1
|
Davletshin AI, Matveeva AA, Poletaeva II, Evgen'ev MB, Garbuz DG. The role of molecular chaperones in the mechanisms of epileptogenesis. Cell Stress Chaperones 2023; 28:599-619. [PMID: 37755620 PMCID: PMC10746656 DOI: 10.1007/s12192-023-01378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Epilepsy is a group of neurological diseases which requires significant economic costs for the treatment and care of patients. The central point of epileptogenesis stems from the failure of synaptic signal transmission mechanisms, leading to excessive synchronous excitation of neurons and characteristic epileptic electroencephalogram activity, in typical cases being manifested as seizures and loss of consciousness. The causes of epilepsy are extremely diverse, which is one of the reasons for the complexity of selecting a treatment regimen for each individual case and the high frequency of pharmacoresistant cases. Therefore, the search for new drugs and methods of epilepsy treatment requires an advanced study of the molecular mechanisms of epileptogenesis. In this regard, the investigation of molecular chaperones as potential mediators of epileptogenesis seems promising because the chaperones are involved in the processing and regulation of the activity of many key proteins directly responsible for the generation of abnormal neuronal excitation in epilepsy. In this review, we try to systematize current data on the role of molecular chaperones in epileptogenesis and discuss the prospects for the use of chemical modulators of various chaperone groups' activity as promising antiepileptic drugs.
Collapse
Affiliation(s)
| | - Anna A Matveeva
- Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow Region, Russia
| | - Inga I Poletaeva
- Biology Department, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | - David G Garbuz
- Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia
| |
Collapse
|
2
|
Palacios-Luna JE, López-Marrufo MV, Bautista-Bautista G, Velarde-Guerra CS, Villeda-Gabriel G, Flores-Herrera O, Osorio-Caballero M, Aguilar-Carrasco JC, Palafox-Vargas ML, García-López G, Díaz-Ruíz O, Arechavaleta-Velasco F, Flores-Herrera H. Progesterone modulates extracellular heat-shock proteins and interlukin-1β in human choriodecidual after Escherichia coli infection. Placenta 2023; 142:85-94. [PMID: 37659254 DOI: 10.1016/j.placenta.2023.08.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
INTRODUCTION Chorioamnionitis is an adverse condition in human pregnancy caused by many bacterial pathogens including Escherichia coli (E. coli); which has been associated with higher risk of preterm birth. We recently reported that human maternal decidua (MDec) tissue responds to E. coli infection by secreting extracellular heat-shock proteins (eHsp)-60, -70 and interlukin-1β (IL-1β). Previous studies have shown that progesterone (P4) regulates the immune response, but it is unknown whether P4 inhibits the secretion of eHsp. The aim of this investigation was to determine the role of P4 on the secretion of eHsp-27, -60, -70 and IL-1β in MDec after 3, 6, and 24 h of E. coli infection. METHODS Nine human feto-maternal interface (HFMi) tissues were included and mounted in the Transwell culture system. Only the maternal decidua (MDec) was stimulated for 3, 6 and 24 h with E. coli alone or in combination with progesterone and RU486. After each treatment, the HFMi tissue was recovered to determine histological changes and the culture medium recovered to evaluate the levels of eHsp-27, -60, -70 and IL-1β by ELISA and mRNA expression by RT-PCR. RESULTS No structural changes were observed in the HFMi tissue treated with P4 and RU486. However, stimulation with E. coli produces diffuse inflammation and ischemic necrosis. E. coli induced infection decreases, in time- and dose-dependent manner, eHsp-27 and increases eHsp-60, eHsp-70 and IL-1β levels. In contrast, incubation of HFMi tissue with E. coli + P4 reversed eHsp and IL-1β secretion levels relative to E. coli stimulation group but not relative to the control group. The same profile was observed on the expression of eHsp-27 and eHsp-60. DISCUSSION we found that progesterone modulates the anti-inflammatory (eHsp-27) and pro-inflammatory (eHsp-60 and eHsp-70) levels of eHsp induced by E. coli infection in human choriodecidual tissue. eHsp-60 and eHsp-70 levels were not completely reversed; maintaining the secretion of IL-1β, which has been associated with adverse events during pregnancy.
Collapse
Affiliation(s)
- Janelly Estefania Palacios-Luna
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Mariana Victoria López-Marrufo
- Departamento de Ginecología y Obstetricia. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Gerardo Bautista-Bautista
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Cinthia Selene Velarde-Guerra
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Graciela Villeda-Gabriel
- Departamento de Inmunología e Infectología, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mauricio Osorio-Caballero
- Departamento de Salud Sexual y Reproductiva. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Jose Carlos Aguilar-Carrasco
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México. Mexico
| | - Martha Leticia Palafox-Vargas
- Departamento de Anatomía Patológica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México. Mexico
| | - Oscar Díaz-Ruíz
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fabián Arechavaleta-Velasco
- Unidad de Investigación en Medicina Reproductiva. Hospital de Gineco-Obstetricia No. 4 "Luis Castelazo Ayala" Instituto Mexicano Del Seguro Social, Ciudad de México. Mexico.
| | - Hector Flores-Herrera
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico.
| |
Collapse
|
3
|
Horner E, Lord JM, Hazeldine J. The immune suppressive properties of damage associated molecular patterns in the setting of sterile traumatic injury. Front Immunol 2023; 14:1239683. [PMID: 37662933 PMCID: PMC10469493 DOI: 10.3389/fimmu.2023.1239683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Associated with the development of hospital-acquired infections, major traumatic injury results in an immediate and persistent state of systemic immunosuppression, yet the underlying mechanisms are poorly understood. Detected in the circulation in the minutes, days and weeks following injury, damage associated molecular patterns (DAMPs) are a heterogeneous collection of proteins, lipids and DNA renowned for initiating the systemic inflammatory response syndrome. Suggesting additional immunomodulatory roles in the post-trauma immune response, data are emerging implicating DAMPs as potential mediators of post-trauma immune suppression. Discussing the results of in vitro, in vivo and ex vivo studies, the purpose of this review is to summarise the emerging immune tolerising properties of cytosolic, nuclear and mitochondrial-derived DAMPs. Direct inhibition of neutrophil antimicrobial activities, the induction of endotoxin tolerance in monocytes and macrophages, and the recruitment, activation and expansion of myeloid derived suppressor cells and regulatory T cells are examples of some of the immune suppressive properties assigned to DAMPs so far. Crucially, with studies identifying the molecular mechanisms by which DAMPs promote immune suppression, therapeutic strategies that prevent and/or reverse DAMP-induced immunosuppression have been proposed. Approaches currently under consideration include the use of synthetic polymers, or the delivery of plasma proteins, to scavenge circulating DAMPs, or to treat critically-injured patients with antagonists of DAMP receptors. However, as DAMPs share signalling pathways with pathogen associated molecular patterns, and pro-inflammatory responses are essential for tissue regeneration, these approaches need to be carefully considered in order to ensure that modulating DAMP levels and/or their interaction with immune cells does not negatively impact upon anti-microbial defence and the physiological responses of tissue repair and wound healing.
Collapse
Affiliation(s)
- Emily Horner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Jurkovich V, Somoskői B, Kovács L, Bakony M. The effects of heat stress in Jersey, Hungarian Simmental
and Holstein-Friesian cows. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/155410/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
The Effects of H2S and Recombinant Human Hsp70 on Inflammation Induced by SARS and Other Agents In Vitro and In Vivo. Biomedicines 2022; 10:biomedicines10092155. [PMID: 36140256 PMCID: PMC9496158 DOI: 10.3390/biomedicines10092155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The ongoing epidemic caused by SARS-CoV-2 infection led to the search for fundamentally new ways and means to combat inflammation and other pathologies caused by this virus. Using a cellular model of lipopolysaccharide (LPS)-induced sepsis (human promonocytes), we showed that both a hydrogen sulfide donor (sodium thiosulfate, STS) and a recombinant Heat shock protein 70 (rHsp70) effectively block all major inflammatory mediators when administrated before and after LPS challenge. The protective anti-inflammatory effect of rHsp70 and H2S was also confirmed in vivo using various animal models of pneumonia. Specifically, it was found that rHsp70 injections prevented the development of the acute respiratory distress syndrome in highly pathogenic pneumonia in mice, increased animal survival, and reduced the number of Programmed death-1 (PD-1)-positive T-lymphocytes in peripheral blood. Based on our model experiments we developed a combined two-phase therapeutic approach for the treatment of COVID-19 patients. This procedure includes the inhalation of hot helium–oxygen mixtures for induction of endogenous Hsp70 in the first phase and STS inhalation in the second phase. The use of this approach has yielded positive results in COVID-19 patients, reducing the area of lung lesions, restoring parameters of innate immunity and T-cell immune response against coronavirus infection, and preventing the development of pulmonary fibrosis and immune exhaustion syndrome.
Collapse
|
6
|
Mo YQ, Nakamura H, Tanaka T, Odani T, Perez P, Ji Y, French BN, Pranzatelli TJ, Michael DG, Yin H, Chow SS, Khalaj M, Afione SA, Zheng C, Oliveira FR, Motta ACF, Ribeiro-Silva A, Rocha EM, Nguyen CQ, Noguchi M, Atsumi T, Warner BM, Chiorini JA. Lysosomal exocytosis of HSP70 stimulates monocytic BMP6 expression in Sjögren's syndrome. J Clin Invest 2022; 132:e152780. [PMID: 35113815 PMCID: PMC8920330 DOI: 10.1172/jci152780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
BMP6 is a central cytokine in the induction of Sjögren's syndrome-associated (SS-associated) secretory hypofunction. However, the upstream initiation leading to the production of this cytokine in SS is unknown. In this study, RNA ISH on salivary gland sections taken from patients with SS indicated monocytic lineage cells as a cellular source of BMP6. RNA-Seq data on human salivary glands suggested that TLR4 signaling was an upstream regulator of BMP6, which was confirmed by in vitro cell assays and single-cell transcriptomics of human PBMCs. Further investigation showed that HSP70 was an endogenous natural TLR4 ligand that stimulated BMP6 expression in SS. Release of HSP70 from epithelial cells could be triggered by overexpression of lysosome-associated membrane protein 3 (LAMP3), a protein also associated with SS in several transcriptome studies. In vitro studies supported the idea that HSP70 was released as a result of lysosomal exocytosis initiated by LAMP3 expression, and reverse transcription PCR on RNA from minor salivary glands of patients with SS confirmed a positive correlation between BMP6 and LAMP3 expression. BMP6 expression could be experimentally induced in mice by overexpression of LAMP3, which developed an SS-like phenotype. The newly identified LAMP3/HSP70/BMP6 axis provided an etiological model for SS gland dysfunction and autoimmunity.
Collapse
Affiliation(s)
| | | | | | | | - Paola Perez
- AAV Biology Section and
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | - Ana Carolina F. Motta
- Department of Stomatology, Public Health and Forensic Dentistry, School of Dentistry of Ribeirão Preto
| | | | - Eduardo M. Rocha
- Department of Ophthalmology, Otorhinolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Cuong Q. Nguyen
- Department of Pathology and Infectious Diseases, University of Florida, Gainesville, Florida, USA
| | | | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Blake M. Warner
- AAV Biology Section and
- Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
7
|
Garbuz DG, Zatsepina OG, Evgen’ev MB. Beta Amyloid, Tau Protein, and Neuroinflammation: An Attempt to Integrate Different Hypotheses of Alzheimer’s Disease Pathogenesis. Mol Biol 2021. [DOI: 10.1134/s002689332104004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that inevitably results in dementia and death. Currently, there are no pathogenetically grounded methods for the prevention and treatment of AD, and all current treatment regimens are symptomatic and unable to significantly delay the development of dementia. The accumulation of β-amyloid peptide (Aβ), which is a spontaneous, aggregation-prone, and neurotoxic product of the processing of signaling protein APP (Amyloid Precursor Protein), in brain tissues, primarily in the hippocampus and the frontal cortex, was for a long time considered the main cause of neurodegenerative changes in AD. However, attempts to treat AD based on decreasing Aβ production and aggregation did not bring significant clinical results. More and more arguments are arising in favor of the fact that the overproduction of Aβ in most cases of AD is not the initial cause, but a concomitant event of pathological processes in the course of the development of sporadic AD. The concept of neuroinflammation has come to the fore, suggesting that inflammatory responses play the leading role in the initiation and development of AD, both in brain tissue and in the periphery. The hypothesis about the key role of neuroinflammation in the pathogenesis of AD opens up new opportunities in the search for ways to treat and prevent this socially significant disease.
Collapse
|
8
|
Abstract
Even with strict implementation of preventive measures, surgical site infections (SSIs) remain among the most prevalent health care-associated infections. New strategies to prevent SSIs would thus have a huge impact, also in light of increasing global rates of antimicrobial drug resistance. Considering the indispensable role of innate immune cells in host defense in surgical wounds, enhancing their function may represent a potential strategy for prevention of SSIs. Trained immunity is characterized by metabolic, epigenetic, and functional reprogramming of innate immune cells. These functional changes take place at multiple levels, namely, at the level of bone marrow precursors, circulating innate immune cells, and resident tissue macrophages. Experimental studies have shown that induction of trained immunity can protect against various infections. Increasing evidence suggests that it may also lower the risk and severity of SSIs. This may occur through several different mechanisms. First, trained immunity enhances local host defense against soft tissue infections, including those caused by Staphylococcus aureus, the most common cause of SSIs. Second, training effects on nonimmune cells such as fibroblasts have been shown to improve wound repair. Third, trained immunity may prevent or reverse the postoperative immunoparalysis that contributes to risk of infections following surgery. There are multiple approaches to inducing trained immunity, such as vaccination with the bacillus Calmette-Guérin (BCG) tuberculosis vaccine, topical administration of β-glucan, or treatment with the Toll-like receptor 7 agonist imiquimod. Clinical-experimental studies should establish if and how induction of trained immunity can best help prevent SSIs and what patient groups would most benefit.
Collapse
|
9
|
Role of a Heat Shock Transcription Factor and the Major Heat Shock Protein Hsp70 in Memory Formation and Neuroprotection. Cells 2021; 10:cells10071638. [PMID: 34210082 PMCID: PMC8305005 DOI: 10.3390/cells10071638] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins (Hsps) represent the most evolutionarily ancient, conserved, and universal system for protecting cells and the whole body from various types of stress. Among Hsps, the group of proteins with a molecular weight of 70 kDa (Hsp70) plays a particularly important role. These proteins are molecular chaperones that restore the native conformation of partially denatured proteins after exposure to proteotoxic forms of stress and are critical for the folding and intracellular trafficking of de novo synthesized proteins under normal conditions. Hsp70s are expressed at high levels in the central nervous system (CNS) of various animals and protect neurons from various types of stress, including heat shock, hypoxia, and toxins. Numerous molecular and behavioral studies have indicated that Hsp70s expressed in the CNS are important for memory formation. These proteins contribute to the folding and transport of synaptic proteins, modulate signaling cascades associated with synaptic activation, and participate in mechanisms of neurotransmitter release. In addition, HSF1, a transcription factor that is activated under stress conditions and mediates Hsps transcription, is also involved in the transcription of genes encoding many synaptic proteins, whose levels are increased in neurons under stress and during memory formation. Thus, stress activates the molecular mechanisms of memory formation, thereby allowing animals to better remember and later avoid potentially dangerous stimuli. Finally, Hsp70 has significant protective potential in neurodegenerative diseases. Increasing the level of endogenous Hsp70 synthesis or injecting exogenous Hsp70 reduces neurodegeneration, stimulates neurogenesis, and restores memory in animal models of ischemia and Alzheimer’s disease. These findings allow us to consider recombinant Hsp70 and/or Hsp70 pharmacological inducers as potential drugs for use in the treatment of ischemic injury and neurodegenerative disorders.
Collapse
|
10
|
de Jager P, Smith O, Pool R, Bolon S, Richards GA. Review of the pathophysiology and prognostic biomarkers of immune dysregulation after severe injury. J Trauma Acute Care Surg 2021; 90:e21-e30. [PMID: 33075024 DOI: 10.1097/ta.0000000000002996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pieter de Jager
- From the Department of Anaesthesiology (P.d.J., O.S., S.B.), School of Clinical Medicine, University of the Witwatersrand, Johannesburg; Department of Haematology (R.P.), National Health Laboratory Service, University of Pretoria, Pretoria; and Division of Critical Care (G.A.R.), School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
11
|
Demyanenko S, Nikul V, Rodkin S, Davletshin A, Evgen'ev MB, Garbuz DG. Exogenous recombinant Hsp70 mediates neuroprotection after photothrombotic stroke. Cell Stress Chaperones 2021; 26:103-114. [PMID: 32870479 PMCID: PMC7736593 DOI: 10.1007/s12192-020-01159-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Ischaemic stroke is an acute interruption of the blood supply to the brain, which leads to rapid irreversible damage to nerve tissue. Ischaemic stroke is accompanied by the development of neuroinflammation and neurodegeneration observed around the affected brain area. Heat shock protein 70 (Hsp70) facilitates cell survival under a variety of different stress conditions. Hsp70 may be secreted from cells and exhibits cytoprotective activity. This activity most likely occurs by decreasing the levels of several proinflammatory cytokines through interaction with a few receptors specific to the innate immune system. Herein, we demonstrated that intranasal administration of recombinant human Hsp70 shows a significant twofold decrease in the volume of local ischaemia induced by photothrombosis in the mouse prefrontal brain cortex. Our results revealed that intranasal injections of recombinant Hsp70 decreased the apoptosis level in the ischaemic penumbra, stimulated axonogenesis and increased the number of neurons producing synaptophysin. Similarly, in the isolated crayfish stretch receptor, consisting of a single sensory neuron surrounded by the glial envelope, exogenous Hsp70 significantly decreased photoinduced apoptosis and necrosis of glial cells. The obtained data enable one to consider human recombinant Hsp70 as a promising compound that could be translated from the bench into clinical therapies.
Collapse
Affiliation(s)
- S Demyanenko
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - V Nikul
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - S Rodkin
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - A Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia.
| | - D G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| |
Collapse
|
12
|
Romão-Veiga M, Bannwart-Castro CF, Borges VTM, Golim MA, Peraçoli JC, Peraçoli MTS. Increased TLR4 pathway activation and cytokine imbalance led to lipopolysaccharide tolerance in monocytes from preeclamptic women. Pregnancy Hypertens 2020; 21:159-165. [PMID: 32535227 DOI: 10.1016/j.preghy.2020.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/02/2023]
Abstract
Preeclampsia (PE) is a pregnancy syndrome characterized by a systemic inflammatory response, and endogenous activation of monocytes. This study aimed to determine whether the activation of monocytes from preeclamptic women might interfere with the response to lipopolysaccharide (LPS)-in vitro stimulation. Fifty-two preeclamptic women and 32 normotensive (NT) pregnant women were included. Monocytes from peripheral blood were cultured with or without LPS. TLR4 expression was analyzed by flow cytometry, NF-κB activity was determined in nuclear extracts and cytokines production was evaluated by ELISA. Endogenous TLR4 ligands such as Hyaluronan, HMGB1 and Hsp70 were determined in plasma. The endogenous TLR4 expression and activation of NF-κB were statistically higher in monocytes from women with PE compared to NT group. Early-onset PE showed higher TLR4 expression compared to late-onset PE. Plasma levels of Hyaluronan, HMGB1, and Hsp70, as well as endogenous production of inflammatory cytokines, were elevated whilst lower production of IL-10 was observed in the PE group. After culture with LPS, monocytes presented lower NF-κB activation, TNF-α and IL-12 production in PE groups than in the NT group. The study demonstrates endogenous activation of monocytes from preeclamptic women, accompanied by higher expression of TLR4, NF-κB activation and elevated production of pro-inflammatory cytokines. The higher plasma levels of the TLR4 ligands hyaluronan, HMGB1 and hsp70, as well as the high concentration of TNF-α endogenously produced by monocytes, could induce the LPS tolerance phenomenon in these cells. These results suggest that monocytes play an important role in the maternal excessive systemic inflammatory response in PE.
Collapse
Affiliation(s)
- Mariana Romão-Veiga
- Department of Gynecology and Obstetrics, Botucatu São Paulo State University, Medical School, Botucatu, SP, Brazil.
| | | | | | - Marjorie Assis Golim
- Division of Hemocenter - Botucatu São Paulo State University, Medical School, Botucatu, São Paulo, SP, Brazil
| | - José Carlos Peraçoli
- Department of Gynecology and Obstetrics, Botucatu São Paulo State University, Medical School, Botucatu, SP, Brazil
| | - Maria Terezinha Serrão Peraçoli
- Department of Microbiology and Immunology, Botucatu São Paulo State University, Institute of Biosciences, Botucatu, SP, Brazil
| |
Collapse
|
13
|
Yurinskaya MM, Krasnov GS, Kulikova DA, Zatsepina OG, Vinokurov MG, Chuvakova LN, Rezvykh AP, Funikov SY, Morozov AV, Evgen'ev MB. H 2S counteracts proinflammatory effects of LPS through modulation of multiple pathways in human cells. Inflamm Res 2020; 69:481-495. [PMID: 32157318 DOI: 10.1007/s00011-020-01329-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/12/2020] [Accepted: 02/22/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hydrogen sulfide donors reduce inflammatory signaling in vitro and in vivo. The biological effect mediated by H2S donors depends on the kinetics of the gas release from the donor molecule. However, the molecular mechanisms of H2S-induced immunomodulation were poorly addressed. Here, we studied the effect of two different hydrogen sulfide (H2S)-producing agents on the generation of the LPS-induced inflammatory mediators. Importantly, we investigated the transcriptomic changes that take place in human cells after the LPS challenge, combined with the pretreatment with a slow-releasing H2S donor-GYY4137. METHODS We investigated the effects of GYY4137 and sodium hydrosulfide on the release of proinflammatory molecules such as ROS, NO and TNF-α from LPS-treated human SH-SY5Y neuroblastoma and the THP-1 promonocytic cell lines. Transcriptomic and RT-qPCR studies using THP-1 cells were performed to monitor the effects of the GYY4137 on multiple signaling pathways, including various immune-related and proinflammatory genes after combined action of LPS and GYY4137. RESULTS The GYY4137 and sodium hydrosulfide differed in the ability to reduce the production of the LPS-evoked proinflammatory mediators. The pre-treatment with GYY4137 resulted in a drastic down-regulation of many TNF-α effectors that are induced by LPS treatment in THP-1 cells. Furthermore, GYY4137 pretreatment of LPS-exposed cells ameliorates the LPS-mediated induction of multiple pro-inflammatory genes and decreases expression of immunoproteasome genes. Besides, in these experiments we detected the up-regulation of several important pathways that are inhibited by LPS. CONCLUSION Based on the obtained results we believe that our transcriptomic analysis significantly contributes to the understanding of the molecular mechanisms of anti-inflammatory and cytoprotective activity of hydrogen sulfide donors, and highlights their potential against LPS challenges and other forms of inflammation.
Collapse
Affiliation(s)
- M M Yurinskaya
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia.,Institute of Cell Biophysics RAS, PSCBR RAS, Puschino, 142290, Russia
| | - G S Krasnov
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - D A Kulikova
- Koltzov Institute of Developmental Biology RAS, Moscow, 119991, Russia
| | - O G Zatsepina
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - M G Vinokurov
- Institute of Cell Biophysics RAS, PSCBR RAS, Puschino, 142290, Russia
| | - L N Chuvakova
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - A P Rezvykh
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - S Y Funikov
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - A V Morozov
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia.
| |
Collapse
|
14
|
Fouad AF, Khan AA, Silva RM, Kang MK. Genetic and Epigenetic Characterization of Pulpal and Periapical Inflammation. Front Physiol 2020; 11:21. [PMID: 32116745 PMCID: PMC7010935 DOI: 10.3389/fphys.2020.00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Pulpal and periapical diseases affect a large segment of the population. The role of microbial infections and host effector molecules in these diseases is well established. However, the interaction between host genes and environmental factors in disease susceptibility and progression is less well understood. Studies of genetic polymorphisms in disease relevant genes have suggested that individual predisposition may contribute to susceptibility to pulpal and periapical diseases. Other studies have explored the contribution of epigenetic mechanisms to these diseases. Ongoing research expands the spectrum of non-coding RNAs in pulpal disease to include viral microRNAs as well. This review summarizes recent advances in the genetic and epigenetic characterization of pulpal and periapical disease, with special emphasis on recent data that address the pathogenesis of irreversible pulpal pathosis and apical periodontitis. Specifically, proinflammatory and anti-inflammatory gene expression and gene polymorphism, as well as recent data on DNA methylation and microRNAs are reviewed. Improved understanding of these mechanisms may aid in disease prevention as well as in improved treatment outcomes.
Collapse
Affiliation(s)
- Ashraf F Fouad
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Asma A Khan
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Renato M Silva
- Department of Endodontics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mo K Kang
- Section of Endodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Stan RC, Pinto Bonin C, Porto R, Soriano FG, de Camargo MM. Increased grp78 transcription is correlated to reduced tlr4 transcription in patients surviving sepsis. Clin Exp Immunol 2019; 198:273-280. [PMID: 31314904 PMCID: PMC6797895 DOI: 10.1111/cei.13348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/29/2022] Open
Abstract
Regulated transcriptional readthrough during stress maintains genome structure and ensures access to genes that are necessary for cellular recovery. A broad number of genes, including of the bacterial sensor Toll-like receptor 4 (TLR-4), are markedly transcribed on initiating the systemic inflammatory response. Here we study the transcriptional patterns of tlr4 and of its modulator grp78 during human sepsis, and establish their correlations with the outcome of patients. We measured the daily tlr4 and grp78 RNA expression levels in peripheral blood of septic patients, immediately after admission to intensive care, and modeled these RNA values with a sine damping function. We obtained negative correlations between the transcription of tlr4 and grp78 RNA in the survivor group. In contrast, such relation is lost in the deceased patients. Loss of transcriptional homeostasis predicted by our model within the initial 4 days of hospitalization was confirmed by death of those patients up to 28 days later.
Collapse
Affiliation(s)
- R. C. Stan
- Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
- Cantacuzino Military Medical Research Development National InstituteBucharestRomania
| | - C. Pinto Bonin
- Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - R. Porto
- University Hospital, University of São PauloSão PauloBrazil
| | - F. G. Soriano
- University Hospital, University of São PauloSão PauloBrazil
- School of MedicineUniversity of São PauloSão PauloBrazil
| | - M. M. de Camargo
- Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| |
Collapse
|
16
|
Gualtieri F, Nowakowska M, von Rüden EL, Seiffert I, Potschka H. Epileptogenesis-Associated Alterations of Heat Shock Protein 70 in a Rat Post-Status Epilepticus Model. Neuroscience 2019; 415:44-58. [DOI: 10.1016/j.neuroscience.2019.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 02/02/2023]
|
17
|
Mee-Inta O, Zhao ZW, Kuo YM. Physical Exercise Inhibits Inflammation and Microglial Activation. Cells 2019; 8:cells8070691. [PMID: 31324021 PMCID: PMC6678635 DOI: 10.3390/cells8070691] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicates that exercise can enhance brain function and attenuate neurodegeneration. Besides improving neuroplasticity by altering the synaptic structure and function in various brain regions, exercise also modulates multiple systems that are known to regulate neuroinflammation and glial activation. Activated microglia and several pro-inflammatory cytokines play active roles in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. The purpose of this review is to highlight the impacts of exercise on microglial activation. Possible mechanisms involved in exercise-modulated microglial activation are also discussed. Undoubtedly, more studies are needed in order to disclose the detailed mechanisms, but this approach offers therapeutic potential for improving the brain health of millions of aging people where pharmacological intervention has failed.
Collapse
Affiliation(s)
- Onanong Mee-Inta
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zi-Wei Zhao
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
18
|
Garbuz DG, Zatsepina OG, Evgen’ev MB. The Major Human Stress Protein Hsp70 as a Factor of Protein Homeostasis and a Cytokine-Like Regulator. Mol Biol 2019. [DOI: 10.1134/s0026893319020055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Holzinger D, Tenbrock K, Roth J. Alarmins of the S100-Family in Juvenile Autoimmune and Auto-Inflammatory Diseases. Front Immunol 2019; 10:182. [PMID: 30828327 PMCID: PMC6384255 DOI: 10.3389/fimmu.2019.00182] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Autoimmune and auto-inflammatory diseases in children are causing chronic inflammation, organ damage, and pain. Although several options for treatment are nowadays available a significant number of patients does not respond sufficiently to current therapies. In these diseases inflammatory processes are triggered by numerous exogenous and endogenous factors. There is now increasing evidence that especially a novel family of pro-inflammatory molecules, named alarmins, play a significant role in inflammatory processes underlying these diseases. Alarmins are endogenous proteins released during stress reactions that confer inflammatory signaling via Pattern Recognition Receptors (PRRs), like the Toll-like receptor 4 (TLR4). The most abundant alarmins in juvenile rheumatic diseases belong to the family of pro-inflammatory calcium-binding S100-proteins. In this review we will give a general introduction in S100-biology. We will demonstrate the functional relevance of these proteins in animal models of autoimmune and auto-inflammatory diseases. We will show the expression patterns of S100-alarmins and correlation to disease activity in different forms of juvenile idiopathic arthritis, auto-inflammatory diseases, and systemic autoimmune disorders. Finally, we will discuss the clinical use of S100-alarmins as biomarkers for diagnosis and monitoring of rheumatic diseases in children and will point out potential future therapeutic approaches targeting inflammatory effects mediated by S100-alarmins.
Collapse
Affiliation(s)
- Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Münster, Germany
| |
Collapse
|
20
|
de Freitas Souza C, Descovi S, Baldissera MD, Bertolin K, Bianchini AE, Mourão RHV, Schmidt D, Heinzmann BM, Antoniazzi A, Baldisserotto B, Martinez-Rodríguez G. Involvement of HPI-axis in anesthesia with Lippia alba essential oil citral and linalool chemotypes: gene expression in the secondary responses in silver catfish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:155-166. [PMID: 30120603 DOI: 10.1007/s10695-018-0548-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
In teleost fish, stress initiates a hormone cascade along the hypothalamus-pituitary-interrenal (HPI) axis to provoke several physiological reactions in order to maintain homeostasis. In aquaculture, a number of factors induce stress in fish, such as handling and transport, and in order to reduce the consequences of this, the use of anesthetics has been an interesting alternative. Essential oil (EO) of Lippia alba is considered to be a good anesthetic; however, its distinct chemotypes have different side effects. Therefore, the present study aimed to investigate, in detail, the expression of genes involved with the HPI axis and the effects of anesthesia with the EOs of two chemotypes of L. alba (citral EO-C and linalool EO-L) on this expression in silver catfish, Rhamdia quelen. Anesthesia with the EO-C is stressful for silver catfish because there was an upregulation of the genes directly related to stress: slc6a2, crh, hsd20b, hspa12a, and hsp90. In this study, it was also possible to observe the importance of the hsd11b2 gene in the response to stress by handling. The use of EO-C as anesthetics for fish is not recommended, but, the use of OE-L is indicated for silver catfish as it does not cause major changes in the HPI axis.
Collapse
Affiliation(s)
- Carine de Freitas Souza
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real, Cádiz, Spain
| | - Sharine Descovi
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Matheus Dellaméa Baldissera
- Departamento de Microbiologia e Parasitologia, Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Kalyne Bertolin
- Laboratório de Reprodução Animal - Biorep, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Adriane Erbice Bianchini
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Rosa Helena Veraz Mourão
- Programa de Pós-Graduação em Recursos Naturais da Amazônia, Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará-UFOPA, Rua Vera Paz, s/n, Santarém, PA, 68035-110, Brazil
| | - Denise Schmidt
- Departamento de Agronomia e Ciências Ambientais, Universidade Federal de Santa Maria, Centro de Educação Superior Norte do Rio Grande do Sul, Frederico Westphalen, RS, Brazil
| | - Berta Maria Heinzmann
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Alfredo Antoniazzi
- Laboratório de Reprodução Animal - Biorep, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Bernardo Baldisserotto
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Gonzalo Martinez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real, Cádiz, Spain.
| |
Collapse
|
21
|
Wu J, Ren J, Liu Q, Hu Q, Wu X, Wang G, Hong Z, Ren H, Li J. Effects of Changes in the Levels of Damage-Associated Molecular Patterns Following Continuous Veno-Venous Hemofiltration Therapy on Outcomes in Acute Kidney Injury Patients With Sepsis. Front Immunol 2019; 9:3052. [PMID: 30666251 PMCID: PMC6330765 DOI: 10.3389/fimmu.2018.03052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/10/2018] [Indexed: 12/28/2022] Open
Abstract
Background: We investigated the association of damage-associated molecular pattern (DAMP) removal with mortality in sepsis patients undergoing continuous veno–venous hemofiltration (CVVH). Methods: Circulating levels of DAMPs [mitochondrial DNA (mtDNA); nuclear DNA (nDNA); heat shock protein 70 (HSP70); and high mobility group box 1 (HMGB1)] and cytokines were measured at baseline, 6 and 12 h after initiation of CVVH. Urinary DNA levels were analyzed at baseline and end of CVVH. The expression of human leukocyte antigen (HLA)-DR was assayed at 0, 3, and 7 days after initiation of CVVH. Moreover, the effects of HSP70 and HMGB1 clearance on survival were analyzed. Results: We evaluated 43 patients with acute kidney injury (AKI) (33 sepsis patients). Twenty-two sepsis patients (67%) and three non-sepsis patients (30%) expired (P = 0.046). Significant reductions in the levels of circulating interleukin-6 (P = 0.046) and tumor necrosis factor-α (P = 0.008) were found in the sepsis group. The levels of mtDNA were increased (ND2, P = 0.035; D-loop, P = 0.003), whereas that of HSP70 was reduced (P = 0.000) in all patients during the first 12 h. The levels of DAMPs in the plasma were markedly increased after blood passage from the inlet through the dialyzer in survivor sepsis patients. The clearance rates of HSP70 and HMGB1 were good predictors of mortality [area under the curve (AUC) = 0.937, P = 0.000; AUC = 0.90, P = 0.001, respectively]. The level of HLA-DR was increased in response to higher HSP70 clearance (P = 0.006). Survival was significantly worse in groups with higher clearance rates of HSP70 and HMGB1 than the cut-off value (log-rank test: P = 0.000 for both). Higher HSP70 clearance was a significant independent predictor of mortality (odds ratio = 1.025, 95% confidence interval [CI]: 1.012–1.039, P = 0.000). The urinary nDNA (β-globin) level before CVVH was an independent risk factor for the duration of CVVH in patients with sepsis (sRE = 0.460, 95% CI: 1.720–8.857, P = 0.005). Conclusion: CVVH removes inflammatory factors, reduces urinary DAMPs, and removes plasma DAMPs. However, survival decreases in response to higher HSP70 clearance.
Collapse
Affiliation(s)
- Jie Wu
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianan Ren
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qinjie Liu
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiongyuan Hu
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gefei Wang
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiwu Hong
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huajian Ren
- Department of Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Jieshou Li
- Department of Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Albert Vega C, Mommert M, Boccard M, Rimmelé T, Venet F, Pachot A, Leray V, Monneret G, Delwarde B, Brengel-Pesce K, Mallet F, Trouillet-Assant S. Source of Circulating Pentraxin 3 in Septic Shock Patients. Front Immunol 2019; 9:3048. [PMID: 30687307 PMCID: PMC6338061 DOI: 10.3389/fimmu.2018.03048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022] Open
Abstract
Sepsis, which is the leading cause of death in intensive care units (ICU), has been acknowledged as a global health priority by the WHO in 2017. Identification of biomarkers allowing early stratification and recognition of patients at higher risk of death is crucial. One promising biomarker candidate is pentraxin-3 (PTX3); initially elevated and persistently increased plasma concentration in septic patients has been associated with increased mortality. PTX3 is an acute phase protein mainly stored in neutrophil granules. These cells are responsible for rapid and prompt release of PTX3 in inflammatory context, but the cellular origin responsible for successive days' elevation in sepsis remains unknown. Upon inflammatory stimulation, PTX3 can also be produced by other cell types, including endothelial and immune cells. As in septic patients immune alterations have been described, we therefore sought to investigate whether such cells participated in the elevation of PTX3 over the first days after septic shock onset. To address this point, PTX3 was measured in plasma from septic shock patients at day 3 after ICU admission as well as in healthy volunteers (HV), and the capacity of whole blood cells to secrete PTX3 after inflammatory stimulation was evaluated ex vivo. A significantly mean higher (100-fold) concentration of plasma PTX3 was found in patients compared to HV, which was likely due to the inflammation-induced initial release of the pre-existing PTX3 reservoir contained in neutrophils. Strikingly, when whole blood was stimulated ex vivo with LPS no significant difference between patients and HV in PTX3 release was found. This was in contrast with TNFα which decreased production was illustrative of the endotoxin tolerance phenomenon occurring in septic patients. Then, the release of PTX3 protein from a HV neutrophil-free PBMC endotoxin tolerance model was investigated. At the transcriptional level, PTX3 seems to be a weakly tolerizable gene similar to TNFα. Conversely, increased protein levels observed in anergy condition reflects a non-tolerizable phenotype, more likely to an anti-inflammatory marker. Hence, altered immune cells still have the ability to produce PTX3 in response to an inflammatory trigger, and therefore circulating white blood cell subset could be responsible of the sustained PTX3 plasma levels over the first days of sepsis setting.
Collapse
Affiliation(s)
- Chloé Albert Vega
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon Centre Hospitalier Lyon Sud, Lyon, France.,Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Pierre Bénite, France
| | - Marine Mommert
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon Centre Hospitalier Lyon Sud, Lyon, France.,Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Pierre Bénite, France
| | - Mathilde Boccard
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon Centre Hospitalier Lyon Sud, Lyon, France.,Département des Maladies Infectieuses et tropicales, Hospices Civils de Lyon, Lyon, France
| | - Thomas Rimmelé
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University-bioMérieux-Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Fabienne Venet
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University-bioMérieux-Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France
| | - Alexandre Pachot
- Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Pierre Bénite, France
| | - Veronique Leray
- Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University-bioMérieux-Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France
| | - Benjamin Delwarde
- Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Karen Brengel-Pesce
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon Centre Hospitalier Lyon Sud, Lyon, France.,Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Pierre Bénite, France
| | - François Mallet
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon Centre Hospitalier Lyon Sud, Lyon, France.,Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., Pierre Bénite, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University-bioMérieux-Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Sophie Trouillet-Assant
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon Centre Hospitalier Lyon Sud, Lyon, France.,Faculté de Médecine Lyon Est, Virpath - Université Lyon, CIRI, INSERM U1111, CNRS 5308, ENS, UCBL, Lyon, France
| |
Collapse
|
23
|
Sulistyowati E, Lee MY, Wu LC, Hsu JH, Dai ZK, Wu BN, Lin MC, Yeh JL. Exogenous Heat Shock Cognate Protein 70 Suppresses LPS-Induced Inflammation by Down-Regulating NF-κB through MAPK and MMP-2/-9 Pathways in Macrophages. Molecules 2018; 23:molecules23092124. [PMID: 30142934 PMCID: PMC6225271 DOI: 10.3390/molecules23092124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022] Open
Abstract
Heat shock cognate protein 70 (HSC70), a molecular chaperone, is constitutively expressed by mammalian cells to regulate various cellular functions. It is associated with many diseases and is a potential therapeutic target. Although HSC70 also possesses an anti-inflammatory action, the mechanism of this action remains unclear. This current study aimed to assess the anti-inflammatory effects of HSC70 in murine macrophages RAW 264.7 exposed to lipopolysaccharides (LPS) and to explain its pathways. Mouse macrophages (RAW 264.7) in 0.1 µg/mL LPS incubation were pretreated with recombinant HSC70 (rHSC70) and different assays (Griess assay, enzyme-linked immune assay/ELISA, electrophoretic mobility shift assay/EMSA, gelatin zymography, and Western blotting) were performed to determine whether rHSC70 blocks pro-inflammatory mediators. The findings showed that rHSC70 attenuated the nitric oxide (NO) generation, tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) expressions in LPS-stimulated RAW264.7 cells. In addition, rHSC70 preconditioning suppressed the activities and expressions of matrix metalloproteinase-2 (MMP-2) and MMP-9. Finally, rHSC70 diminished the nuclear translocation of nuclear factor-κB (NF-κB) and reduced the phosphorylation of extracellular-signal regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinases (MAPK), and phosphatidylinositol-3-kinase (PI3K/Akt). We demonstrate that rHSC70 preconditioning exerts its anti-inflammatory effects through NO production constriction; TNF-α, and IL-6 suppression following down-regulation of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and MMP-2/MMP-9. Accordingly, it ameliorated the signal transduction of MAPKs, Akt/IκBα, and NF-κB pathways. Therefore, extracellular HSC70 plays a critical role in the innate immunity modulation and mechanisms of endogenous protective stimulation.
Collapse
Affiliation(s)
- Erna Sulistyowati
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Faculty of Medicine, Islamic University of Malang, East Java 65145, Indonesia.
| | - Mei-Yueh Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Kaohsiung Municipal Hsiaokang Hospital, Kaohsiung 812, Taiwan.
| | - Lin-Chi Wu
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Jong-Hau Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Zen-Kong Dai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Bin-Nan Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ming-Chung Lin
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan 736, Taiwan.
| | - Jwu-Lai Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| |
Collapse
|
24
|
Genetic Modulation of HSPA1A Accelerates Kindling Progression and Exerts Pro-convulsant Effects. Neuroscience 2018; 386:108-120. [PMID: 29964156 DOI: 10.1016/j.neuroscience.2018.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/05/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Strong evidence exists that Toll-like receptor (TLR)-mediated effects on microglia functional states can promote ictogenesis and epileptogenesis. So far, research has focused on the role of high-mobility group box protein 1 as an activator of TLRs. However, the development of targeting strategies might need to consider a role of additional receptor ligands. Considering the fact that heat shock protein A1 (hsp70) has been confirmed as a TLR 2 and 4 ligand, we have explored the consequences of its overexpression in a mouse kindling paradigm. The genetic modulation enhanced seizure susceptibility with lowered seizure thresholds prior to kindling. In contrast to wildtype (WT) mice, HSPA1A transgenic (TG) mice exhibited generalized seizures very early during the kindling paradigm. Along with an increased seizure severity, seizure duration proved to be prolonged in TG mice during this phase. Toward the end of the stimulation phase seizure parameters of WT mice reached comparable levels. However, a difference between genotypes was still evident when comparing seizure parameters during the post-kindling threshold determination. Surprisingly, HSPA1A overexpression did not affect microglia activation in the hippocampus. In conclusion, the findings demonstrate that hsp70 can exert pro-convulsant effects promoting ictogenesis in naïve animals. The pronounced impact on the response to subsequent stimulations gives first evidence that genetic HSPA1A upregulation may also contribute to epileptogenesis. Thus, strategies inhibiting hsp70 or its expression might be of interest for prevention of seizures and epilepsy. However, conclusions about a putative pro-epileptogenic effect of hsp70 require further investigations in models with development of spontaneous recurrent seizures.
Collapse
|
25
|
Vourc'h M, Roquilly A, Asehnoune K. Trauma-Induced Damage-Associated Molecular Patterns-Mediated Remote Organ Injury and Immunosuppression in the Acutely Ill Patient. Front Immunol 2018; 9:1330. [PMID: 29963048 PMCID: PMC6013556 DOI: 10.3389/fimmu.2018.01330] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/28/2018] [Indexed: 12/31/2022] Open
Abstract
Trauma is one of the leading causes of death and disability in the world. Multiple trauma or isolated traumatic brain injury are both indicative of human tissue damage. In the early phase after trauma, damage-associated molecular patterns (DAMPs) are released and give rise to sterile systemic inflammatory response syndrome (SIRS) and organ failure. Later, protracted inflammation following sepsis will favor hospital-acquired infection and will worsen patient’s outcome through immunosuppression. Throughout medical care or surgical procedures, severe trauma patients will be subjected to endogenous or exogenous DAMPs. In this review, we summarize the current knowledge regarding DAMP-mediated SIRS or immunosuppression and the clinical consequences in terms of organ failure and infections.
Collapse
Affiliation(s)
- Mickael Vourc'h
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| | - Antoine Roquilly
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| | - Karim Asehnoune
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| |
Collapse
|
26
|
Hulina A, Grdić Rajković M, Jakšić Despot D, Jelić D, Dojder A, Čepelak I, Rumora L. Extracellular Hsp70 induces inflammation and modulates LPS/LTA-stimulated inflammatory response in THP-1 cells. Cell Stress Chaperones 2018; 23:373-384. [PMID: 29067554 PMCID: PMC5904080 DOI: 10.1007/s12192-017-0847-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/01/2017] [Accepted: 09/24/2017] [Indexed: 12/25/2022] Open
Abstract
Extracellular Hsp70 (eHsp70) can act as damage-associated molecular pattern (DAMP) via Toll-like receptors TLR2 and TLR4, and stimulate immune and inflammatory responses leading to sterile inflammation and propagation of already existing inflammation. It was found elevated in the blood of patients with chronic obstructive pulmonary disease (COPD), who might suffer occasional bacterial colonizations and infections. We used a monocytic THP-1 cell line as a cellular model of systemic compartment of COPD to assess inflammatory effects of eHsp70 when present alone or together with bacterial products lypopolysaccharide (LPS) and lypoteichoic acid (LTA). THP-1 cells were differentiated into macrophage-like cells and treated with various concentrations of recombinant human Hsp70 protein (rhHsp70), LPS (TLR4 agonist), LTA (TLR2 agonist), and their combinations for 4, 12, 24, and 48 h. Concentrations of IL-1α, IL-6, IL-8, and TNF-α were determined by ELISA. Cell viability was assessed by MTS assay, and mode of cell death by luminometric measurements of caspases-3/7, -8, and -9 activities. rhHsp70 showed cell protecting effect by suppressing caspases-3/7 activation, while LPS provoked cytotoxicity through caspases-8 and -3/7 pathway. Regarding inflammatory processes, rhHsp70 alone induced secretion of IL-1α and IL-8, but had modulatory effects on release of all four cytokines when applied together with LPS or LTA. Combined effect with LPS was mainly synergistic, and with LTA mainly antagonistic, although it was cytokine- and time-dependent. Our results confirmed pro-inflammatory function of extracellular Hsp70, and suggest its possible implication in COPD exacerbations caused by bacterial infection through desensitization or inappropriate activation of TLR2 and TLR4 receptors.
Collapse
Affiliation(s)
- Andrea Hulina
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10000, Zagreb, Croatia.
| | - Marija Grdić Rajković
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10000, Zagreb, Croatia
| | - Daniela Jakšić Despot
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Ana Dojder
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10000, Zagreb, Croatia
| | - Ivana Čepelak
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10000, Zagreb, Croatia
| | - Lada Rumora
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10000, Zagreb, Croatia
| |
Collapse
|
27
|
Leijte GP, Custers H, Gerretsen J, Heijne A, Roth J, Vogl T, Scheffer GJ, Pickkers P, Kox M. Increased Plasma Levels of Danger-Associated Molecular Patterns Are Associated With Immune Suppression and Postoperative Infections in Patients Undergoing Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy. Front Immunol 2018; 9:663. [PMID: 29675023 PMCID: PMC5895648 DOI: 10.3389/fimmu.2018.00663] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/19/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction Danger-associated molecular patterns (DAMPs) can elicit immune responses and may subsequently induce an immune-suppressed state. Previous work showed that increased plasma levels of DAMPs are associated with immune suppression and increased susceptibility toward infections in trauma patients. Like trauma, major surgical procedures, such as cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC), are also thought to cause profound DAMP release. Furthermore, the incidence of postoperative infections in these patients, ranging from 10 to 36%, is very high compared to that observed in patients undergoing other major surgical procedures. We hypothesized that the double hit of surgical trauma (CRS) in combination with HIPEC causes excessive DAMP release, which in turn contributes to the development of immune suppression. To investigate this, we assessed DAMP release in patients undergoing CRS-HIPEC, and investigated its relationship with immune suppression and postoperative infections. Methods In 20 patients undergoing CRS-HIPEC, blood was obtained at five time points: just before surgery (baseline), after CRS, after HIPEC, at ICU admission, and 1 day after surgery. Circulating levels of DAMPs [heat shock protein (HSP)70, high mobility group box (HMGB)1, S100A12, S100A8/S100A9, nuclear (n)DNA, mitochondrial (mt)DNA, lactate dehydrogenase (LDH), a marker of unscheduled cell death], and cytokines [tumor necrosis factor (TNF)α, IL-6, IL-8, IL-10, macrophage inflammatory protein (MIP)-1α, MIP-1β, and MCP-1] were measured. The extent of immune suppression was determined by measuring HLA-DR gene expression and ex vivo leukocytic cytokine production capacity. Results Plasma levels of DAMPs (maximum fold increases of HSP70: 2.1 [1.5–2.8], HMGB1: 5.9 [3.2–9.8], S100A8/S100A9: 3.6 [1.8–5.6], S100A12: 2.6 [1.8–4.3], nDNA 3.9 [1.0–10.8], LDH 1.7 [1.2–2.5]), and all measured cytokines increased profoundly following CRS-HIPEC. Evidence of immune suppression was already apparent during the procedure, illustrated by a decrease of HLA-DR expression compared with baseline (0.5-fold [0.3–0.9]) and diminished ex vivo pro-inflammatory cytokine production capacity. The increase in HMGB1 levels correlated with the decrease in HLA-DR expression (r = −0.46, p = 0.04), and peak HMGB1 concentrations were significantly higher in the five patients who went on to develop a postoperative infection (p = 0.04). Conclusion CRS-HIPEC is associated with profound DAMP release and immune suppression, and plasma HMGB1 levels are related with the occurrence of postoperative infections in these patients.
Collapse
Affiliation(s)
- Guus P Leijte
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hettie Custers
- Department of Anesthesiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Amon Heijne
- Department of Anesthesiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Gert J Scheffer
- Department of Anesthesiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
28
|
Higuchi-Sanabria R, Frankino PA, Paul JW, Tronnes SU, Dillin A. A Futile Battle? Protein Quality Control and the Stress of Aging. Dev Cell 2018; 44:139-163. [PMID: 29401418 PMCID: PMC5896312 DOI: 10.1016/j.devcel.2017.12.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
There exists a phenomenon in aging research whereby early life stress can have positive impacts on longevity. The mechanisms underlying these observations suggest a robust, long-lasting induction of cellular defense mechanisms. These include the various unfolded protein responses of the endoplasmic reticulum (ER), cytosol, and mitochondria. Indeed, ectopic induction of these pathways, in the absence of stress, is sufficient to increase lifespan in organisms as diverse as yeast, worms, and flies. Here, we provide an overview of the protein quality control mechanisms that operate in the cytosol, mitochondria, and ER and discuss how they affect cellular health and viability during stress and aging.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip Andrew Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph West Paul
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Uhlein Tronnes
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
29
|
Hazeldine J, Naumann DN, Toman E, Davies D, Bishop JRB, Su Z, Hampson P, Dinsdale RJ, Crombie N, Duggal NA, Harrison P, Belli A, Lord JM. Prehospital immune responses and development of multiple organ dysfunction syndrome following traumatic injury: A prospective cohort study. PLoS Med 2017; 14:e1002338. [PMID: 28719602 PMCID: PMC5515405 DOI: 10.1371/journal.pmed.1002338] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/31/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Almost all studies that have investigated the immune response to trauma have analysed blood samples acquired post-hospital admission. Thus, we know little of the immune status of patients in the immediate postinjury phase and how this might influence patient outcomes. The objective of this study was therefore to comprehensively assess the ultra-early, within 1-hour, immune response to trauma and perform an exploratory analysis of its relationship with the development of multiple organ dysfunction syndrome (MODS). METHODS AND FINDINGS The immune and inflammatory response to trauma was analysed in 89 adult trauma patients (mean age 41 years, range 18-90 years, 75 males) with a mean injury severity score (ISS) of 24 (range 9-66), from whom blood samples were acquired within 1 hour of injury (mean time to sample 42 minutes, range 17-60 minutes). Within minutes of trauma, a comprehensive leukocytosis, elevated serum pro- and anti-inflammatory cytokines, and evidence of innate cell activation that included neutrophil extracellular trap generation and elevated surface expression of toll-like receptor 2 and CD11b on monocytes and neutrophils, respectively, were observed. Features consistent with immune compromise were also detected, notably elevated numbers of immune suppressive CD16BRIGHT CD62LDIM neutrophils (82.07 x 106/l ± 18.94 control versus 1,092 x 106/l ± 165 trauma, p < 0.0005) and CD14+HLA-DRlow/- monocytes (34.96 x 106/l ± 4.48 control versus 95.72 x 106/l ± 8.0 trauma, p < 0.05) and reduced leukocyte cytokine secretion in response to lipopolysaccharide stimulation. Exploratory analysis via binary logistic regression found a potential association between absolute natural killer T (NKT) cell numbers and the subsequent development of MODS. Study limitations include the relatively small sample size and the absence of data relating to adaptive immune cell function. CONCLUSIONS Our study highlighted the dynamic and complex nature of the immune response to trauma, with immune alterations consistent with both activation and suppression evident within 1 hour of injury. The relationship of these changes, especially in NKT cell numbers, to patient outcomes such as MODS warrants further investigation.
Collapse
Affiliation(s)
- Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- * E-mail:
| | - David N. Naumann
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Emma Toman
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - David Davies
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Jonathan R. B. Bishop
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Zhangjie Su
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Peter Hampson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Scar Free Foundation, Birmingham Centre for Burns Research, Birmingham, United Kingdom
| | - Robert J. Dinsdale
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Scar Free Foundation, Birmingham Centre for Burns Research, Birmingham, United Kingdom
| | - Nicholas Crombie
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Midlands Air Ambulance, Unit 16 Enterprise Trading Estate, Brierley Hill, West Midlands, United Kingdom
| | - Niharika Arora Duggal
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Scar Free Foundation, Birmingham Centre for Burns Research, Birmingham, United Kingdom
| | - Antonio Belli
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Uhle F, Weiterer S, Siegler BH, Brenner T, Lichtenstern C, Weigand MA. Advanced glycation endproducts induce self- and cross-tolerance in monocytes. Inflamm Res 2017; 66:961-968. [DOI: 10.1007/s00011-017-1076-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/24/2017] [Indexed: 01/09/2023] Open
|
31
|
Austermann J, Zenker S, Roth J. S100-alarmins: potential therapeutic targets for arthritis. Expert Opin Ther Targets 2017; 21:739-751. [PMID: 28494625 DOI: 10.1080/14728222.2017.1330411] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION In arthritis, inflammatory processes are triggered by numerous factors that are released from joint tissues, promoting joint destruction and pathological progression. During inflammation, a novel family of pro-inflammatory molecules called alarmins is released, amplifying inflammation and joint damage. Areas covered: With regard to the role of the alarmins S100A8 and S100A9 in the pathogenesis of arthritis, recent advances and the future prospects in terms of therapeutic implications are considered. Expert opinion: There is still an urgent need for novel treatment strategies addressing the local mechanisms of joint inflammation and tissue destruction, offering promising therapeutic alternatives. S100A8 and S100A9, which are the most up-regulated alarmins during arthritis, are endogenous triggers of inflammation, defining these proteins as promising targets for local suppression of arthritis. In murine models, the blockade of S100A8/S100A9 ameliorates inflammatory processes, including arthritis, and there are several lines of evidence that S100-alarmins may already be targeted in therapeutic approaches in man.
Collapse
Affiliation(s)
- Judith Austermann
- a Institute of Immunology , University of Münster , Münster , Germany
| | - Stefanie Zenker
- a Institute of Immunology , University of Münster , Münster , Germany
| | - Johannes Roth
- a Institute of Immunology , University of Münster , Münster , Germany
| |
Collapse
|
32
|
Unconventional Secretion of Heat Shock Proteins in Cancer. Int J Mol Sci 2017; 18:ijms18050946. [PMID: 28468249 PMCID: PMC5454859 DOI: 10.3390/ijms18050946] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Heat shock proteins (HSPs) are abundant cellular proteins involved with protein homeostasis. They have both constitutive and inducible isoforms, whose expression levels are further increased by stress conditions, such as temperature elevation, reduced oxygen levels, infection, inflammation and exposure to toxic substances. In these situations, HSPs exert a pivotal role in offering protection, preventing cell death and promoting cell recovery. Although the majority of HSPs functions are exerted in the cytoplasm and organelles, several lines of evidence reveal that HSPs are able to induce cell responses in the extracellular milieu. HSPs do not possess secretion signal peptides, and their secretion was subject to widespread skepticism until the demonstration of the role of unconventional secretion forms such as exosomes. Secretion of HSPs may confer immune system modulation and be a cell-to-cell mediated form of increasing stress resistance. Thus, there is a wide potential for secreted HSPs in resistance of cancer therapy and in the development new therapeutic strategies.
Collapse
|
33
|
Maheshwari K, Silva RM, Guajardo-Morales L, Garlet GP, Vieira AR, Letra A. Heat Shock 70 Protein Genes and Genetic Susceptibility to Apical Periodontitis. J Endod 2016; 42:1467-71. [PMID: 27567034 DOI: 10.1016/j.joen.2016.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Heat shock proteins (HSPs) protect cells under adverse conditions such as infection, inflammation, and disease. The differential expression of HSPs in human periapical granulomas suggests a potential role for these proteins in periapical lesion development, which may contribute to different clinical outcomes. Therefore, we hypothesized that polymorphisms in HSP genes leading to perturbed gene expression and protein function may contribute to an individual's susceptibility to periapical lesion development. METHODS Subjects with deep carious lesions with or without periapical lesions (≥3 mm) were recruited at the University of Texas School of Dentistry at Houston and at the University of Pittsburgh. Genomic DNA samples of 400 patients were sorted into 2 groups: 183 cases with deep carious lesions and periapical lesions (cases) and 217 cases with deep carious lesions but without periapical lesions (controls). Eight single nucleotide polymorphisms (SNPs) in HSPA4, HSPA6, HSPA1L, HSPA4L, and HSPA9 genes were selected for genotyping. Genotypes were generated by end point analysis by using Taqman chemistry in a real-time polymerase chain reaction assay. Allele and genotype frequencies were compared among cases and controls by using χ(2) and Fisher exact tests as implemented in PLINK v.1.07. In silico analysis of SNP function was performed by using Polymorphism Phenotyping V2 and MirSNP software. RESULTS Overall, SNPs in HSPA1L and HSPA6 showed significant allelic association with cases of deep caries and periapical lesions (P < .05). We also observed altered transmission of HSPA1L SNP haplotypes (P = .03). In silico analysis of HSPA1L rs2075800 function showed that this SNP results in a glutamine-to-lysine substitution at position 602 of the protein and might affect the stability and function of the final protein. CONCLUSIONS Variations in HSPA1L and HSPA6 may be associated with periapical lesion formation in individuals with untreated deep carious lesions. Future studies could help predict host susceptibility to developing apical periodontitis.
Collapse
Affiliation(s)
- Kanwal Maheshwari
- Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Renato M Silva
- Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas; Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Leticia Guajardo-Morales
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Gustavo P Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru, São Paulo, Brazil
| | - Alexandre R Vieira
- Department of Oral Biology, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatric Dentistry, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ariadne Letra
- Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas; Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
34
|
Timmermans K, Kox M, Vaneker M, van den Berg M, John A, van Laarhoven A, van der Hoeven H, Scheffer GJ, Pickkers P. Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients. Intensive Care Med 2016; 42:551-561. [PMID: 26912315 PMCID: PMC5413532 DOI: 10.1007/s00134-015-4205-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/24/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Danger-associated molecular patterns (DAMPs) released of trauma could contribute to an immune suppressed state that renders patients vulnerable towards nosocomial infections. We investigated DAMP release in trauma patients, starting in the prehospital phase, and assessed its relationship with immune suppression and nosocomial infections. METHODS Blood was obtained from 166 adult trauma patients at the trauma scene, emergency room (ER), and serially afterwards. Circulating levels of DAMPs and cytokines were determined. Immune suppression was investigated by determination of HLA-DRA gene expression and ex vivo lipopolysaccharide-stimulated cytokine production. RESULTS Compared with healthy controls, plasma levels of nuclear DNA (nDNA) and heat shock protein-70 (HSP70) but not mitochondrial DNA were profoundly increased immediately following trauma and remained elevated for 10 days. Plasma cytokines were increased at the ER, and levels of anti-inflammatory IL-10 but not of pro-inflammatory cytokines peaked at this early time-point. HLA-DRA expression was attenuated directly after trauma and did not recover during the follow-up period. Plasma nDNA (r = -0.24, p = 0.006) and HSP70 (r = -0.38, p < 0.0001) levels correlated negatively with HLA-DRA expression. Ex vivo cytokine production revealed an anti-inflammatory phenotype already at the trauma scene which persisted in the following days, characterized by attenuated TNF-α and IL-6, and increased IL-10 production. Finally, higher concentrations of nDNA and a further decrease of HLA-DRA expression were associated with infections. CONCLUSIONS Plasma levels of DAMPs are associated with immune suppression, which is apparent within minutes/hours following trauma. Furthermore, aggravated immune suppression during the initial phase following trauma is associated with increased susceptibility towards infections.
Collapse
Affiliation(s)
- Kim Timmermans
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Internal Mail 710, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Anesthesiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Internal Mail 710, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Anesthesiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel Vaneker
- Department of Anesthesiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Helicopter Emergency Medical Service, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maarten van den Berg
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Internal Mail 710, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Aaron John
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Internal Mail 710, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Anesthesiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjan van Laarhoven
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans van der Hoeven
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Internal Mail 710, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Gert Jan Scheffer
- Department of Anesthesiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Internal Mail 710, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Walker A, Russmann V, Deeg CA, von Toerne C, Kleinwort KJH, Szober C, Rettenbeck ML, von Rüden EL, Goc J, Ongerth T, Boes K, Salvamoser JD, Vezzani A, Hauck SM, Potschka H. Proteomic profiling of epileptogenesis in a rat model: Focus on inflammation. Brain Behav Immun 2016; 53:138-158. [PMID: 26685804 DOI: 10.1016/j.bbi.2015.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/27/2015] [Accepted: 12/10/2015] [Indexed: 01/13/2023] Open
Abstract
Detailed knowledge about the patterns of molecular alterations during epileptogenesis is a presupposition for identifying targets for preventive or disease-modifying approaches, as well as biomarkers of the disease. Large-scale differential proteome analysis can provide unique and novel perspectives based on comprehensive data sets informing about the complex regulation patterns in the disease proteome. Thus, we have completed an elaborate differential proteome analysis based on label-free LC-MS/MS in a rat model of epileptogenesis. Hippocampus and parahippocampal cortex tissues were sampled and analyzed separately at three key time points chosen for monitoring disease development following electrically-induced status epilepticus, namely, the early post-insult phase, the latency phase, and the chronic phase with spontaneous recurrent seizures. We focused the bioinformatics analysis on proteins linked to immune and inflammatory responses, because of the emerging evidence of the specific pathogenic role of inflammatory signalings during epileptogenesis. In the early post-insult and the latency phases, pathway enrichment analysis revealed an extensive over-representation of Toll-like receptor signaling, pro-inflammatory cytokines, heat shock protein regulation, and transforming growth factor beta signaling and leukocyte transendothelial migration. The inflammatory response in the chronic phase proved to be more moderate with differential expression in the parahippocampal cortex exceeding that in the hippocampus. The data sets provide novel information about numerous differentially expressed proteins, which serve as interaction partners or modulators in key disease-associated inflammatory signaling events. Noteworthy, a set of proteins which act as modulators of the ictogenic Toll-like receptor signaling proved to be differentially expressed. In addition, we report novel data demonstrating the regulation of different Toll-like receptor ligands during epileptogenesis. Taken together, the findings deepen our understanding of modulation of inflammatory signaling during epileptogenesis providing an excellent and comprehensive basis for the identification of target and biomarker candidates.
Collapse
Affiliation(s)
- Andreas Walker
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany; Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | | | - Kristina J H Kleinwort
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christoph Szober
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Maruja L Rettenbeck
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Joanna Goc
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Tanja Ongerth
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Katharina Boes
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Josephine D Salvamoser
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Annamaria Vezzani
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Neuroscience, Milano, Italy
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
36
|
Timmermans K, Kox M, Gerretsen J, Peters E, Scheffer GJ, van der Hoeven JG, Pickkers P, Hoedemaekers CW. The Involvement of Danger-Associated Molecular Patterns in the Development of Immunoparalysis in Cardiac Arrest Patients. Crit Care Med 2016. [PMID: 26196352 DOI: 10.1097/ccm.0000000000001204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES After cardiac arrest, patients are highly vulnerable toward infections, possibly due to a suppressed state of the immune system called "immunoparalysis." We investigated if immunoparalysis develops following cardiac arrest and whether the release of danger-associated molecular patterns could be involved. DESIGN Observational study. SETTING ICU of a university medical center. PATIENTS Fourteen post-cardiac arrest patients treated with mild therapeutic hypothermia for 24 hours and 11 control subjects. MEASUREMENTS AND MAIN RESULTS Plasma cytokines showed highest levels within 24 hours after cardiac arrest and decreased during the next 2 days. By contrast, ex vivo production of cytokines interleukin-6, tumor necrosis factor-α, and interleukin-10 by lipopolysaccharide-stimulated leukocytes was severely impaired compared with control subjects, with most profound effects observed at day 0, and only partially recovering afterward. Compared with incubation at 37°C, incubation at 32°C resulted in higher interleukin-6 and lower interleukin-10 production by lipopolysaccharide-stimulated leukocytes of control subjects, but not of patients. Plasma nuclear DNA, used as a marker for general danger-associated molecular pattern release, and the specific danger-associated molecular patterns (EN-RAGE and heat shock protein 70) were substantially higher in patients at days 0 and 1 compared with control subjects. Furthermore, plasma heat shock protein 70 levels were negatively correlated with ex vivo production of inflammatory mediators interleukin-6, tumor necrosis factor-α, and interleukin-10. Extracellular newly identified receptor for advanced glycation end products-binding protein levels only showed a significant negative correlation with ex vivo production of interleukin-6 and tumor necrosis factor-α and a borderline significant inverse correlation with interleukin-10. No significant correlations were observed between plasma nuclear DNA levels and ex vivo cytokine production. INTERVENTIONS None. CONCLUSIONS Release of danger-associated molecular patterns during the first days after cardiac arrest is associated with the development of immunoparalysis. This could explain the increased susceptibility toward infections in cardiac arrest patients.
Collapse
Affiliation(s)
- Kim Timmermans
- 1Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands. 2Department of Anesthesiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands. 3Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sakharwade SC, Mukhopadhaya A. Vibrio cholerae porin OmpU induces LPS tolerance by attenuating TLR-mediated signaling. Mol Immunol 2015; 68:312-24. [PMID: 26454478 DOI: 10.1016/j.molimm.2015.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022]
Abstract
Porins can act as pathogen-associated molecular patterns, can be recognized by the host immune system and modulate immune responses. Vibrio choleraeporin OmpU aids in bacterial survival in the human gut by increasing resistance against bile acids and anti-microbial peptides. V. choleraeOmpU is pro-inflammatory in nature. However, interestingly, it can also down-regulate LPS-mediated pro-inflammatory responses. In this study, we have explored how OmpU-pretreatment affects LPS-mediated responses. Our study indicates that OmpU-pretreatment followed by LPS-activation does not induce M2-polarization of macrophages/monocytes. Further, OmpU attenuates LPS-mediated TLR2/TLR6 signaling by decreasing the association of TLRs along with recruitment of MyD88 and IRAKs to the receptor complex. This results in decreased translocation of NFκB in the nucleus. Additionally, OmpU-pretreatment up-regulates expression of IRAK-M, a negative regulator of TLR signaling, in RAW 264.7 mouse macrophage cells upon LPS-stimulation. Suppressor cytokine IL-10 is partially involved in OmpU-induced down-regulation of LPS-mediated TNFα production in human PBMCs. Furthermore, OmpU-pretreatment also affects macrophage function, by enhancing phagocytosis in LPS-treated RAW 264.7 cells, and down-regulates LPS-induced cell surface expression of co-stimulatory molecules. Altogether, OmpU causes suppression of LPS-mediated responses by attenuating the LPS-mediated TLR signaling pathway.
Collapse
Affiliation(s)
- Sanica C Sakharwade
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Manauli, 140306 Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Manauli, 140306 Punjab, India.
| |
Collapse
|
38
|
Liu Q, Huang S, Deng C, Xiong L, Gao X, Chen Y, Niu C, Liu Y. Molecular characterization of heat-shock protein 90 gene and its expression in Gobiocypris rarus juveniles exposed to pentachlorophenol. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1279-1291. [PMID: 26119907 DOI: 10.1007/s10695-015-0085-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Heat-shock protein 90 (HSP90) is an abundant and highly conserved molecular chaperone, and it fulfills a housekeeping function in contributing to the folding, maintenance of structural integrity, and proper regulation of a subset of cytosolic proteins. In this study, the full-length 2693-bp cDNA of HSP90 was cloned by rapid amplification of cDNA ends (RACE) technique from the liver of rare minnow (Gobiocypris rarus) for the first time, designated as GrHSP90. The complete coding sequence of GrHSP90 is 2181 bp in length, which encodes a polypeptide of 726 amino acids with a predicted molecular mass of 83.4 kDa and a theoretical isoelectric point of 4.90. Phylogenetic tree analysis indicated that deduced protein GrHSP90 had extensive sequence similarities to other fish HSP90s. Tissue distribution showed that GrHSP90 was constitutively expressed in a wide range of tissues including gill, blood, brain, fin, gonad, heart, intestine, kidney, liver, muscle, spleen, skin, and swim bladder. The highest expression was found in the gonad. Furthermore, significant increase in GrHSP90 mRNA in the liver was observed after exposure to pentachlorophenol ≥8 µg/L (p < 0.05). Our results suggest that GrHSP90 is indeed an ortholog of the HSP90 family and may be act as a biomarker to assess the effect of environmental contaminant.
Collapse
Affiliation(s)
- Qiuping Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shuting Huang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chuan Deng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Li Xiong
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiang Gao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yun Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunqing Niu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yan Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
39
|
Tsai TN, Lee TY, Liu MS, Chuang IC, Lu MC, Dong HP, Lue SI, Yang RC. Release of endogenous heat shock protein 72 on the survival of sepsis in rats. J Surg Res 2015; 198:165-74. [PMID: 26073348 DOI: 10.1016/j.jss.2015.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/17/2015] [Accepted: 05/01/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND This study was undertaken to clarify the role of extracellular heat shock protein 72 on the survival of sepsis and to determine possible factor(s) that may be responsible for it. MATERIALS AND METHODS Sepsis was induced by cecal ligation and puncture. Changes in serum levels of heat shock protein (Hsp72) and cytokines were determined during sepsis, and the results were correlated with the survival. Effects of heat pretreatment on Hsp72 expression in septic rat leukocytes and those of septic rat serum, lipopolysaccharide (LPS), and certain cytokines on the release of Hsp72 in macrophage NR8383 cells were determined. RESULTS Circulating Hsp72 levels were increased during the progress of sepsis (0, 5.5, 6.5, 10, and 6.5 ng/mL at 0, 3, 6, 9, and 18 h after cecal ligation and puncture, respectively) and the increases were correlated positively with survival rates. LPS triggered the release of Hsp72 in heat pretreated animals. Heat pretreatment increased Hsp72 expression in nonsepsis (+535%, P < 0.01) and sepsis (+116%, P<0.01%) rat leukocytes. Incubation of sepsis rat serum with NR8383 cells increased levels of extracellular heat shock protein 72 in cultured medium. Cytokine profiling revealed that among the 19 cytokines screened, four of them were increased as follows: cytokine-induced neutrophil chemoattractant 3 (+211.3%, P < 0.05), interleukin 10 (+147%, P < 0.05), MCP-1 (+49.6%, P < 0.05), and tumor necrosis factor alpha (+51.8%, P < 0.05). MCP-1 and LPS were capable of releasing Hsp72 from NR8383 cells. CONCLUSIONS These results demonstrate that the increases in the levels of circulating Hsp72 had a beneficial effect in improving animal survival during the progress of sepsis. The increases in circulating Hsp72 may be mediated via MCP-1 and/or LPS.
Collapse
Affiliation(s)
- Tsen-Ni Tsai
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Ying Lee
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Maw-Shung Liu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Chun Chuang
- Department of Respiratory Therapy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Chin Lu
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung, Taiwan
| | - Huei-Ping Dong
- Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan
| | - Sheng-I Lue
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Rei-Chen Yang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Pediatrics, Changhua Christian Hospital, Changhua, Taiwan.
| |
Collapse
|
40
|
Tulapurkar ME, Ramarathnam A, Hasday JD, Singh IS. Bacterial lipopolysaccharide augments febrile-range hyperthermia-induced heat shock protein 70 expression and extracellular release in human THP1 cells. PLoS One 2015; 10:e0118010. [PMID: 25659128 PMCID: PMC4320107 DOI: 10.1371/journal.pone.0118010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/06/2015] [Indexed: 01/17/2023] Open
Abstract
Sepsis, a devastating and often lethal complication of severe infection, is characterized by fever and dysregulated inflammation. While infections activate the inflammatory response in part through Toll-like receptors (TLRs), fever can partially activate the heat shock response with generation of heat shock proteins (HSPs). Since extracellular HSPs, especially HSP70 (eHSP70), are proinflammatory TLR agonists, we investigated how exposure to the TLR4 agonist, bacterial lipopolysaccharide (LPS) and febrile range hyperthermia (FRH; 39.5°C) modify HSP70 expression and extracellular release. Using differentiated THP1 cells, we found that concurrent exposure to FRH and LPS as well as TLR2 and TLR3 agonists synergized to activate expression of inducible HSP72 (HSPA1A) mRNA and protein via a p38 MAP kinase-requiring mechanism. Treatment with LPS for 6 h stimulated eHSP70 release; levels of eHSP70 released at 39.5°C were higher than at 37°C roughly paralleling the increase in intracellular HSP72 in the 39.5°C cells. By contrast, 6 h exposure to FRH in the absence of LPS failed to promote eHSP70 release. Release of eHSP70 by LPS-treated THP1 cells was inhibited by glibenclamide, but not brefeldin, indicating that eHSP70 secretion occurred via a non-classical protein secretory mechanism. Analysis of eHSP70 levels in exosomes and exosome-depleted culture supernatants from LPS-treated THP1 cells using ELISA demonstrated similar eHSP70 levels in unfractionated and exosome-depleted culture supernatants, indicating that LPS-stimulated eHSP70 release did not occur via the exosome pathway. Immunoblot analysis of the exosome fraction of culture supernatants from these cells showed constitutive HSC70 (HSPA8) to be the predominant HSP70 family member present in exosomes. In summary, we have shown that LPS stimulates macrophages to secrete inducible HSP72 via a non-classical non-exosomal pathway while synergizing with FRH exposure to increase both intracellular and secreted levels of inducible HSP72. The impact of increased macrophage intracellular HSP70 levels and augmented secretion of proinflammatory eHSP70 in the febrile, infected patient remains to be elucidated.
Collapse
Affiliation(s)
- Mohan E. Tulapurkar
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Aparna Ramarathnam
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeffrey D. Hasday
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Cytokine Core Laboratory, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Research Services of the Baltimore Veteran Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Ishwar S. Singh
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Research Services of the Baltimore Veteran Affairs Medical Center, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
The heat shock response (HSR) is an ancient and highly conserved process that is essential for coping with environmental stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms temporarily subject themselves to thermal stress in the face of infections. We review the phylogenetically conserved mechanisms that regulate fever and discuss the effects that febrile-range temperatures have on multiple biological processes involved in host defense and cell death and survival, including the HSR and its implications for patients with severe sepsis, trauma, and other acute systemic inflammatory states. Heat shock factor-1, a heat-induced transcriptional enhancer is not only the central regulator of the HSR but also regulates expression of pivotal cytokines and early response genes. Febrile-range temperatures exert additional immunomodulatory effects by activating mitogen-activated protein kinase cascades and accelerating apoptosis in some cell types. This results in accelerated pathogen clearance, but increased collateral tissue injury, thus the net effect of exposure to febrile range temperature depends in part on the site and nature of the pathologic process and the specific treatment provided.
Collapse
Affiliation(s)
- Jeffrey D Hasday
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine and the Baltimore V.A. Medical Center, Baltimore, Maryland
| | | | | |
Collapse
|
42
|
Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2014; 72:557-581. [PMID: 25332099 PMCID: PMC4293489 DOI: 10.1007/s00018-014-1762-5] [Citation(s) in RCA: 510] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Abstract
Toll-like receptor 4 (TLR4) is activated by lipopolysaccharide (LPS), a component of Gram-negative bacteria to induce production of pro-inflammatory mediators aiming at eradication of the bacteria. Dysregulation of the host responses to LPS can lead to a systemic inflammatory condition named sepsis. In a typical scenario, activation of TLR4 is preceded by binding of LPS to CD14 protein anchored in cholesterol- and sphingolipid-rich microdomains of the plasma membrane called rafts. CD14 then transfers the LPS to the TLR4/MD-2 complex which dimerizes and triggers MyD88- and TRIF-dependent production of pro-inflammatory cytokines and type I interferons. The TRIF-dependent signaling is linked with endocytosis of the activated TLR4, which is controlled by CD14. In addition to CD14, other raft proteins like Lyn tyrosine kinase of the Src family, acid sphingomyelinase, CD44, Hsp70, and CD36 participate in the TLR4 signaling triggered by LPS and non-microbial endogenous ligands. In this review, we summarize the current state of the knowledge on the involvement of rafts in TLR4 signaling, with an emphasis on how the raft proteins regulate the TLR4 signaling pathways. CD14-bearing rafts, and possibly CD36-rich rafts, are believed to be preferred sites of the assembly of a multimolecular complex which mediates the endocytosis of activated TLR4.
Collapse
Affiliation(s)
- Agnieszka Płóciennikowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Aneta Hromada-Judycka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Kinga Borzęcka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland.
| |
Collapse
|
43
|
Ferat-Osorio E, Sánchez-Anaya A, Gutiérrez-Mendoza M, Boscó-Gárate I, Wong-Baeza I, Pastelin-Palacios R, Pedraza-Alva G, Bonifaz LC, Cortés-Reynosa P, Pérez-Salazar E, Arriaga-Pizano L, López-Macías C, Rosenstein Y, Isibasi A. Heat shock protein 70 down-regulates the production of toll-like receptor-induced pro-inflammatory cytokines by a heat shock factor-1/constitutive heat shock element-binding factor-dependent mechanism. JOURNAL OF INFLAMMATION-LONDON 2014; 11:19. [PMID: 25053922 PMCID: PMC4105516 DOI: 10.1186/1476-9255-11-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 07/05/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Heat shock protein 70 (Hsp70) is an intracellular chaperone protein with regulatory and cytoprotective functions. Hsp70 can also be found in the extracellular milieu, as a result of active secretion or passive release from damaged cells. The role of extracellular Hsp70 is not fully understood. Some studies report that it activates monocytes, macrophages and dendritic cells through innate immune receptors (such as Toll-like receptors, TLRs), while others report that Hsp70 is a negative regulator of the inflammatory response. In order to address this apparent inconsistency, in this study we evaluated the response of human monocytes to a highly purified recombinant Hsp70. METHODS Human peripheral blood monocytes were stimulated with Hsp70, alone or in combination with TLR agonists. Cytokines were quantified in culture supernatants, their mRNAs were measured by RT-PCR, and the binding of transcription factors was evaluated by electrophoretic mobility shift assay (EMSA). Kruskal-Wallis test or one-way or two-way ANOVA were used to analyze the data. RESULTS The addition of Hsp70 to TLR-activated monocytes down-regulated TNF-α as well as IL-6 levels. This effect was independent of a physical interaction between Hsp70 and TLR agonists; instead it resulted of changes at the TNF-α gene expression level. The decrease in TNF-α expression correlated with the binding of HSF-1 (heat shock transcription factor 1, a transcription factor activated in response to Hsp70) and CHBF (constitutive HSE-binding factor) to the TNF-α gene promoter. CONCLUSION Extracellular Hsp70 negatively regulates the production of pro-inflammatory cytokines of monocytes exposed to TLR agonists and contributes to dampen the inflammatory response.
Collapse
Affiliation(s)
- Eduardo Ferat-Osorio
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México ; Servicio de Cirugía Gastrointestinal, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| | - Aldair Sánchez-Anaya
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| | - Mireille Gutiérrez-Mendoza
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| | - Ilka Boscó-Gárate
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| | - Isabel Wong-Baeza
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México ; Departamento de Inmunología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, México D.F., México
| | | | - Gustavo Pedraza-Alva
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| | - Pedro Cortés-Reynosa
- Departamento de Biología Celular, (CINVESTAV) Instituto Politécnico Nacional, Centro de Investigación y Estudios Avanzados, México D.F., México
| | - Eduardo Pérez-Salazar
- Departamento de Biología Celular, (CINVESTAV) Instituto Politécnico Nacional, Centro de Investigación y Estudios Avanzados, México D.F., México
| | - Lourdes Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México ; Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca Mor. 62210, México
| | - Armando Isibasi
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México ; Coordinación de Investigación en Salud, Piso 4 Bloque B Unidad de Congresos Centro Médico Nacional Siglo XXI, Av. Cuauhtémoc 330, Col. Doctores, México D.F. CP 06020, México
| |
Collapse
|
44
|
Lycopene modulates THP1 and Caco2 cells inflammatory state through transcriptional and nontranscriptional processes. Mediators Inflamm 2014; 2014:507272. [PMID: 24891766 PMCID: PMC4033542 DOI: 10.1155/2014/507272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 01/06/2023] Open
Abstract
We revisited the action of a carotenoid, the lycopene, on the expression of proinflammatory genes, reactive oxygen species (ROS) production, and metalloprotease (MMP9) activity. THP1 and Caco2 cell lines were used as in vitro models for the two main cell types found in intestine tissue, that is, monocytes and epithelial cells. Proinflammatory condition was induced using either phorbol ester acetate (PMA), lipopolysaccharide (LPS) or tumor necrosis factor (TNF). In THP1 cells, short term pretreatment (2 h) with a low concentration (2 μM) of lycopene reinforce proinflammatory gene expression. The extent of the effect of lycopene is dependent on the proinflammtory stimulus (PMA, LPS or TNF) used. Lycopene enhanced MMP9 secretion via a c-AMP-dependent process, and reduced ROS production at higher concentrations than 2 μM. Cell culture media, conditioned by PMA-treated monocytes and then transferred on CaCo-2 epithelial cells, induced a proinflammatory state in these cells. The extent of this inflammatory effect was reduced when cells has been pretreated (12 h) with lycopene. At low concentration (2 μM or less), lycopene appeared to promote an inflammatory state not correlated with ROS modulation. At higher concentration (5 μM–20 μM), an anti-inflammatory effect takes place as a decrease of ROS production was detected. So, both concentration and time have to be considered in order to define the exact issue of the effect of carotenoids present in meals.
Collapse
|
45
|
Zhou YX, Ni Y, Liu YB, Liu X. Histone preconditioning protects against obstructive jaundice-induced liver injury in rats. Exp Ther Med 2014; 8:15-20. [PMID: 24944590 PMCID: PMC4061184 DOI: 10.3892/etm.2014.1697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/25/2014] [Indexed: 12/26/2022] Open
Abstract
A major consequence of obstructive jaundice (OJ) in clinical practice is the development of severe liver injury, and at present, no effective treatments have been developed to protect against it. Preconditioning with damage-associated molecular pattern (DAMP) molecules has been demonstrated to protect multiple organs from injury, and histones have been recently identified as DAMP molecules. The aim of the present study was to investigate the protective effect of histone preconditioning against OJ-induced liver injury in rats and the involvement of Toll-like receptors. Rats were administered histone proteins (200 μg/kg; 1 ml) or physiological saline (1 ml) intraperitoneally 24 h prior to being subjected to bile duct ligation (BDL). The serum levels of liver enzymes and bilirubin, as well as the histopathology were analyzed. The mRNA expression of interleukin-6 (IL-6) in the liver tissue was analyzed using quantitative polymerase chain reaction. BDL in the control group caused severe OJ-induced liver injury, as indicated by the significantly elevated levels of liver enzymes and mRNA levels of IL-6, and confirmed by histopathological alterations. However, histone preconditioning significantly ameliorated the OJ-induced liver injury caused by BDL, as shown by an improvement in the levels of liver enzymes, a suppression of IL-6 production, as well as histopathological alterations. Therefore, these results suggested that histone preconditioning is able to protect against OJ-induced liver injury in rats.
Collapse
Affiliation(s)
- You-Xing Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Yong Ni
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Yi-Bing Liu
- Department of Hepatobiliary Surgery, Longgang District Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, P.R. China
| | - Xiaohong Liu
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Wuxi, Jiangsu 214151, P.R. China
| |
Collapse
|
46
|
Xu H, Sun H, Chen SH, Zhang YM, Piao YL, Gao Y. Effects of acupuncture at Baihui (DU20) and Zusanli (ST36) on the expression of heat shock protein 70 and tumor necrosis factor α in the peripheral serum of cerebral ischemia-reperfusion-injured rats. Chin J Integr Med 2014; 20:369-74. [PMID: 24610411 DOI: 10.1007/s11655-014-1800-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To explore the effects of acupuncture on the peripheral serum expression of heat shock protein 70 (HSP70) and tumor necrosis factor α (TNF-α) in rats with cerebral ischemia-reperfusion injury (CIRI). METHODS In total, 152 Sprague-Dawley (SD) rats were randomly divided into an operated group and a non-operated group according to a random digits table. The operated group included a sham-operated group, a model group and an acupuncture group, whereas the non-operated group consisted of a normal group. Except for the normal group, each group was further divided into 12, 24, 48, 72, 96, and 144 h time points according to different reperfusion times. Eight rats were assigned in each operated group and in the normal group. The rat model of CIRI was established by the thread occlusion method in the model and acupuncture groups. The acupuncture group was treated with electroacupuncture at Baihui (DU20) and Zusanli (ST36) for the required time after successful operation. Blood was sampled to detect the HSP70 and TNF-α content by enzyme linked immunosorbent assay. RESULTS The expression of HSP70 protein in the peripheral serum of the experimental groups was higher than that in the normal control group. The peak time in both the model and the sham-operated groups was 12 h, and the peak time in the acupuncture group was 24 h. The expression in the acupuncture group declined to a lower level at 72 h and was lower than that in the model and sham-operated groups (P<0.05). The peak time for the expression of TNF-α protein in the peripheral serum of both the model and the acupuncture groups was 24 h, but the expression in the acupuncture group was lower than the model group. Additionally, the expression of TNF-α in all experimental groups was higher than the normal group (P<0.05). CONCLUSIONS Acupuncture at DU20 and ST36 in rats attenuated CIRI, which was associated with a reduction in the expression of HSP70 and TNF-α. These results provide clues to acupuncture's neuroprotective properties. Acupuncture at DU20 and ST36 in rats after CIRI can adjust the expression of HSP70 and TNF-α in the peripheral serum, which might be one of the mechanisms of acupuncture's attenuation of CIRI.
Collapse
Affiliation(s)
- Hong Xu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | | | | | | | | |
Collapse
|
47
|
Garcia-Bonilla L, Benakis C, Moore J, Iadecola C, Anrather J. Immune mechanisms in cerebral ischemic tolerance. Front Neurosci 2014; 8:44. [PMID: 24624056 PMCID: PMC3940969 DOI: 10.3389/fnins.2014.00044] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
Stressor-induced tolerance is a central mechanism in the response of bacteria, plants, and animals to potentially harmful environmental challenges. This response is characterized by immediate changes in cellular metabolism and by the delayed transcriptional activation or inhibition of genetic programs that are not generally stressor specific (cross-tolerance). These programs are aimed at countering the deleterious effects of the stressor. While induction of this response (preconditioning) can be established at the cellular level, activation of systemic networks is essential for the protection to occur throughout the organs of the body. This is best signified by the phenomenon of remote ischemic preconditioning, whereby application of ischemic stress to one tissue or organ induces ischemic tolerance (IT) in remote organs through humoral, cellular and neural signaling. The immune system is an essential component in cerebral IT acting simultaneously both as mediator and target. This dichotomy is based on the fact that activation of inflammatory pathways is necessary to establish IT and that IT can be, in part, attributed to a subdued immune activation after index ischemia. Here we describe the components of the immune system required for induction of IT and review the mechanisms by which a reprogrammed immune response contributes to the neuroprotection observed after preconditioning. Learning how local and systemic immune factors participate in endogenous neuroprotection could lead to the development of new stroke therapies.
Collapse
Affiliation(s)
- Lidia Garcia-Bonilla
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Corinne Benakis
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Jamie Moore
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Costantino Iadecola
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Josef Anrather
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
48
|
Heat shock protein 72 expressing stress in sepsis: unbridgeable gap between animal and human studies--a hypothetical "comparative" study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:101023. [PMID: 24524071 PMCID: PMC3912989 DOI: 10.1155/2014/101023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/05/2013] [Indexed: 01/30/2023]
Abstract
Heat shock protein 72 (Hsp72) exhibits a protective role during times of increased risk of pathogenic challenge and/or tissue damage. The aim of the study was to ascertain Hsp72 protective effect differences between animal and human studies in sepsis using a hypothetical “comparative study” model.
Forty-one in vivo (56.1%), in vitro (17.1%), or combined (26.8%) animal and 14 in vivo (2) or in vitro (12) human Hsp72 studies (P < 0.0001) were enrolled in the analysis. Of the 14 human studies, 50% showed a protective Hsp72 effect compared to 95.8% protection shown in septic animal studies (P < 0.0001). Only human studies reported Hsp72-associated mortality (21.4%) or infection (7.1%) or reported results (14.3%) to be nonprotective (P < 0.001). In animal models, any Hsp72 induction method tried increased intracellular Hsp72 (100%), compared to 57.1% of human studies (P < 0.02), reduced proinflammatory cytokines (28/29), and enhanced survival (18/18). Animal studies show a clear Hsp72 protective effect in sepsis. Human studies are inconclusive, showing either protection or a possible relation to mortality and infections. This might be due to the fact that using evermore purified target cell populations in animal models, a lot of clinical information regarding the net response that occurs in sepsis is missing.
Collapse
|
49
|
Abstract
The heat shock response is a highly conserved primitive response that is essential for survival against a wide range of stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms raise their core body temperature and temporarily subject themselves to thermal stress in the face of infections. The present review documents studies showing the potential overlap between the febrile response and the heat shock response and how both activate the same common transcriptional programme (although with different magnitudes) including the stress-activated transcription factor, heat shock factor-1, to modify host defences in the context of infection, inflammation and injury. The review focuses primarily on how hyperthermia within the febrile range that often accompanies infections and inflammation acts as a biological response modifier and modifies innate immune responses. The characteristic 2-3 °C increase in core body temperature during fever activates and utilises elements of the heat shock response pathway to modify cytokine and chemokine gene expression, cellular signalling and immune cell mobilisation to sites of inflammation, infection and injury. Interestingly, typical proinflammatory agonists such as Toll-like receptor agonists modify the heat shock-induced transcriptional programme and expression of HSP genes following co-exposure to febrile range hyperthermia or heat shock, suggesting a complex reciprocal regulation between the inflammatory pathway and the heat shock response pathway.
Collapse
Affiliation(s)
- Ishwar S Singh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
50
|
Mosenson JA, Eby JM, Hernandez C, Le Poole IC. A central role for inducible heat-shock protein 70 in autoimmune vitiligo. Exp Dermatol 2013; 22:566-9. [PMID: 23786523 DOI: 10.1111/exd.12183] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 12/14/2022]
Abstract
Inducible heat-shock protein 70 (HSP70i) is a protein regulated by stress that protects cells from undergoing apoptosis. Such proteins are marvellously well conserved throughout evolution, which has placed them in the spotlight for helping to understand the intriguing relationship between infection and immunity. In the presence of stress proteins, dendritic cells (DCs) will sense this alarm signal and respond by recruiting immune cells of different plumage to fit the occasion. In times of stress, melanocytes will secrete antigen-bound HSP70i to act as an alarm signal in activating DCs that comes equipped with an address of origin to drive the autoimmune response in vitiligo. Here we pose that if the autoimmune response is funnelled through HSP70i, then blocking the stress protein from activating DCs can lend new treatment opportunities for vitiligo.
Collapse
Affiliation(s)
- Jeffrey A Mosenson
- Department of Pathology, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | | | | | | |
Collapse
|