) a possible familial B-cell disturbance in pediatric CVID.
Collapse
Affiliation(s)
- Karina Mescouto de Melo
- Department of Pediatrics, Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Maria Isabel de Moraes-Pinto
- Department of Pediatrics, Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Luís E C Andrade
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Reinaldo Salomão
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Milena K C Brunialti
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Vanessa S Ferreira
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Beatriz T Costa-Carvalho
- Department of Pediatrics, Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| |
Collapse
|
30
|
Radomir L, Cohen S, Kramer MP, Bakos E, Lewinsky H, Barak A, Porat Z, Bucala R, Stepensky P, Becker-Herman S, Shachar I. T Cells Regulate Peripheral Naive Mature B Cell Survival by Cell-Cell Contact Mediated through SLAMF6 and SAP. THE JOURNAL OF IMMUNOLOGY 2017; 199:2745-2757. [PMID: 28904129 DOI: 10.4049/jimmunol.1700557] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/10/2017] [Indexed: 11/19/2022]
Abstract
The control of lymphoid homeostasis is the result of a very fine balance between lymphocyte production, proliferation, and apoptosis. In this study, we focused on the role of T cells in the maintenance/survival of the mature naive peripheral B cell population. We show that naive B and T cells interact via the signaling lymphocyte activation molecule (SLAM) family receptor, SLAMF6. This interaction induces cell type-specific signals in both cell types, mediated by the SLAM-associated protein (SAP) family of adaptors. This signaling results in an upregulation of the expression of the cytokine migration inhibitory factor in the T cells and augmented expression of its receptor CD74 on the B cell counterparts, consequently enhancing B cell survival. Furthermore, in X-linked lymphoproliferative disease patients, SAP deficiency reduces CD74 expression, resulting in the perturbation of B cell maintenance from the naive stage. Thus, naive T cells regulate B cell survival in a SLAMF6- and SAP-dependent manner.
Collapse
Affiliation(s)
- Lihi Radomir
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sivan Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Matthias P Kramer
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eszter Bakos
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Lewinsky
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avital Barak
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ziv Porat
- Department of Biological Services, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| | - Polina Stepensky
- Pediatric Hematology-Oncology and Bone Marrow Transplantation Unit, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | | | - Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
31
|
Abstract
BACKGROUND Previous studies identified B cell gene signatures and predominance of specific B cell subsets as a marker of operational tolerance after kidney transplantation. These findings suggested a role for B cells in the establishment or maintenance of tolerance. Here we analyzed B cell recovery in 4 subjects, 3 of whom achieved tolerance after combined kidney/bone marrow transplantation. METHODS Peripheral B cell subsets were examined longitudinally by flow cytometry. Immunoglobulin heavy chain repertoire analysis was performed using next-generation sequencing. Lastly, the patients' serum reactivity to HLA was assessed by Luminex. RESULTS B cell counts recovered approximately 1 year posttransplant except for 1 subject who experienced delayed reconstitution. This subject resumed immunosuppression for acute rejection at 10 months posttransplant and underwent preemptive retransplantation at 3 years for chronic rejection. B cell recovery was accompanied by a high frequency of CD20 + CD24CD38 transitional B cells and a diversified clonal repertoire. However, all 4 subjects showed prevalence of CD20 + CD27+ memory B cells around 6 months posttransplant when B cell counts were still low and the clonal B cell repertoire very limited. The predominance of memory B cells was also associated with high levels of somatically mutated immunoglobulin heavy chain variable sequences and transient serum reactivity to HLA. CONCLUSIONS Our observations reveal the presence of memory B cells early posttransplant that likely escaped the preparative regimen at a time consistent with the establishment of tolerance. Further studies are warranted to characterize the functional properties of these persisting memory cells and evaluate their potential contribution to tolerance induction.
Collapse
|
32
|
IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci Rep 2017; 7:39904. [PMID: 28057926 PMCID: PMC5216379 DOI: 10.1038/srep39904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/29/2016] [Indexed: 12/26/2022] Open
Abstract
B cell activating factor (BAFF) is a critical cytokine for maturation of immature B cells. In murine lymph nodes, BAFF is mainly produced by podoplanin-expressing stromal cells. We have previously shown that circulating BAFF levels are maximal at birth, and that farmers’ children exhibit higher BAFF levels in cord blood than non-farmers’ children. Here, we sought to investigate whether maternal-derived decidual stromal cells from placenta secrete BAFF and examine what factors could stimulate this production. We found that podoplanin is expressed in decidua basalis and in the underlying villous tissue as well as on isolated maternal-derived decidual stromal cells. Decidual stromal cells produced BAFF when stimulated with IFN-γ and IFN-α, and NK cells and NK-T-like cells competent of IFN-γ production were isolated from the decidua. Finally, B cells at different maturational stages are present in decidua and all expressed BAFF-R, while stromal cells did not. These findings suggest that decidual stromal cells are a cellular source of BAFF for B cells present in decidua during pregnancy.
Collapse
|
33
|
García-Sanz R, Jiménez C, Puig N, Paiva B, Gutiérrez NC, Rodríguez-Otero P, Almeida J, San Miguel J, Orfão A, González M, Pérez-Andrés M. Origin of Waldenstrom's macroglobulinaemia. Best Pract Res Clin Haematol 2016; 29:136-147. [PMID: 27825459 DOI: 10.1016/j.beha.2016.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/23/2016] [Indexed: 11/27/2022]
Abstract
Waldenstrom's macroglobulinaemia (WM) is an MYD88L265P-mutated lymphoplasmacytic lymphoma that invades bone marrow and secretes monoclonal immunoglobulin M (IgM). WM cells are usually unable to undergo class switch recombination, and have mutated IGHV, with a typical immunophenotype CD19+/CD22low+/CD23-/CD25+/CD27+/CD45+/CD38low+/SmIgM+ (negative for CD5, CD10, CD11c, CD103). This immunophenotype matches memory B cells (smIgM-/+/CD10-/CD19+/CD20+/CD27+/CD38low+/CD45+), representing 30% of B cells in the blood. Fifty percent of them have not undergone class switch recombination and are IgM+. These cells have suffered somatic hypermutation as WM cells. Genetic abnormalities do not abrogate the capacity to progress to plasma cells that usually belong to the clonal WM compartment, with a normal immunophenotype and functional characteristics. However, some WM cells are CD27-, MYD88WT, without somatic hypermutation, or with class switch recombination capable of reactivation. Thus, most data support a B-memory-cell origin for WM, but a small fraction of cases may have a different origin.
Collapse
Affiliation(s)
- Ramón García-Sanz
- Servicio de Hematología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer de Salamanca, Salamanca, Spain.
| | - Cristina Jiménez
- Servicio de Hematología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer de Salamanca, Salamanca, Spain
| | - Noemí Puig
- Servicio de Hematología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer de Salamanca, Salamanca, Spain
| | - Bruno Paiva
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto De Investigación Sanitaria De Navarra, Pamplona, Spain
| | - Norma C Gutiérrez
- Servicio de Hematología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer de Salamanca, Salamanca, Spain
| | - Paula Rodríguez-Otero
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto De Investigación Sanitaria De Navarra, Pamplona, Spain
| | - Julia Almeida
- Servicio General de Citometría de la Universidad de Salamanca, Salamanca, Spain
| | - Jesús San Miguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto De Investigación Sanitaria De Navarra, Pamplona, Spain
| | - Alberto Orfão
- Servicio General de Citometría de la Universidad de Salamanca, Salamanca, Spain
| | - Marcos González
- Servicio de Hematología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer de Salamanca, Salamanca, Spain
| | - Martín Pérez-Andrés
- Servicio General de Citometría de la Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
34
|
Clavarino G, Delouche N, Vettier C, Laurin D, Pernollet M, Raskovalova T, Cesbron JY, Dumestre-Pérard C, Jacob MC. Novel Strategy for Phenotypic Characterization of Human B Lymphocytes from Precursors to Effector Cells by Flow Cytometry. PLoS One 2016; 11:e0162209. [PMID: 27657694 PMCID: PMC5033467 DOI: 10.1371/journal.pone.0162209] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022] Open
Abstract
A precise identification and phenotypic characterization of human B-cell subsets is of crucial importance in both basic research and medicine. In the literature, flow cytometry studies for the phenotypic characterization of B-lymphocytes are mainly focused on the description of a particular cell stage, or of specific cell stages observed in a single type of sample. In the present work, we propose a backbone of 6 antibodies (CD38, CD27, CD10, CD19, CD5 and CD45) and an efficient gating strategy to identify, in a single analysis tube, a large number of B-cell subsets covering the whole B-cell differentiation from precursors to memory and plasma cells. Furthermore, by adding two antibodies in an 8-color combination, our approach allows the analysis of the modulation of any cell surface marker of interest along B-cell differentiation. We thus developed a panel of seven 8-colour antibody combinations to phenotypically characterize B-cell subpopulations in bone marrow, peripheral blood, lymph node and cord blood samples. Beyond qualitative information provided by biparametric representations, we also quantified antigen expression on each of the identified B-cell subsets and we proposed a series of informative curves showing the modulation of seventeen cell surface markers along B-cell differentiation. Our approach by flow cytometry provides an efficient tool to obtain quantitative data on B-cell surface markers expression with a relative easy-to-handle technique that can be applied in routine explorations.
Collapse
Affiliation(s)
- Giovanna Clavarino
- Laboratoire d'Immunologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
- BNI, TIMC-IMAG, UMR 5525 CNRS, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
| | - Noémie Delouche
- Laboratoire d'Immunologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
| | - Claire Vettier
- Laboratoire d'Hématologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
| | - David Laurin
- TheREx, TIMC-IMAG, UMR 5525 CNRS, Grenoble, France
- Etablissement Français du Sang Rhônes-Alpes Auvergne, La Tronche, France
- Université Grenoble-Alpes, Grenoble, France
| | - Martine Pernollet
- Laboratoire d'Immunologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
| | - Tatiana Raskovalova
- Laboratoire d'Immunologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
| | - Jean-Yves Cesbron
- Laboratoire d'Immunologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
- BNI, TIMC-IMAG, UMR 5525 CNRS, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
| | - Chantal Dumestre-Pérard
- Laboratoire d'Immunologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
- BNI, TIMC-IMAG, UMR 5525 CNRS, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
| | - Marie-Christine Jacob
- Laboratoire d'Immunologie, Département d'Hématologie, Oncogénétique et Immunologie, Pôle de Biologie, Grenoble University Hospital, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
- CNRS UMR 5309 and INSERM U1209, Institut Albert Bonniot, Grenoble, France
| |
Collapse
|
35
|
IL-10+ regulatory B cells are enriched in cord blood and may protect against cGVHD after cord blood transplantation. Blood 2016; 128:1346-61. [PMID: 27439912 DOI: 10.1182/blood-2016-01-695122] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022] Open
Abstract
Cord blood (CB) offers a number of advantages over other sources of hematopoietic stem cells, including a lower rate of chronic graft-versus-host disease (cGVHD) in the presence of increased HLA disparity. Recent research in experimental models of autoimmunity and in patients with autoimmune or alloimmune disorders has identified a functional group of interleukin-10 (IL-10)-producing regulatory B cells (Bregs) that negatively regulate T-cell immune responses. At present, however, there is no consensus on the phenotypic signature of Bregs, and their prevalence and functional characteristics in CB remain unclear. Here, we demonstrate that CB contains an abundance of B cells with immunoregulatory function. Bregs were identified in both the naive and transitional B-cell compartments and suppressed T-cell proliferation and effector function through IL-10 production as well as cell-to-cell contact involving CTLA-4. We further show that the suppressive capacity of CB-derived Bregs can be potentiated through CD40L signaling, suggesting that inflammatory environments may induce their function. Finally, there was robust recovery of IL-10-producing Bregs in patients after CB transplantation, to higher frequencies and absolute numbers than seen in the peripheral blood of healthy donors or in patients before transplant. The reconstituting Bregs showed strong in vitro suppressive activity against allogeneic CD4(+) T cells, but were deficient in patients with cGVHD. Together, these findings identify a rich source of Bregs and suggest a protective role for CB-derived Bregs against cGVHD development in CB recipients. This advance could propel the development of Breg-based strategies to prevent or ameliorate this posttransplant complication.
Collapse
|
36
|
Moens L, Kane A, Tangye SG. Naïve and memory B cells exhibit distinct biochemical responses following BCR engagement. Immunol Cell Biol 2016; 94:774-86. [PMID: 27101923 DOI: 10.1038/icb.2016.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 01/08/2023]
Abstract
Immunological memory is characterized by the rapid reactivation of memory B cells that produce large quantities of high-affinity antigen-specific antibodies. This contrasts the response of naïve B cells, and the primary immune response, which is much slower and of lower affinity. Memory responses are critical for protection against infectious diseases and form the basis of most currently available vaccines. Although we have known about the phenomenon of long-lived memory for centuries, the biochemical differences underlying these diverse responses of naïve and memory B cells is incompletely resolved. Here we investigated the nature of B-cell receptor (BCR) signaling in human splenic naïve, IgM(+) memory and isotype-switched memory B cells following multivalent BCR crosslinking. We observed comparable rapid and transient phosphorylation kinetics for proximal (phosphotyrosine and spleen tyrosine kinase) and propagation (B-cell linker, phospholipase Cγ2) signaling components in these different B-cell subsets. However, the magnitude of activation of downstream components of the BCR signaling pathway were greater in memory compared with naïve cells. Although no differences were observed in the magnitude of Ca(2+) mobilization between subsets, IgM(+) memory B cells exhibited a more rapid Ca(2+) mobilization and a greater depletion of the Ca(2+) endoplasmic reticulum stores, while IgG(+) memory B cells had a prolonged Ca(2+) uptake. Collectively, our findings show that intrinsic signaling features of B-cell subsets contribute to the robust response of human memory B cells over naïve B cells. This has implications for our understanding of memory B-cell responses and provides a framework to modulate these responses in the setting of vaccination and immunopathologies, such as immunodeficiency and autoimmunity.
Collapse
Affiliation(s)
- Leen Moens
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Alisa Kane
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St Vincent's Clinical School, UNSW, Darlinghurst, New South Wales, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St Vincent's Clinical School, UNSW, Darlinghurst, New South Wales, Australia
| |
Collapse
|
37
|
Mensen A, Oh Y, Becker SC, Hemmati PG, Jehn C, Westermann J, Szyska M, Göldner H, Dörken B, Scheibenbogen C, Arnold R, Na IK. Apoptosis Susceptibility Prolongs the Lack of Memory B Cells in Acute Leukemic Patients After Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2015; 21:1895-906. [PMID: 26271190 DOI: 10.1016/j.bbmt.2015.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/04/2015] [Indexed: 11/19/2022]
Abstract
Long-term survival after allogeneic hematopoietic stem cell transplantation requires intact immunosurveillance, which is hampered by lymphoid organ damage associated with conditioning therapy, graft-versus-host disease, and immunosuppression. Our study aimed to identify the mechanisms contributing to sustained low memory B cell numbers after transplantation. Peripheral B and T cell subset recovery and functional marker expression were investigated in 35 acute leukemic patients up to 1 year after transplantation. Apoptosis of B cells after CD40/TLR-9, CD40/BCR, and CD40/BCR/TLR-9-dependent stimulation and drug efflux capacity were analyzed. One half of the patients suffered from infections after day 180. All patients had strongly diminished CD27(+) memory B cells despite already normalized total B cell numbers and fully recovered CD27(-)IgD(-) memory B cells, putatively of extra-follicular origin. Circulating memory follicular helper T cells were reduced in the majority of patients as well. Naïve B cells exhibited a decreased expression of CXCR5, which mediates follicular B cell entry. Additionally, a lower HLA-DR expression was found on naïve B cells, impairing antigen presentation. Upon CD40/TLR-9-dependent activation, B cells underwent significantly increased apoptosis paralleled by an aberrant up-regulation of Fas-L on activated T cells and Fas on resting B cells. Significantly increased B cell apoptosis was also observed after CD40/BCR and CD40/BCR/TLR-9-dependent activation. Drug efflux capacity of naïve B cells was diminished in cyclosporin A-treated patients, additionally contributing to an apoptosis-prone phenotype. We conclude that B cell survival and migration and T cell communication defects are contributing candidates for an impaired germinal center formation of memory B cells after allogeneic hematopoietic stem cell transplantation. Follow-up studies should evaluate effectiveness of revaccinations on the cellular level and should address the long-term sequelae of B cell defects after transplantation.
Collapse
MESH Headings
- Adult
- Apoptosis/immunology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Biomarkers/metabolism
- CD40 Antigens/genetics
- CD40 Antigens/immunology
- Case-Control Studies
- Female
- Gene Expression
- HLA-DR Antigens/genetics
- HLA-DR Antigens/immunology
- Hematopoietic Stem Cell Transplantation
- Histocompatibility Testing
- Humans
- Immunoglobulin D/genetics
- Immunologic Memory
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Lymphocyte Count
- Male
- Middle Aged
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Primary Cell Culture
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, CXCR5/genetics
- Receptors, CXCR5/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- Toll-Like Receptor 9/genetics
- Toll-Like Receptor 9/immunology
- Transplantation Conditioning
- Transplantation, Homologous
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
- Unrelated Donors
Collapse
Affiliation(s)
- Angela Mensen
- Institute for Medical Immunology, Charité University Medicine, CVK, Berlin, Germany
| | - Youngseong Oh
- Institute for Medical Immunology, Charité University Medicine, CVK, Berlin, Germany
| | - Sonya C Becker
- Institute for Medical Immunology, Charité University Medicine, CVK, Berlin, Germany
| | - Philipp G Hemmati
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine CVK, Berlin, Germany
| | - Christian Jehn
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine CVK, Berlin, Germany
| | - Jörg Westermann
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine CVK, Berlin, Germany
| | - Martin Szyska
- Experimental and Clinical Research Center, Berlin, Germany
| | - Henning Göldner
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine CVK, Berlin, Germany
| | - Bernd Dörken
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine CVK, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité University Medicine, CVK, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Renate Arnold
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine CVK, Berlin, Germany
| | - Il-Kang Na
- Institute for Medical Immunology, Charité University Medicine, CVK, Berlin, Germany; Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine CVK, Berlin, Germany; Experimental and Clinical Research Center, Berlin, Germany.
| |
Collapse
|
38
|
Adlowitz DG, Barnard J, Biear JN, Cistrone C, Owen T, Wang W, Palanichamy A, Ezealah E, Campbell D, Wei C, Looney RJ, Sanz I, Anolik JH. Expansion of Activated Peripheral Blood Memory B Cells in Rheumatoid Arthritis, Impact of B Cell Depletion Therapy, and Biomarkers of Response. PLoS One 2015; 10:e0128269. [PMID: 26047509 PMCID: PMC4457888 DOI: 10.1371/journal.pone.0128269] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/23/2015] [Indexed: 01/04/2023] Open
Abstract
Although B cell depletion therapy (BCDT) is effective in a subset of rheumatoid arthritis (RA) patients, both mechanisms and biomarkers of response are poorly defined. Here we characterized abnormalities in B cell populations in RA and the impact of BCDT in order to elucidate B cell roles in the disease and response biomarkers. In active RA patients both CD27+IgD- switched memory (SM) and CD27-IgD- double negative memory (DN) peripheral blood B cells contained significantly higher fractions of CD95+ and CD21- activated cells compared to healthy controls. After BCD the predominant B cell populations were memory, and residual memory B cells displayed a high fraction of CD21- and CD95+ compared to pre-depletion indicating some resistance of these activated populations to anti-CD20. The residual memory populations also expressed more Ki-67 compared to pre-treatment, suggesting homeostatic proliferation in the B cell depleted state. Biomarkers of clinical response included lower CD95+ activated memory B cells at depletion time points and a higher ratio of transitional B cells to memory at reconstitution. B cell function in terms of cytokine secretion was dependent on B cell subset and changed with BCD. Thus, SM B cells produced pro-inflammatory (TNF) over regulatory (IL10) cytokines as compared to naïve/transitional. Notably, B cell TNF production decreased after BCDT and reconstitution compared to untreated RA. Our results support the hypothesis that the clinical and immunological outcome of BCDT depends on the relative balance of protective and pathogenic B cell subsets established after B cell depletion and repopulation.
Collapse
Affiliation(s)
- Diana G. Adlowitz
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Jennifer Barnard
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Jamie N. Biear
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Christopher Cistrone
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Teresa Owen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Wensheng Wang
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Arumugam Palanichamy
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Ezinma Ezealah
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Debbie Campbell
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Chungwen Wei
- Department of Medicine, Emory University, Atlanta, Georgia, 30332, United States of America
| | - R. John Looney
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Inaki Sanz
- Department of Medicine, Emory University, Atlanta, Georgia, 30332, United States of America
| | - Jennifer H. Anolik
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
- * E-mail:
| |
Collapse
|
39
|
Anti-Pneumococcal Capsular Polysaccharide Antibody Response and CD5 B Lymphocyte Subsets. Infect Immun 2015; 83:2889-96. [PMID: 25939510 DOI: 10.1128/iai.00068-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/25/2015] [Indexed: 11/20/2022] Open
Abstract
The role of CD19(+) CD5(+) and CD19(+) CD5(-) B cell subpopulations in the antibody response to pneumococcal capsular polysaccharides (caps-PSs) is controversial. In the present study, we evaluated the role of human CD19(+) CD5(+) and CD19(+) CD5(-) cell populations in the serotype-specific antibody response to caps-PS. After vaccination of 5 healthy human adults with Pneumovax (23-valent pneumococcal polysaccharide vaccine [PPV23]), IgG anti-caps-PS serotype 4 antibody-producing cells resided mainly in the CD19(+) CD5(-) B cell subset, as assessed by enzyme-linked immunosorbent spot (ELISpot) analysis. Moreover, in a humanized SCID mouse model, CD19(+) CD5(-) B cells were more effective than CD19(+) CD5(+) cells in producing IgG anti-cap-PS antibodies. Finally, an association was found between the level of IgG anti-caps-PS antibodies and the number of CD19(+) CD5(-) B cells in 33 humans vaccinated with PPV23. Taken together, our data suggest that CD5 defines a functionally distinct population of B cells in humans in the anti-caps-PS immune response.
Collapse
|
40
|
Lundell AC, Hesselmar B, Nordström I, Adlerberth I, Wold AE, Rudin A. Higher B-cell activating factor levels at birth are positively associated with maternal dairy farm exposure and negatively related to allergy development. J Allergy Clin Immunol 2015; 136:1074-1082.e3. [PMID: 25936566 DOI: 10.1016/j.jaci.2015.03.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND A high proportion of circulating immature/naive CD5(+) B cells during early infancy is a risk factor for allergy development. B-cell activating factor (BAFF) is an important cytokine for B-cell maturation. OBJECTIVE We sought to investigate whether BAFF levels are related to environmental exposures during pregnancy and early childhood and whether BAFF levels are associated with postnatal B-cell maturation and allergic disease. METHODS In the FARMFLORA study, including both farming and nonfarming families, we measured BAFF levels in plasma from mothers and their children at birth and at 1, 4, 18, and 36 months of age. Infants' blood samples were also analyzed for B-cell numbers and proportions of CD5(+) and CD27(+) B cells. Allergic disease was clinically evaluated at 18 and 36 months of age. RESULTS Circulating BAFF levels were maximal at birth, and farmers' children had higher BAFF levels than nonfarmers' children. Higher BAFF levels at birth were positively associated with proportions of CD27(+) memory B cells among farmers' children and inversely related to proportions of CD5(+) immature/naive B cells among nonfarmers' children. Children with allergic disease at 18 months of age had lower cord blood BAFF levels than nonallergic children. At birth, girls had higher BAFF levels and lower proportions of CD5(+) B cells than boys. CONCLUSIONS Farm exposure during pregnancy appears to induce BAFF production in the newborn child, and high neonatal BAFF levels were associated with more accelerated postnatal B-cell maturation, which lend further strength to the role of B cells in the hygiene hypothesis.
Collapse
Affiliation(s)
- Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Bill Hesselmar
- Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Inger Nordström
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingegerd Adlerberth
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agnes E Wold
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
41
|
Bemark M. Translating transitions - how to decipher peripheral human B cell development. J Biomed Res 2015; 29:264-84. [PMID: 26243514 PMCID: PMC4547376 DOI: 10.7555/jbr.29.20150035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/10/2015] [Indexed: 01/05/2023] Open
Abstract
During the last two decades our understanding of human B cell differentiation has developed considerably. Our understanding of the human B cell compartment has advanced from a point where essentially all assays were based on the presence or not of class-switched antibodies to a level where a substantial diversity is appreciated among the cells involved. Several consecutive transitional stages that newly formed IgM expressing B cells go through after they leave the bone marrow, but before they are fully mature, have been described, and a significant complexity is also acknowledged within the IgM expressing and class-switched memory B cell compartments. It is possible to isolate plasma blasts in blood to follow the formation of plasma cells during immune responses, and the importance and uniqueness of the mucosal IgA system is now much more appreciated. Current data suggest the presence of at least one lineage of human innate-like B cells akin to B1 and/or marginal zone B cells in mice. In addition, regulatory B cells with the ability to produce IL-10 have been identified. Clinically, B cell depletion therapy is used for a broad range of conditions. The ability to define different human B cell subtypes using flow cytometry has therefore started to come into clinical use, but as our understanding of human B cell development further progresses, B cell subtype analysis will be of increasing importance in diagnosis, to measure the effect of immune therapy and to understand the underlying causes for diseases. In this review the diversity of human B cells will be discussed, with special focus on current data regarding their phenotypes and functions.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University hospital, SE 413 45 Gothenburg, Sweden.,Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 405 30 Gothenburg, Sweden.
| |
Collapse
|
42
|
Rathore DK, Nair D, Raza S, Saini S, Singh R, Kumar A, Tripathi R, Ramji S, Batra A, Aggarwal KC, Chellani HK, Arya S, Bhatla N, Paul VK, Aggarwal R, Agarwal N, Mehta U, Sopory S, Natchu UCM, Bhatnagar S, Bal V, Rath S, Wadhwa N. Underweight full-term Indian neonates show differences in umbilical cord blood leukocyte phenotype: a cross-sectional study. PLoS One 2015; 10:e0123589. [PMID: 25898362 PMCID: PMC4405369 DOI: 10.1371/journal.pone.0123589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/19/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND While infections are a major cause of neonatal mortality in India even in full-term neonates, this is an especial problem in the large proportion (~20%) of neonates born underweight (or small-for-gestational-age; SGA). One potential contributory factor for this susceptibility is the possibility that immune system maturation may be affected along with intrauterine growth retardation. METHODS In order to examine the possibility that differences in immune status may underlie the susceptibility of SGA neonates to infections, we enumerated the frequencies and concentrations of 22 leukocyte subset populations as well as IgM and IgA levels in umbilical cord blood from full-term SGA neonates and compared them with values from normal-weight (or appropriate-for-gestational-age; AGA) full-term neonates. We eliminated most SGA-associated risk factors in the exclusion criteria so as to ensure that AGA-SGA differences, if any, would be more likely to be associated with the underweight status itself. RESULTS An analysis of 502 such samples, including 50 from SGA neonates, showed that SGA neonates have significantly fewer plasmacytoid dendritic cells (pDCs), a higher myeloid DC (mDC) to pDC ratio, more natural killer (NK) cells, and higher IgM levels in cord blood in comparison with AGA neonates. Other differences were also observed such as tendencies to lower CD4:CD8 ratios and greater prominence of inflammatory monocytes, mDCs and neutrophils, but while some of them had substantial differences, they did not quite reach the standard level of statistical significance. CONCLUSIONS These differences in cellular lineages of the immune system possibly reflect stress responses in utero associated with growth restriction. Increased susceptibility to infections may thus be linked to complex immune system dysregulation rather than simply retarded immune system maturation.
Collapse
Affiliation(s)
- Deepak K. Rathore
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Deepa Nair
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Saimah Raza
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Savita Saini
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Reeta Singh
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Amit Kumar
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Reva Tripathi
- Department of Obstetrics & Gynecology, Maulana Azad Medical College, New Delhi, India
| | - Siddarth Ramji
- Department of Neonatology, Maulana Azad Medical College, New Delhi, India
| | - Aruna Batra
- Department of Obstetrics & Gynecology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Kailash C. Aggarwal
- Department of Pediatrics, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Harish K. Chellani
- Department of Pediatrics, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Sugandha Arya
- Department of Pediatrics, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Neerja Bhatla
- Department of Obstetrics & Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Vinod K. Paul
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh Aggarwal
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Nidhi Agarwal
- Department of Obstetrics & Gynecology, General Hospital, Gurgaon, Haryana, India
| | - Umesh Mehta
- Department of Pediatrics, General Hospital, Gurgaon, Haryana, India
| | - Shailaja Sopory
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Uma Chandra Mouli Natchu
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Shinjini Bhatnagar
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Vineeta Bal
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Gurgaon, Haryana, India
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Satyajit Rath
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Gurgaon, Haryana, India
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Nitya Wadhwa
- Pediatric Biology Centre, Translational Health Science and Technology Institute, Gurgaon, Haryana, India
- * E-mail:
| |
Collapse
|
43
|
Oliviero B, Mantovani S, Ludovisi S, Varchetta S, Mele D, Paolucci S, Baldanti F, Mondelli MU. Skewed B cells in chronic hepatitis C virus infection maintain their ability to respond to virus-induced activation. J Viral Hepat 2015; 22:391-8. [PMID: 25258145 DOI: 10.1111/jvh.12336] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis C virus (HCV) infection is characterized by persistent B-cell activation, with enhanced differentiation and reduced proliferative ability. To assess the possible role of HCV in altering B-cell subset distribution, we examined ex vivo frequencies and B-cell inhibitory receptor expression in 37 chronic HCV-infected patients and 25 healthy donors (HD). In addition, we determined whether short-term exposure to culture-derived HCV (HCVcc) resulted in B-cell subset skewing and/or activation. There was a statistically significant increase in the frequencies of immature transitional, activated memory and tissue-like memory (TLM) B cells in HCV-infected patients compared with HD. We also found that the frequency of memory B cells correlated with serum HCV RNA levels. The proportion of B cells expressing the marker of exhaustion Fc receptor-like 4 (FcRL4) was generally low even though significantly higher in the patients' memory B-cell compartment compared with HD, and a positive correlation was found between the frequencies of the patients' TLM FcRL4+ B cells and serum alanine aminotransferase and histological activity index at liver biopsy. Exposure to cell-free HCVcc in vitro did not result in B-cell skewing but induced significant activation of naïve, TLM and resting memory B cells in HCV-infected patients but not in HD, in whom cell-associated virus was an absolute requirement for activation of memory B cells. These findings provide corroborative evidence in favour of significant B-cell subset skewing in chronic HCV infection and in addition show that expression of exhaustion markers in selected B-cell subsets does not impair virus-induced B-cell activation.
Collapse
Affiliation(s)
- B Oliviero
- Research Laboratories, Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Fatal autoimmunity in mice reconstituted with human hematopoietic stem cells encoding defective FOXP3. Blood 2015; 125:3886-95. [PMID: 25833964 DOI: 10.1182/blood-2014-12-618363] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/23/2015] [Indexed: 01/13/2023] Open
Abstract
Mice reconstituted with a human immune system provide a tractable in vivo model to assess human immune cell function. To date, reconstitution of murine strains with human hematopoietic stem cells (HSCs) from patients with monogenic immune disorders have not been reported. One obstacle precluding the development of immune-disease specific "humanized" mice is that optimal adaptive immune responses in current strains have required implantation of autologous human thymic tissue. To address this issue, we developed a mouse strain that lacks murine major histocompatibility complex class II (MHC II) and instead expresses human leukocyte antigen DR1 (HLA-DR1). These mice displayed improved adaptive immune responses when reconstituted with human HSCs including enhanced T-cell reconstitution, delayed-type hypersensitivity responses, and class-switch recombination. Following immune reconstitution of this novel strain with HSCs from a patient with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, associated with aberrant FOXP3 function, mice developed a lethal inflammatory disorder with multiorgan involvement and autoantibody production mimicking the pathology seen in affected humans. This humanized mouse model permits in vivo evaluation of immune responses associated with genetically altered HSCs, including primary immunodeficiencies, and should facilitate the study of human immune pathobiology and the development of targeted therapeutics.
Collapse
|
45
|
Abstract
Recent studies have compelled further interest in the potential pathological role of B cells in chronic graft-versus-host disease (cGVHD). In patients with cGVHD, B cells are activated and primed for survival via B-cell activating factor and B-cell receptor-associated pathways. Understanding the signaling pathways that drive immune pathology in cGVHD will facilitate the development of new strategies to selectively target aberrantly activated B cells and restore normal B-cell homeostasis after allogeneic stem cell transplantation.
Collapse
|
46
|
Severe XLP Phenotype Caused by a Novel Intronic Mutation in the SH2D1A Gene. J Clin Immunol 2014; 35:26-31. [PMID: 25491288 DOI: 10.1007/s10875-014-0117-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/27/2014] [Indexed: 01/08/2023]
Abstract
We describe here a novel c.137 + 5G > A intronic mutation in the SH2D1A gene of the signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) in association with Epstein-Barr virus (EBV)-induced fatal infectious mononucleosis (FIM) in an 8-year-old male patient and his 3-year-old step brother. The mother and the maternal grandmother of the boys are healthy and heterozygous for this sequence variant. Genetic sequencing of blood-cell-derived cDNA in the younger patient revealed a 22 bp deletion in the SH2D1A cDNA. Immunoblot and flow cytometry analysis performed in this younger patient showed the lack of SAP protein expression in peripheral blood lymphocytes. These data suggest that the novel c.137 + 5G > A mutation results in loss of function of SAP protein and leads to typical X-linked lymphoproliferative disease phenotype. We propose that intron 1 and the c.137 + 5G may be the most frequent intronic hot spot for SH2D1A splicing mutation.
Collapse
|
47
|
Villaudy J, Schotte R, Legrand N, Spits H. Critical assessment of human antibody generation in humanized mouse models. J Immunol Methods 2014; 410:18-27. [PMID: 24952244 DOI: 10.1016/j.jim.2014.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 12/31/2022]
Abstract
Immunodeficient mice reconstituted with human hematopoietic stem cells provide a small-animal model for the study of development and function of human hematopoietic cells in vivo. However, in the current models, the immune response, and especially the humoral response by the human immune cells is far from optimal. The B cells found in these mice exhibit an immature and abnormal phenotype correlating with a reduced capacity to produce antigen-specific affinity matured antibodies upon infection or immunization. Herein, we review the current state of knowledge of development, function and antibody production of human B cells and discuss the obstacles for the improvement of these models.
Collapse
Affiliation(s)
- Julien Villaudy
- AIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam Zuidoost, Netherlands; Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 BA Amsterdam Zuidoost, Netherlands.
| | - Remko Schotte
- AIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam Zuidoost, Netherlands.
| | - Nicolas Legrand
- AXENIS, Institut Pasteur, Centre Francois Jacob, 28, rue du Dr. Roux, 75015 Paris, France.
| | - Hergen Spits
- AIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam Zuidoost, Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 BA Amsterdam Zuidoost, Netherlands.
| |
Collapse
|
48
|
Lundell AC, Johansen S, Adlerberth I, Wold AE, Hesselmar B, Rudin A. High proportion of CD5+ B cells in infants predicts development of allergic disease. THE JOURNAL OF IMMUNOLOGY 2014; 193:510-8. [PMID: 24928995 DOI: 10.4049/jimmunol.1302990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Delayed maturation of the immune system has been proposed to be a risk factor for development of allergy, but B cell maturation in relation to allergic disease has not been examined. B cells lose CD5 and acquire CD27 during maturation from immature via mature/naive to Ig-secreting cells and memory cells. We sought to investigate B cell maturation in relation to development of allergic disease and sensitization in the FARMFLORA birth cohort including 65 Swedish children. Total B cell numbers, proportions of CD5(+) and CD27(+) B cells, and levels of IgM, IgG, IgA, and IgE were measured in blood on repeated occasions from birth to 36 mo of age, and related to allergic disease and sensitization at 18 and 36 mo of age with multivariate discriminant analysis. We also compared the expression of CD24 and CD38 within CD5(+) and CD5(neg) B cells in children and in adults. We found that infants with a high proportion of CD5(+) B cells at birth and at 1 mo of age had an increased risk for having allergic disease at 18 and 36 mo of life. Further, the proportions of CD5(+) B cells at 1 mo of age were inversely correlated with total IgG levels at 18 and 36 mo of age. The majority of the CD5(+) B cells were of a CD24(hi/+)CD38(hi/+) immature/naive phenotype at birth (97%), 7 y of age (95%), and in adults (86%). These results suggest that development of allergic disease is preceded by an immaturity in neonatal B cell phenotype.
Collapse
Affiliation(s)
- Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Göteborg 405 30, Sweden;
| | - Susanne Johansen
- Pediatric Clinic, Skaraborg Hospital, Lidköping, Lidköping 531 85, Sweden
| | - Ingegerd Adlerberth
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Göteborg 405 30, Sweden; and
| | - Agnes E Wold
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Göteborg 405 30, Sweden; and
| | - Bill Hesselmar
- Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Göteborg 416 85, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Göteborg 405 30, Sweden
| |
Collapse
|
49
|
Bone marrow T-cell infiltration during acute GVHD is associated with delayed B-cell recovery and function after HSCT. Blood 2014; 124:963-72. [PMID: 24833353 DOI: 10.1182/blood-2013-11-539031] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
B-cell immune dysfunction contributes to the risk of severe infections after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Delayed B-cell regeneration is found in patients with systemic graft-versus-host disease (GVHD) and is often accompanied by bone marrow (BM) suppression. Little is known about human BM GVHD. We analyzed the reconstitution kinetics of B-cell subsets in adult leukemic patients within 6 months after allo-HSCT. B-cell deficiency already existed before transplant and was aggravated after transplant. Onset of B-cell reconstitution characterized by transitional B-cell recovery occurred either early (months 2-3) or late (from month 6 on) and correlated highly positively with reverse transcription-polymerase chain reaction quantified numbers of κ-deleting recombination excision circles (KRECs). Delayed recovery was associated with systemic acute GVHD and full-intensity conditioning therapy. Histological analysis of BM trephines revealed increased T-cell infiltration in late recovering patients, which was associated with reduced numbers of osteoblasts. Functionally, late recovering patients displayed less pneumococcal polysaccharide-specific immunoglobin M-producing B cells on ex vivo B-cell activation than early recovering patients. Our results provide evidence for acute BM GVHD in allo-HSCT patients with infiltrating donor T cells and osteoblast destruction. This is associated with delayed B-cell reconstitution and impaired antibody response. Herein, KREC appears suitable to monitor BM B-cell output after transplant.
Collapse
|
50
|
Descatoire M, Weller S, Irtan S, Sarnacki S, Feuillard J, Storck S, Guiochon-Mantel A, Bouligand J, Morali A, Cohen J, Jacquemin E, Iascone M, Bole-Feysot C, Cagnard N, Weill JC, Reynaud CA. Identification of a human splenic marginal zone B cell precursor with NOTCH2-dependent differentiation properties. ACTA ACUST UNITED AC 2014; 211:987-1000. [PMID: 24733829 PMCID: PMC4010902 DOI: 10.1084/jem.20132203] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Identification in humans of a bona fide marginal zone B cell population, which differentiates from a splenic marginal zone precursor through a NOTCH2 signaling pathway. Mouse splenic marginal zone precursors (MZPs) differentiate into marginal zone B (MZB) cells under a signaling pathway involving Notch2 and its ligand, delta-like 1 ligand (Dll1). We report the identification of an MZP subset in the spleen of young children. These MZPs differentiate into MZ-like B cells in vitro in the presence of OP9 cells expressing human DLL1, as demonstrated by the up-regulation of classical MZB cell markers. A set of diagnostic genes discriminating IgM+IgD+CD27+ blood and splenic MZB cells from switched B cells was identified (up-regulation of SOX7, down-regulation of TOX, COCH, and HOPX), and their expression during the induction assay mirrored the one of MZB cells. Moreover, Alagille patients with a NOTCH2 haploinsufficiency display a marked reduction of IgM+IgD+CD27+ B cells in blood, whereas their switched memory B cells are not affected. Altogether, these results argue in favor of the existence of a rodent-like MZB cell lineage in humans.
Collapse
Affiliation(s)
- Marc Descatoire
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine-Site Broussais, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|