1
|
Padalhin A, Abueva C, Ryu HS, Yoo SH, Seo HH, Park SY, Chung PS, Woo SH. Impact of Thermo-Responsive N-Acetylcysteine Hydrogel on Dermal Wound Healing and Oral Ulcer Regeneration. Int J Mol Sci 2024; 25:4835. [PMID: 38732054 PMCID: PMC11084650 DOI: 10.3390/ijms25094835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This study investigates the efficacy of a thermo-responsive N-acetylcysteine (NAC) hydrogel on wound healing and oral ulcer recovery. Formulated by combining NAC with methylcellulose, the hydrogel's properties were assessed for temperature-induced gelation and cell viability using human fibroblast cells. In vivo experiments on Sprague Dawley rats compared the hydrogel's effects against saline, NAC solution, and a commercial NAC product. Results show that a 5% NAC and 1% methylcellulose solution exhibited optimal outcomes. While modest improvements in wound healing were observed, significant enhancements were noted in oral ulcer recovery, with histological analyses indicating fully regenerated mucosal tissue. The study concludes that modifying viscosity enhances NAC retention, facilitating tissue regeneration. These findings support previous research on the beneficial effects of antioxidant application on damaged tissues, suggesting the potential of NAC hydrogels in improving wound care and oral ulcer treatment.
Collapse
Affiliation(s)
- Andrew Padalhin
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
| | - Celine Abueva
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyun Seok Ryu
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
| | - Seung Hyeon Yoo
- School of Medical Lasers, Dankook University, Cheonan 31116, Republic of Korea; (S.H.Y.); (H.H.S.)
| | - Hwee Hyon Seo
- School of Medical Lasers, Dankook University, Cheonan 31116, Republic of Korea; (S.H.Y.); (H.H.S.)
| | - So Young Park
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Seung Hoon Woo
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
2
|
Saha D, Paul S, Gaharwar U, Priya A, Neog A, Singh A, Bk B. Cdk5-Mediated Brain Unfolded Protein Response Upregulation Associated with Cognitive Impairments in Type 2 Diabetes and Ameliorative Action of NAC. ACS Chem Neurosci 2023; 14:2761-2774. [PMID: 37468304 DOI: 10.1021/acschemneuro.3c00341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The role of cyclin-dependent kinase 5 (Cdk5) in the normal functioning of the central nervous system and synaptic plasticity is well established. However, dysregulated kinase activity can have a significant impact on neurodegeneration and cognitive impairment. Cdk5 hyperactivation is linked to diabetes-associated neurodegeneration, but the underlying mechanism is not fully understood. Our study reveals that oxidative stress can lead to Cdk5 hyperactivity, which in turn is linked to neurodegeneration and cognitive impairment. Specifically, our experiments with N2A cells overexpressing Cdk5 and its activators p35 and p25 show ER stress, resulting in activation of the unfolded protein response (UPR) pathway. We identified Cdk5 as the epicenter of this regulatory process, leading to the activation of the CDK5-IRE1-XBP1 arm of UPR. Moreover, our study demonstrated that Cdk5 hyperactivation can lead to ER stress and activation of the UPR pathway, which may contribute to cognitive impairments associated with diabetes. Our findings also suggest that antioxidants such as NAC and GSH can decrease deregulated Cdk5 kinase activity and rescue cells from UPR-mediated ER stress. The accumulation of phosphorylated Tau protein in AD brain protein has been widely described earlier. Notably, we observed that oral treatment with NAC decreased Cdk5 kinase activity in the hippocampus, attenuated high levels of phospho-tau (ser396), and ameliorated memory and learning impairments in a type 2 diabetic (T2D) mouse model. Additionally, the high-fat-induced T2D model exhibits elevated phospho-tau levels, which are rescued by the NAC treatment. Taken together, these results suggest that targeting Cdk5 may be a promising therapeutic strategy for treating diabetes-associated cognitive impairments.
Collapse
Affiliation(s)
- Debarpita Saha
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Sangita Paul
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utkarsh Gaharwar
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Anshu Priya
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anindita Neog
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Archana Singh
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Binukumar Bk
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Principal Scientist, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi 110025, India
| |
Collapse
|
3
|
López-Lluch G. Coenzyme Q-related compounds to maintain healthy mitochondria during aging. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:277-308. [PMID: 37437981 DOI: 10.1016/bs.apcsb.2023.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mitochondrial dysfunction is one of the main factors that affects aging progression and many age-related diseases. Accumulation of dysfunctional mitochondria can be driven by unbalanced mito/autophagy or by decrease in mitochondrial biosynthesis and turnover. Coenzyme Q is an essential component of the mitochondrial electron transport chain and a key factor in the protection of membrane and mitochondrial DNA against oxidation. Coenzyme Q levels decay during aging and this can be considered an accelerating factor in mitochondrial dysfunction and aging progression. Supplementation with coenzyme Q is successful for some tissues and organs but not for others. For this reason, the role of coenzyme Q in systemic aging is a complex picture that needs different strategies depending on the organ considered the main objective to be addressed. In this chapter we focus on the different effects of coenzyme Q and related compounds and the probable strategies to induce endogenous synthesis to maintain healthy aging.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
4
|
Brücksken KA, Loreto Palacio P, Hanschmann EM. Thiol Modifications in the Extracellular Space-Key Proteins in Inflammation and Viral Infection. Front Immunol 2022; 13:932525. [PMID: 35833136 PMCID: PMC9271835 DOI: 10.3389/fimmu.2022.932525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Posttranslational modifications (PTMs) allow to control molecular and cellular functions in response to specific signals and changes in the microenvironment of cells. They regulate structure, localization, stability, and function of proteins in a spatial and temporal manner. Among them, specific thiol modifications of cysteine (Cys) residues facilitate rapid signal transduction. In fact, Cys is unique because it contains the highly reactive thiol group that can undergo different reversible and irreversible modifications. Upon inflammation and changes in the cellular microenvironment, many extracellular soluble and membrane proteins undergo thiol modifications, particularly dithiol-disulfide exchange, S-glutathionylation, and S-nitrosylation. Among others, these thiol switches are essential for inflammatory signaling, regulation of gene expression, cytokine release, immunoglobulin function and isoform variation, and antigen presentation. Interestingly, also the redox state of bacterial and viral proteins depends on host cell-mediated redox reactions that are critical for invasion and infection. Here, we highlight mechanistic thiol switches in inflammatory pathways and infections including cholera, diphtheria, hepatitis, human immunodeficiency virus (HIV), influenza, and coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
| | | | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
5
|
Malik P, Kumar Mukherjee T. Immunological methods for the determination of AGE-RAGE axis generated glutathionylated and carbonylated proteins as oxidative stress markers. Methods 2022; 203:354-363. [DOI: 10.1016/j.ymeth.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 11/15/2022] Open
|
6
|
Hsieh SL, Wang JC, Huang YS, Wu CC. Ethanol extract of Gynura bicolour reduces atherosclerosis risk by enhancing antioxidant capacity and reducing adhesion molecule levels. PHARMACEUTICAL BIOLOGY 2021; 59:504-512. [PMID: 33905670 PMCID: PMC8081304 DOI: 10.1080/13880209.2021.1912116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
CONTEXT Gynura bicolour (Roxb. and Willd.) DC (Asteraceae) leaf is a common vegetable. Ethanol extracts of fresh G. bicolour leaves (GBEE) have several physiological effects, but studies on atherosclerosis are limited. OBJECTIVE We investigated the oxidant scavenging ability and vascular adhesion molecule expression of these extracts. MATERIALS AND METHODS The antioxidant effects of 0.05-0.4 mg/mL GBEE were analyzed in vitro. Intracellular antioxidant capacity and adhesion molecule levels were detected in EA.hy926 cells pre-treated with 10-100 μg/mL GBEE for 8 h, then TNF-α for 3 h. The antioxidant capacity of red blood cells and the adhesion molecule levels in the thoracic aorta were detected in high-fat diet (HFD)-fed Sprague-Dawley rats treated with GBEE for 12 weeks. RESULTS The in vitro EC50 values of GBEE based on its DPPH radical-scavenging ability, reducing power, and ferrous ion-chelating ability were 0.20, 3.21 and 0.49 mg/mL, respectively. In TNF-α-treated EA.hy926 cells, the thiobarbituric acid-reactive substance levels were decreased after 10, 50, or 100 μg/mL GBEE treatments (IC50: 19.1 mg/mL). When HFD-fed rats were co-treated with GBEE, the GBEE-H group exhibited 25% higher glutathione levels than the HFD group (p < 0.05). E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion protein-1 levels were decreased in TNF-α-treated EA.hy926 cells after GBEE treatment (by approximately 11-73%; p < 0.05), and the above three adhesion molecules levels were decreased in HFD-fed rats with combined GBEE treatment (by approximately 30-77%; p < 0.05). CONCLUSIONS GBEE can protect the vascular endothelium by reducing adhesion molecule expression and regulating antioxidants. It may have the potential to prevent atherosclerosis.
Collapse
Affiliation(s)
- Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Jinn-Chyi Wang
- Department of Food Science and Technology, Tajen University, Pingtung, Taiwan
| | - Yun-Shan Huang
- Department of Food Science and Technology, Tajen University, Pingtung, Taiwan
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
- CONTACT Chih-Chung Wu Department of Food and Nutrition, Providence University, No. 200, Sec. 7, Taiwan Boulevard, Shalu District, Taichung43301, Taiwan
| |
Collapse
|
7
|
Parodi-Rullán RM, Javadov S, Fossati S. Dissecting the Crosstalk between Endothelial Mitochondrial Damage, Vascular Inflammation, and Neurodegeneration in Cerebral Amyloid Angiopathy and Alzheimer's Disease. Cells 2021; 10:cells10112903. [PMID: 34831125 PMCID: PMC8616424 DOI: 10.3390/cells10112903] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent cause of dementia and is pathologically characterized by the presence of parenchymal senile plaques composed of amyloid β (Aβ) and intraneuronal neurofibrillary tangles of hyperphosphorylated tau protein. The accumulation of Aβ also occurs within the cerebral vasculature in over 80% of AD patients and in non-demented individuals, a condition called cerebral amyloid angiopathy (CAA). The development of CAA is associated with neurovascular dysfunction, blood–brain barrier (BBB) leakage, and persistent vascular- and neuro-inflammation, eventually leading to neurodegeneration. Although pathologically AD and CAA are well characterized diseases, the chronology of molecular changes that lead to their development is still unclear. Substantial evidence demonstrates defects in mitochondrial function in various cells of the neurovascular unit as well as in the brain parenchyma during the early stages of AD and CAA. Dysfunctional mitochondria release danger-associated molecular patterns (DAMPs) that activate a wide range of inflammatory pathways. In this review, we gather evidence to postulate a crucial role of the mitochondria, specifically of cerebral endothelial cells, as sensors and initiators of Aβ-induced vascular inflammation. The activated vasculature recruits circulating immune cells into the brain parenchyma, leading to the development of neuroinflammation and neurodegeneration in AD and CAA.
Collapse
Affiliation(s)
- Rebecca M. Parodi-Rullán
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00921, USA;
| | - Silvia Fossati
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Correspondence: ; Tel.: +1-215-707-6046
| |
Collapse
|
8
|
Cvetko F, Caldwell ST, Higgins M, Suzuki T, Yamamoto M, Prag HA, Hartley RC, Dinkova-Kostova AT, Murphy MP. Nrf2 is activated by disruption of mitochondrial thiol homeostasis but not by enhanced mitochondrial superoxide production. J Biol Chem 2021; 296:100169. [PMID: 33298526 PMCID: PMC7948991 DOI: 10.1074/jbc.ra120.016551] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of genes involved in antioxidant defenses to modulate fundamental cellular processes such as mitochondrial function and GSH metabolism. Previous reports proposed that mitochondrial reactive oxygen species production and disruption of the GSH pool activate the Nrf2 pathway, suggesting that Nrf2 senses mitochondrial redox signals and/or oxidative damage and signals to the nucleus to respond appropriately. However, until now, it has not been possible to disentangle the overlapping effects of mitochondrial superoxide/hydrogen peroxide production as a redox signal from changes to mitochondrial thiol homeostasis on Nrf2. Recently, we developed mitochondria-targeted reagents that can independently induce mitochondrial superoxide and hydrogen peroxide production mitoParaquat (MitoPQ) or selectively disrupt mitochondrial thiol homeostasis MitoChlorodinitrobenzoic acid (MitoCDNB). Using these reagents, here we have determined how enhanced generation of mitochondrial superoxide and hydrogen peroxide or disruption of mitochondrial thiol homeostasis affects activation of the Nrf2 system in cells, which was assessed by the Nrf2 protein level, nuclear translocation, and expression of its target genes. We found that selective disruption of the mitochondrial GSH pool and inhibition of its thioredoxin system by MitoCDNB led to Nrf2 activation, whereas using MitoPQ to enhance the production of mitochondrial superoxide and hydrogen peroxide alone did not. We further showed that Nrf2 activation by MitoCDNB requires cysteine sensors of Kelch-like ECH-associated protein 1 (Keap1). These findings provide important information on how disruption to mitochondrial redox homeostasis is sensed in the cytoplasm and signaled to the nucleus.
Collapse
Affiliation(s)
- Filip Cvetko
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Maureen Higgins
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, Scotland, UK
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Albena T Dinkova-Kostova
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, Scotland, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
|
10
|
Baek EJ, Kim H, Basova LA, Rosander A, Kesby JP, Semenova S, Marcondes MCG. Sex differences and Tat expression affect dopaminergic receptor expression and response to antioxidant treatment in methamphetamine-sensitized HIV Tat transgenic mice. Neuropharmacology 2020; 178:108245. [PMID: 32783894 DOI: 10.1016/j.neuropharm.2020.108245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Methamphetamine (Meth) abuse is a common HIV comorbidity. Males and females differ in their patterns of Meth use, associated behaviors, and responses, but the underlying mechanisms and impact of HIV infection are unclear. Transgenic mice with inducible HIV-1 Tat protein in the brain (iTat) replicate many neurological aspects of HIV infection in humans. We previously showed that Tat induction enhances the Meth sensitization response associated with perturbation of the dopaminergic system, in male iTat mice. Here, we used the iTat mouse model to investigate sex differences in individual and interactive effects of Tat and Meth challenge on locomotor sensitization, brain expression of dopamine receptors (DRDs) and regulatory adenosine receptors (ADORAs). Because Meth administration increases the production of reactive oxygen species (ROS), we also determined whether the effects of Meth could be rescued by concomitant treatment with the ROS scavenger N-acetyl cysteine (NAC). After Meth sensitization and a 7-day abstinence period, groups of Tat+ and Tat-male and female mice were challenged with Meth in combination with NAC. We confirmed that Tat expression and Meth challenge suppressed DRD mRNA and protein in males and females' brains, and showed that females were particularly susceptible to the effects of Meth on D1-like and D2-like DRD subtypes and ADORAs. The expression of these markers differed strikingly between males and females, and between females in different phases of the estrous cycle, in a Tat -dependent manner. NAC attenuated Meth-induced locomotor sensitization and preserved DRD expression in all groups except for Tat + females. These data identify complex interactions between sex, Meth use, and HIV infection on addiction responses, with potential implications for the treatment of male and female Meth users in the context of HIV, especially those with cognitive disorders.
Collapse
Affiliation(s)
- Eun Ji Baek
- The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Hahoon Kim
- The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Liana A Basova
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA; The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA
| | - Ashley Rosander
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - James P Kesby
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia; Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Maria Cecilia Garibaldi Marcondes
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA; The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA.
| |
Collapse
|
11
|
Hussain Asim M, Nazir I, Jalil A, Matuszczak B, Bernkop-Schnürch A. Tetradeca-thiolated cyclodextrins: Highly mucoadhesive and in-situ gelling oligomers with prolonged mucosal adhesion. Int J Pharm 2020; 577:119040. [DOI: 10.1016/j.ijpharm.2020.119040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 12/16/2022]
|
12
|
Lermant A, Murdoch CE. Cysteine Glutathionylation Acts as a Redox Switch in Endothelial Cells. Antioxidants (Basel) 2019; 8:E315. [PMID: 31426416 PMCID: PMC6720164 DOI: 10.3390/antiox8080315] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Oxidative post-translational modifications (oxPTM) of receptors, enzymes, ion channels and transcription factors play an important role in cell signaling. oxPTMs are a key way in which oxidative stress can influence cell behavior during diverse pathological settings such as cardiovascular diseases (CVD), cancer, neurodegeneration and inflammatory response. In addition, changes in oxPTM are likely to be ways in which low level reactive oxygen and nitrogen species (RONS) may contribute to redox signaling, exerting changes in physiological responses including angiogenesis, cardiac remodeling and embryogenesis. Among oxPTM, S-glutathionylation of reactive cysteines emerges as an important regulator of vascular homeostasis by modulating endothelial cell (EC) responses to their local redox environment. This review summarizes the latest findings of S-glutathionylated proteins in major EC pathways, and the functional consequences on vascular pathophysiology. This review highlights the diversity of molecules affected by S-glutathionylation, and the complex consequences on EC function, thereby demonstrating an intricate dual role of RONS-induced S-glutathionylation in maintaining vascular homeostasis and participating in various pathological processes.
Collapse
Affiliation(s)
- Agathe Lermant
- Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Colin E Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK.
| |
Collapse
|
13
|
N-acetyl-cysteine blunts 6-hydroxydopamine- and l-buthionine-sulfoximine-induced apoptosis in human mesenchymal stromal cells. Mol Biol Rep 2019; 46:4423-4435. [DOI: 10.1007/s11033-019-04897-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
|
14
|
Moghadam A, Ijaz M, Asim MH, Mahmood A, Jelkmann M, Matuszczak B, Bernkop-Schnürch A. Non-ionic thiolated cyclodextrins - the next generation. Int J Nanomedicine 2018; 13:4003-4013. [PMID: 30022823 PMCID: PMC6045911 DOI: 10.2147/ijn.s153226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction The current study was aimed at developing a novel mucoadhesive thiolated cyclodextrin (CD) without ionizable groups and an intact ring backbone for drug delivery. Materials and methods Thiolated beta CD (β-CD) was prepared through bromine substitution of its hydroxyl groups followed by replacement to thiol groups using thiourea. The thiolated β-CD was characterized in vitro via dissolution studies, cytotoxicity studies, mucoadhesion studies on freshly excised porcine intestinal mucosa, and inclusion complex formation with miconazole nitrate. Results Thiolated β-CDs namely β-CD-SH600 and β-CD-SH1200 displayed 558.66 ± 78 and 1,163.45 ± 96 µmol thiol groups per gram of polymer, respectively. Stability constant (Kc) of 190 M-1 confirmed the inclusion complex formation of miconazole nitrate with β-CD-SH. Inclusion complexes of β-CD-SH600 and β-CD-SH1200 resulted in 157- and 257-fold increased solubility of miconazole nitrate, respectively. In addition, more than 80% of thiol groups were stable even after 6 hours at pH 5. Both β-CD-SH compounds showed at least 1.3-fold improved solubility in water. In contrast to cationic thiolated CDs of the first generation, both thiomers showed no significant cytotoxicity. The mucoadhesive properties of the new thiolated CDs were 39.73- and 46.37-fold improved, respectively. Conclusion These results indicate that β-CD-SH might provide a new favorable tool for delivery of poorly soluble drugs providing a prolonged residence time on mucosal surfaces.
Collapse
Affiliation(s)
- Ali Moghadam
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria,
| | - Muhammad Ijaz
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria, .,Department of Pharmacy, COMSATS Institute of Information and Technology, Lahore, Pakistan
| | - Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria, .,Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Arshad Mahmood
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria, .,Department of Pharmacy, COMSATS Institute of Information Technology Abbottabad, Pakistan
| | - Max Jelkmann
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria,
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria,
| |
Collapse
|
15
|
Cahuê F, Souza S, Dos Santos CFM, Machado V, Nascimento JHM, Barcellos L, Salerno VP. Short-term consumption of Ilex paraguariensis extracts protects isolated hearts from ischemia/reperfusion injury and contradicts exercise-mediated cardioprotection. Appl Physiol Nutr Metab 2017; 42:1149-1157. [PMID: 28683208 DOI: 10.1139/apnm-2017-0213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Perfusion of hearts with extracts of Ilex paraguariensis (IP/mate) appears to reduce ischemia/reperfusion (I/R) injury. To determine if oral consumption of IP/mate can provide similar cardioprotection, short-term consumption was investigated alone or in association with exercise in rats. Animals were grouped into control (C), IP/mate consumption (M), exercise (E), and exercise with mate (E+M). M and E+M groups consumed IP/mate (1 g·kg-1 body weight in 1 mL water) by gavage. E and E+M groups swam 7× per week for 30 min carrying an additional 5% of body weight. After 1 week, hearts were tested ex vivo to measure left ventricle developed pressure (LVDP), systolic and end diastolic pressure (LVSP/LVEDP), maximum velocity of contraction and relaxation (dP/dt+ and dP/dt-) during I/R and infarction size. In addition, cardiac tissue was analyzed for oxidative stress by lipid peroxidation and protein carbonyl levels along with activity of catalase and superoxide dismutase (SOD). LVDP was higher in hearts from M and E groups as well as decreased infarction sizes than others. At the end of reperfusion, dP/dt+ was increased in E and M and dP/dt- was higher in M. LVSP was higher in M and E compared with C. Protein carbonyl and thiobarbituric acid reactive substances levels were higher in M while SOD activity was increased in E. No differences were observed in other activities. The results suggest that short-term consumption of IP/mate has protective effects on heart I/R injury similar to exercise, but the combination of these interventions appears to contradict the beneficial adaptations from exercise.
Collapse
Affiliation(s)
- Fábio Cahuê
- a Laboratório de Bioquímica do Exercício e Motores Moleculares, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Simone Souza
- b Laboratório de Ergoespirometria e Cineantropometria, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Camilli Fernanda Martins Dos Santos
- a Laboratório de Bioquímica do Exercício e Motores Moleculares, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Victor Machado
- a Laboratório de Bioquímica do Exercício e Motores Moleculares, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - José H M Nascimento
- c Laboratório de Eletrofisiologia Cardíaca Antônio Paes de Carvalho - Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Luciane Barcellos
- b Laboratório de Ergoespirometria e Cineantropometria, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Verônica P Salerno
- a Laboratório de Bioquímica do Exercício e Motores Moleculares, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| |
Collapse
|
16
|
Plein T, Thiebes AL, Finocchiaro N, Hesselmann F, Schmitz-Rode T, Jockenhoevel S, Cornelissen CG. Towards a Biohybrid Lung Assist Device: N-Acetylcysteine Reduces Oxygen Toxicity and Changes Endothelial Cells' Morphology. Cell Mol Bioeng 2016; 10:153-161. [PMID: 31719857 DOI: 10.1007/s12195-016-0473-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/21/2016] [Indexed: 11/28/2022] Open
Abstract
The development of an endothelialized membrane oxygenator requires solution strategies combining the knowledge of oxygenators with endothelial cells' biology. Since it is well known that exposing cells towards pure oxygen causes oxidative stress, this aspect has to be taken into account in the development of a biohybrid oxygenator system. N-Acetylcysteine (NAC) is known for its antioxidant properties in cells. We tested its applicability for the development of an endothelialized oxygenator model. Cultivating human umbilical vein derived endothelial cells (HUVEC) up to 6 days with increasing concentrations of NAC from 1 to 30 mM revealed NAC toxicity at concentrations from 20 mM. Cell density clearly decreased after radical oxygen species exposure in non-NAC pretreated cells compared to 20 mM NAC precultured HUVEC after 3 and 6 days. Also the survival rate after ROS treatment could be restored by incubation with NAC from 15 to 25 mM for all time points. NAC treated cells changed their morphology from typical endothelial cells' cobblestone pattern to a fusiform, elongated configuration. Transformed cells were still positive for typical endothelial cell markers. Our present results show the potential of NAC for the protection of an endothelial cell layer in an endothelialized membrane oxygenator due to its antioxidative properties. Moreover, NAC induces a morphological change in HUVEC similar to dynamic cultivation procedures.
Collapse
Affiliation(s)
- Tobias Plein
- 1Department of Biohybrid & Medical Textiles (BioTex) at AME-Helmholtz Institute for Biomedical Engineering, ITA-Institut für Textiltechnik, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.,4Aachen-Maastricht-Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Anja Lena Thiebes
- 1Department of Biohybrid & Medical Textiles (BioTex) at AME-Helmholtz Institute for Biomedical Engineering, ITA-Institut für Textiltechnik, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.,4Aachen-Maastricht-Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Nicole Finocchiaro
- 1Department of Biohybrid & Medical Textiles (BioTex) at AME-Helmholtz Institute for Biomedical Engineering, ITA-Institut für Textiltechnik, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.,4Aachen-Maastricht-Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Felix Hesselmann
- 2Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Thomas Schmitz-Rode
- 1Department of Biohybrid & Medical Textiles (BioTex) at AME-Helmholtz Institute for Biomedical Engineering, ITA-Institut für Textiltechnik, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.,2Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.,4Aachen-Maastricht-Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Stefan Jockenhoevel
- 1Department of Biohybrid & Medical Textiles (BioTex) at AME-Helmholtz Institute for Biomedical Engineering, ITA-Institut für Textiltechnik, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.,4Aachen-Maastricht-Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Christian G Cornelissen
- 1Department of Biohybrid & Medical Textiles (BioTex) at AME-Helmholtz Institute for Biomedical Engineering, ITA-Institut für Textiltechnik, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.,3Department for Internal Medicine - Section for Pneumology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.,4Aachen-Maastricht-Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
17
|
Sakellariou GK, Pearson T, Lightfoot AP, Nye GA, Wells N, Giakoumaki II, Griffiths RD, McArdle A, Jackson MJ. Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle. FASEB J 2016; 30:3771-3785. [PMID: 27550965 PMCID: PMC5067250 DOI: 10.1096/fj.201600450r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022]
Abstract
Age-related skeletal muscle dysfunction is the underlying cause of morbidity that affects up to half the population aged 80 and over. Considerable evidence indicates that oxidative damage and mitochondrial dysfunction contribute to the sarcopenic phenotype that occurs with aging. To examine this, we administered the mitochondria-targeted antioxidant mitoquinone mesylate {[10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenylphosphonium; 100 μM} to wild-type C57BL/6 mice for 15 wk (from 24 to 28 mo of age) and investigated the effects on age-related loss of muscle mass and function, changes in redox homeostasis, and mitochondrial organelle integrity and function. We found that mitoquinone mesylate treatment failed to prevent age-dependent loss of skeletal muscle mass associated with myofiber atrophy or alter a variety of in situ and ex vivo muscle function analyses, including maximum isometric tetanic force, decline in force after a tetanic fatiguing protocol, and single-fiber-specific force. We also found evidence that long-term mitoquinone mesylate administration did not reduce mitochondrial reactive oxygen species or induce significant changes in muscle redox homeostasis, as assessed by changes in 4-hydroxynonenal protein adducts, protein carbonyl content, protein nitration, and DNA damage determined by the content of 8-hydroxydeoxyguanosine. Mitochondrial membrane potential, abundance, and respiration assessed in permeabilized myofibers were not significantly altered in response to mitoquinone mesylate treatment. Collectively, these findings demonstrate that long-term mitochondria-targeted mitoquinone mesylate administration failed to attenuate age-related oxidative damage in skeletal muscle of old mice or provide any protective effect in the context of muscle aging.—Sakellariou, G. K., Pearson, T., Lightfoot, A. P., Nye, G. A., Wells, N., Giakoumaki, I. I., Griffiths, R. D., McArdle, A., Jackson, M. J. Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle.
Collapse
Affiliation(s)
- Giorgos K Sakellariou
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Timothy Pearson
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Adam P Lightfoot
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Gareth A Nye
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Nicola Wells
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Ifigeneia I Giakoumaki
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Richard D Griffiths
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Anne McArdle
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Malcolm J Jackson
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
A reactivity-based probe of the intracellular labile ferrous iron pool. Nat Chem Biol 2016; 12:680-5. [PMID: 27376690 PMCID: PMC4990480 DOI: 10.1038/nchembio.2116] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/12/2016] [Indexed: 12/14/2022]
Abstract
Improved methods for studying intracellular reactive iron(II) are of significant interest for studies of iron metabolism and disease relevant changes in iron homeostasis. Here we describe a highly-selective reactivity-based probe in which Fenton-type reaction with intracellular labile iron(II) leads to unmasking of the aminonucleoside puromycin. Puromycin leaves a permanent and dose-dependent mark on treated cells that can be detected with high sensitivity and precision using the high-content, plate-based immunofluorescence assay described. Using this new probe and screening approach, we detected alteration of cellular labile iron(II) in response extracellular iron conditioning, overexpression of iron storage and/or export proteins, and post-translational regulation of iron export. Finally, we utilized this new tool to demonstrate the presence of augmented labile iron(II) pools in cancer cells as compared to non-tumorigenic cells.
Collapse
|
19
|
Novel bioadhesive polymers as intra-articular agents: Chondroitin sulfate-cysteine conjugates. Eur J Pharm Biopharm 2016; 101:25-32. [DOI: 10.1016/j.ejpb.2016.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 11/17/2022]
|
20
|
Nie X, Lowe DW, Rollins LG, Bentzley J, Fraser JL, Martin R, Singh I, Jenkins D. Sex-specific effects of N-acetylcysteine in neonatal rats treated with hypothermia after severe hypoxia-ischemia. Neurosci Res 2016; 108:24-33. [PMID: 26851769 DOI: 10.1016/j.neures.2016.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/16/2015] [Accepted: 01/24/2016] [Indexed: 12/29/2022]
Abstract
Approximately half of moderate to severely hypoxic-ischemic (HI) newborns do not respond to hypothermia, the only proven neuroprotective treatment. N-acetylcysteine (NAC), an antioxidant and glutathione precursor, shows promise for neuroprotection in combination with hypothermia, mitigating post-HI neuroinflammation due to oxidative stress. As mechanisms of HI injury and cell death differ in males and females, sex differences must be considered in translational research of neuroprotection. We assessed the potential toxicity and efficacy of NAC in combination with hypothermia, in male and female neonatal rats after severe HI injury. NAC 50mg/kg/d administered 1h after initiation of hypothermia significantly decreased iNOS expression and caspase 3 activation in the injured hemisphere versus hypothermia alone. However, only females treated with hypothermia +NAC 50mg/kg showed improvement in short-term infarct volumes compared with saline treated animals. Hypothermia alone had no effect in this severe model. When NAC was continued for 6 weeks, significant improvement in long-term neuromotor outcomes over hypothermia treatment alone was observed, controlling for sex. Antioxidants may provide insufficient neuroprotection after HI for neonatal males in the short term, while long-term therapy may benefit both sexes.
Collapse
Affiliation(s)
- Xingju Nie
- Center for Biomedical Imaging, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Danielle W Lowe
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Laura Grace Rollins
- Department of Psychology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA 02125, United States.
| | - Jessica Bentzley
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Jamie L Fraser
- Medical Genetics Training Program, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2152, United States.
| | - Renee Martin
- Department of Biostatistics and Epidemiology, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Dorothea Jenkins
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| |
Collapse
|
21
|
He T, Quan T, Shao Y, Voorhees JJ, Fisher GJ. Oxidative exposure impairs TGF-β pathway via reduction of type II receptor and SMAD3 in human skin fibroblasts. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9623. [PMID: 24550076 PMCID: PMC4082581 DOI: 10.1007/s11357-014-9623-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/20/2014] [Indexed: 05/02/2023]
Abstract
Exposure to oxidants results in cellular alterations that are implicated in aging and age-associated diseases. Here, we report that brief, low-level oxidative exposure leads to long-term elevation of cellular reactive oxygen species (ROS) levels and oxidative damage in human skin fibroblasts. Elevated ROS impairs the transforming growth factor-β (TGF-β) pathway, through reduction of type II TGF-β receptor (TβRII) and SMAD3 protein levels. This impairment results in reduced expression of connective tissue growth factor (CTGF/CCN2) and type I collagen, which are regulated by TGF-β. Restoration of TβRII and SMAD3 together, but not separately, reinstates TGF-β signaling and increases CTGF/CCN2 and type I collagen levels. Treatment with the anti-oxidant N-acetylcysteine reduces ROS elevation and normalizes TGF-β signaling and target gene expression. These data reveal a novel linkage between limited oxidant exposure and altered cellular redox homeostasis that results in impairment of TGF-β signaling. This linkage provides new insights regarding the mechanism by which aberrant redox homeostasis is coupled to decline of collagen production, a hallmark of human skin aging.
Collapse
Affiliation(s)
- Tianyuan He
- Department of Dermatology, Medical School, University of Michigan, 1301 E Catherine, Rm 6447 Med Sci I, Ann Arbor, MI 48109-5609 USA
| | - Taihao Quan
- Department of Dermatology, Medical School, University of Michigan, 1301 E Catherine, Rm 6447 Med Sci I, Ann Arbor, MI 48109-5609 USA
| | - Yuan Shao
- Department of Dermatology, Medical School, University of Michigan, 1301 E Catherine, Rm 6447 Med Sci I, Ann Arbor, MI 48109-5609 USA
| | - John J. Voorhees
- Department of Dermatology, Medical School, University of Michigan, 1301 E Catherine, Rm 6447 Med Sci I, Ann Arbor, MI 48109-5609 USA
| | - Gary J. Fisher
- Department of Dermatology, Medical School, University of Michigan, 1301 E Catherine, Rm 6447 Med Sci I, Ann Arbor, MI 48109-5609 USA
| |
Collapse
|
22
|
Suh JH, Kanathezhath B, Shenvi S, Guo H, Zhou A, Tiwana A, Kuypers F, Ames BN, Walters MC. Thiol/redox metabolomic profiling implicates GSH dysregulation in early experimental graft versus host disease (GVHD). PLoS One 2014; 9:e88868. [PMID: 24558439 PMCID: PMC3928313 DOI: 10.1371/journal.pone.0088868] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a common complication of allogeneic bone marrow transplantation (BMT). Upregulation of inflammatory cytokines precedes the clinical presentation of GVHD and predicts its severity. In this report, thiol/redox metabolomics was used to identify metabolic perturbations associated with early preclinical (Day+4) and clinical (Day+10) stages of GVHD by comparing effects in Syngeneic (Syn; major histocompatibility complex- identical) and allogeneic transplant recipients (Allo BMT) in experimental models. While most metabolic changes were similar in both groups, plasma glutathione (GSH) was significantly decreased, and GSH disulfide (GSSG) was increased after allogeneic compared to syngeneic recipient and non-transplant controls. The early oxidation of the plasma GSH/GSSG redox couple was also observed irrespective of radiation conditioning treatment and was accompanied by significant rise in hepatic protein oxidative damage and ROS generation. Despite a significant rise in oxidative stress, compensatory increase in hepatic GSH synthesis was absent following Allo BMT. Early shifts in hepatic oxidative stress and plasma GSH loss preceded a statistically significant rise in TNF-α. To identify metabolomic biomarkers of hepatic GVHD injury, plasma metabolite concentrations analyzed at Day+10 were correlated with hepatic organ injury. GSSG (oxidized GSH) and β-alanine, were positively correlated, and plasma GSH cysteinylglycine, and branched chain amino acids were inversely correlated with hepatic injury. Although changes in plasma concentrations of cysteine, cystathionine (GSH precursors) and cysteinylglycine (a GSH catabolite) were not significant by univariate analysis, principal component analysis (PCA) indicated that accumulation of these metabolites after Allo BMT contributed significantly to early GVHD in contrast to Syn BMT. In conclusion, thiol/redox metabolomic profiling implicates that early dysregulation of host hepatic GSH metabolism and oxidative stress in sub-clinical GVHD before elevated TNF-α levels is associated with GVHD pathogenesis. Future studies will probe the mechanisms for these changes and examine the potential of antioxidant intervention strategies to modulate GVHD.
Collapse
Affiliation(s)
- Jung H. Suh
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail: (JHS); (MCW)
| | - Bindu Kanathezhath
- Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
- Division of Blood and Marrow Transplantation, Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
| | - Swapna Shenvi
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Hua Guo
- Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
- Department of Pathology, Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
| | - Alicia Zhou
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Anureet Tiwana
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Frans Kuypers
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Bruce N. Ames
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Mark C. Walters
- Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
- Division of Blood and Marrow Transplantation, Children’s Hospital and Research Center Oakland, Oakland, California, United States of America
- * E-mail: (JHS); (MCW)
| |
Collapse
|
23
|
Nakajima S, Kitamura M. Bidirectional regulation of NF-κB by reactive oxygen species: a role of unfolded protein response. Free Radic Biol Med 2013; 65:162-174. [PMID: 23792277 DOI: 10.1016/j.freeradbiomed.2013.06.020] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/15/2022]
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that plays a crucial role in coordinating innate and adaptive immunity, inflammation, and apoptotic cell death. NF-κB is activated by various inflammatory stimuli including peptide factors and infectious microbes. It is also known as a redox-sensitive transcription factor activated by reactive oxygen species (ROS). Over the past decades, various investigators focused on the role of ROS in the activation of NF-κB by cytokines and lipopolysaccharides. However, recent studies also suggested that ROS have the potential to repress NF-κB activity. Currently, it is not well addressed how ROS regulate activity of NF-κB in a bidirectional fashion. In this paper, we summarize evidence for positive and negative regulation of NF-κB by ROS, possible redox-sensitive targets for NF-κB signaling, and mechanisms underlying biphasic and bidirectional influences of ROS on NF-κB, especially focusing on a role of ROS-mediated induction of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Shotaro Nakajima
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Shimokato 1110, Chuo, Yamanashi 409-3898, Japan
| | - Masanori Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Shimokato 1110, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
24
|
Abstract
Based on mosaic theory, hypertension is a multifactorial disorder that develops because of genetic, environmental, anatomical, adaptive neural, endocrine, humoral, and hemodynamic factors. It has been recently proposed that oxidative stress may contribute to all of these factors and production of reactive oxygen species (ROS) play an important role in the development of hypertension. Previous studies focusing on the role of vascular NADPH oxidases provided strong support of this concept. Although mitochondria represent one of the most significant sources of cellular ROS generation, the regulation of mitochondrial ROS generation in the cardiovascular system and its pathophysiological role in hypertension are much less understood. In this review, the role of mitochondrial oxidative stress in the pathophysiology of hypertension and cross talk between angiotensin II signaling, pathways involved in mechanotransduction, NADPH oxidases, and mitochondria-derived ROS are considered. The possible benefits of therapeutic strategies that have the potential to attenuate mitochondrial oxidative stress for the prevention/treatment of hypertension are also discussed.
Collapse
Affiliation(s)
- Sergey I Dikalov
- Division of Clinical Pharmacology, Free Radicals in Medicine Core, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | | |
Collapse
|
25
|
Cunniff B, Benson K, Stumpff J, Newick K, Held P, Taatjes D, Joseph J, Kalyanaraman B, Heintz NH. Mitochondrial-targeted nitroxides disrupt mitochondrial architecture and inhibit expression of peroxiredoxin 3 and FOXM1 in malignant mesothelioma cells. J Cell Physiol 2013; 228:835-45. [PMID: 23018647 DOI: 10.1002/jcp.24232] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/18/2012] [Indexed: 01/06/2023]
Abstract
Malignant mesothelioma (MM) is an intractable tumor of the peritoneal and pleural cavities primarily linked to exposure to asbestos. Recently, we described an interplay between mitochondrial-derived oxidants and expression of FOXM1, a redox-responsive transcription factor that has emerged as a promising therapeutic target in solid malignancies. Here we have investigated the effects of nitroxides targeted to mitochondria via triphenylphosphonium (TPP) moieties on mitochondrial oxidant production, expression of FOXM1 and peroxiredoxin 3 (PRX3), and cell viability in MM cells in culture. Both Mito-carboxy-proxyl (MCP) and Mito-TEMPOL (MT) caused dose-dependent increases in mitochondrial oxidant production that was accompanied by inhibition of expression of FOXM1 and PRX3 and loss of cell viability. At equivalent concentrations TPP, CP, and TEMPOL had no effect on these endpoints. Live cell ratiometric imaging with a redox-responsive green fluorescent protein targeted to mitochondria (mito-roGFP) showed that MCP and MT, but not CP, TEMPOL, or TPP, rapidly induced mitochondrial fragmentation and swelling, morphological transitions that were associated with diminished ATP levels and increased production of mitochondrial oxidants. Mdivi-1, an inhibitor of mitochondrial fission, did not rescue mitochondria from fragmentation by MCP. Immunofluorescence microscopy experiments indicate a fraction of FOXM1 coexists in the cytoplasm with mitochondrial PRX3. Our results indicate that MCP and MT inhibit FOXM1 expression and MM tumor cell viability via perturbations in redox homeostasis caused by marked disruption of mitochondrial architecture, and suggest that both compounds, either alone or in combination with thiostrepton or other agents, may provide credible therapeutic options for the management of MM.
Collapse
Affiliation(s)
- Brian Cunniff
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Park JH, Seo KS, Tadi S, Ahn BH, Lee JU, Heo JY, Han J, Song MS, Kim SH, Yim YH, Choi HS, Shong M, Kweon G. An indole derivative protects against acetaminophen-induced liver injury by directly binding to N-acetyl-p-benzoquinone imine in mice. Antioxid Redox Signal 2013; 18:1713-22. [PMID: 23121402 PMCID: PMC3619205 DOI: 10.1089/ars.2012.4677] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AIMS Acetaminophen (APAP)-induced liver injury is mainly due to the excessive formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) through the formation of a reactive intermediate, N-acetyl-p-benzoquinone imine (NAPQI), in both humans and rodents. Here, we show that the indole-derived synthetic compound has a protective effect against APAP-induced liver injury in C57Bl/6 mice model. RESULTS NecroX-7 decreased tert-butylhydroperoxide (t-BHP)- and APAP-induced cell death and ROS/RNS formation in HepG2 human hepatocarcinoma and primary mouse hepatocytes. In mice, NecroX-7 decreased APAP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and 3-nitrotyrosine (3-NT) formation, and also protected mice from APAP-induced liver injury and lethality by binding directly to NAPQI. The binding of NecroX-7 to NAPQI did not require any of cofactors or proteins. NecroX-7 could only scavenge NAPQI when hepatocellular GSH levels were very low. INNOVATION NecroX-7 is an indole-derived potent antioxidant molecule, which can be bound to some types of radicals and especially NAPQI. It is well known that the NAPQI is a major intermediate of APAP, which causes necrosis of hepatocytes in rodents and humans. Thus, blocking NAPQI formation or eliminating NAPQI are novel strategies for the treatment or prevention of APAP-induced liver injury instead of GSH replenishment. CONCLUSION Our data suggest that the indole-derivative, NecroX-7, directly binds to NAPQI when hepatic GSH levels are very low and the NAPQI-NecroX-7 complex is secreted to the blood from the liver. NecroX-7 shows more preventive and similar therapeutic effects against APAP-induced liver injury when compared to the effect of N-acetylcysteine in C57Bl/6 mice.
Collapse
Affiliation(s)
- Ji-Hoon Park
- Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hill BG, Bhatnagar A. Protein S-glutathiolation: redox-sensitive regulation of protein function. J Mol Cell Cardiol 2011; 52:559-67. [PMID: 21784079 DOI: 10.1016/j.yjmcc.2011.07.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/05/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
Reversible protein S-glutathiolation has emerged as an important mechanism of post-translational modification. Under basal conditions several proteins remain adducted to glutathione, and physiological glutathiolation of proteins has been shown to regulate protein function. Enzymes that promote glutathiolation (e.g., glutathione-S-transferase-P) or those that remove glutathione from proteins (e.g., glutaredoxin) have been identified. Modification by glutathione has been shown to affect protein catalysis, ligand binding, oligomerization and protein-protein interactions. Conditions associated with oxidative or nitrosative stress, such as ischemia-reperfusion, hypertension and tachycardia increase protein glutathiolation via changes in the glutathione redox status (GSH/GSSG) or through the formation of sulfenic acid (SOH) or nitrosated (SNO) cysteine intermediates. These "activated" thiols promote reversible S-glutathiolation of key proteins involved in cell signaling, energy production, ion transport, and cell death. Hence, S-glutathiolation is ideally suited for integrating and mounting fine-tuned responses to changes in the redox state. S-glutathiolation also provides a temporary glutathione "cap" to protect protein thiols from irreversible oxidation and it could be an important mechanism of protein "encryption" to maintain proteins in a functionally silent state until they are needed during conditions of stress. Current evidence suggests that the glutathiolation-deglutathiolation cycle integrates and interacts with other post-translational mechanisms to regulate signal transduction, metabolism, inflammation, and apoptosis. This article is part of a Special Section entitled "Post-translational Modification."
Collapse
Affiliation(s)
- Bradford G Hill
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
28
|
Pan LL, Liu XH, Gong QH, Wu D, Zhu YZ. Hydrogen sulfide attenuated tumor necrosis factor-α-induced inflammatory signaling and dysfunction in vascular endothelial cells. PLoS One 2011; 6:e19766. [PMID: 21572963 PMCID: PMC3091882 DOI: 10.1371/journal.pone.0019766] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 04/04/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hydrogen sulfide (H(2)S), the third physiologically relevant gaseous molecule, is recognized increasingly as an anti-inflammatory mediator in various inflammatory conditions. Herein, we explored the effects and mechanisms of sodium hydrosulfide (NaHS, a H(2)S donor) on tumor necrosis factor (TNF)-α-induced human umbilical vein endothelial cells (HUVEC) dysfunction. METHODOLOGY AND PRINCIPAL FINDINGS Application of NaHS concentration-dependently suppressed TNF-α-induced mRNA and proteins expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), mRNA expression of P-selectin and E-selectin as well as U937 monocytes adhesion to HUVEC. Western blot analysis revealed that the expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1), was induced and coincident with the anti-inflammatory action of NaHS. Furthermore, TNF-α-induced NF-κB activation assessed by IκBα degradation and p65 phosphorylation and nuclear translocation and ROS production were diminished in cells subjected to treatment with NaHS. SIGNIFICANCE H(2)S can exert an anti-inflammatory effect in endothelial cells through a mechanism that involves the up-regulation of HO-1.
Collapse
Affiliation(s)
- Li-Long Pan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xin-Hua Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Qi-Hai Gong
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Dan Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi-Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Demianenko IA, Vasilieva TV, Domnina LV, Dugina VB, Egorov MV, Ivanova OY, Ilinskaya OP, Pletjushkina OY, Popova EN, Sakharov IY, Fedorov AV, Chernyak BV. Novel mitochondria-targeted antioxidants, "Skulachev-ion" derivatives, accelerate dermal wound healing in animals. BIOCHEMISTRY (MOSCOW) 2010; 75:274-80. [PMID: 20370605 DOI: 10.1134/s000629791003003x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is shown that the novel mitochondria-targeted antioxidant SkQ1, (10-(6'-plastoquinonyl) decyltriphenylphosphonium) stimulates healing of full-thickness dermal wounds in mice and rats. Treatment with nanomolar doses of SkQ1 in various formulations accelerated wound cleaning and suppressed neutrophil infiltration at the early (7 h) steps of inflammatory phase. SkQ1 stimulated formation of granulation tissue and increased the content of myofibroblasts in the beginning of regenerative phase of wound healing. Later this effect caused accumulation of collagen fibers. Local treatment with SkQ1 stimulated re-epithelization of the wound. Lifelong treatment of mice with SkQ1 supplemented with drinking water strongly stimulated skin wounds healing in old (28 months) animals. In an in vitro model of wound in human cell cultures, SkQ1 stimulated movement of epitheliocytes and fibroblasts into the "wound". Myofibroblast differentiation of subcutaneous fibroblasts was stimulated by SkQ1. It is suggested that SkQ1 stimulates wound healing by suppression of the negative effects of oxidative stress in the wound and also by induction of differentiation. Restoration of regenerative processes in old animals is consistent with the "rejuvenation" effects of SkQ1, which prevents some gerontological diseases.
Collapse
Affiliation(s)
- I A Demianenko
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang C, Liu F, Liu X, Chen D. Protective effect of N‐acetylcysteine against BDE‐209‐induced neurotoxicity in primary cultured neonatal rat hippocampal neurons in vitro. Int J Dev Neurosci 2010; 28:521-8. [DOI: 10.1016/j.ijdevneu.2010.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 05/04/2010] [Accepted: 05/15/2010] [Indexed: 12/01/2022] Open
Affiliation(s)
- Chunfang Zhang
- The Third Affiliated Hospital of Guangzhou Medical CollegeThe Medical Center for Critical Pregnant Women in GuangzhouDuobao Road, No. 63Guangzhou510150China
| | - Fuchun Liu
- The Third Affiliated Hospital of Guangzhou Medical CollegeThe Medical Center for Critical Pregnant Women in GuangzhouDuobao Road, No. 63Guangzhou510150China
| | - Xianbao Liu
- The Third Affiliated Hospital of Guangzhou Medical CollegeThe Medical Center for Critical Pregnant Women in GuangzhouDuobao Road, No. 63Guangzhou510150China
| | - Dunjin Chen
- The Third Affiliated Hospital of Guangzhou Medical CollegeThe Medical Center for Critical Pregnant Women in GuangzhouDuobao Road, No. 63Guangzhou510150China
| |
Collapse
|
31
|
Evaluation of the antioxidant properties of N-acetylcysteine in human platelets: prerequisite for bioconversion to glutathione for antioxidant and antiplatelet activity. J Cardiovasc Pharmacol 2010; 54:319-26. [PMID: 19668088 DOI: 10.1097/fjc.0b013e3181b6e77b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N-Acetylcysteine (NAC) is a frequently used "antioxidant" in vitro, but the concentrations applied rarely correlate with those encountered with oral dosing in vivo. Here, we investigated the in vitro antioxidant and antiplatelet properties of NAC at concentrations (10-100 microM) that are achievable in plasma with tolerable oral dosing. The impact of NAC pretreatment (2 hours) on aggregation of platelets from healthy volunteers in response to thrombin and adenosine diphosphate and on platelet-derived nitric oxide (NO) was examined. NAC was found to be a weak reducing agent and a poor antioxidant compared with glutathione (reduced form) (GSH). However, platelets treated with NAC showed enhanced antioxidant activity and depression of reactive oxygen species generation associated with increases in intraplatelet GSH levels. An approximately 2-fold increase in NO synthase-derived nitrite was observed with 10 microM NAC treatment, but the effect was not concentration dependent. Finally, NAC significantly reduced both thrombin-induced and adenosine diphosphate-induced platelet aggregation. NAC should be considered a weak antioxidant that requires prior conversion to GSH to convey antioxidant and antithrombotic benefit at therapeutically relevant concentrations. Our results suggest that NAC might be an effective antiplatelet agent in conditions where increased oxidative stress contributes to heightened risk of thrombosis but only if the intraplatelet machinery to convert it to GSH is functional.
Collapse
|
32
|
Abboud MM, Al-Awaida W. Synchrony of G6PD activity and RBC fragility under oxidative stress exerted at normal and G6PD deficiency. Clin Biochem 2010; 43:455-60. [DOI: 10.1016/j.clinbiochem.2009.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/30/2009] [Accepted: 11/13/2009] [Indexed: 01/22/2023]
|
33
|
López-Lluch G, Rodríguez-Aguilera JC, Santos-Ocaña C, Navas P. Is coenzyme Q a key factor in aging? Mech Ageing Dev 2010; 131:225-35. [PMID: 20193705 DOI: 10.1016/j.mad.2010.02.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 01/19/2010] [Accepted: 02/20/2010] [Indexed: 01/28/2023]
Abstract
Coenzyme Q (Q) is a key component for bioenergetics and antioxidant protection in the cell. During the last years, research on diseases linked to Q-deficiency has highlighted the essential role of this lipid in cell physiology. Q levels are also affected during aging and neurodegenerative diseases. Therefore, therapies based on dietary supplementation with Q must be considered in cases of Q deficiency such as in aging. However, the low bioavailability of dietary Q for muscle and brain obligates to design new mechanisms to increase the uptake of this compound in these tissues. In the present review we show a complete picture of the different functions of Q in cell physiology and their relationship to age and age-related diseases. Furthermore, we describe the problems associated with dietary Q uptake and the mechanisms currently used to increase its uptake or even its biosynthesis in cells. Strategies to increase Q levels in tissues are indicated.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide, CIBERER-Instituto de Salud Carlos III, Carretera de Utrera, Km 1, 41013 Sevilla, Spain
| | | | | | | |
Collapse
|
34
|
Alam K, Ghousunnissa S, Nair S, Valluri VL, Mukhopadhyay S. Glutathione-redox balance regulates c-rel-driven IL-12 production in macrophages: possible implications in antituberculosis immunotherapy. THE JOURNAL OF IMMUNOLOGY 2010; 184:2918-29. [PMID: 20164428 DOI: 10.4049/jimmunol.0900439] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glutathione-redox balance, expressed as the ratio of intracellular reduced glutathione (GSH) and oxidized glutathione, plays an important role in regulating cellular immune responses. In the current study, we demonstrate that alteration of glutathione-redox balance in macrophages by GSH donors like cell-permeable glutathione ethyl ester reduced or N-acetyl-L-cysteine (NAC) can differentially regulate production of IL-12 cytokine in macrophages. A low concentration of NAC increased IL-12 p40/p70 production, whereas at high concentration, IL-12 production was inhibited due to increased calmodulin expression that binds and sequesters c-rel in the cytoplasm. Although NAC treatment increased the IkappaBalpha phosphorylation, it failed to increase TNF-alpha levels due to enhanced expression of suppressor of cytokine signaling 1, which specifically prevented nuclear translocation of p65 NF-kappaB. We demonstrate that NAC at 3 mM concentration could increase bacillus Calmette-Guérin-induced IFN-gamma production by PBMCs from patients with active tuberculosis and shifts the anti-bacillus Calmette-Guérin immune response toward the protective Th1 type. Our results indicate that redox balance of glutathione plays a critical role in regulating IL-12 induction in native macrophages, and NAC can be used in tailoring macrophages to induce enhanced Th1 response that may be helpful to control tuberculosis and other pathophysiological disorders.
Collapse
Affiliation(s)
- Kaiser Alam
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
35
|
Abstract
INTRODUCTION Paracetamol (acetaminophen) is one of the most common agents deliberately ingested in self-poisoning episodes and a leading cause of acute liver failure in the western world. Acetylcysteine is widely acknowledged as the antidote of choice for paracetamol poisoning, but its use is not without risk. Adverse reactions, often leading to treatment delay, are frequently associated with both intravenous and oral acetylcysteine and are a common source of concern among treating physicians. METHODS A systematic literature review investigating the incidence, clinical features, and mechanisms of adverse effects associated with acetylcysteine. RESULTS A variety of adverse reactions to acetylcysteine have been described ranging from nausea to death, most of the latter due to incorrect dosing. The pattern of reactions differs with oral and intravenous dosing, but reported frequency is at least as high with oral as intravenous. The reactions to the intravenous preparation result in similar clinical features to true anaphylaxis, including rash, pruritus, angioedema, bronchospasm, and rarely hypotension, but are caused by nonimmunological mechanisms. The precise nature of this reaction remains unclear. Histamine now seems to be an important mediator of the response, and there is evidence of variability in patient susceptibility, with females, and those with a history of asthma or atopy are particularly susceptible. Quantity of paracetamol ingestion, measured through serum paracetamol concentration, is also important as higher paracetamol concentrations protect patients against anaphylactoid effects. Most anaphylactoid reactions occur at the start of acetylcysteine treatment when concentrations are highest. Acetylcysteine also affects clotting factor activity, and this affects the interpretation of minor disturbances in the International Normalized Ratio in the context of paracetamol overdose. CONCLUSION This review discusses the incidence, clinical features, underlying pathophysiological mechanisms, and treatment of adverse reactions to acetylcysteine and identifies particular "at-risk" patient groups. Given the commonality of adverse reactions associated with acetylcysteine, it is important to ensure that any adverse event does not preclude patients from receiving maximal hepatic protection, particularly in the context of significant paracetamol ingestion. Further work on mechanisms should allow specific therapies to be developed.
Collapse
Affiliation(s)
- E A Sandilands
- NPIS Edinburgh - SPIB, Royal Infirmary of Edinburgh, UK.
| | | |
Collapse
|
36
|
Sun X, Pi J, Liu W, Hudson LG, Liu KJ, Feng C. Induction of heme oxygenase 1 by arsenite inhibits cytokine-induced monocyte adhesion to human endothelial cells. Toxicol Appl Pharmacol 2009; 236:202-9. [PMID: 19371606 DOI: 10.1016/j.taap.2009.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/14/2008] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
Heme oxygenase-1 (HO-1) is an oxidative stress responsive gene upregulated by various physiological and exogenous stimuli. Arsenite, as an oxidative stressor, is a potent inducer of HO-1 in human and rodent cells. In this study, we investigated the mechanistic role of arsenite-induced HO-1 in modulating tumor necrosis factor alpha (TNF-alpha) induced monocyte adhesion to human umbilical vein endothelial cells (HUVEC). Arsenite pretreatment, which upregulated HO-1 in a time- and concentration-dependent manner, inhibited TNF-alpha-induced monocyte adhesion to HUVEC and intercellular adhesion molecule 1 protein expression by 50% and 40%, respectively. Importantly, knockdown of HO-1 by small interfering RNA abolished the arsenite-induced inhibitory effects. These results indicate that induction of HO-1 by arsenite inhibits the cytokine-induced monocyte adhesion to HUVEC by suppressing adhesion molecule expression. These findings established an important mechanistic link between the functional monocyte adhesion properties of HUVEC and the induction of HO-1 by arsenite.
Collapse
Affiliation(s)
- Xi Sun
- College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | | | | | | | | |
Collapse
|
37
|
Shelton MD, Distler AM, Kern TS, Mieyal JJ. Glutaredoxin regulates autocrine and paracrine proinflammatory responses in retinal glial (muller) cells. J Biol Chem 2008; 284:4760-6. [PMID: 19074435 DOI: 10.1074/jbc.m805464200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Protein S-glutathionylation is a reversible redox-dependent post-translational modification. Many cellular functions and signal transduction pathways involve proteins whose cysteine-dependent activities are modulated by glutathionylation. Glutaredoxin (Grx1) plays a key role in such regulation because it is a specific and efficient catalyst of deglutathionylation. We recently reported an increase in Grx1 in retinae of diabetic rats and in rat retinal Müller glial cells (rMC-1) cultured in high glucose. This up-regulation of Grx1 was concomitant with NFkappaB activation and induction of intercellular adhesion molecule-1 (ICAM-1). This proinflammatory response was replicated by adenoviral-directed up-regulation of Grx1 in cells in normal glucose. The site of regulation of NFkappaB was localized to the cytoplasm, where IkappaB kinase (IKK) is a master regulator of NFkappaB activation. In the current study, inhibition of IKK activity abrogated the increase in ICAM-1 induced by high glucose or by adenoviral-directed up-regulation of Grx1. Conditioned medium from the Müller cells overexpressing Grx1 was added to fresh cultures of Müller or endothelial cells and elicited increases in the Grx1 and ICAM-1 proteins in these cells. These effects correlate with a novel finding that secretion of interleukin-6 was elevated in the cultures of Grx overexpressing cells. Also, pure interleukin-6 increased Grx1 and ICAM-1 in the rMC-1 cells. Thus, Grx1 appears to play an important role in both autocrine and paracrine proinflammatory responses. Furthermore, IKKbeta isolated from Müller cells in normal glucose medium was found to be glutathionylated on Cys-179. Hence Grx-mediated activation of IKK via deglutathionylation may play a central role in diabetic complications in vivo where Grx1 is increased.
Collapse
Affiliation(s)
- Melissa D Shelton
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4965, USA
| | | | | | | |
Collapse
|
38
|
Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 2008; 295:C849-68. [PMID: 18684987 PMCID: PMC2575825 DOI: 10.1152/ajpcell.00283.2008] [Citation(s) in RCA: 802] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 07/31/2008] [Indexed: 12/12/2022]
Abstract
Free radical-induced macromolecular damage has been studied extensively as a mechanism of oxidative stress, but large-scale intervention trials with free radical scavenging antioxidant supplements show little benefit in humans. The present review summarizes data supporting a complementary hypothesis for oxidative stress in disease that can occur without free radicals. This hypothesis, which is termed the "redox hypothesis," is that oxidative stress occurs as a consequence of disruption of thiol redox circuits, which normally function in cell signaling and physiological regulation. The redox states of thiol systems are sensitive to two-electron oxidants and controlled by the thioredoxins (Trx), glutathione (GSH), and cysteine (Cys). Trx and GSH systems are maintained under stable, but nonequilibrium conditions, due to a continuous oxidation of cell thiols at a rate of about 0.5% of the total thiol pool per minute. Redox-sensitive thiols are critical for signal transduction (e.g., H-Ras, PTP-1B), transcription factor binding to DNA (e.g., Nrf-2, nuclear factor-kappaB), receptor activation (e.g., alphaIIbbeta3 integrin in platelet activation), and other processes. Nonradical oxidants, including peroxides, aldehydes, quinones, and epoxides, are generated enzymatically from both endogenous and exogenous precursors and do not require free radicals as intermediates to oxidize or modify these thiols. Because of the nonequilibrium conditions in the thiol pathways, aberrant generation of nonradical oxidants at rates comparable to normal oxidation may be sufficient to disrupt function. Considerable opportunity exists to elucidate specific thiol control pathways and develop interventional strategies to restore normal redox control and protect against oxidative stress in aging and age-related disease.
Collapse
Affiliation(s)
- Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Clinical Biomarkers Laboratory, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
39
|
Souter I, Huang A, Martinez-Maza O, Breen EC, Decherney AH, Chaudhuri G, Nathan L. Serum levels of soluble vascular cell adhesion molecule-1, tumor necrosis factor-alpha, and interleukin-6 in in vitro fertilization cycles. Fertil Steril 2008; 91:2012-9. [PMID: 18778820 DOI: 10.1016/j.fertnstert.2008.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 04/04/2008] [Accepted: 04/16/2008] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To assess whether gonadotropin-induced changes in E(2) alter serum levels of soluble vascular cell adhesion molecule-1 (sVCAM-1) and proinflammatory cytokines. DESIGN Prospective collection of serum in patients undergoing IVF. SETTING University hospital. PATIENT(S) Twenty-four infertile women. INTERVENTION(S) Serum collection at baseline, in the mid and late follicular phases, at oocyte retrieval, and in the mid and late luteal phases. MAIN OUTCOME MEASURE(S) Samples were assayed for sVCAM-1, tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and E(2). RESULT(S) The VCAM-1 was maximally suppressed in the luteal phase. Luteal sVCAM-1 levels correlated [1] positively with the patient's age, units of gonadotropins, day 3 FSH levels and [2] negatively with [a] the follicular, retrieval, and luteal E(2) levels and [b] the number of preovulatory follicles and oocytes retrieved. Similar correlations were noted in the late luteal phase. Serum TNF-alpha reached a peak in the mid-follicular phase and a nadir in the luteal phase. The TNF-alpha levels at retrieval correlated [1] positively with the patient's age and [2] negatively with E(2) and number of preovulatory follicles and retrieved oocytes. The IL-6 levels were suppressed in the follicular phase and correlated negatively with E(2) levels. CONCLUSION(S) Changes in E(2) levels seen during gonadotropin stimulation significantly alter VCAM-1 expression and induce changes in serum IL-6 and TNF-alpha levels.
Collapse
Affiliation(s)
- Irene Souter
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Waring WS, Stephen AF, Robinson OD, Dow MA, Pettie JM. Lower incidence of anaphylactoid reactions to N-acetylcysteine in patients with high acetaminophen concentrations after overdose. Clin Toxicol (Phila) 2008; 46:496-500. [PMID: 18584360 DOI: 10.1080/15563650701864760] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Mechanisms responsible for anaphylactoid reactions to N-acetylcysteine (NAC) are poorly understood, and acetaminophen itself may play an important role. The present study examined the relationship between serum acetaminophen concentrations and risk of anaphylactoid reactions. METHODS Prospective study of adverse reactions to NAC administered according to standardized clinical protocols in patients who present to hospital after acute acetaminophen overdose. Subgroups were defined by serum acetaminophen concentrations 0 to 100 mg/L, 101 to 150 mg/L, 151 to 200 mg/L, 201 to 300 mg/L, and >300 mg/L. RESULTS There were 362 patients, and anaphylactoid reactions occurred in 14.9%. Anaphylactoid reactions occurred less commonly in patients with high serum acetaminophen concentrations (p = 0.046 by Cochran-Armitage trend test) and high equivalent 4 h acetaminophen concentrations (p = 0.004). DISCUSSION High serum acetaminophen concentrations were associated with fewer anaphylactoid reactions, suggesting that these might in some way be protective. The biological basis needs further exploration so as to allow a better understanding of the mechanisms responsible for adverse reactions to NAC treatment.
Collapse
Affiliation(s)
- W Stephen Waring
- Scottish Poisons Information Bureau, The Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
41
|
Vinchi F, Gastaldi S, Silengo L, Altruda F, Tolosano E. Hemopexin prevents endothelial damage and liver congestion in a mouse model of heme overload. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:289-99. [PMID: 18556779 DOI: 10.2353/ajpath.2008.071130] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intravascular hemolysis results in the release of massive amounts of hemoglobin and heme into plasma, where they are rapidly bound by haptoglobin and hemopexin, respectively. Data from haptoglobin and hemopexin knockout mice have shown that both proteins protect from renal damage after phenylhydrazine-induced hemolysis, whereas double-mutant mice were especially prone to liver damage. However, the specific role of hemopexin remains elusive because of the difficulty in discriminating between hemoglobin and heme recovery. To study the specific role of hemopexin in intravascular hemolysis, we established a mouse model of heme overload. Under these conditions, both endothelial activation and vascular permeability were significantly higher in hemopexin-null mice compared with wild-type controls. Vascular permeability was particularly altered in the liver, where congestion in the centrolobular area was believed to be associated with oxidative stress and inflammation. Liver damage in hemopexin- null mice may be prevented by induction of heme oxygenase-1 before heme overload. Furthermore, heme-treated hemopexin-null mice exhibited hyperbilirubinemia, prolonged heme oxygenase-1 expression, excessive heme metabolism, and lack of H-ferritin induction in the liver compared with heme-treated wild-type controls. Moreover, these mutant mice metabolize an excess of heme in the kidney. These studies highlight the importance of hemopexin in heme detoxification, thus suggesting that drugs mimicking hemopexin activity might be useful to prevent endothelial damage in patients suffering from hemolytic disorders.
Collapse
Affiliation(s)
- Francesca Vinchi
- Molecular Biotechnology Center, Via Nizza 52, 10126 Torino, Italy.
| | | | | | | | | |
Collapse
|
42
|
Paranjpe A, Cacalano NA, Hume WR, Jewett A. N-acetylcysteine protects dental pulp stromal cells from HEMA-induced apoptosis by inducing differentiation of the cells. Free Radic Biol Med 2007; 43:1394-408. [PMID: 17936186 PMCID: PMC2134970 DOI: 10.1016/j.freeradbiomed.2007.07.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 07/11/2007] [Accepted: 07/13/2007] [Indexed: 01/23/2023]
Abstract
Resin-based materials are now widely used in dental restorations. Although the use of these materials is aesthetically appealing to patients, it carries the risk of local and systemic adverse effects. The potential risks are direct damage to the cells and induction of immune-based hypersensitivity reactions. Dental pulp stromal cells (DPSCs) and oral keratinocytes are the major cell types which may come in contact with dental resins such as 2-hydroxyethyl methacrylate (HEMA) after dental restorations. Here we show that N-acetylcysteine (NAC) inhibits HEMA-induced apoptotic cell death and restores the function of DPSCs and oral epithelial cells. NAC inhibits HEMA-mediated toxicity through induction of differentiation in DPSCs, because the genes for dentin sialoprotein, osteopontin (OPN), osteocalcin, and alkaline phosphatase, which are induced during differentiation, are also induced by NAC. Unlike NAC, vitamins E and C, which are known antioxidant compounds, failed to prevent either HEMA-mediated cell death or the decrease in VEGF secretion by human DPSCs. More importantly, when added either alone or in combination with HEMA, vitamin E and vitamin C did not increase the gene expression for OPN, and in addition vitamin E inhibited the protective effect of NAC on DPSCs. NAC inhibited the HEMA-mediated decrease in NF-kappaB activity, thus providing a survival mechanism for the cells. Overall, the studies reported in this paper indicate that undifferentiated DPSCs have exquisite sensitivity to HEMA-induced cell death, and their differentiation in response to NAC resulted in an increased NF-kappaB activity, which might have provided the basis for their increased protection from HEMA-mediated functional loss and cell death.
Collapse
Affiliation(s)
| | | | | | - Anahid Jewett
- *To whom correspondence and reprint requests should be addressed: Address: 10833 Le Conte Ave, UCLA School of Dentistry, Los Angeles, CA 90095, Telephone: (310) 206-3970, Fax: (310) 794-7109, E-mail:
| |
Collapse
|
43
|
Hauber HP, Goldmann T, Vollmer E, Wollenberg B, Zabel P. Effect of Dexamethasone and ACC on Bacteria-Induced Mucin Expression in Human Airway Mucosa. Am J Respir Cell Mol Biol 2007; 37:606-16. [PMID: 17600317 DOI: 10.1165/rcmb.2006-0404oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Gram-negative bacteria can stimulate mucin production, but excessive mucus supports bacterial infection and consequently leads to airway obstruction. Therefore, the effect of dexamethasone (DEX) and the antioxidant acetyl-cysteine (ACC) on bacteria-induced mucus expression was investigated. Explanted human airway mucosa and mucoepidermoid cells (Calu-3) were stimulated with lipopolysaccharide (LPS) or PAM3 (a synthetic lipoprotein). DEX or ACC were added to either LPS- or PAM3-stimulated airway mucosa or Calu-3 cells. Mucin mRNA expression (MUC5AC) and total mucus glycoconjugates (mucin protein) were quantified using real-time PCR and periodic acid Schiff staining. LPS and PAM3 significantly increased mucin expression in airway mucosa and Calu-3 cells (P < 0.05). DEX alone had no significant effect on mucin expression in airway mucosa or Calu-3 cells (P > 0.05). In contrast, DEX significantly reduced LPS- and PAM3-induced mucin expression in explanted mucosal tissue and mucin expression in Calu-3 cells (P < 0.05). In explanted human airway mucosa ACC alone significantly increased mucin expression (P < 0.05). In contrast, ACC significantly decreased LPS- and PAM3-induced mucin expression (P < 0.05). In Calu-3 cells ACC alone had no significant effect on mucin expression (P > 0.05). ACC decreased LPS- and PAM3-induced mucin expression, but this effect was not significant (P > 0.05). These data suggest that DEX can effectively reduce bacteria-induced mucin expression in the airways. ACC alone may increase mucin expression in noninfected mucosa, but it decreased bacteria-induced mucin expression. Further studies are warranted to evaluate whether the effect of DEX or ACC is clinically relevant.
Collapse
Affiliation(s)
- Hans-Peter Hauber
- Medical Clinic, Research Center Borstel, Research Center Borstel, Borstel, Germany.
| | | | | | | | | |
Collapse
|
44
|
Doughan AK, Dikalov SI. Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxid Redox Signal 2007; 9:1825-36. [PMID: 17854275 DOI: 10.1089/ars.2007.1693] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mitochondria-targeted drug mitoquinone (MitoQ) has been used as an antioxidant that may selectively block mitochondrial oxidative damage; however, it has been recently suggested to increase reactive oxygen species (ROS) generation in malate- and glutamate-fueled mitochondria. To address this controversy, we studied the effects of MitoQ on endothelial and mitochondrial ROS production. We found that in a cell-free system with flavin-containing enzyme cytochrome P-450 reductase, MitoQ is a very efficient redox cycling agent and produced more superoxide compared with equal concentrations of menadione (10-1,000 nM). Treatment of endothelial cells with MitoQ resulted in a dramatic increase in superoxide production. In isolated mitochondria, MitoQ increased complex I-driven mitochondrial ROS production, whereas supplementation with ubiquinone-10 had no effect on ROS production. Similar results were observed in mitochondria isolated from endothelial cells incubated for 1 h with MitoQ. Inhibitor analysis suggested that the redox cycling of MitoQ occurred at two sites on complex I, proximal and distal to the rotenone-binding site. This was confirmed by demonstrating the redox cycling of MitoQ on purified mitochondrial complex I as well as NADH-fueled submitochondrial particles. Mitoquinone time- and dose-dependently increased endothelial cell apoptosis. These findings demonstrate that MitoQ may be prooxidant and proapoptotic because its quinone group can participate in redox cycling and superoxide production. In light of these results, studies using mitoquinone as an antioxidant should be interpreted with caution.
Collapse
Affiliation(s)
- Abdulrahman K Doughan
- Free Radical in Medicine Core, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|