1
|
Ni M, Peng W, Wang X, Li J. Role of Aging in Ulcerative Colitis Pathogenesis: A Focus on ETS1 as a Promising Biomarker. J Inflamm Res 2025; 18:1839-1853. [PMID: 39931173 PMCID: PMC11809410 DOI: 10.2147/jir.s504040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose An increasing proportion of the aging population has led to a rapid increase in the number of elderly patients with ulcerative colitis (UC). However, the molecular mechanisms by which aging causes UC remain unclear. In this study, we explored the role of aging-related genes (ARGs) in UC pathogenesis and diagnosis prediction. Methods Gene expression data were obtained from four independent datasets (GSE75214, GSE87466, GSE94648, and GSE169568) in the GEO database, and ARGs were derived from multiple public databases. After identifying UC-related ARGs, consistent clustering was performed to screen aging-related molecular subtypes, followed by the exploration of differences in the immune microenvironment and pathways between distinct subtypes. Next, core module genes were screened using WGCNA and then the hub genes were characterized using LASSO and random forest methods. Besides, the associations between hub genes, immune cells, and key pathways were explored. Finally, the expression levels of key genes were determined in a dextran sulfate sodium (DSS)-induced UC mouse model by qRT-PCR. Results UC samples were classified into two subtypes (1 and 2), which displayed significant differences in the immune landscape and JAK/STAT signaling pathways. A series of machine learning algorithms was used to screen two feature genes (ETS1 and IL7R) to establish the diagnostic model, which exhibited satisfactory diagnostic efficiency. In addition, these hub genes were closely associated with the infiltration of specific immune cells (such as neutrophils, memory B cells, and M2 macrophages) as well as with the JAK/STAT pathway. Later, experimental validation confirmed that ETS1 expression was markedly increased in a mouse model of UC. Conclusion Overall, aging, immune dysregulation, and UC process are closely associated. The identified feature genes, particularly ETS1, could serve as novel diagnostic biomarkers for UC. These findings have the potential to enhance the understanding of the age-related mechanisms of UC.
Collapse
Affiliation(s)
- Man Ni
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Weilong Peng
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Xiaoguang Wang
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| |
Collapse
|
2
|
Song L, Deng Y, Huang J, Zhu X, Zhong Y, Zhong Q, Zhou W, Liu Y, Zhao H, Ge W, Liu D. Effect of curcumin regulated memory Th7 cells in mice with DSS-induced colitis. Int Immunopharmacol 2025; 145:113770. [PMID: 39642569 DOI: 10.1016/j.intimp.2024.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/03/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Abnormal activation or dysfunction of memory helper T (mTh) cells is closely associated with the development of ulcerative colitis (UC). Curcumin (Cur), the main component of turmeric, plays a critical role in the treatment of UC due to its favorable anti-inflammatory and immunomodulatory bioactivities. However, whether Cur modulates mTh7 cells to alleviate UC is unknown. In the present study, dextran sulphate sodium (DSS) was administered to establish a colitis model in mice. Our current findings indicated that Cur effectively ameliorated the manifestations of colitis in mice, and had a significant effect in reducing disease activity index (DAI), as well as in the colonic weight and the proportion of colonic weight to colonic length. While Cur reduced the pathological injuries of the colon, restore the length of the colon, inhibited the secretion of IL-7 and IL-21, restored the secretion of IL-2, IL-4, and IL-10. Furthermore, Cur had a regulatory effect on mTh7 cells and their subpopulation status. The results of molecular docking simulations and Surface Plasmon Resonance (SPR) indicated that Cur demonstrates strong interaction capabilities with both IL-7 and IL-7R and reduced the expression levels of IL-7/IL-7R mRNA and protein. It is suggested that the alleviation of DSS-induced colitis by Cur may be achieved by reducing the level of mTh7 cells and inhibiting the activation of IL-7/IL-7R signaling.
Collapse
Affiliation(s)
- Lizhao Song
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Yifei Deng
- Clinical Medical School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiyan Zhu
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Youbao Zhong
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Qin Zhong
- School of Nursing, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wen Zhou
- Nanchang Medical College, Nanchang 330052, Jiangxi Province, China
| | - Yali Liu
- Nanchang Medical College, Nanchang 330052, Jiangxi Province, China
| | - Haimei Zhao
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Wei Ge
- Department of Proctology, Affiliated Hospital of Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, China.
| | - Duanyong Liu
- School of Nursing, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
3
|
Chen H, Zuo H, Huang J, Liu J, Jiang L, Jiang C, Zhang S, Hu Q, Lai H, Yin B, Yang G, Mai G, Li B, Chi H. Unravelling infiltrating T-cell heterogeneity in kidney renal clear cell carcinoma: Integrative single-cell and spatial transcriptomic profiling. J Cell Mol Med 2024; 28:e18403. [PMID: 39031800 PMCID: PMC11190954 DOI: 10.1111/jcmm.18403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 07/15/2024] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) pathogenesis intricately involves immune system dynamics, particularly the role of T cells within the tumour microenvironment. Through a multifaceted approach encompassing single-cell RNA sequencing, spatial transcriptome analysis and bulk transcriptome profiling, we systematically explored the contribution of infiltrating T cells to KIRC heterogeneity. Employing high-density weighted gene co-expression network analysis (hdWGCNA), module scoring and machine learning, we identified a distinct signature of infiltrating T cell-associated genes (ITSGs). Spatial transcriptomic data were analysed using robust cell type decomposition (RCTD) to uncover spatial interactions. Further analyses included enrichment assessments, immune infiltration evaluations and drug susceptibility predictions. Experimental validation involved PCR experiments, CCK-8 assays, plate cloning assays, wound-healing assays and Transwell assays. Six subpopulations of infiltrating and proliferating T cells were identified in KIRC, with notable dynamics observed in mid- to late-stage disease progression. Spatial analysis revealed significant correlations between T cells and epithelial cells across varying distances within the tumour microenvironment. The ITSG-based prognostic model demonstrated robust predictive capabilities, implicating these genes in immune modulation and metabolic pathways and offering prognostic insights into drug sensitivity for 12 KIRC treatment agents. Experimental validation underscored the functional relevance of PPIB in KIRC cell proliferation, invasion and migration. Our study comprehensively characterizes infiltrating T-cell heterogeneity in KIRC using single-cell RNA sequencing and spatial transcriptome data. The stable prognostic model based on ITSGs unveils infiltrating T cells' prognostic potential, shedding light on the immune microenvironment and offering avenues for personalized treatment and immunotherapy.
Collapse
Affiliation(s)
- Haiqing Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Haoyuan Zuo
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
- Department of General Surgery (Hepatopancreatobiliary Surgery)Deyang People's HospitalDeyangChina
| | - Jinbang Huang
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Jie Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
- Department of General SurgeryDazhou Central HospitalDazhouChina
| | - Lai Jiang
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Chenglu Jiang
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Shengke Zhang
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Qingwen Hu
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Haotian Lai
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Bangchao Yin
- Department of PathologySixth People's Hospital of YibinYibinChina
| | - Guanhu Yang
- Department of Specialty MedicineOhio UniversityAthensOhioUSA
| | - Gang Mai
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
- Department of General Surgery (Hepatopancreatobiliary Surgery)Deyang People's HospitalDeyangChina
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Hao Chi
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
4
|
Groha S, Alaiwi SA, Xu W, Naranbhai V, Nassar AH, Bakouny Z, El Zarif T, Saliby RM, Wan G, Rajeh A, Adib E, Nuzzo PV, Schmidt AL, Labaki C, Ricciuti B, Alessi JV, Braun DA, Shukla SA, Keenan TE, Van Allen E, Awad MM, Manos M, Rahma O, Zubiri L, Villani AC, Fairfax B, Hammer C, Khan Z, Reynolds K, Semenov Y, Schrag D, Kehl KL, Freedman ML, Choueiri TK, Gusev A. Germline variants associated with toxicity to immune checkpoint blockade. Nat Med 2022; 28:2584-2591. [PMID: 36526723 PMCID: PMC10958775 DOI: 10.1038/s41591-022-02094-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have yielded remarkable responses but often lead to immune-related adverse events (irAEs). Although germline causes for irAEs have been hypothesized, no individual variant associated with developing irAEs has been identified. We carried out a genome-wide association study of 1,751 patients on ICIs across 12 cancer types. We investigated two irAE phenotypes: (1) high-grade (3-5) and (2) all-grade events. We identified 3 genome-wide significant associations (P < 5 × 10-8) in the discovery cohort associated with all-grade irAEs: rs16906115 near IL7 (combined P = 3.6 × 10-11; hazard ratio (HR) = 2.1); rs75824728 near IL22RA1 (combined P = 3.5 × 10-8; HR = 1.8); and rs113861051 on 4p15 (combined P = 1.2 × 10-8, HR = 2.0); rs16906115 was replicated in 3 independent studies. The association near IL7 colocalized with the gain of a new cryptic exon for IL7, a critical regulator of lymphocyte homeostasis. Patients carrying the IL7 germline variant exhibited significantly increased lymphocyte stability after ICI initiation, which was itself predictive of downstream irAEs and improved survival.
Collapse
Affiliation(s)
- Stefan Groha
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sarah Abou Alaiwi
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Wenxin Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Vivek Naranbhai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Amin H Nassar
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziad Bakouny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Talal El Zarif
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Renee Maria Saliby
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Guihong Wan
- Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| | - Ahmad Rajeh
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| | - Elio Adib
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Pier V Nuzzo
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genoa, Genoa, Italy
| | - Andrew L Schmidt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chris Labaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joao Victor Alessi
- Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genoa, Genoa, Italy
| | - David A Braun
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Sachet A Shukla
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tanya E Keenan
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Eliezer Van Allen
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mark M Awad
- Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genoa, Genoa, Italy
| | - Michael Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Osama Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Alexandra-Chloe Villani
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Zia Khan
- Genentech, South San Francisco, CA, USA
| | - Kerry Reynolds
- Harvard Medical School, Boston, MA, USA
- Division of Medical Oncology, Bartlett, Massachusetts General Hospital, Boston, MA, USA
| | - Yevgeniy Semenov
- Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| | - Deborah Schrag
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kenneth L Kehl
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew L Freedman
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Toni K Choueiri
- Harvard Medical School, Boston, MA, USA
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexander Gusev
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Harvard & MIT, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Sharma TT, Rabizadeh RR, Prabhakar VS, Bury MI, Sharma AK. Evolving Experimental Platforms to Evaluate Ulcerative Colitis. Adv Biol (Weinh) 2022; 6:e2200018. [PMID: 35866469 DOI: 10.1002/adbi.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/06/2022] [Indexed: 01/28/2023]
Abstract
Ulcerative colitis (UC) is a multifactorial disease defined by chronic intestinal inflammation with idiopathic origins. It has a predilection to affect the mucosal lining of the large intestines and rectum. Management of UC depends upon numerous factors that include disease pathogenesis and severity that are maintained via medical or surgical means. Chronic inflammation that is left untreated or managed poorly from a clinical stance can result in intestinal ulceration accompanied by resulting physiological dysfunction. End-stage UC is mediated by surgical intervention with the resection of diseased tissue. This can lead to numerous health-related quality of life issues but is considered a curative approach. Regimens to treat UC are ever evolving and find their basis within various platforms to evaluate and treat UC. Numerous modeling systems have been examined to delineate potential mechanisms of action. However, UC is a heterogenous disease spanning unknown genetic origins coupled with environmental factors that can influence disease outcomes and related treatment procedures. Unfortunately, there is no one-size-fits-all model to fully assess all facets of UC. Within the context of this review article, the utility of various approaches that have been employed to gain insight into different aspects of UC will be investigated.
Collapse
Affiliation(s)
- Tiffany T Sharma
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA.,Stanley Manne Children's Research Institute, Chicago, IL, 60611, USA
| | - Rebecca R Rabizadeh
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Vibhav S Prabhakar
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Matthew I Bury
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Arun K Sharma
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA.,Stanley Manne Children's Research Institute, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Urology, Northwestern University, Chicago, IL, 60611, USA.,McCormick School of Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.,Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL, 60208, USA.,Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
6
|
Yan M, Yang Y, Zhou Y, Yu C, Li R, Gong W, Zheng J. Interleukin-7 aggravates myocardial ischaemia/reperfusion injury by regulating macrophage infiltration and polarization. J Cell Mol Med 2021; 25:9939-9952. [PMID: 34581005 PMCID: PMC8572772 DOI: 10.1111/jcmm.16335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)‐7 is known to enhance the macrophages cytotoxic activity and that macrophages play a pivotal role in the development and progression of myocardial ischaemia/reperfusion (I/R) injury. However, the effects of IL‐7 on macrophages infiltration and polarization in myocardial I/R injury are currently unclear. This study aimed to evaluate the effects of the IL‐7 expression on myocardial I/R injury and their relationship with macrophages. The data showed that IL‐7 expression in mouse heart tissue increases following I/R injury and that IL‐7 knockout or anti‐IL‐7 antibody treatment significantly improve I/R injury, including reduction in myocardial infarction area, a serum troponin T level decreases and an improvement in cardiac function. On the other hand, recombinant IL‐7 (rIL‐7) supplementation induces opposite effects and the anti‐IL‐7 antibody significantly reduces the cardiomyocyte apoptosis and macrophage infiltration. rIL‐7 cannot directly cause apoptosis, but it can induce cardiomyocyte apoptosis through macrophages, in addition to increase the macrophages migration in vitro. Anti‐IL‐7 antibody affects the cytokine production in T helper (Th) 1 and Th2 cells and also promotes the macrophages differentiation to M2 macrophages. However, anti‐IL‐7 antibody does not reduce the M1 macrophage number, and it only increases the ratio of M2/M1 macrophages in mice heart tissues after I/R injury. Taking together, these data reveal that IL‐7 plays an intensifying role in myocardial I/R injury by promoting cardiomyocyte apoptosis through the regulation of macrophage infiltration and polarization.
Collapse
Affiliation(s)
- Mengwen Yan
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Yaliu Yang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Ying Zhou
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Changan Yu
- Central Laboratory of Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Rui Li
- Department of Health Care, China-Japan Freindship Hospital, Ministry of Health, Beijing, China
| | - Wei Gong
- Emergency and Critical Care Center, Beijing Anzhen Hospital Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China.,Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| |
Collapse
|
7
|
Autotaxin-Lysophosphatidic Acid Axis Blockade Improves Inflammation by Regulating Th17 Cell Differentiation in DSS-Induced Chronic Colitis Mice. Inflammation 2019; 42:1530-1541. [DOI: 10.1007/s10753-019-01015-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Belarif L, Danger R, Kermarrec L, Nerrière-Daguin V, Pengam S, Durand T, Mary C, Kerdreux E, Gauttier V, Kucik A, Thepenier V, Martin JC, Chang C, Rahman A, Guen NSL, Braudeau C, Abidi A, David G, Malard F, Takoudju C, Martinet B, Gérard N, Neveu I, Neunlist M, Coron E, MacDonald TT, Desreumaux P, Mai HL, Le Bas-Bernardet S, Mosnier JF, Merad M, Josien R, Brouard S, Soulillou JP, Blancho G, Bourreille A, Naveilhan P, Vanhove B, Poirier N. IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease. J Clin Invest 2019; 129:1910-1925. [PMID: 30939120 DOI: 10.1172/jci121668] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
It remains unknown what causes inflammatory bowel disease (IBD), including signaling networks perpetuating chronic gastrointestinal inflammation in Crohn's disease (CD) and ulcerative colitis (UC), in humans. According to an analysis of up to 500 patients with IBD and 100 controls, we report that key transcripts of the IL-7 receptor (IL-7R) pathway are accumulated in inflamed colon tissues of severe CD and UC patients not responding to either immunosuppressive/corticosteroid, anti-TNF, or anti-α4β7 therapies. High expression of both IL7R and IL-7R signaling signature in the colon before treatment is strongly associated with nonresponsiveness to anti-TNF therapy. While in mice IL-7 is known to play a role in systemic inflammation, we found that in humans IL-7 also controlled α4β7 integrin expression and imprinted gut-homing specificity on T cells. IL-7R blockade reduced human T cell homing to the gut and colonic inflammation in vivo in humanized mouse models, and altered effector T cells in colon explants from UC patients grown ex vivo. Our findings show that failure of current treatments for CD and UC is strongly associated with an overexpressed IL-7R signaling pathway and point to IL-7R as a relevant therapeutic target and potential biomarker to fill an unmet need in clinical IBD detection and treatment.
Collapse
Affiliation(s)
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Laetitia Kermarrec
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | - Véronique Nerrière-Daguin
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | | | - Tony Durand
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | | | | | | | - Aneta Kucik
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | | | - Jerome C Martin
- Precision Immunology Institute.,Tisch Cancer Institute.,Department of Oncological Sciences
| | - Christie Chang
- Precision Immunology Institute.,Tisch Cancer Institute.,Department of Oncological Sciences
| | - Adeeb Rahman
- Precision Immunology Institute.,Charles Bronfman Institute for Personalized Medicine, and.,Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nina Salabert-Le Guen
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,CHU Nantes, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes-Atlantique (CIMNA), Nantes, France.,LabEx Immunograft Oncology (IGO), Nantes, France.,Université de Nantes, Faculté de Médecine, Nantes, France
| | - Cécile Braudeau
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,CHU Nantes, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes-Atlantique (CIMNA), Nantes, France.,LabEx Immunograft Oncology (IGO), Nantes, France
| | - Ahmed Abidi
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Université de Tunis El Manar, Laboratoire de génétique, immunologie et pathologies humaines, Faculté des sciences de Tunis, Tunis, Tunisia
| | - Grégoire David
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | - Florent Malard
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Celine Takoudju
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France
| | - Bernard Martinet
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Nathalie Gérard
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Isabelle Neveu
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Michel Neunlist
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Emmanuel Coron
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Thomas T MacDonald
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Pierre Desreumaux
- Hepato-Gastroenterology Department, Claude Huriez Hospital, University of Lille 2, Lille, France
| | - Hoa-Le Mai
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Stephanie Le Bas-Bernardet
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Jean-François Mosnier
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,CHU Nantes, Service d'Anatomie et Cytologie Pathologiques, Nantes, France
| | - Miriam Merad
- Precision Immunology Institute.,Tisch Cancer Institute.,Department of Oncological Sciences.,Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Régis Josien
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France.,CHU Nantes, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes-Atlantique (CIMNA), Nantes, France.,Université de Nantes, Faculté de Médecine, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes (CHU Nantes), Nantes, France
| | - Arnaud Bourreille
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | - Philippe Naveilhan
- Institut des Maladies de l'Appareil Digestif (IMAD), The Enteric Nervous System in Gut and Brain Disorders, Université de Nantes, INSERM, Nantes, France.,CHU Nantes, IMAD, Nantes, France
| | | | | |
Collapse
|
9
|
Knop L, Frommer C, Stoycheva D, Deiser K, Kalinke U, Blankenstein T, Kammertoens T, Dunay IR, Schüler T. Interferon-γ Receptor Signaling in Dendritic Cells Restrains Spontaneous Proliferation of CD4 + T Cells in Chronic Lymphopenic Mice. Front Immunol 2019; 10:140. [PMID: 30792713 PMCID: PMC6374634 DOI: 10.3389/fimmu.2019.00140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023] Open
Abstract
In lymphopenic mice, T cells become activated and undergo lymphopenia-induced proliferation (LIP). However, not all T cells are equally sensitive to lymphopenia. Several lymphopenia-insensitive T cell clones were described and their non-responsiveness was mainly attributed to clone-specific properties. Here, we provide evidence for an additional, host-dependent mechanism restraining LIP of lymphopenia-insensitive CD4+ T cells. We show that such cells undergo LIP in lymphopenic mice lacking IFN-γ receptor (IFN-γR) expression, a process, which is promoted by the autocrine action of T cell-derived IFN-γ. Additionally, LIP of lymphopenia-insensitive CD4+ T cells requires an intact microflora and is accompanied by the massive accumulation of IL-6 and dendritic cells (DCs). Consistent with these results, IL-6 neutralization and the DC-specific restoration of IFN-γR expression are both sufficient to restrict LIP. Hence, the insensitivity of CD4+ T cells to lymphopenia relies on cell-intrinsic properties and a complex interplay between the commensal microflora, IL-6, IFN-γR+ DCs, and T cell-derived IFN-γ.
Collapse
Affiliation(s)
- Laura Knop
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Charlotte Frommer
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Diana Stoycheva
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Katrin Deiser
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Medical School Hannover, Institute for Experimental Infection Research, Hannover, Germany
| | - Thomas Blankenstein
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Thomas Kammertoens
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
10
|
Belarif L, Mary C, Jacquemont L, Mai HL, Danger R, Hervouet J, Minault D, Thepenier V, Nerrière-Daguin V, Nguyen E, Pengam S, Largy E, Delobel A, Martinet B, Le Bas-Bernardet S, Brouard S, Soulillou JP, Degauque N, Blancho G, Vanhove B, Poirier N. IL-7 receptor blockade blunts antigen-specific memory T cell responses and chronic inflammation in primates. Nat Commun 2018; 9:4483. [PMID: 30367166 PMCID: PMC6203796 DOI: 10.1038/s41467-018-06804-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Abstract
Targeting the expansion of pathogenic memory immune cells is a promising therapeutic strategy to prevent chronic autoimmune attacks. Here we investigate the therapeutic efficacy and mechanism of new anti-human IL-7Rα monoclonal antibodies (mAb) in non-human primates and show that, depending on the target epitope, a single injection of antagonistic anti-IL-7Rα mAbs induces a long-term control of skin inflammation despite repeated antigen challenges in presensitized monkeys. No modification in T cell numbers, phenotype, function or metabolism is observed in the peripheral blood or in response to polyclonal stimulation ex vivo. However, long-term in vivo hyporesponsiveness is associated with a significant decrease in the frequency of antigen-specific T cells producing IFN-γ upon antigen restimulation ex vivo. These findings indicate that chronic antigen-specific memory T cell responses can be controlled by anti-IL-7Rα mAbs, promoting and maintaining remission in T-cell mediated chronic inflammatory diseases.
Collapse
Affiliation(s)
- Lyssia Belarif
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,OSE Immunotherapeutics, Nantes, 44200, France
| | - Caroline Mary
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,OSE Immunotherapeutics, Nantes, 44200, France
| | - Lola Jacquemont
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Hoa Le Mai
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Jeremy Hervouet
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - David Minault
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Virginie Thepenier
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,OSE Immunotherapeutics, Nantes, 44200, France
| | - Veronique Nerrière-Daguin
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Elisabeth Nguyen
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Sabrina Pengam
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,OSE Immunotherapeutics, Nantes, 44200, France
| | - Eric Largy
- Quality Assistance, Thuin, 6536, Belgium.,ARNA laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR5320, IECB, Bordeaux, 33076, France
| | | | - Bernard Martinet
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Stéphanie Le Bas-Bernardet
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, 44093, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, 44093, France
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France
| | - Nicolas Degauque
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, 44093, France
| | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, 44093, France
| | - Bernard Vanhove
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France.,OSE Immunotherapeutics, Nantes, 44200, France
| | - Nicolas Poirier
- Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes, 44093, France. .,OSE Immunotherapeutics, Nantes, 44200, France.
| |
Collapse
|
11
|
Zhou J, Yu Q. Anti-IL-7 receptor-α treatment ameliorates newly established Sjögren's-like exocrinopathy in non-obese diabetic mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2438-2447. [PMID: 29680668 DOI: 10.1016/j.bbadis.2018.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
The levels of interleukin (IL)-7 and its receptor are elevated in the salivary glands of patients with Sjögren's syndrome (SS). Our previous study indicates that IL-7 plays a critical pathogenic role in the development and onset of SS in a mouse model of this disease. The present study aims at determining whether IL-7 also plays a role in sustaining SS pathologies after the disease onset, by using the non-obese diabetic (NOD) model. Intraperitoneal administration of a blocking antibody against the IL-7 receptor α chain (IL-7Rα) to female NOD mice aged 10 weeks, which exhibited newly onset clinical SS, for the duration of 3 weeks significantly ameliorated characteristic SS pathologies including hyposalivation and leukocyte infiltration of the submandibular glands (SMGs). These changes were accompanied by a decrease in IFN-γ-producing CD4 T- and CD8 T cells, B cells, and lymphocyte chemoattractants CXCL9, -10, -11 and -13 in the SMGs. Anti-IL-7Rα treatment markedly diminished the amount of TNF-α in the SMGs and increased the level of claudin-1 and aquaporin 5, two molecules critical for normal salivary secretion. Furthermore, neutralization of IFN-γ and TNF-α, individually or in combination, considerably improved salivary secretion, reduced leukocyte infiltration and down-regulated CXCL9 and -13 expression in the SMGs. Collectively, the results indicate that endogenous IL-7R signals promote Th1 and Tc1 responses and IFN-γ- and TNF-α production to sustain the persistence of SS-like sialadenitis in NOD mice. These findings suggest that IL-7 and Th1 cytokines could serve as promising therapeutic targets for this prevalent autoimmune disease.
Collapse
Affiliation(s)
- Jing Zhou
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115
| | - Qing Yu
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115..
| |
Collapse
|
12
|
5-Fluorouracil targets thymidylate synthase in the selective suppression of TH17 cell differentiation. Oncotarget 2017; 7:19312-26. [PMID: 27027355 PMCID: PMC4991385 DOI: 10.18632/oncotarget.8344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/07/2016] [Indexed: 12/02/2022] Open
Abstract
While it is well established that treatment of cancer patients with 5-Fluorouracil (5-FU) can result in immune suppression, the exact function of 5-FU in the modulation of immune cells has not been fully established. We found that low dose 5-FU selectively suppresses TH17 and TH1 cell differentiation without apparent effect on Treg, TH2, and significantly suppresses thymidylate synthase (TS) expression in TH17 and TH1 cells but has a lesser effect in tumor cells and macrophages. Interestingly, the basal expression of TS varies significantly between T helper phenotypes and knockdown of TS significantly impairs TH17 and TH1 cell differentiation without affecting the differentiation of either Treg or TH2 cells. Finally, low dose 5-FU is effective in ameliorating colitis development by suppressing TH17 and TH1 cell development in a T cell transfer colitis model. Taken together, the results highlight the importance of the anti-inflammatory functions of low dose 5-FU by selectively suppressing TH17 and TH1 immune responses.
Collapse
|
13
|
Loganes C, Lega S, Bramuzzo M, Vecchi Brumatti L, Piscianz E, Valencic E, Tommasini A, Marcuzzi A. Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage. Nutrients 2017; 9:nu9060578. [PMID: 28587282 PMCID: PMC5490557 DOI: 10.3390/nu9060578] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Claudia Loganes
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Sara Lega
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste 34100, Italy.
| | - Matteo Bramuzzo
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Liza Vecchi Brumatti
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Elisa Piscianz
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste 34100, Italy.
| | - Erica Valencic
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Alberto Tommasini
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Annalisa Marcuzzi
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste 34100, Italy.
| |
Collapse
|
14
|
BET N-terminal bromodomain inhibition selectively blocks Th17 cell differentiation and ameliorates colitis in mice. Proc Natl Acad Sci U S A 2017; 114:2952-2957. [PMID: 28265070 PMCID: PMC5358349 DOI: 10.1073/pnas.1615601114] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
T-helper 17 (Th17) cells have important functions in adaptor immunity and have also been implicated in inflammatory disorders. The bromodomain and extraterminal domain (BET) family proteins regulate gene transcription during lineage-specific differentiation of naïve CD4+ T cells to produce mature T-helper cells. Inhibition of acetyl-lysine binding of the BET proteins by pan-BET bromodomain (BrD) inhibitors, such as JQ1, broadly affects differentiation of Th17, Th1, and Th2 cells that have distinct immune functions, thus limiting their therapeutic potential. Whether these BET proteins represent viable new epigenetic drug targets for inflammatory disorders has remained an unanswered question. In this study, we report that selective inhibition of the first bromodomain of BET proteins with our newly designed small molecule MS402 inhibits primarily Th17 cell differentiation with a little or almost no effect on Th1 or Th2 and Treg cells. MS402 preferentially renders Brd4 binding to Th17 signature gene loci over those of housekeeping genes and reduces Brd4 recruitment of p-TEFb to phosphorylate and activate RNA polymerase II for transcription elongation. We further show that MS402 prevents and ameliorates T-cell transfer-induced colitis in mice by blocking Th17 cell overdevelopment. Thus, selective pharmacological modulation of individual bromodomains likely represents a strategy for treatment of inflammatory bowel diseases.
Collapse
|
15
|
Do KH, Park SH, Kim J, Yu M, Moon Y. Ribosome Inactivation Leads to Attenuation of Intestinal Polymeric Ig Receptor Expression via Differential Regulation of Human Antigen R. THE JOURNAL OF IMMUNOLOGY 2016; 197:847-58. [DOI: 10.4049/jimmunol.1502047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/12/2016] [Indexed: 02/07/2023]
|
16
|
Zhou J, Jin JO, Du J, Yu Q. Innate Immune Signaling Induces IL-7 Production, Early Inflammatory Responses, and Sjögren's-Like Dacryoadenitis in C57BL/6 Mice. Invest Ophthalmol Vis Sci 2016; 56:7831-8. [PMID: 26658504 DOI: 10.1167/iovs.15-17368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Innate immune signaling elicited by polyinosinic-polycytidylic acid (poly I:C) induces IL-7 production and early inflammatory responses in the salivary gland and accelerates the development of Sjögren's syndrome (SS)-like sialadenitis. Whether poly I:C can induce similar responses in the lacrimal gland (LAC) has not been characterized. In this study, we examined the early responses and pathologic changes of the LAC tissue in response to poly I:C treatment. METHODS Poly I:C or recombinant human IL-7 was injected intraperitoneally into C57BL/6 mice, and the LAC was harvested at different time points. Expression of chemokines and cytokines in the LAC was measured by RT-PCR, immunofluorescence staining, and immunohistochemistry. Leukocytic infiltration and caspase-3 activation were analyzed by hematoxylin and eosin staining and immunohistochemistry. Serum antinuclear antibody levels were also determined. Tear secretion was measured by phenol red cotton threads. RESULTS Administration of poly I:C induced IL-7 gene expression and protein production in the LAC. Poly I:C also induced the expression of CXCR3 ligands, monocyte chemoattractant protein-1, IL-23p19, and TNF-α in the LAC in an IL-7-dependent fashion. Similarly to poly I:C, administration of exogenous IL-7 also up-regulated these proinflammatory mediators. Furthermore, repeated administration of poly I:C to C57BL/6 mice over an 8-day period caused leukocytic infiltration and caspase-3 activation in the LAC, antinuclear antibody production, and impaired tear secretion. CONCLUSIONS Poly I:C induces IL-7 production, early inflammatory responses, and characteristic pathologies of SS-like dacryoadenitis in non-autoimmune-prone C57BL/6 mice. These findings provide new evidence that viral infection-elicited innate immune signaling may be one of the early triggers of SS-like dacryoadenitis.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, United States 2Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States
| | - Jun-O Jin
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, United States
| | - Juan Du
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, United States
| | - Qing Yu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, United States 2Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States
| |
Collapse
|
17
|
Kanai T, Mikami Y, Hayashi A. A breakthrough in probiotics: Clostridium butyricum regulates gut homeostasis and anti-inflammatory response in inflammatory bowel disease. J Gastroenterol 2015; 50:928-39. [PMID: 25940150 DOI: 10.1007/s00535-015-1084-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/18/2015] [Indexed: 02/04/2023]
Abstract
Intestinal immune homeostasis is regulated by gut microbiota, including beneficial and pathogenic microorganisms. Imbalance in gut bacterial constituents provokes host proinflammatory responses causing diseases such as inflammatory bowel disease (IBD). The development of next-generation sequencing technology allows the identification of microbiota alterations in IBD. Several studies have shown reduced diversity in the gut microbiota of patients with IBD. Advances in gnotobiotic technology have made possible analysis of the role of specific bacterial strains in immune cells in the intestine. Using these techniques, we have shown that Clostridium butyricum as a probiotic induces interleukin-10-producing macrophages in inflamed mucosa via the Toll-like receptor 2/myeloid differentiation primary response gene 88 pathway to prevent acute experimental colitis. In this review, we focus on the new approaches for the role of specific bacterial strains in immunological responses, as well as the potential of bacterial therapy for IBD treatments.
Collapse
Affiliation(s)
- Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan,
| | | | | |
Collapse
|
18
|
Zhang Y, Guo M, Xin N, Shao Z, Zhang X, Zhang Y, Chen J, Zheng S, Fu L, Wang Y, Zhou D, Chen H, Huang Y, Dong R, Xiao C, Liu Y, Geng D. Decreased microRNA miR-181c expression in peripheral blood mononuclear cells correlates with elevated serum levels of IL-7 and IL-17 in patients with myasthenia gravis. Clin Exp Med 2015; 16:413-21. [PMID: 25962782 DOI: 10.1007/s10238-015-0358-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/05/2015] [Indexed: 11/30/2022]
Abstract
miR-181c is a newly identified negative regulator of immune cell activation. In this study, we aimed to investigate the expression and functional role of miR-181c in myasthenia gravis (MG). miR-181c showed significant downregulation in peripheral blood mononuclear cells (PBMCs) from MG patients compared with healthy controls, with lower expression in generalized patients than in ocular ones. MG patients also had increased serum IL-7 and IL-17 levels. Additionally, serum IL-7 level presents a positive correlation with the serum IL-17 level. miR-181c levels were negatively correlated with serum levels of IL-7 and IL-17 in either generalized patients or ocular patients. A luciferase reporter assay revealed that miR-181c could directly bind to the 3'-UTR of interleukin-7. Forced expression of miR-181c led to decreased IL-7 and IL-17 release in cultured PBMCs, while depletion of miR-181c increased the secretion of these two proinflammatory cytokines. The results from our study suggested for the first time that miR-181c was able to negatively regulate the production of proinflammatory cytokines IL-7 and IL-17 in MG patients, and it is a novel potential therapeutic target for MG.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Mingfeng Guo
- Department of Emergency Medicine, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Ning Xin
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Zhen Shao
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiuying Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yanyan Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jing Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shuangshuang Zheng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Linlin Fu
- Department of Pathogenic Biology and Lab of Infection and Immunology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - YuZhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Dongmei Zhou
- Department of Pathogenic Biology and Lab of Infection and Immunology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hao Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yan Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Ruiguo Dong
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Chenghua Xiao
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yonghai Liu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
19
|
Abstract
The understanding of the intestinal inflammation occurring in the inflammatory bowel diseases (IBD) has been immeasurably advanced by the development of the now numerous murine models of intestinal inflammation. The usefulness of this research tool in IBD studies has been enabled by our improved knowledge of mucosal immunity and thus our improved ability to interpret the complex responses of mice with various causes of colitis; in addition, it has been powered by the availability of models in which the mice have specific genetic and/or immunologic defects that can be related to the origin of the inflammation. Finally, and more recently, it has been enhanced by our newly acquired ability to define the intestinal microbiome under various conditions and thus to understand how intestinal microorganisms impact on inflammation. In this brief review of murine models of intestinal inflammation we focus mainly on the most often used models that are, not incidentally, also the models that have yielded major insights into IBD pathogenesis.
Collapse
Affiliation(s)
| | | | - Warren Strober
- Correspondence Address correspondence to: Warren Strober, MD, National Institutes of Health, Mucosal Immunity Section, 10 Center Drive, CRC Bldg. 10 5west-3940, Bethesda, Maryland 20892. fax: (301) 402-2240.
| |
Collapse
|
20
|
Mouse and human Notch-1 regulate mucosal immune responses. Mucosal Immunol 2014; 7:995-1005. [PMID: 24424521 DOI: 10.1038/mi.2013.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 11/22/2013] [Indexed: 02/04/2023]
Abstract
The Notch-1 signaling pathway is responsible for homeostatic tight junction expression in vitro, and promotes barrier function in vivo in the RAG1-adoptive transfer model of colitis. In this study, we sought to determine the role of colonic Notch-1 in the lymphoepithelial crosstalk in health and disease. We utilized in vivo and in vitro knockdown to target the expression of Notch-1. We identified that epithelial Notch-1 is required for appropriate activation of intestinal epithelial cells at steady state and upon inflammatory stimulus. Notch-1 expression modulates mucosal chemokine and cytokine secretion, and FoxP3 and effector T-cell responses. We showed that epithelial Notch-1 controls the immune function of the epithelium through crosstalk with the nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) pathways that, in turn, elicits T-cell responses. Overall, epithelial Notch-1 bridges innate and adaptive immunity in the gut. Our findings highlight an indispensable role for Notch-1-mediated signaling in the intricate epithelial-immune crosstalk, and validate that epithelial Notch-1 is necessary and sufficient to support protective epithelial proinflammatory responses.
Collapse
|
21
|
Innate immune signaling induces interleukin-7 production from salivary gland cells and accelerates the development of primary Sjögren's syndrome in a mouse model. PLoS One 2013; 8:e77605. [PMID: 24147035 PMCID: PMC3798297 DOI: 10.1371/journal.pone.0077605] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/10/2013] [Indexed: 01/04/2023] Open
Abstract
Elevated IL-7 in the target tissues is closely associated with multiple autoimmune disorders, including Sjögren’s syndrome (SS). We recently found that IL-7 plays an essential role in the development and onset of primary SS (pSS) in C57BL/6.NOD-Aec1Aec2 mice, a well-defined mouse model of primary SS. However, environmental signals that cause excessive IL-7 production are not well-characterized. Innate immune signaling plays a critical role in shaping the adaptive immune responses including autoimmune responses. We and others have previously shown that innate immune signaling can induce IL-7 expression in lungs and intestines of C57BL/6 mice. In this study, we characterized the effects of poly I:C, a double-stranded RNA analog and toll-like receptor 3 agonist, on the induction of IL-7 expression in salivary glands and on pSS development. We showed that poly I:C administration to C57BL/6 mice rapidly induced IL-7 expression in the salivary glands in a type 1 IFN- and IFN-γ-dependent manner. Moreover, poly I:C-induced IL-7 contributed to the optimal up-regulation of CXCL9 in the salivary glands, which may subsequently promote recruitment of more IFN-γ-producing T cells. Repeated administration of poly I:C to C57BL/6.NOD-Aec1Aec2 mice accelerated the development of SS-like exocrinopathy, and this effect was abolished by the blockade of IL-7 receptor signaling with a neutralizing antibody. Finally, poly I:C or a combination of IFN-α and IFN-γ induced IL-7 gene expression and protein production in a human salivary gland epithelial cell line. Hence, we demonstrate that IL-7 expression in the salivary gland cells can be induced by poly I:C and delineate a crucial mechanism by which innate immune signals facilitate the development of pSS, which is through induction of IL-7 in the target tissues.
Collapse
|
22
|
Jin JO, Kawai T, Cha S, Yu Q. Interleukin-7 enhances the Th1 response to promote the development of Sjögren's syndrome-like autoimmune exocrinopathy in mice. ACTA ACUST UNITED AC 2013; 65:2132-42. [PMID: 23666710 DOI: 10.1002/art.38007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 04/30/2013] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Although elevated interleukin-7 (IL-7) levels have been reported in patients with primary Sjögren's syndrome (SS), the role of IL-7 in this disease remains unclear. We undertook this study to characterize the previously unexplored role of IL-7 in the development and onset of primary SS using the C57BL/6.NOD-Aec1Aec2 (B6.NOD-Aec) mouse model, which recapitulates human primary SS. METHODS For gain-of-function studies, recombinant IL-7 or control phosphate buffered saline was injected intraperitoneally (IP) into 12-week-old B6.NOD-Aec mice for 8 weeks. For loss-of-function studies, anti-IL-7 receptor α-chain (anti-IL-7Rα) antibody or its isotype control IgG was administered IP into 16-week-old B6.NOD-Aec mice. Salivary flow measurement, histologic and flow cytometric analysis of salivary glands, and serum antinuclear antibody assay were performed to assess various disease parameters. RESULTS Administration of exogenous IL-7 accelerated the development of primary SS, whereas blockade of IL-7Rα signaling almost completely abolished the development of primary SS, based on salivary gland inflammation and apoptosis, autoantibody production, and secretory dysfunction. IL-7 positively regulated interferon-γ (IFNγ)-producing Th1 and CD8+ T cells in the salivary glands without affecting IL-17. Moreover, IL-7 enhanced the expression of CXCR3 ligands in a T cell- and IFNγ-dependent manner. Accordingly, IFNγ induced a human salivary gland epithelial cell line to produce CXCR3 ligands. IL-7 also increased the level of tumor necrosis factor α, another Th1-associated cytokine that can facilitate tissue destruction and inflammation. CONCLUSION IL-7 plays a pivotal pathogenic role in SS, which is underpinned by an enhanced Th1 response and IFNγ/CXCR3 ligand-mediated lymphocyte infiltration of target organs. These results suggest that targeting the IL-7 pathway may be a potential future strategy for preventing and treating SS.
Collapse
Affiliation(s)
- Jun-O Jin
- The Forsyth Institute, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
23
|
Jianjun Yang, Zhang R, Lu G, Shen Y, Peng L, Zhu C, Cui M, Wang W, Arnaboldi P, Tang M, Gupta M, Qi CF, Jayaraman P, Zhu H, Jiang B, Chen SH, He JC, Ting AT, Zhou MM, Kuchroo VK, Morse HC, Ozato K, Sikora AG, Xiong H. T cell–derived inducible nitric oxide synthase switches off Th17 cell differentiation. ACTA ACUST UNITED AC 2013; 210:1447-62. [PMID: 23797094 PMCID: PMC3698516 DOI: 10.1084/jem.20122494] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric oxide derived from iNOS in activated T cells negatively regulates Th17 cell differentiation. RORγt is necessary for the generation of TH17 cells but the molecular mechanisms for the regulation of TH17 cells are still not fully understood. We show that activation of CD4+ T cells results in the expression of inducible nitric oxide synthase (iNOS). iNOS-deficient mice displayed enhanced TH17 cell differentiation but without major effects on either TH1 or TH2 cell lineages, whereas endothelial NOS (eNOS) or neuronal NOS (nNOS) mutant mice showed comparable TH17 cell differentiation compared with wild-type control mice. The addition of N6-(1-iminoethyl)-l-lysine dihydrochloride (L-NIL), the iNOS inhibitor, significantly enhanced TH17 cell differentiation, and S-nitroso-N-acetylpenicillamine (SNAP), the NO donor, dose-dependently reduced the percentage of IL-17–producing CD4+ T cells. NO mediates nitration of tyrosine residues in RORγt, leading to the suppression of RORγt-induced IL-17 promoter activation, indicating that NO regulates IL-17 expression at the transcriptional level. Finally, studies of an experimental model of colitis showed that iNOS deficiency results in more severe inflammation with an enhanced TH17 phenotype. These results suggest that NO derived from iNOS in activated T cells plays a negative role in the regulation of TH17 cell differentiation and highlight the importance of intrinsic programs for the control of TH17 immune responses.
Collapse
Affiliation(s)
- Jianjun Yang
- Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nemoto Y, Kanai T, Takahara M, Oshima S, Nakamura T, Okamoto R, Tsuchiya K, Watanabe M. Bone marrow-mesenchymal stem cells are a major source of interleukin-7 and sustain colitis by forming the niche for colitogenic CD4 memory T cells. Gut 2013; 62:1142-52. [PMID: 23144054 PMCID: PMC3711361 DOI: 10.1136/gutjnl-2012-302029] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Interleukin (IL)-7 is mainly produced in bone marrow (BM) that forms the niche for B cells. We previously demonstrated that BM also retains pathogenic memory CD4 T cells in murine models of inflammatory bowel disease (IBD). However, it remains unknown whether BM-derived IL-7 is sufficient for the development of IBD and which cells form the niche for colitogenic memory CD4 T cells in BM. DESIGN To address these questions, we developed mice in which IL-7 expression was specific for BM, and identified colitis-associated IL-7-expressing mesenchymal stem cells (MSC) in the BM. RESULTS IL-7-/-×RAG-1-/- mice injected with BM cells from IL-7+/+×RAG-1-/- mice, but not from IL-7-/-×RAG-1-/- mice, expressed IL-7 in BM, but not in their colon, and developed colitis when injected with CD4+CD45RBhigh T cells. Cultured BM MSC stably expressed a higher level of IL-7 than that of primary BM cells. IL-7-sufficient, but not IL-7-deficient, BM MSC supported upregulation of Bcl-2 in, and homeostatic proliferation of, colitogenic memory CD4 T cells in vitro. Notably, IL-7-/-×RAG-1-/- mice transplanted with IL-7-sufficient, but not IL-7-deficient, BM MSC expressed IL-7 in BM, but not in their colon, and developed colitis when transplanted with CD4+CD45RBhigh T cells. CONCLUSIONS We demonstrate for the first time that BM MSC are a major source of IL-7 and play a pathological role in IBD by forming the niche for colitogenic CD4 memory T cells in BM.
Collapse
Affiliation(s)
- Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Takahara
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nakamura
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
25
|
Mandai Y, Takahashi D, Hase K, Obata Y, Furusawa Y, Ebisawa M, Nakagawa T, Sato T, Katsuno T, Saito Y, Shimaoka T, Yokosuka O, Yokote K, Ohno H. Distinct Roles for CXCR6(+) and CXCR6(-) CD4(+) T Cells in the Pathogenesis of Chronic Colitis. PLoS One 2013; 8:e65488. [PMID: 23840334 PMCID: PMC3686755 DOI: 10.1371/journal.pone.0065488] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/25/2013] [Indexed: 12/17/2022] Open
Abstract
CD4+ T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4+ T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4+ T cells expressed CXCR6 in the CD45RBhigh T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn’s disease. Although surface marker analysis demonstrated that both CXCR6+ and CXCR6− CD4+ T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6+ subset produced IFN-γ and TNF-α compared to CXCR6− subset, and only the CXCR6+ subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6+ T cells into Rag1−/− recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6− cells evoked colitis similar to that observed in CD4+CD45RBhigh T cell-transferred mice, and resulted in their conversion into CXCR6+ cells. Collectively, these observations suggest that the CXCR6+CD4+ T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6−CD4+ T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6+CD4+ T cells.
Collapse
Affiliation(s)
- Yasushi Mandai
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Daisuke Takahashi
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- Division of Immunobiology, Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Koji Hase
- Laboratory for Bioenvironmental Epigenetics, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- Division of Mucosal Barriology, International Research and Development Center for mucosal vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail: (KH); (HO)
| | - Yuuki Obata
- Department of Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, Japan
- Laboratory for Bioenvironmental Epigenetics, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Yukihiro Furusawa
- Laboratory for Bioenvironmental Epigenetics, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- Division of Mucosal Barriology, International Research and Development Center for mucosal vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Masashi Ebisawa
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- Division of Immunobiology, Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tomoo Nakagawa
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toru Sato
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuro Katsuno
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasushi Saito
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Shimaoka
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Osamu Yokosuka
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kotaro Yokote
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Ohno
- Department of Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, Japan
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- Division of Immunobiology, Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
- * E-mail: (KH); (HO)
| |
Collapse
|
26
|
Regulation of pathogenic Th17 cell differentiation by IL-10 in the development of glomerulonephritis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:402-12. [PMID: 23747510 DOI: 10.1016/j.ajpath.2013.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 12/31/2022]
Abstract
Although it is clear that T helper (Th)17 cells play a pathologic role in the pathogenesis of several inflammatory diseases, the contribution and regulation of pathogenic Th17 cells in the development of glomerulonephritis are still not fully understood. Herein, we show that IL-10-deficient mice exhibit exacerbation of glomerulonephritis after induction with anti-glomerular basement membrane globulin, with enhanced pathogenic Th17 immune responses. We further demonstrate that Rag1(-/-) mice reconstituted with IL-10(-/-) CD4(+) T cells develop more severe glomerulonephritis after induction of anti-glomerular basement membrane disease, with more infiltration of inflammatory cells into the kidneys. Finally, IL-17 and interferon γ double-positive cells were significantly increased in IL-10(-/-) CD4(+) T-cell cultures under pathogenic Th17 conditions compared with wild-type cell cultures. These findings suggest that T-cell-derived IL-10 plays a critical suppressive role in the control of pathogenic Th17 cell differentiation and highlights the importance of IL-10 as protection against glomerulonephritis development.
Collapse
|
27
|
Hisamatsu T, Kanai T, Mikami Y, Yoneno K, Matsuoka K, Hibi T. Immune aspects of the pathogenesis of inflammatory bowel disease. Pharmacol Ther 2013; 137:283-97. [PMID: 23103332 DOI: 10.1016/j.pharmthera.2012.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 12/11/2022]
Abstract
Although the precise etiologies of inflammatory bowel disease (IBD) (ulcerative colitis and Crohn's disease) remain obscure, several reports have indicated that dysfunction of the mucosal immune system plays an important role in its pathogenesis. Recent progress with genome-wide association studies has identified many IBD susceptibility genes. In individuals with genetic risk, abnormal interactions between the host immune system and gut flora, and dysregulation of cellular responses such as autophagy and ER stress, induce an abnormal host immune response in the gut resulting in intestinal inflammation. Research progress animal models in IBD, and in human IBD, has identified several key molecules in IBD pathogenesis such as TNFα and adhesion molecules, and molecular targeting therapies based on these molecules have been developed. Here, we review immunological aspects in IBD pathogenesis and the development of immunoregulatory therapy.
Collapse
Affiliation(s)
- Tadakazu Hisamatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Lymphocyte-stromal cell interaction induces IL-7 expression by interferon regulatory factors. Mol Immunol 2013; 54:378-85. [PMID: 23376291 DOI: 10.1016/j.molimm.2013.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/22/2012] [Accepted: 01/04/2013] [Indexed: 12/16/2022]
Abstract
The interaction between lymphocytes and stromal cells plays important roles in coordinated development of early lymphocytes. IL-7 is an essential cytokine for early lymphocyte development produced by stromal cells in the thymus and bone marrow. Although IL-7 is induced by interaction of early lymphocytes and stromal cells, its molecular basis is still unknown. To address this question, we employed co-culture system with an IL-7-dependent pre-B cell line, DW34, and a thymic stromal cell line, TSt-4. Co-culture with DW34 cells enhanced the levels of IL-7 transcripts in TSt-4 cells. Interestingly, the co-culture also induced transcripts of IFN-α and IFN-β but not of IFN-γ. In addition, exogenous IFN-β stimulation increased the levels of IL-7 transcripts in TSt-4 cells. Next, to elucidate the molecular mechanism of IL-7 induction, we analyzed the IL-7 promoter activity by reporter assay. The IL-7 promoter showed specific transcriptional activity in TSt-4 cells. An interferon-stimulated response element (ISRE) in the IL-7 promoter was essential for the induction of IL-7 transcription by both co-culture and IFN-β stimulation. Finally, overexpression of wild-type and dominant-negative forms of interferon regulatory factors (IRFs) activated and repressed, respectively, the IL-7 promoter in TSt-4 cells. Collectively, these results suggested that IRFs activated by lymphocyte adhesion induce IL-7 transcription through ISRE in stromal cells and that type I IFNs may be involved in the activation of IRFs. Thus, this study implied a physiological function of the IFN/IRF signal during lymphocyte development.
Collapse
|
29
|
Jin JO, Yu Q. Systemic administration of TLR3 agonist induces IL-7 expression and IL-7-dependent CXCR3 ligand production in the lung. J Leukoc Biol 2012; 93:413-25. [PMID: 23271706 DOI: 10.1189/jlb.0712360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we tested the hypothesis that systemic administration of TLR3 agonist poly I:C can enhance T cell infiltration of lung through up-regulating IL-7 expression. poly I:C, a synthetic analog of viral dsRNA and a TLR3 agonist, is studied extensively as vaccine adjuvant as a result of its pleotropic immune-stimulatory effects. Here, we show that systemic poly I:C administration induces substantial IL-7 production in the lung in a type 1 IFN- and IFN-γ-dependent fashion. Blockade of the IL-7Rα signal with a neutralizing antibody abrogated poly I:C-induced MCP-1 up-regulation, macrophage recruitment, and CXCR3 ligand expression in the lung. Conversely, administration of IL-7 enhances these events, and it does so by enhancing T cell IFN-γ production. We also show that the initial up-regulation of CXCR3 ligands and infiltration of T cells in the lung are mediated by poly I:C-induced IFN-γ from NK cells; however, the sustained and optimal CXCR3 ligand expression and T cell infiltration require poly I:C-induced IL-7 and T cell-derived IFN-γ. In a model of multiorgan inflammation elicited by adoptive transfer of immune cells into RAG1(-/-) mice, we show that poly I:C enhances IL-7 production in the lung and promotes expression of CXCR3 ligands and recruitment of IFN-γ(+) T cells in an IL-7-dependent fashion. Collectively, these results strongly support our hypothesis and delineate a new mechanism by which poly I:C boosts the T cell immune response in the lung by inducing local IL-7 production, which in turn, enhances T cell-derived IFN-γ to promote macrophage recruitment, CXCR3 ligand expression, and T cell infiltration.
Collapse
Affiliation(s)
- Jun-O Jin
- Department of Immunology and Infectious Disease, The Forsyth Institute, 245 First St., Cambridge, MA 02142, USA
| | | |
Collapse
|
30
|
Willis CR, Seamons A, Maxwell J, Treuting PM, Nelson L, Chen G, Phelps S, Smith CL, Brabb T, Iritani BM, Maggio-Price L. Interleukin-7 receptor blockade suppresses adaptive and innate inflammatory responses in experimental colitis. JOURNAL OF INFLAMMATION-LONDON 2012; 9:39. [PMID: 23057802 PMCID: PMC3551718 DOI: 10.1186/1476-9255-9-39] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/17/2012] [Indexed: 11/26/2022]
Abstract
Background Interleukin-7 (IL-7) acts primarily on T cells to promote their differentiation, survival, and homeostasis. Under disease conditions, IL-7 mediates inflammation through several mechanisms and cell types. In humans, IL-7 and its receptor (IL-7R) are increased in diseases characterized by inflammation such as atherosclerosis, rheumatoid arthritis, psoriasis, multiple sclerosis, and inflammatory bowel disease. In mice, overexpression of IL-7 results in chronic colitis, and T-cell adoptive transfer studies suggest that memory T cells expressing high amounts of IL-7R drive colitis and are maintained and expanded with IL-7. The studies presented here were undertaken to better understand the contribution of IL-7R in inflammatory bowel disease in which colitis was induced with a bacterial trigger rather than with adoptive transfer. Methods We examined the contribution of IL-7R on inflammation and disease development in two models of experimental colitis: Helicobacter bilis (Hb)-induced colitis in immune-sufficient Mdr1a−/− mice and in T- and B-cell-deficient Rag2−/− mice. We used pharmacological blockade of IL-7R to understand the mechanisms involved in IL-7R-mediated inflammatory bowel disease by analyzing immune cell profiles, circulating and colon proteins, and colon gene expression. Results Treatment of mice with an anti-IL-7R antibody was effective in reducing colitis in Hb-infected Mdr1a−/− mice by reducing T-cell numbers as well as T-cell function. Down regulation of the innate immune response was also detected in Hb-infected Mdr1a−/− mice treated with an anti-IL-7R antibody. In Rag2−/− mice where colitis was triggered by Hb-infection, treatment with an anti-IL-7R antibody controlled innate inflammatory responses by reducing macrophage and dendritic cell numbers and their activity. Conclusions Results from our studies showed that inhibition of IL-7R successfully ameliorated inflammation and disease development in Hb-infected mice by controlling the expansion of multiple leukocyte populations, as well as the activity of these immune cells. Our findings demonstrate an important function of IL-7R-driven immunity in experimental colitis and indicate that the therapeutic efficacy of IL-7R blockade involves affecting both adaptive and innate immunity.
Collapse
Affiliation(s)
| | - Audrey Seamons
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Joe Maxwell
- Department of Inflammation, Amgen, Inc, Seattle, WA, USA
| | - Piper M Treuting
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Laurel Nelson
- Department of Inflammation, Amgen, Inc, Seattle, WA, USA
| | - Guang Chen
- Department of Inflammation, Amgen, Inc, Seattle, WA, USA
| | - Susan Phelps
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Carole L Smith
- Department of Inflammation, Amgen, Inc, Seattle, WA, USA
| | - Thea Brabb
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Brian M Iritani
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
31
|
IL-7 induces expression and activation of integrin α4β7 promoting naive T-cell homing to the intestinal mucosa. Blood 2012; 120:2610-9. [PMID: 22896005 DOI: 10.1182/blood-2012-06-434779] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-7 (IL-7) is a nonredundant cytokine that plays a critical role in T-cell homeostasis and promotes immunologic reconstitution in lymphopenic hosts. Here, we show that IL-7, at doses that reflect suprahomeostatic concentrations achieved in lymphopenic hosts, is a potent and selective inducer of the gut-homing integrin α4β7 in human T cells, as documented both ex vivo and in vivo in patients enrolled in a clinical trial of IL-7 treatment. Induction of α4β7 by IL-7 occurs primarily in naive T cells and is associated with functional activation of the integrin, as indicated by increased binding activity for the specific α4β7 ligand, MAdCAM-1. The physiologic relevance of these findings was validated by the preferential homing of IL-7-treated naive human T cells to the intestinal compartment in humanized NOD/SCID/IL-2 receptor-γ(null) (NSG) mice. We also show that IL-7 triggers a peculiar activation program in naive T cells, characterized by the acquisition of memory-like phenotypic features and proliferation uncoupled from expression of classic T-cell activation markers. These findings provide a mechanism for the transient in vivo depletion of circulating T cells after IL-7 administration and suggest that intestinal homing and memory-like conversion of naive T cells are critical steps in the IL-7-driven immunologic reconstitution of lymphopenic hosts.
Collapse
|
32
|
Maxwell JR, Viney JL. Overview of mouse models of inflammatory bowel disease and their use in drug discovery. ACTA ACUST UNITED AC 2012; Chapter 5:Unit5.57. [PMID: 22294403 DOI: 10.1002/0471141755.ph0557s47] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inflammatory bowel disease (IBD), a condition that affects millions of individuals, encompasses two distinct conditions: Crohn's disease (CD) and ulcerative colitis (UC). CD is an inflammatory condition affecting any part of the digestive tract between the mouth and anus, but, most commonly, the ileum and colon. It is distinguished by the presence of granulomas in the mucosal tissue and patchy areas of transmural inflammation. UC is restricted to the colon and is manifest as continuous inflammation starting from the rectum and extending back towards the cecum. Inflammation in UC is primarily restricted to mucosal layers. Research is ongoing to understand the causality of these two diseases, and advances in understanding of their pathology have resulted from the variety of mouse models of IBD that have emerged since the early 1990s. Described in this unit are contemporary mouse models of these conditions and examples of their use in drug discovery.
Collapse
|
33
|
Shalapour S, Deiser K, Kühl AA, Glauben R, Krug SM, Fischer A, Sercan Ö, Chappaz S, Bereswill S, Heimesaat MM, Loddenkemper C, Fromm M, Finke D, Hämmerling GJ, Arnold B, Siegmund B, Schüler T. Interleukin-7 links T lymphocyte and intestinal epithelial cell homeostasis. PLoS One 2012; 7:e31939. [PMID: 22384106 PMCID: PMC3288069 DOI: 10.1371/journal.pone.0031939] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/19/2012] [Indexed: 01/01/2023] Open
Abstract
Interleukin-7 (IL-7) is a major survival factor for mature T cells. Therefore, the degree of IL-7 availability determines the size of the peripheral T cell pool and regulates T cell homeostasis. Here we provide evidence that IL-7 also regulates the homeostasis of intestinal epithelial cells (IEC), colon function and the composition of the commensal microflora. In the colon of T cell-deficient, lymphopenic mice, IL-7-producing IEC accumulate. IEC hyperplasia can be blocked by IL-7-consuming T cells or the inactivation of the IL-7/IL-7R signaling pathway. However, the blockade of the IL-7/IL-7R signaling pathway renders T cell-deficient mice more sensitive to chemically-induced IEC damage and subsequent colitis. In summary, our data demonstrate that IL-7 promotes IEC hyperplasia under lymphopenic conditions. Under non-lymphopenic conditions, however, T cells consume IL-7 thereby limiting IEC expansion and survival. Hence, the degree of IL-7 availability regulates both, T cell and IEC homeostasis.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Katrin Deiser
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Anja A. Kühl
- Institute of Pathology/Research Center ImmunoSciences, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Rainer Glauben
- Department of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Susanne M. Krug
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - André Fischer
- Institute of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Özen Sercan
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Department of Molecular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Stephane Chappaz
- Department of Biomedicine, Division of Developmental Immunology, University of Basel, Basel, Switzerland
| | - Stefan Bereswill
- Institute of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Markus M. Heimesaat
- Institute of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Christoph Loddenkemper
- Institute of Pathology/Research Center ImmunoSciences, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Daniela Finke
- Department of Biomedicine, Division of Developmental Immunology, University of Basel, Basel, Switzerland
| | - Günter J. Hämmerling
- Department of Molecular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Bernd Arnold
- Department of Molecular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Thomas Schüler
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Department of Molecular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
34
|
Yamaji O, Nagaishi T, Totsuka T, Onizawa M, Suzuki M, Tsuge N, Hasegawa A, Okamoto R, Tsuchiya K, Nakamura T, Arase H, Kanai T, Watanabe M. The development of colitogenic CD4(+) T cells is regulated by IL-7 in collaboration with NK cell function in a murine model of colitis. THE JOURNAL OF IMMUNOLOGY 2012; 188:2524-36. [PMID: 22331065 DOI: 10.4049/jimmunol.1100371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We previously reported that IL-7(-/-)RAG(-/-) mice receiving naive T cells failed to induce colitis. Such abrogation of colitis may be associated with not only incomplete T cell maintenance due to the lack of IL-7, but also with the induction of colitogenic CD4(+) T cell apoptosis at an early stage of colitis development. Moreover, NK cells may be associated with the suppression of pathogenic T cells in vivo, and they may induce apoptosis of CD4(+) T cells. To further investigate these roles of NK cells, RAG(-/-) and IL-7(-/-)RAG(-/-) mice that had received naive T cells were depleted of NK cells using anti-asialo GM1 and anti-NK1.1 Abs. NK cell depletion at an early stage, but not at a later stage during colitogenic effector memory T cell (T(EM)) development, resulted in exacerbated colitis in recipient mice even in the absence of IL-7. Increased CD44(+)CD62L(-) T(EM) and unique CD44(-)CD62L(-) T cell subsets were observed in the T cell-reconstituted RAG(-/-) recipients when NK cells were depleted, although Fas, DR5, and IL-7R expressions in this subset differed from those in the CD44(+)CD62L(-) T(EM) subset. NK cell characteristics were the same in the presence or absence of IL-7 in vitro and in vivo. These results suggest that NK cells suppress colitis severity in T cell-reconstituted RAG(-/-) and IL-7(-/-)RAG(-/-) recipient mice through targeting of colitogenic CD4(+)CD44(+)CD62L(-) T(EM) and, possibly, of the newly observed CD4(+)CD44(-)CD62L(-) subset present at the early stage of T cell development.
Collapse
Affiliation(s)
- Osamu Yamaji
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nemoto Y, Kanai T, Shinohara T, Ito T, Nakamura T, Okamoto R, Tsuchiya K, Lipp M, Eishi Y, Watanabe M. Luminal CD4⁺ T cells penetrate gut epithelial monolayers and egress from lamina propria to blood circulation. Gastroenterology 2011; 141:2130-2139.e11. [PMID: 21875496 DOI: 10.1053/j.gastro.2011.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 08/03/2011] [Accepted: 08/11/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The egress of memory T cells from peripheral tissues, such as lung and skin, into the draining lymph nodes requires their expression of CC chemokine receptor 7 (CCR7). In the intestine, resident memory T cells in the intestinal lamina propria (LP) do not express CCR7, indicating that they are tissue bound and do not exit the intestine. METHODS We developed a cell transfer system, using rectal administration of lymphocytes to C57BL/6 mice. Lymphotoxin α-deficient mice were crossed with RAG-2(-/-) (recombination-activating gene-2) mice to generate lymphotoxin α-deficient × RAG-2(-/-) mice. RESULTS Severe combined immunodeficient (SCID) or RAG-2(-/-) mice given rectal administration of splenic CD4(+) T cells from normal mice developed colitis; the cells proliferated not only in the LP but also in spleen. SCID or RAG-2(-/-) mice given rectal administrations of CD4(+) T cells that expressed green fluorescent protein (GFP(+)CD4(+) T cells) localized to the LP within 6 hours but were not found in the spleen until 24 hours after administration. Immunohistochemical and electron microscopic analyses detected CD4(+) T cells in the intraepithelial space just 3 hours after intrarectal administration. However, neither CCR7 deficiency nor the sphingosine-1-phosphate receptor agonist Fingolimod impaired the egress of CD4(+) T cells from LP to systemic circulation. CONCLUSIONS CD4(+) T cells not only penetrate from the luminal side of the intestine to the LP but also actively egress from the LP into the circulation. We developed a rectal administration system that might be used to further investigate cell trafficking in intestinal mucosa and to develop enema-based therapeutics for intestinal diseases.
Collapse
Affiliation(s)
- Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Transcription factor IRF8 directs a silencing programme for TH17 cell differentiation. Nat Commun 2011; 2:314. [PMID: 21587231 PMCID: PMC3112536 DOI: 10.1038/ncomms1311] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 04/13/2011] [Indexed: 02/07/2023] Open
Abstract
TH17 cells are recognized as a unique subset of T helper cells that have critical roles in the pathogenesis of autoimmunity and tissue inflammation. Although RORγt is necessary for the generation of TH17 cells, the molecular mechanisms underlying the functional diversity of TH17 cells are not fully understood. Here we show that a member of interferon regulatory factor (IRF) family of transcription factors, IRF8, has a critical role in silencing TH17-cell differentiation. Mice with a conventional knockout, as well as a T cell-specific deletion, of the Irf8 gene exhibited more efficient TH17 cells. Indeed, studies of an experimental model of colitis showed that IRF8 deficiency resulted in more severe inflammation with an enhanced TH17 phenotype. IRF8 was induced steadily and inhibited TH17-cell differentiation during TH17 lineage commitment at least in part through its physical interaction with RORγt. These findings define IRF8 as a novel intrinsic transcriptional inhibitor of TH17-cell differentiation. The molecular mechanisms that regulate TH17 cell diversity are poorly understood. Ouyang et al. show that the transcription factor interferon regulatory factor-8 is required for TH17-cell differentiation and that its absence increases the severity of an experimental model of colitis.
Collapse
|
37
|
Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 2011; 11:330-42. [PMID: 21508983 DOI: 10.1038/nri2970] [Citation(s) in RCA: 435] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-7 (IL-7) is required for T cell development and for maintaining and restoring homeostasis of mature T cells. IL-7 is a limiting resource under normal conditions, but it accumulates during lymphopaenia, leading to increased T cell proliferation. The administration of recombinant human IL-7 to normal or lymphopenic mice, non-human primates and humans results in widespread T cell proliferation, increased T cell numbers, modulation of peripheral T cell subsets and increased T cell receptor repertoire diversity. These effects raise the prospect that IL-7 could mediate therapeutic benefits in several clinical settings. This Review summarizes the biology of IL-7 and the results of its clinical use that are available so far to provide a perspective on the opportunities for clinical application of this cytokine.
Collapse
Affiliation(s)
- Crystal L Mackall
- Immunology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
38
|
Pinchuk IV, Beswick EJ, Saada JI, Boya G, Schmitt D, Raju GS, Brenmoehl J, Rogler G, Reyes VE, Powell DW. Human colonic myofibroblasts promote expansion of CD4+ CD25high Foxp3+ regulatory T cells. Gastroenterology 2011; 140:2019-30. [PMID: 21376048 PMCID: PMC3109194 DOI: 10.1053/j.gastro.2011.02.059] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 02/11/2011] [Accepted: 02/18/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Regulatory T (Treg) cells (CD4+ CD25high FoxP3+) regulate mucosal tolerance; their adoptive transfer prevents or reduces symptoms of colitis in mouse models of inflammatory bowel disease. Colonic CD90+ mesenchymal myofibroblasts and fibroblasts (CMFs) are abundant, nonprofessional antigen-presenting cells in the normal human colonic mucosa that suppress proliferation of activated CD4+ effector T cells. We studied CMF suppressive capacity and evaluated the ability of CMF to induce Treg cells. METHODS Allogeneic cocultures of CD4+ T cells and CMFs, derived from normal mucosa of patients undergoing colectomy for colon cancer or inflamed colonic tissues from patients with ulcerative colitis or Crohn's disease, were used to assess activation of the Treg cells. RESULTS Coculture of normal CMF with resting or naïve CD4+ T cells led to development of cells with a Treg phenotype; it also induced proliferation of a CD25+ CD127- FoxP3+ T cells, which expressed CTLA-4, interleukin-10, and transforming growth factor-β and had suppressive activities. In contrast to dendritic cells, normal CMFs required exogenous interleukin-2 to induce proliferation of naturally occurring Treg cells. Induction of Treg cells by normal CMFs required major histocompatibility complex class II and prostaglandin E2. CMFs from patients with inflammatory bowel diseases had reduced capacity to induce active Treg cells and increased capacity to transiently generate CD4+CD25+/- CD127+ T cells that express low levels of FoxP3. CONCLUSIONS CMFs suppress the immune response in normal colon tissue and might therefore help maintain colonic mucosal tolerance. Alterations in CMF-mediated induction of Treg cells might promote pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Irina V. Pinchuk
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Ellen J. Beswick
- Department of Molecular Genetics & Microbiology, University of New Mexico, Albuquerque, NM 87131
| | - Jamal I. Saada
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Gushyalatha Boya
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - David Schmitt
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas 77555
| | - Gottumukkala S. Raju
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Julia Brenmoehl
- Research Unit Genetics and Biometry, Leibnitz Institute of Farm Animal Biology Dummerstorf 18196, Germany
| | - Gerhard Rogler
- Departement für Innere Medizin, Klinik für Gastroenterologie und Hepatologie, Universitätsspital Zürich, Zürich, Schweiz
| | - Victor E. Reyes
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas 77555, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Don W. Powell
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555, Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555,Corresponding author: Don W. Powell, M.D., University of Texas Medical Branch, 301, University Bld, Galveston, Tx 77555-0655, , Phone: (409) 772-1950 or 772-9015, Fax: (409) 772-8097 or 772-4789
| |
Collapse
|
39
|
Dahan S, Rabinowitz KM, Martin AP, Berin MC, Unkeless JC, Mayer L. Notch-1 signaling regulates intestinal epithelial barrier function, through interaction with CD4+ T cells, in mice and humans. Gastroenterology 2011; 140:550-9. [PMID: 21056041 PMCID: PMC3031772 DOI: 10.1053/j.gastro.2010.10.057] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/11/2010] [Accepted: 10/26/2010] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Interactions between lymphocytes and intestinal epithelial cells occur in the subepithelial space of the gastrointestinal tract. Normal human lamina propria lymphocytes (LPLs) induce differentiation of intestinal epithelial cells. The absence of LPLs in mice, such as in RAG1(-/-) mice, results in defects in epithelial cell differentiation. We investigated the role of lymphoepithelial interactions in epithelial differentiation and barrier function. METHODS We used adoptive transfer to determine if CD4(+) T cells (CD4(+)CD62L(+)CD45Rb(Hi) and/or CD4(+)CD62L(+)CD45Rb(Lo)) could overcome permeability defect (quantified in Ussing chambers). Immunofluorescence staining was performed to determine expression of cleaved Notch-1, villin, and claudin 5 in colon samples from mice and humans. Caco-2 cells were infected with a lentivirus containing a specific Notch-1 or scrambled short hairpin RNA sequence. Tight junction assembly was analyzed by immunoblot and immunofluorescence analyses, and transepithelial resistance was monitored. RESULTS Expression of cleaved Notch-1, villin, or claudin 5 was not detected in RAG1(-/-) colonocytes; their loss correlated with increased intestinal permeability. Transfer of CD45Rb(Hi) and/or CD45Rb(Lo) cells into RAG1(-/-) mice induced expression of cleaved Notch, villin, and claudin 5 in colonocytes and significantly reduced the permeability of the distal colon. Loss of Notch-1 expression in Caco-2 cells correlated with decreased transepithelial resistance and dysregulated expression and localization of tight junction proteins. Levels of cleaved Notch-1 were increased in colonic epithelium of patients with Crohn's disease. CONCLUSIONS LPLs promote mucosal barrier function, which is associated with activation of the Notch-1 signaling pathway. LPLs maintain intestinal homeostasis by inducing intestinal epithelial cell differentiation, polarization, and barrier function.
Collapse
Affiliation(s)
- Stephanie Dahan
- Immunology Institute, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | - Andrea P. Martin
- Immunology Institute, Mount Sinai School of Medicine, New York, NY.,Eli Lilly and Company Lilly Corporate Center, Indianapolis, IN
| | - M. Cecilia Berin
- Division of Pediatric Allergy and Immunology, Mount Sinai School of Medicine, New York, NY
| | - Jay C. Unkeless
- Immunology Institute, Mount Sinai School of Medicine, New York, NY
| | - Lloyd Mayer
- Immunology Institute, Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
40
|
Shinohara T, Nemoto Y, Kanai T, Kameyama K, Okamoto R, Tsuchiya K, Nakamura T, Totsuka T, Ikuta K, Watanabe M. Upregulated IL-7 receptor α expression on colitogenic memory CD4+ T cells may participate in the development and persistence of chronic colitis. THE JOURNAL OF IMMUNOLOGY 2011; 186:2623-32. [PMID: 21217010 DOI: 10.4049/jimmunol.1000057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have previously demonstrated that IL-7 is essential for the persistence of colitis as a survival factor of colitogenic IL-7Rα-expressing memory CD4(+) T cells. Because IL-7Rα is broadly expressed on various immune cells, it is possible that the persistence of colitogenic CD4(+) T cells is affected by other IL-7Rα-expressing non-T cells. To test this hypothesis, we conducted two adoptive transfer colitis experiments using IL-7Rα(-/-) CD4(+)CD25(-) donor cells and IL-7Rα(-/-) × RAG-2(-/-) recipient mice, respectively. First, IL-7Rα expression on colitic lamina propria (LP) CD4(+) T cells was significantly higher than on normal LP CD4(+) T cells, whereas expression on other colitic LP immune cells, (e.g., NK cells, macrophages, myeloid dendritic cells) was conversely lower than that of paired LP cells in normal mice, resulting in predominantly higher expression of IL-7Rα on colitogenic LP CD4(+) cells, which allows them to exclusively use IL-7. Furthermore, RAG-2(-/-) mice transferred with IL-7Rα(-/-) CD4(+)CD25(-) T cells did not develop colitis, although LP CD4(+) T cells from mice transferred with IL-7Rα(-/-) CD4(+)CD25(-) T cells were differentiated to CD4(+)CD44(high)CD62L(-) effector-memory T cells. Finally, IL-7Rα(-/-) × RAG-2(-/-) mice transferred with CD4(+)CD25(-) T cells developed colitis similar to RAG-2(-/-) mice transferred with CD4(+)CD25(-) T cells. These results suggest that IL-7Rα expression on colitogenic CD4(+) T cells, but not on other cells, is essential for the development of chronic colitis. Therefore, therapeutic approaches targeting the IL-7/IL-7R signaling pathway in colitogenic CD4(+) T cells may be feasible for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Tamako Shinohara
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Grenningloh R, Tai TS, Frahm N, Hongo TC, Chicoine AT, Brander C, Kaufmann DE, Ho IC. Ets-1 maintains IL-7 receptor expression in peripheral T cells. THE JOURNAL OF IMMUNOLOGY 2010; 186:969-76. [PMID: 21148801 DOI: 10.4049/jimmunol.1002099] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The expression of CD127, the IL-7-binding subunit of the IL-7 R, is tightly regulated during the development and activation of T cells and is reduced during chronic viral infection. However, the molecular mechanism regulating the dynamic expression of CD127 is still poorly understood. In this study, we report that the transcription factor Ets-1 is required for maintaining the expression of CD127 in murine peripheral T cells. Ets-1 binds to and activates the CD127 promoter, and its absence leads to reduced CD127 expression, attenuated IL-7 signaling, and impaired IL-7-dependent homeostatic proliferation of T cells. The expression of CD127 and Ets-1 is strongly correlated in human T cells. Both CD127 and Ets-1 expression are decreased in CD8(+) T cells during HIV infection. In addition, HIV-associated loss of CD127 is only observed in Ets-1(low) effector memory and central memory but not in Ets-1(high) naive CD8(+) T cells. Taken together, our data identify Ets-1 as a critical regulator of CD127 expression in T cells.
Collapse
Affiliation(s)
- Roland Grenningloh
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kameyama K, Nemoto Y, Kanai T, Shinohara T, Okamoto R, Tsuchiya K, Nakamura T, Sakamoto N, Totsuka T, Hibi T, Watanabe M. IL-2 is positively involved in the development of colitogenic CD4+ IL-7R alpha high memory T cells in chronic colitis. Eur J Immunol 2010; 40:2423-36. [PMID: 20623548 DOI: 10.1002/eji.200939764] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IL-2 and IL-7 share a common gamma-chain receptor and are critical for T-cell homeostasis. We aimed to clarify the reciprocal roles of IL-2 and IL-7 in the development and persistence of chronic colitis. We performed a series of adoptive transfers of IL-2(-/-) CD4(+)CD45RB(high) T cells into RAG-2(-/-) mice and assessed the role of IL-2 in the induction of IL-7R alpha on colitogenic CD4(+) T cells and the development of chronic colitis. RAG-2(-/-) mice transferred with WT but not with IL-2(-/-) CD4(+)CD45RB(high) T cells developed Th1/Th17-mediated colitis. Consistently, re-expression of IL-7R alpha was severely impaired on IL-2(-/-) but not on WT CD4(+) T cells from the transferred mice. To exclude a contribution of the preclinical autoimmunity of IL-2(-/-)mice, WT Ly5.1(+) or IL-2(-/-) Ly5.2(+) CD4(+)CD45RB(high) T cells from GFP mice previously transplanted with the same number of WT and IL-2(-/-) BM cells were transferred into RAG-2(-/-) mice. RAG-2(-/-) mice transferred with IL-2(-/-)-derived CD4(+)CD45RB(high) T cells did not develop colitis, but their splenic CD4(+) T cells changed from effector-memory to central-memory type. These results show that IL-2 is critically involved in the establishment and maintenance of IL-7-dependent colitogenic memory CD4(+)IL-7R alpha(high) T cells.
Collapse
Affiliation(s)
- Kaori Kameyama
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mikami Y, Kanai T, Sujino T, Ono Y, Hayashi A, Okazawa A, Kamada N, Matsuoka K, Hisamatsu T, Okamoto S, Takaishi H, Inoue N, Ogata H, Hibi T. Competition between colitogenic Th1 and Th17 cells contributes to the amelioration of colitis. Eur J Immunol 2010; 40:2409-22. [DOI: 10.1002/eji.201040379] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Roth MJ, Katki HA, Wei WQ, Qiao YL, Bagni R, Wang GQ, Whitby D, Dong ZW, Gail MH, Limburg PJ, Giffen CA, Taylor PR, Dawsey SM. Serum cytokine analysis in a positive chemoprevention trial: selenium, interleukin-2, and an association with squamous preneoplastic disease. Cancer Prev Res (Phila) 2010; 3:810-7. [PMID: 20587703 DOI: 10.1158/1940-6207.capr-09-0269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This study represents a multiplex cytokine analysis of serum from a 10-month randomized, controlled trial of 238 subjects that investigated the effects of selenomethionine and/or celecoxib in subjects with mild or moderate esophageal squamous dysplasia. The original chemoprevention study found that, among those with mild dysplasia, selenomethionine treatment favorably altered dysplasia grade. The current analysis found that selenomethionine downregulated interleukin (IL)-2 by 9% (P = 0.04), whereas celecoxib downregulated IL-7 by 11% (P = 0.006) and upregulated IL-13 by 17% (P = 0.008). In addition, an increase in IL-7 tertile from baseline to t10 was significantly associated with an increase in dysplasia grade, both overall [odds ratio (OR), 1.47; P = 0.03] and among those with mild dysplasia at t0 (OR, 2.53; P = 0.001). An increase in IL-2 tertile from baseline to t10 was also nonsignificantly associated with worsening dysplasia for all participants (OR, 1.32; P = 0.098) and significantly associated with worsening dysplasia among those with mild dysplasia at baseline (OR, 2.0; P = 0.01). The association of increased IL-2 with worsening dysplasia remained significant in those on selenomethionine treatment who began the trial with mild dysplasia (OR, 2.52; P = 0.03). The current study shows that selenomethionine supplementation decreased serum IL-2 levels, whereas celecoxib treatment decreased IL-7 levels and increased IL-13 levels during a 10-month randomized chemoprevention trial. An increase in IL-2 or IL-7 was associated with increased severity of dysplasia over the course of the trial, especially in those who began the trial with mild dysplasia. The favorable effect of selenomethionine on esophageal dysplasia in the original trial may have been mediated in part by its effect in reducing the levels of IL-2.
Collapse
Affiliation(s)
- Mark J Roth
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892-7232, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lagishetty V, Misharin AV, Liu NQ, Lisse TS, Chun RF, Ouyang Y, McLachlan SM, Adams JS, Hewison M. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis. Endocrinology 2010; 151:2423-32. [PMID: 20392825 PMCID: PMC2875827 DOI: 10.1210/en.2010-0089] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 03/15/2010] [Indexed: 02/07/2023]
Abstract
Vitamin D insufficiency is a global health issue. Although classically associated with rickets, low vitamin D levels have also been linked to aberrant immune function and associated health problems such as inflammatory bowel disease (IBD). To test the hypothesis that impaired vitamin D status predisposes to IBD, 8-wk-old C57BL/6 mice were raised from weaning on vitamin D-deficient or vitamin D-sufficient diets and then treated with dextran sodium sulphate (DSS) to induce colitis. Vitamin D-deficient mice showed decreased serum levels of precursor 25-hydroxyvitamin D(3) (2.5 +/- 0.1 vs. 24.4 +/- 1.8 ng/ml) and active 1,25-dihydroxyvitamin D(3) (28.8 +/- 3.1 vs. 45.6 +/- 4.2 pg/ml), greater DSS-induced weight loss (9 vs. 5%), increased colitis (4.71 +/- 0.85 vs. 1.57 +/- 0.18), and splenomegaly relative to mice on vitamin D-sufficient chow. DNA array analysis of colon tissue (n = 4 mice) identified 27 genes consistently (P < 0.05) up-regulated or down-regulated more than 2-fold in vitamin D-deficient vs. vitamin D-sufficient mice, in the absence of DSS-induced colitis. This included angiogenin-4, an antimicrobial protein involved in host containment of enteric bacteria. Immunohistochemistry confirmed that colonic angiogenin-4 protein was significantly decreased in vitamin D-deficient mice even in the absence of colitis. Moreover, the same animals showed elevated levels (50-fold) of bacteria in colonic tissue. These data show for the first time that simple vitamin D deficiency predisposes mice to colitis via dysregulated colonic antimicrobial activity and impaired homeostasis of enteric bacteria. This may be a pivotal mechanism linking vitamin D status with IBD in humans.
Collapse
Affiliation(s)
- Venu Lagishetty
- Room 410D, Orthopaedic Hospital Research Center, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chetoui N, Boisvert M, Gendron S, Aoudjit F. Interleukin-7 promotes the survival of human CD4+ effector/memory T cells by up-regulating Bcl-2 proteins and activating the JAK/STAT signalling pathway. Immunology 2010; 130:418-26. [PMID: 20465565 DOI: 10.1111/j.1365-2567.2009.03244.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
SUMMARY Interleukin-7 (IL-7) is a crucial cytokine involved in T-cell survival and development but its signalling in human T cells, particularly in effector/memory T cells, is poorly documented. In this study, we found that IL-7 protects human CD4(+) effector/memory T cells from apoptosis induced upon the absence of stimulation and cytokines. We show that IL-7 up-regulates not only Bcl-2 but also Bcl-xL and Mcl-1 as well. Interleukin-7-induced activation of the janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway is sufficient for cell survival and up-regulation of Bcl-2 proteins. In contrast to previous studies with naive T cells, we found that IL-7 is a weak activator of the phosphatidylinositol 3 kinase (PI3K)/AKT (also referred as protein kinase B) pathway and IL-7-mediated cell survival occurs independently from the PI3K/AKT pathway as well as from activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Considering the contribution of both IL-7 and CD4(+) effector/memory T cells to the pathogenesis of autoimmune diseases such as rheumatoid arthritis and colitis, our study suggests that IL-7 can contribute to these diseases by promoting cell survival. A further understanding of the mechanisms of IL-7 signalling in effector/memory T cells associated with autoimmune inflammatory diseases may lead to potential new therapeutic avenues.
Collapse
Affiliation(s)
- Nizar Chetoui
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Faculté de Médecine, Université Laval, Québec, PQ, Canada
| | | | | | | |
Collapse
|
47
|
Schuster K, Gadiot J, Andreesen R, Mackensen A, Gajewski TF, Blank C. Homeostatic proliferation of naïve CD8+ T cells depends on CD62L/L-selectin-mediated homing to peripheral LN. Eur J Immunol 2010; 39:2981-90. [PMID: 19658092 DOI: 10.1002/eji.200939330] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Adoptive transfer of naïve CD8(+) T cells into lymphopenic recipients results both in spontaneous proliferation and in partial activation of T cells, a phenomenon termed homeostatic proliferation (HP). HP of CD8(+) T cells is dependent on host IL-7, IL-15, and MHC-class I and has been shown to prevent T-cell tolerance, reverse T-cell anergy and support T-cell-mediated tumor control in vivo. However, the initial anatomic site of HP is still under debate. Since we observed that the earliest detectable HP occurs within LN and that T cells undergoing HP retain a CD62L(bright) phenotype, we investigated the functional role of CD62L for this process. We found that CD62L-expression on T cells is required for optimal HP and HP was impaired in lymphotoxin-alphabeta(-/-) mice, indicating the necessity for intact host secondary lymphoid organ structures. Use of the LN egression inhibitor FTY720 indicated that LN structures were pivotal to yield homeostatically proliferated T cells detected in other compartments. Consistent with these results, HP-supported control of MC57-SIY tumors depended on CD62L. Our data indicate a critical role for CD62L and LN homing for the process of HP, which has implications for adoptive immunotherapy approaches of cancer.
Collapse
Affiliation(s)
- Kerstin Schuster
- Department of Hematology and Oncology, University Medical Center, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Tomita T, Kanai T, Totsuka T, Nemoto Y, Okamoto R, Tsuchiya K, Sakamoto N, Ohteki T, Hibi T, Watanabe M. IL-7 is essential for lymphopenia-driven turnover of colitogenic CD4+memory T cells in chronic colitis. Eur J Immunol 2009; 39:2737-47. [DOI: 10.1002/eji.200838905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Nemoto Y, Kanai T, Kameyama K, Shinohara T, Sakamoto N, Totsuka T, Okamoto R, Tsuchiya K, Nakamura T, Sudo T, Matsumoto S, Watanabe M. Long-Lived Colitogenic CD4+ Memory T Cells Residing Outside the Intestine Participate in the Perpetuation of Chronic Colitis. THE JOURNAL OF IMMUNOLOGY 2009; 183:5059-68. [DOI: 10.4049/jimmunol.0803684] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Finke D. Induction of intestinal lymphoid tissue formation by intrinsic and extrinsic signals. Semin Immunopathol 2009; 31:151-69. [PMID: 19506873 DOI: 10.1007/s00281-009-0163-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/20/2009] [Indexed: 12/20/2022]
Abstract
Since the discovery of inducer cells as a separate lineage for organogenesis of Peyer's patches in the small intestine of fetal mice, a lot of progress has been made in understanding the molecular pathways involved in the generation of lymphoid tissue and the maintenance of the lymphoid architecture. The findings that inducer cells also exist in adult mice and in humans, have a lineage relationship to natural killer cells, and can be stimulated during infections highlight their possible role in establishing innate and adaptive immune responses. Novel concepts in the development of intestinal lymphoid tissues have been made in the past few years suggesting that lymphoid organs are more plastic as previously thought and depend on antigenic stimulation. In addition, the generation of novel lymphoid organs in the gut under inflammatory conditions indicates a function in chronic diseases. The present review summarizes current knowledge on the basic framework of signals required for developing lymphoid tissue under normal and inflammatory conditions.
Collapse
Affiliation(s)
- Daniela Finke
- Department of Biomedicine, Developmental Immunology, University of Basel, Basel, Switzerland.
| |
Collapse
|