1
|
Hamdan TA. The Multifaceted Roles of NK Cells in the Context of Murine Cytomegalovirus and Lymphocytic Choriomeningitis Virus Infections. Immune Netw 2024; 24:e29. [PMID: 39246620 PMCID: PMC11377952 DOI: 10.4110/in.2024.24.e29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 09/10/2024] Open
Abstract
NK cells belong to innate lymphoid cells and able to eliminate infected cells and tumor cells. NK cells play a valuable role in controlling viral infections. Also, they have the potential to shape the adaptive immunity via a unique crosstalk with the different immune cells. Murine models are important tools for delineating the immunological phenomena in viral infection. To decipher the immunological virus-host interactions, two major infection models are being investigated in mice regarding NK cell-mediated recognition: murine cytomegalovirus (MCMV) and lymphocytic choriomeningitis virus (LCMV). In this review, we recapitulate recent findings regarding the multifaceted role of NK cells in controlling LCMV and MCMV infections and outline the exquisite interplay between NK cells and other immune cells in these two settings. Considering that, infections with MCMV and LCMV recapitulates many physiopathological characteristics of human cytomegalovirus infection and chronic virus infections respectively, this study will extend our understanding of NK cells biology in interactions between the virus and its natural host.
Collapse
Affiliation(s)
- Thamer A Hamdan
- Department of Basic Dental Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
2
|
Setoguchi R, Sengiku T, Kono H, Kawakami E, Kubo M, Yamamoto T, Hori S. Memory CD8 T cells are vulnerable to chronic IFN-γ signals but not to CD4 T cell deficiency in MHCII-deficient mice. Nat Commun 2024; 15:4418. [PMID: 38806459 PMCID: PMC11133459 DOI: 10.1038/s41467-024-48704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
The mechanisms by which the number of memory CD8 T cells is stably maintained remains incompletely understood. It has been postulated that maintaining them requires help from CD4 T cells, because adoptively transferred memory CD8 T cells persist poorly in MHC class II (MHCII)-deficient mice. Here we show that chronic interferon-γ signals, not CD4 T cell-deficiency, are responsible for their attrition in MHCII-deficient environments. Excess IFN-γ is produced primarily by endogenous colonic CD8 T cells in MHCII-deficient mice. IFN-γ neutralization restores the number of memory CD8 T cells in MHCII-deficient mice, whereas repeated IFN-γ administration or transduction of a gain-of-function STAT1 mutant reduces their number in wild-type mice. CD127high memory cells proliferate actively in response to IFN-γ signals, but are more susceptible to attrition than CD127low terminally differentiated effector memory cells. Furthermore, single-cell RNA-sequencing of memory CD8 T cells reveals proliferating cells that resemble short-lived, terminal effector cells and documents global downregulation of gene signatures of long-lived memory cells in MHCII-deficient environments. We propose that chronic IFN-γ signals deplete memory CD8 T cells by compromising their long-term survival and by diverting self-renewing CD127high cells toward terminal differentiation.
Collapse
Affiliation(s)
- Ruka Setoguchi
- Formerly Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan.
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Tomoya Sengiku
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroki Kono
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Eiryo Kawakami
- Advanced Data Science Project (ADSP), RIKEN Information R&D and Strategy Headquarters, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, 260-8670, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, 260-8670, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| | - Tadashi Yamamoto
- Formerly Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Formerly Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| |
Collapse
|
3
|
Tang R, Wang H, Tang M. Roles of tissue-resident immune cells in immunotherapy of non-small cell lung cancer. Front Immunol 2023; 14:1332814. [PMID: 38130725 PMCID: PMC10733439 DOI: 10.3389/fimmu.2023.1332814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common and lethal type of lung cancer, with limited treatment options and poor prognosis. Immunotherapy offers hope for improving the survival and quality of life of NSCLC patients, but its efficacy depends on the tumor immune microenvironment (TME). Tissue-resident immune cells are a subset of immune cells that reside in various tissues and organs, and play an important role in fighting tumors. In NSCLC, tissue-resident immune cells are heterogeneous in their distribution, phenotype, and function, and can either promote or inhibit tumor progression and response to immunotherapy. In this review, we summarize the current understanding on the characteristics, interactions, and roles of tissue-resident immune cells in NSCLC. We also discuss the potential applications of tissue-resident immune cells in NSCLC immunotherapy, including immune checkpoint inhibitors (ICIs), other immunomodulatory agents, and personalized cell-based therapies. We highlight the challenges and opportunities for developing targeted therapies for tissue-resident immune cells and optimizing existing immunotherapeutic approaches for NSCLC patients. We propose that tissue-resident immune cells are a key determinant of NSCLC outcome and immunotherapy response, and warrant further investigation in future research.
Collapse
Affiliation(s)
- Rui Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Sichuan, Luzhou, China
| | - Mingxi Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Yaan People’s Hospital (Yaan Hospital of West China Hospital of Sichuan University), Yaan, Sichuan, China
| |
Collapse
|
4
|
Uhl LFK, Cai H, Oram SL, Mahale JN, MacLean AJ, Mazet JM, Piccirilli T, He AJ, Lau D, Elliott T, Gerard A. Interferon-γ couples CD8 + T cell avidity and differentiation during infection. Nat Commun 2023; 14:6727. [PMID: 37872155 PMCID: PMC10593754 DOI: 10.1038/s41467-023-42455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Effective responses to intracellular pathogens are characterized by T cell clones with a broad affinity range for their cognate peptide and diverse functional phenotypes. How T cell clones are selected throughout the response to retain a breadth of avidities remains unclear. Here, we demonstrate that direct sensing of the cytokine IFN-γ by CD8+ T cells coordinates avidity and differentiation during infection. IFN-γ promotes the expansion of low-avidity T cells, allowing them to overcome the selective advantage of high-avidity T cells, whilst reinforcing high-avidity T cell entry into the memory pool, thus reducing the average avidity of the primary response and increasing that of the memory response. IFN-γ in this context is mainly provided by virtual memory T cells, an antigen-inexperienced subset with memory features. Overall, we propose that IFN-γ and virtual memory T cells fulfil a critical immunoregulatory role by enabling the coordination of T cell avidity and fate.
Collapse
Affiliation(s)
- Lion F K Uhl
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Han Cai
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Sophia L Oram
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Jagdish N Mahale
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew J MacLean
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Julie M Mazet
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Theo Piccirilli
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Alexander J He
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Doreen Lau
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tim Elliott
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Audrey Gerard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Kratzer B, Grabmeier-Pfistershammer K, Trapin D, Körmöczi U, Rottal A, Feichter M, Waidhofer-Söllner P, Smogavec M, Laccone F, Hauser M, Winkler S, Pickl WF, Lechner AM. Mycobacterium avium Complex Infections: Detailed Phenotypic and Functional Immunological Work-Up Is Required despite Genetic Analyses. Int Arch Allergy Immunol 2023; 184:914-931. [PMID: 37279717 DOI: 10.1159/000530844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023] Open
Abstract
INTRODUCTION Cervical scrofulous lymphadenitis due to Mycobacterium avium complex (MAC) in immunocompetent adults is a rare disease. The presence of MAC infections demands meticulous clinical evaluation of patients along with detailed phenotypic and functional evaluation of their immune system including next-generation sequencing (NGS) analyses of target genes. METHODS Exact clinical histories of the index patients both suffering from retromandibular/cervical scrofulous lymphadenitis were obtained along with phenotypic and functional immunological evaluations of leukocyte populations followed by targeted NGS-based sequencing of candidate genes. RESULTS Immunological investigations showed normal serum immunoglobulin and complement levels, but lymphopenia, which was caused by significantly reduced CD3+CD4+CD45RO+ memory T-cell and CD19+ B-cell numbers. Despite normal T-cell proliferation to a number of accessory cell-dependent and -independent stimuli, the PBMC of both patients elaborated clearly reduced levels of a number of cytokines, including IFN-γ, IL-10, IL-12p70, IL-1α, IL-1β, and TNF-α upon TCR-dependent T-cell stimulation with CD3-coated beads but also superantigens. The IFN-γ production deficiency was confirmed for CD3+CD4+ helper and CD4+CD8+ cytotoxic T cells on the single-cell level by multiparametric flow cytometry irrespective of whether PMA/ionomycin-stimulated whole blood cells or gradient-purified PBMC was analyzed. In the female patient L1, targeted NGS-based sequencing revealed a homozygous c.110T>C mutation in the interferon-γ receptor type 1 (IFNGR1) leading to significantly reduced receptor expression on both CD14+ monocytes and CD3+ T cells. Patient S2 presented with normal IFNGR1 expression on CD14+ monocytes but significantly reduced IFNGR1 expression on CD3+ T cells, despite the absence of detectable homozygous mutations in the IFNGR1 itself or disease-related target genes. Exogenous addition of increasing doses of IFN-γ resulted in proper upregulation of high-affinity FcγRI (CD64) on monocytes from patient S2, whereas monocytes from patient L1 showed only partial induction of CD64 expression after incubation with high doses of IFN-γ. CONCLUSION A detailed phenotypic and functional immunological examination is urgently required to determine the cause of a clinically relevant immunodeficiency, despite detailed genetic analyses.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | | | - Doris Trapin
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Ulrike Körmöczi
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Arno Rottal
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Melanie Feichter
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Mateja Smogavec
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Vienna, Austria
| | - Franco Laccone
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Vienna, Austria
| | - Michael Hauser
- Paris Lodron University Salzburg, Division of Allergy and Immunology, Department of Biosciences, Salzburg, Austria
| | - Stefan Winkler
- Medical University of Vienna, Department of Medicine I, Division of Infectious Diseases and Tropical Medicine Vienna, Vienna, Austria
| | - Winfried F Pickl
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
- Karl Landsteiner University, Krems, Austria
| | - Arno M Lechner
- Paracelsus University Salzburg, University Institute for Clinical Microbiology and Hygiene, Salzburg, Austria
| |
Collapse
|
6
|
Banuet-Martinez M, Yang Y, Jafari B, Kaur A, Butt ZA, Chen HH, Yanushkevich S, Moyles IR, Heffernan JM, Korosec CS. Monkeypox: a review of epidemiological modelling studies and how modelling has led to mechanistic insight. Epidemiol Infect 2023; 151:e121. [PMID: 37218612 PMCID: PMC10468816 DOI: 10.1017/s0950268823000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Human monkeypox (mpox) virus is a viral zoonosis that belongs to the Orthopoxvirus genus of the Poxviridae family, which presents with similar symptoms as those seen in human smallpox patients. Mpox is an increasing concern globally, with over 80,000 cases in non-endemic countries as of December 2022. In this review, we provide a brief history and ecology of mpox, its basic virology, and the key differences in mpox viral fitness traits before and after 2022. We summarize and critique current knowledge from epidemiological mathematical models, within-host models, and between-host transmission models using the One Health approach, where we distinguish between models that focus on immunity from vaccination, geography, climatic variables, as well as animal models. We report various epidemiological parameters, such as the reproduction number, R0, in a condensed format to facilitate comparison between studies. We focus on how mathematical modelling studies have led to novel mechanistic insight into mpox transmission and pathogenesis. As mpox is predicted to lead to further infection peaks in many historically non-endemic countries, mathematical modelling studies of mpox can provide rapid actionable insights into viral dynamics to guide public health measures and mitigation strategies.
Collapse
Affiliation(s)
- Marina Banuet-Martinez
- Climate Change and Global Health Research Group, School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Yang Yang
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Behnaz Jafari
- Mathematics and Statistics Department, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Avneet Kaur
- Irving K. Barber School of Arts and Sciences, Department of Computer Science, Mathematics, Physics and Statistics, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Zahid A. Butt
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Helen H. Chen
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Svetlana Yanushkevich
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Iain R. Moyles
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, Toronto, ON, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Jane M. Heffernan
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, Toronto, ON, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Chapin S. Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, Toronto, ON, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, Toronto, ON, Canada
| |
Collapse
|
7
|
Han J, Wu M, Liu Z. Dysregulation in IFN-γ signaling and response: the barricade to tumor immunotherapy. Front Immunol 2023; 14:1190333. [PMID: 37275859 PMCID: PMC10233742 DOI: 10.3389/fimmu.2023.1190333] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
Interferon-gamma (IFN-γ) has been identified as a crucial factor in determining the responsiveness to immunotherapy. Produced primarily by natural killer (NK) and T cells, IFN-γ promotes activation, maturation, proliferation, cytokine expression, and effector function in immune cells, while simultaneously inducing antigen presentation, growth arrest, and apoptosis in tumor cells. However, tumor cells can hijack the IFN-γ signaling pathway to mount IFN-γ resistance: rather than increasing antigenicity and succumbing to death, tumor cells acquire stemness characteristics and express immunosuppressive molecules to defend against antitumor immunity. In this review, we summarize the potential mechanisms of IFN-γ resistance occurring at two critical stages: disrupted signal transduction along the IFNG/IFNGR/JAK/STAT pathway, or preferential expression of specific interferon-stimulated genes (ISGs). Elucidating the molecular mechanisms through which tumor cells develop IFN-γ resistance help identify promising therapeutic targets to improve immunotherapy, with broad application value in conjugation with targeted, antibody or cellular therapies.
Collapse
Affiliation(s)
- Jiashu Han
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| |
Collapse
|
8
|
Karbalaeimahdi M, Farajnia S, Bargahi N, Ghadiri-Moghaddam F, Rasouli Jazi HR, Bakhtiari N, Ghasemali S, Zarghami N. The Role of Interferons in Long Covid Infection. J Interferon Cytokine Res 2023; 43:65-76. [PMID: 36795973 DOI: 10.1089/jir.2022.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Although the new generation of vaccines and anti-COVID-19 treatment regimens facilitated the management of acute COVID-19 infections, concerns about post-COVID-19 syndrome or Long Covid are rising. This issue can increase the incidence and morbidity of diseases such as diabetes, and cardiovascular, and lung infections, especially among patients suffering from neurodegenerative disease, cardiac arrhythmias, and ischemia. There are numerous risk factors that cause COVID-19 patients to experience post-COVID-19 syndrome. Three potential causes attributed to this disorder include immune dysregulation, viral persistence, and autoimmunity. Interferons (IFNs) are crucial in all aspects of post-COVID-19 syndrome etiology. In this review, we discuss the critical and double-edged role of IFNs in post-COVID-19 syndrome and how innovative biomedical approaches that target IFNs can reduce the occurrence of Long Covid infection.
Collapse
Affiliation(s)
- Mohammad Karbalaeimahdi
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz, Iran.,Drug Applied Research Center, Tabriz, Iran
| | | | - Farzaneh Ghadiri-Moghaddam
- Drug Applied Research Center, Tabriz, Iran.,Department of Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | | | | | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Mazet JM, Mahale JN, Tong O, Watson RA, Lechuga-Vieco AV, Pirgova G, Lau VWC, Attar M, Koneva LA, Sansom SN, Fairfax BP, Gérard A. IFNγ signaling in cytotoxic T cells restricts anti-tumor responses by inhibiting the maintenance and diversity of intra-tumoral stem-like T cells. Nat Commun 2023; 14:321. [PMID: 36658158 PMCID: PMC9852295 DOI: 10.1038/s41467-023-35948-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
IFNγ is an immune mediator with concomitant pro- and anti-tumor functions. Here, we provide evidence that IFNγ directly acts on intra-tumoral CD8 T cells to restrict anti-tumor responses. We report that expression of the IFNγ receptor β chain (IFNγR2) in CD8 T cells negatively correlates with clinical responsiveness to checkpoint blockade in metastatic melanoma patients, suggesting that the loss of sensitivity to IFNγ contributes to successful antitumor immunity. Indeed, specific deletion of IFNγR in CD8 T cells promotes tumor control in a mouse model of melanoma. Chronic IFNγ inhibits the maintenance, clonal diversity and proliferation of stem-like T cells. This leads to decreased generation of T cells with intermediate expression of exhaustion markers, previously associated with beneficial anti-tumor responses. This study provides evidence of a negative feedback loop whereby IFNγ depletes stem-like T cells to restrict anti-tumor immunity. Targeting this pathway might represent an alternative strategy to enhance T cell-based therapies.
Collapse
Affiliation(s)
- Julie M Mazet
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Jagdish N Mahale
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Orion Tong
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | - Gabriela Pirgova
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Vivian W C Lau
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Moustafa Attar
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Lada A Koneva
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Stephen N Sansom
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Oladipo OO, Adedeji BO, Adedokun SP, Gbadamosi JA, Salaudeen M. Regulation of effector and memory CD8 + T cell differentiation: a focus on orphan nuclear receptor NR4A family, transcription factor, and metabolism. Immunol Res 2022; 71:314-327. [PMID: 36571657 DOI: 10.1007/s12026-022-09353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
CD8 + T cells undergo rapid expansion followed by contraction and the development of memory cells after their receptors are activated. The development of immunological memory following acute infection is a complex phenomenon that involves several molecular, transcriptional, and metabolic mechanisms. As memory cells confer long-term protection and respond to secondary stimulation with strong effector function, understanding the mechanisms that influence their development is of great importance. Orphan nuclear receptors, NR4As, are immediate early genes that function as transcription factors and bind with the NBRE region of chromatin. Interestingly, the NBRE region of activated CD8 + T cells is highly accessible at the same time the expression of NR4As is induced. This suggests a potential role of NR4As in the early events post T cell activation that determines cell fate decisions. In this review, we will discuss the influence of NR4As on the differentiation of CD8 + T cells during the immune response to acute infection and the development of immunological memory. We will also discuss the signals, transcription factors, and metabolic mechanisms that control cell fate decisions. HIGHLIGHTS: Memory CD8 + T cells are an essential subset that mediates long-term protection after pathogen encounters. Some specific environmental cues, transcriptional factors, and metabolic pathways regulate the differentiation of CD8 + T cells and the development of memory cells. Orphan nuclear receptor NR4As are early genes that act as transcription factors and are highly expressed post-T cell receptor activation. NR4As influence the effector function and differentiation of CD8 + T cells and also control the development of immunological memory following acute infection.
Collapse
Affiliation(s)
- Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Bernard O Adedeji
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria
| | - Samson P Adedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Jibriil A Gbadamosi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Marzuq Salaudeen
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
11
|
Korosec CS, Farhang-Sardroodi S, Dick DW, Gholami S, Ghaemi MS, Moyles IR, Craig M, Ooi HK, Heffernan JM. Long-term durability of immune responses to the BNT162b2 and mRNA-1273 vaccines based on dosage, age and sex. Sci Rep 2022; 12:21232. [PMID: 36481777 PMCID: PMC9732004 DOI: 10.1038/s41598-022-25134-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
The lipid nanoparticle (LNP)-formulated mRNA vaccines BNT162b2 and mRNA-1273 are a widely adopted multi vaccination public health strategy to manage the COVID-19 pandemic. Clinical trial data has described the immunogenicity of the vaccine, albeit within a limited study time frame. Here, we use a within-host mathematical model for LNP-formulated mRNA vaccines, informed by available clinical trial data from 2020 to September 2021, to project a longer term understanding of immunity as a function of vaccine type, dosage amount, age, and sex. We estimate that two standard doses of either mRNA-1273 or BNT162b2, with dosage times separated by the company-mandated intervals, results in individuals losing more than 99% humoral immunity relative to peak immunity by 8 months following the second dose. We predict that within an 8 month period following dose two (corresponding to the original CDC time-frame for administration of a third dose), there exists a period of time longer than 1 month where an individual has lost more than 99% humoral immunity relative to peak immunity, regardless of which vaccine was administered. We further find that age has a strong influence in maintaining humoral immunity; by 8 months following dose two we predict that individuals aged 18-55 have a four-fold humoral advantage compared to aged 56-70 and 70+ individuals. We find that sex has little effect on the immune response and long-term IgG counts. Finally, we find that humoral immunity generated from two low doses of mRNA-1273 decays at a substantially slower rate relative to peak immunity gained compared to two standard doses of either mRNA-1273 or BNT162b2. Our predictions highlight the importance of the recommended third booster dose in order to maintain elevated levels of antibodies.
Collapse
Affiliation(s)
- Chapin S Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| | - Suzan Farhang-Sardroodi
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
- Department of Mathematics, University of Manitoba, 186 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - David W Dick
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Sameneh Gholami
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Mohammad Sajjad Ghaemi
- Digital Technologies Research Centre, National Research Council Canada, 222 College Street, Toronto, ON, M5T 3J1, Canada
| | - Iain R Moyles
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal & Sainte-Justine University Hospital Research Centre, 3175, ch. Côte Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Hsu Kiang Ooi
- Digital Technologies Research Centre, National Research Council Canada, 222 College Street, Toronto, ON, M5T 3J1, Canada
| | - Jane M Heffernan
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
12
|
Gurjar D, Kumar Patra S, Bodhale N, Lenka N, Saha B. Leishmania intercepts IFN-γR signaling at multiple levels in macrophages. Cytokine 2022; 157:155956. [PMID: 35785668 DOI: 10.1016/j.cyto.2022.155956] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
IFN-γ, a type 2 interferon and a cytokine, is critical for both innate and adaptive immunity. IFN-γ binds to the IFN-γRs on the cell membrane of macrophages, signals through JAK1-STAT-1 pathway and induces IFN-γ-stimulated genes (ISGs). As Leishmania amastigotes reside and replicate within macrophages, IFN-γ mediated macrophage activation eventuate in Leishmania elimination. As befits the principle of parasitism, the impaired IFN-γ responsiveness in macrophages ensures Leishmania survival. IFN-γ responsiveness is a function of integrated molecular events at multiple levels in the cells that express IFN-γ receptors. In Leishmania-infected macrophages, reduced IFN-γRα expression, impaired IFN-γRα and IFN-γRβ hetero-dimerization due to altered membrane lipid composition, reduced JAK-1 and STAT-1 phosphorylation but increased STAT-1 degradation and impaired ISGs induction collectively determine the IFN-γ responsiveness and the efficacy of IFN-γ induced antileishmanial function of macrophages. Therefore, parasite load is not only decided by the levels of IFN-γ produced but also by the IFN-γ responsiveness. Indeed, in Leishmania-infected patients, IFN-γ is produced but IFN-γ signalling is downregulated. However, the molecular mechanisms of IFN-γ responsiveness remain unclear. Therefore, we review the current understanding of IFN-γ responsiveness of Leishmania-infected macrophages.
Collapse
Affiliation(s)
- Dhiraj Gurjar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Nibedita Lenka
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
13
|
SARS-CoV-2 Specific Antibody Response and T Cell-Immunity in Immunocompromised Patients up to Six Months Post COVID: A Pilot Study. J Clin Med 2022; 11:jcm11123535. [PMID: 35743605 PMCID: PMC9225567 DOI: 10.3390/jcm11123535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
COVID-19 generates SARS-CoV-2-specific antibodies in immunocompetent individuals. However, in immunocompromised patients, the humoral immunity following infection may be impaired or absent. Recently, the assessment of cellular immunity to SARS-CoV-2, both following natural infection and vaccination, has contributed new knowledge regarding patients with low or no antibody responses. As part of a prospective cohort study which included hospitalized patients with COVID-19, we identified immunocompromised patients and compared them with age- and sex-matched immunocompetent patients regarding co-morbidities, biomarkers of COVID-19 and baseline viral load by real-time PCR in nasopharyngeal swabs. Spike and nucleocapsid antibody responses were analyzed at inclusion and after two weeks, six weeks and six months. Plasma immunoglobulin G (IgG) levels were quantified, lymphocyte phenotyping was performed, and SARS-CoV-2 specific CD4 and CD8 T cell responses after in vitro antigen stimulation were assessed at six months post infection. All patients showed IgG levels above or within reference limits. At six months, all patients had detectable SARS-CoV-2 anti-spike antibody levels. SARS-CoV-2 specific T cell responses were detected in 12 of 12 immunocompetent patients and in four of six immunocompromised patients. The magnitude of long-lived SARS-CoV-2 specific T cell responses were significantly correlated with the number of CD4 T cells and NK cells. Determining the durability of the humoral and cellular immune response against SARS-CoV-2 in immunocompromised individuals could be of importance by providing insights into the risk of re-infection and the need for vaccine boosters.
Collapse
|
14
|
Akamatsu MA, de Castro JT, Takano CY, Ho PL. Off balance: Interferons in COVID-19 lung infections. EBioMedicine 2021; 73:103642. [PMID: 34678609 PMCID: PMC8524139 DOI: 10.1016/j.ebiom.2021.103642] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022] Open
Abstract
Interferons are innate and adaptive cytokines involved in many biological responses, in particular, viral infections. With the final response the result of the balance of the different types of Interferons. Cytokine storms are physiological reactions observed in humans and animals in which the innate immune system causes an uncontrolled and excessive release of pro-inflammatory signaling molecules. The excessive and prolonged presence of these cytokines can cause tissue damage, multisystem organ failure and death. The role of Interferons in virus clearance, tissue damage and cytokine storms are discussed, in view of COVID-19 caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The imbalance of Type I, Type II and Type III Interferons during a viral infection contribute to the clinical outcome, possibly together with other cytokines, in particular, TNFα, with clear implications for clinical interventions to restore their correct balance.
Collapse
Affiliation(s)
| | | | - Carolina Yumi Takano
- Núcleo de Produção de Vacinas Bacterianas, Centro BioIndustrial, Instituto Butantan
| | - Paulo Lee Ho
- Núcleo de Produção de Vacinas Bacterianas, Centro BioIndustrial, Instituto Butantan.
| |
Collapse
|
15
|
Abstract
Conventional CD4+ and CD8+ T lymphocytes comprise a mixture of naive and memory cells. Generation and survival of these T-cell subsets is under strict homeostatic control and reflects contact with self-major histocompatibility complex (MHC) and certain cytokines. Naive T cells arise in the thymus via T-cell receptor (TCR)-dependent positive selection to self-peptide/MHC complexes and are then maintained in the periphery through self-MHC interaction plus stimulation via interleukin-7 (IL-7). By contrast, memory T cells are largely MHC-independent for their survival but depend strongly on stimulation via cytokines. Whereas typical memory T cells are generated in response to foreign antigens, some arise spontaneously through contact of naive precursors with self-MHC ligands; we refer to these cells as memory-phenotype (MP) T cells. In this review, we discuss the generation and homeostasis of naive T cells and these two types of memory T cells, focusing on their relative interaction with MHC ligands and cytokines.
Collapse
Affiliation(s)
- Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Jaeu Yi
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
16
|
Abbas AA, Akbar AN. Induction of T Cell Senescence by Cytokine Induced Bystander Activation. FRONTIERS IN AGING 2021; 2:714239. [PMID: 35821998 PMCID: PMC9261416 DOI: 10.3389/fragi.2021.714239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
As people around the world continue to live longer, maintaining a good quality of life is of increasing importance. The COVID-19 pandemic revealed that the elderly are disproportionally vulnerable to infectious diseases and Immunosenescence plays a critical role in that. An ageing immune system influences the conventional activity of T cells which are at the forefront of eliminating harmful foreign antigens. With ageing, unconventional end-stage T cells, that exhibit a senescent phenotype, amass. These senescent T cells deviate from T cell receptor (TCR) signaling toward natural killer (NK) activity. The transition toward innate immune cell function from these adaptor T cells impacts antigen specificity, contributing to increased susceptibility of infection in the elderly. The mechanism by which senescent T cells arise remains largely unclear however in this review we investigate the part that bystander activation plays in driving the change in function of T cells with age. Cytokine-induced bystander activation may offer a plausible explanation for the induction of NK-like activity and senescence in T cells. Further understanding of these specific NK-like senescent T cells allows us to identify the benefits and detriments of these cells in health and disease which can be utilized or regulated, respectively. This review discusses the dynamic of senescent T cells in adopting NK-like T cells and the implications that has in an infectious disease context, predominately in the elderly.
Collapse
|
17
|
Bishop EL, Gudgeon N, Dimeloe S. Control of T Cell Metabolism by Cytokines and Hormones. Front Immunol 2021; 12:653605. [PMID: 33927722 PMCID: PMC8076900 DOI: 10.3389/fimmu.2021.653605] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Dynamic, coordinated changes in metabolic pathway activity underpin the protective and inflammatory activity of T cells, through provision of energy and biosynthetic precursors for effector functions, as well as direct effects of metabolic enzymes, intermediates and end-products on signaling pathways and transcriptional mechanisms. Consequently, it has become increasingly clear that the metabolic status of the tissue microenvironment directly influences T cell activity, with changes in nutrient and/or metabolite abundance leading to dysfunctional T cell metabolism and interlinked immune function. Emerging evidence now indicates that additional signals are integrated by T cells to determine their overall metabolic phenotype, including those arising from interaction with cytokines and hormones in their environment. The impact of these on T cell metabolism, the mechanisms involved and the pathological implications are discussed in this review article.
Collapse
Affiliation(s)
| | | | - Sarah Dimeloe
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Mitchell JE, Lund MM, Starmer J, Ge K, Magnuson T, Shpargel KB, Whitmire JK. UTX promotes CD8 + T cell-mediated antiviral defenses but reduces T cell durability. Cell Rep 2021; 35:108966. [PMID: 33852868 PMCID: PMC8112613 DOI: 10.1016/j.celrep.2021.108966] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 12/22/2020] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Persistent virus infections can cause pathogenesis that is debilitating or lethal. During these infections, virus-specific T cells fail to protect due to weakened antiviral activity or failure to persist. These outcomes are governed by histone modifications, although it is unknown which enzymes contribute to T cell loss or impaired function over time. In this study, we show that T cell receptor-stimulated CD8+ T cells increase their expression of UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome) to enhance gene expression. During chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, UTX binds to enhancers and transcription start sites of effector genes, allowing for improved cytotoxic T lymphocyte (CTL)-mediated protection, independent of its trimethylation of histone 3 lysine 27 (H3K27me3) demethylase activity. UTX also limits the frequency and durability of virus-specific CD8+ T cells, which correspond to increased expression of inhibitory receptors. Thus, UTX guides gene expression patterns in CD8+ T cells, advancing early antiviral defenses while reducing the longevity of CD8+ T cell responses. T cells fail to eliminate chronic virus infections due to alterations in gene expression that undermine their activity. In this study, Mitchell et al. identify a histone-modifying enzyme that promotes effector gene expression and CTL activity early on yet reduces T cell survival, leading to infection persistence.
Collapse
Affiliation(s)
- Joseph E Mitchell
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology & Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Makayla M Lund
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Josh Starmer
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Terry Magnuson
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Karl B Shpargel
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| | - Jason K Whitmire
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology & Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
19
|
An Overview of Advances in Cell-Based Cancer Immunotherapies Based on the Multiple Immune-Cancer Cell Interactions. Methods Mol Biol 2021; 2097:139-171. [PMID: 31776925 DOI: 10.1007/978-1-0716-0203-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumors have a complex ecosystem in which behavior and fate are determined by the interaction of diverse cancerous and noncancerous cells at local and systemic levels. A number of studies indicate that various immune cells participate in tumor development (Fig. 1). In this review, we will discuss interactions among T lymphocytes (T cells), B cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, and myeloid-derived suppressor cells (MDSCs). In addition, we will touch upon attempts to either use or block subsets of immune cells to target cancer.
Collapse
|
20
|
Eberlein J, Davenport B, Nguyen TT, Victorino F, Jhun K, van der Heide V, Kuleshov M, Ma'ayan A, Kedl R, Homann D. Chemokine Signatures of Pathogen-Specific T Cells I: Effector T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2169-2187. [PMID: 32948687 DOI: 10.4049/jimmunol.2000253] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
The choreography of complex immune responses, including the priming, differentiation, and modulation of specific effector T cell populations generated in the immediate wake of an acute pathogen challenge, is in part controlled by chemokines, a large family of mostly secreted molecules involved in chemotaxis and other patho/physiological processes. T cells are both responsive to various chemokine cues and a relevant source for certain chemokines themselves; yet, the actual range, regulation, and role of effector T cell-derived chemokines remains incompletely understood. In this study, using different in vivo mouse models of viral and bacterial infection as well as protective vaccination, we have defined the entire spectrum of chemokines produced by pathogen-specific CD8+ and CD4+T effector cells and delineated several unique properties pertaining to the temporospatial organization of chemokine expression patterns, synthesis and secretion kinetics, and cooperative regulation. Collectively, our results position the "T cell chemokine response" as a notably prominent, largely invariant, yet distinctive force at the forefront of pathogen-specific effector T cell activities and establish novel practical and conceptual approaches that may serve as a foundation for future investigations into the role of T cell-produced chemokines in infectious and other diseases.
Collapse
Affiliation(s)
- Jens Eberlein
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Bennett Davenport
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tom T Nguyen
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Francisco Victorino
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin Jhun
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Verena van der Heide
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maxim Kuleshov
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ross Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dirk Homann
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; .,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
21
|
Uhl LFK, Gérard A. Modes of Communication between T Cells and Relevance for Immune Responses. Int J Mol Sci 2020; 21:E2674. [PMID: 32290500 PMCID: PMC7215318 DOI: 10.3390/ijms21082674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022] Open
Abstract
T cells are essential mediators of the adaptive immune system, which constantly patrol the body in search for invading pathogens. During an infection, T cells that recognise the pathogen are recruited, expand and differentiate into subtypes tailored to the infection. In addition, they differentiate into subsets required for short and long-term control of the pathogen, i.e., effector or memory. T cells have a remarkable degree of plasticity and heterogeneity in their response, however, their overall response to a given infection is consistent and robust. Much research has focused on how individual T cells are activated and programmed. However, in order to achieve a critical level of population-wide reproducibility and robustness, neighbouring cells and surrounding tissues have to provide or amplify relevant signals to tune the overall response accordingly. The characteristics of the immune response-stochastic on the individual cell level, robust on the global level-necessitate coordinated responses on a system-wide level, which facilitates the control of pathogens, while maintaining self-tolerance. This global coordination can only be achieved by constant cellular communication between responding cells, and faults in this intercellular crosstalk can potentially lead to immunopathology or autoimmunity. In this review, we will discuss how T cells mount a global, collective response, by describing the modes of T cell-T cell (T-T) communication they use and highlighting their physiological relevance in programming and controlling the T cell response.
Collapse
Affiliation(s)
| | - Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
22
|
Liu Q, Sun Z, Chen L. Memory T cells: strategies for optimizing tumor immunotherapy. Protein Cell 2020; 11:549-564. [PMID: 32221812 PMCID: PMC7381543 DOI: 10.1007/s13238-020-00707-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
Several studies have demonstrated that memory T cells including stem cell memory (Tscm) T cells and central memory (Tcm) T cells show superior persistence and antitumor immunity compared with effector memory T (Tem) cells and effector T (Teff) cells. Furthermore, the Tcm/Teff ratio has been reported to be a predictive biomarker of immune responses against some tumors. Thus, a system-level understanding of the mechanisms underlying the differentiation of effector and memory T cells is of increasing importance for developing immunological strategies against various tumors. This review focuses on recent advances in efficacy against tumors, the origin, formation mechanisms of memory T cells, and the role of the gut microbiota in memory T cell formation. Furthermore, we summarize strategies to generate memory T cells in (ex) vivo that, might be applicable in clinical practice.
Collapse
Affiliation(s)
- Qingjun Liu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.,Newish Technology (Beijing) Co., Ltd., Xihuan South Road 18, Economic & Technical Development Zone, Beijing, 100176, China.,Moon (Guangzhou) Biotech Co., Ltd., Room 301, Building B5, Enterprise Accelerator, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, 510000, China
| | - Zhongjie Sun
- Newish Technology (Beijing) Co., Ltd., Xihuan South Road 18, Economic & Technical Development Zone, Beijing, 100176, China.
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China. .,Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100088, China.
| |
Collapse
|
23
|
Memory CD4 + T Cells in Immunity and Autoimmune Diseases. Cells 2020; 9:cells9030531. [PMID: 32106536 PMCID: PMC7140455 DOI: 10.3390/cells9030531] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T helper (Th) cells play central roles in immunity in health and disease. While much is known about the effector function of Th cells in combating pathogens and promoting autoimmune diseases, the roles and biology of memory CD4+ Th cells are complex and less well understood. In human autoimmune diseases such as multiple sclerosis (MS), there is a critical need to better understand the function and biology of memory T cells. In this review article we summarize current concepts in the field of CD4+ T cell memory, including natural history, developmental pathways, subsets, and functions. Furthermore, we discuss advancements in the field of the newly-described CD4+ tissue-resident memory T cells and of CD4+ memory T cells in autoimmune diseases, two major areas of important unresolved questions in need of answering to advance new vaccine design and development of novel treatments for CD4+ T cell-mediated autoimmune diseases.
Collapse
|
24
|
Knop L, Frommer C, Stoycheva D, Deiser K, Kalinke U, Blankenstein T, Kammertoens T, Dunay IR, Schüler T. Interferon-γ Receptor Signaling in Dendritic Cells Restrains Spontaneous Proliferation of CD4 + T Cells in Chronic Lymphopenic Mice. Front Immunol 2019; 10:140. [PMID: 30792713 PMCID: PMC6374634 DOI: 10.3389/fimmu.2019.00140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023] Open
Abstract
In lymphopenic mice, T cells become activated and undergo lymphopenia-induced proliferation (LIP). However, not all T cells are equally sensitive to lymphopenia. Several lymphopenia-insensitive T cell clones were described and their non-responsiveness was mainly attributed to clone-specific properties. Here, we provide evidence for an additional, host-dependent mechanism restraining LIP of lymphopenia-insensitive CD4+ T cells. We show that such cells undergo LIP in lymphopenic mice lacking IFN-γ receptor (IFN-γR) expression, a process, which is promoted by the autocrine action of T cell-derived IFN-γ. Additionally, LIP of lymphopenia-insensitive CD4+ T cells requires an intact microflora and is accompanied by the massive accumulation of IL-6 and dendritic cells (DCs). Consistent with these results, IL-6 neutralization and the DC-specific restoration of IFN-γR expression are both sufficient to restrict LIP. Hence, the insensitivity of CD4+ T cells to lymphopenia relies on cell-intrinsic properties and a complex interplay between the commensal microflora, IL-6, IFN-γR+ DCs, and T cell-derived IFN-γ.
Collapse
Affiliation(s)
- Laura Knop
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Charlotte Frommer
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Diana Stoycheva
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Katrin Deiser
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Medical School Hannover, Institute for Experimental Infection Research, Hannover, Germany
| | - Thomas Blankenstein
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Thomas Kammertoens
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
25
|
Loss of the candidate tumor suppressor ZEB1 (TCF8, ZFHX1A) in Sézary syndrome. Cell Death Dis 2018; 9:1178. [PMID: 30518749 PMCID: PMC6281581 DOI: 10.1038/s41419-018-1212-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022]
Abstract
Cutaneous T-cell lymphoma is a group of incurable extranodal non-Hodgkin lymphomas that develop from the skin-homing CD4+ T cell. Mycosis fungoides and Sézary syndrome are the most common histological subtypes. Although next-generation sequencing data provided significant advances in the comprehension of the genetic basis of this lymphoma, there is not uniform consensus on the identity and prevalence of putative driver genes for this heterogeneous group of tumors. Additional studies may increase the knowledge about the complex genetic etiology characterizing this lymphoma. We used SNP6 arrays and GISTIC algorithm to prioritize a list of focal somatic copy-number alterations in a dataset of multiple sequential samples from 21 Sézary syndrome patients. Our results confirmed a prevalence of significant focal deletions over amplifications: single well-known tumor suppressors, such as TP53, PTEN, and RB1, are targeted by these aberrations. In our cohort, ZEB1 (TCF8, ZFHX1A) spans a deletion having the highest level of significance. In a larger group of 43 patients, we found that ZEB1 is affected by deletions and somatic inactivating mutations in 46.5% of cases; also, we found potentially relevant ZEB1 germline variants. The survival analysis shows a worse clinical course for patients with ZEB1 biallelic inactivation. Multiple abnormal expression signatures were found associated with ZEB1 depletion in Sézary patients we verified that ZEB1 exerts a role in oxidative response of Sézary cells. Our data confirm the importance of deletions in the pathogenesis of cutaneous T-cell lymphoma. The characterization of ZEB1 abnormalities in Sézary syndrome fulfils the criteria of a canonical tumor suppressor gene. Although additional confirmations are needed, our findings suggest, for the first time, that ZEB1 germline variants might contribute to the risk of developing this disease. Also, we provide evidence that ZEB1 activity in Sézary cells, influencing the reactive oxygen species production, affects cell viability and apoptosis.
Collapse
|
26
|
Hansen AS, Slater J, Biltoft M, Bundgaard BB, Møller BK, Höllsberg P. CD46 is a potent co-stimulatory receptor for expansion of human IFN-γ-producing CD8 + T cells. Immunol Lett 2018; 200:26-32. [PMID: 29902483 PMCID: PMC7112827 DOI: 10.1016/j.imlet.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/18/2018] [Accepted: 06/08/2018] [Indexed: 11/18/2022]
Abstract
Similar to CD4+ T cells, precursor CD8+ T cells are thought to depend on a co-stimulatory signal through CD28 for proliferation and differentiation into effector cells. CD46 is another co-stimulatory receptor that promotes differentiation of CD4+ T-helper cells type 1 (Th1 cells) into a regulatory phenotype with a switch from IFN-γ towards IL-10-secretion over time. Whether CD46 exerts a similar function on CD8+ T cells remains to be fully elucidated. Here, we demonstrate that CD46 co-stimulation induced secretion of IFN-γ as well as expansion of IFN-γ-secreting CD8+ T cells. In contrast to CD46 co-stimulation of CD4+ T cells, CD8+ T cells did not differentiate into a regulatory IL-10-secreting phenotype. This demonstrates that CD46 is a co-stimulatory receptor on CD8+ T cells, and that it exerts separate functions during CD4+ and CD8+ T-cell differentiation.
Collapse
Affiliation(s)
- Aida S Hansen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Josefine Slater
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Mette Biltoft
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Bjarne K Møller
- Department of Clinical Immunology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Per Höllsberg
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
27
|
Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front Immunol 2018; 9:339. [PMID: 29545794 PMCID: PMC5839096 DOI: 10.3389/fimmu.2018.00339] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023] Open
Abstract
T lymphocytes, from their first encounter with their specific antigen as naïve cell until the last stages of their differentiation, in a replicative state of senescence, go through a series of phases. In several of these stages, T lymphocytes are subjected to exponential growth in successive encounters with the same antigen. This entire process occurs throughout the life of a human individual and, earlier, in patients with chronic infections/pathologies through inflammatory mediators, first acutely and later in a chronic form. This process plays a fundamental role in amplifying the activating signals on T lymphocytes and directing their clonal proliferation. The mechanisms that control cell growth are high levels of telomerase activity and maintenance of telomeric length that are far superior to other cell types, as well as metabolic adaptation and redox control. Large numbers of highly differentiated memory cells are accumulated in the immunological niches where they will contribute in a significant way to increase the levels of inflammatory mediators that will perpetuate the new state at the systemic level. These levels of inflammation greatly influence the process of T lymphocyte differentiation from naïve T lymphocyte, even before, until the arrival of exhaustion or cell death. The changes observed during lymphocyte differentiation are correlated with changes in cellular metabolism and these in turn are influenced by the inflammatory state of the environment where the cell is located. Reactive oxygen species (ROS) exert a dual action in the population of T lymphocytes. Exposure to high levels of ROS decreases the capacity of activation and T lymphocyte proliferation; however, intermediate levels of oxidation are necessary for the lymphocyte activation, differentiation, and effector functions. In conclusion, we can affirm that the inflammatory levels in the environment greatly influence the differentiation and activity of T lymphocyte populations. However, little is known about the mechanisms involved in these processes. The elucidation of these mechanisms would be of great help in the advance of improvements in pathologies with a large inflammatory base such as rheumatoid arthritis, intestinal inflammatory diseases, several infectious diseases and even, cancerous processes.
Collapse
Affiliation(s)
- Marco A Moro-García
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Juan C Mayo
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
28
|
Hosking MP, Flynn CT, Whitton JL. TCR independent suppression of CD8(+) T cell cytokine production mediated by IFNγ in vivo. Virology 2016; 498:69-81. [PMID: 27564543 PMCID: PMC5045820 DOI: 10.1016/j.virol.2016.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/02/2016] [Indexed: 01/12/2023]
Abstract
CD8(+) memory T cells produce IFNγ within hours of secondary infection, but this is quickly terminated in vivo despite the presence of stimulatory viral antigen, suggesting that active suppression occurs. Herein, we investigated the in vivo effector function of CD8(+) memory T cells during successive encounters with viral antigen. CD8(+) T cells in immune mice receiving prior viral or peptide challenge failed to reproduce IFNγ during LCMV rechallenge. Surprisingly, this refractory state was induced even in memory cells that had not encountered their cognate antigen, indicating that the silencing of CD8(+) T cell responses is TCR-independent. Direct injection of IFNγ also suppressed the ability of virus-specific memory cells to respond to subsequent viral challenge. We propose the existence of a negative feedback loop whereby IFNγ, produced by memory CD8(+) T cells to combat viral challenge, acts - directly or indirectly - to limit its further production.
Collapse
Affiliation(s)
- Martin P Hosking
- Dept. of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Claudia T Flynn
- Dept. of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - J Lindsay Whitton
- Dept. of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Forsythoside A Inhibits BVDV Replication via TRAF2-Dependent CD28-4-1BB Signaling in Bovine PBMCs. PLoS One 2016; 11:e0162791. [PMID: 27617959 PMCID: PMC5019491 DOI: 10.1371/journal.pone.0162791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/28/2016] [Indexed: 01/02/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV), the causative agent of bovine viral diarrhea/mucosal disease (BVD/MD), is an important pathogen of cattle and other wild animals throughout the world. BVDV infection typically leads to an impaired immune response in cattle. In the present study, we investigated the effect of Forsythoside A (FTA) on BVDV infection of bovine peripheral blood mononuclear cells (PBMCs). We found that Forsythoside A could not only promote proliferation of PBMCs and T cells activation but also inhibit the replication of BVDV as well as apoptosis induced by BVDV. FTA treatment could counteract the BVDV-induced overproduction of IFN-γ to maintain the immune homeostasis in bovine PBMCs. At same time, FTA can enhance the secretion of IL-2. What's more, BVDV promotes the expression of CD28, 4-1BB and TRAF-2, which can be modulated by FTA. Our data suggest that FTA protects PBMCs from BVDV infection possibly via TRAF2-dependent CD28-4-1BB signaling, which may activate PBMCs in response to BVDV infection. Therefore, this aids in the development of an effective adjuvant for vaccines against BVDV and other specific FTA-based therapies for preventing BVDV infection.
Collapse
|
30
|
Combination of TLR1/2 and TLR3 ligands enhances CD4(+) T cell longevity and antibody responses by modulating type I IFN production. Sci Rep 2016; 6:32526. [PMID: 27580796 PMCID: PMC5007540 DOI: 10.1038/srep32526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/10/2016] [Indexed: 01/13/2023] Open
Abstract
Despite the possibility of combining Toll-like receptor (TLR) ligands as adjuvants to improve vaccine efficacy, it remains unclear which combinations of TLR ligands are effective or what their underlying mechanisms may be. Here, we investigated the mechanism of action of L-pampo, a proprietary adjuvant composed of TLR1/2 and TLR3 ligands. L-pampo dramatically increased humoral immune responses against the tested target antigens, which was correlated with an increase in follicular helper T cells and the maintenance of antigen-specific CD4+ T cells. During the initial priming phase, in contrast to the induction of type I interferon (IFN) and pro-inflammatory cytokines stimulated by polyI:C, L-pampo showed a greatly diminished induction of type I IFN, but not of other cytokines, and remarkably attenuated IRF3 signaling, which appeared to be critical to L-pampo-mediated adjuvanticity. Collectively, our results demonstrate that the adjuvant L-pampo contributes to the promotion of antigen-specific antibodies and CD4+ T cell responses via a fine regulation of the TLR1/2 and TLR3 signaling pathways, which may be helpful in the design of improved vaccines.
Collapse
|
31
|
Zhang X, Starnbach MN. An Excess of the Proinflammatory Cytokines IFN-γ and IL-12 Impairs the Development of the Memory CD8+ T Cell Response to Chlamydia trachomatis. THE JOURNAL OF IMMUNOLOGY 2015; 195:1665-75. [PMID: 26179901 DOI: 10.4049/jimmunol.1500457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022]
Abstract
The obligate intracellular bacterium Chlamydia trachomatis is the most common cause of bacterial sexually transmitted disease in the United States and the leading cause of preventable blindness worldwide. Transfer of cultured Chlamydia-specific CD8(+) T cells or vaccination with recombinant virus expressing an MHC I-restricted Chlamydia Ag confers protection, yet surprisingly a protective CD8(+) T cell response is not stimulated following natural infection. In this study, we demonstrate that the presence of excess IL-12 and IFN-γ contributes to poor memory CD8(+) T cell development during C. trachomatis infection of mice. IL-12 is required for CD8(+) T cell expansion but drives effector CD8(+) T cells into a short-lived fate, whereas IFN-γ signaling impairs the development of effector memory cells. We show that transient blockade of IL-12 and IFN-γ during priming promotes the development of memory precursor effector CD8(+) T cells and increases the number of memory T cells that participate in the recall protection against subsequent infection. Overall, this study identifies key factors shaping memory development of Chlamydia-specific CD8(+) T cells that will inform future vaccine development against this and other pathogens.
Collapse
Affiliation(s)
- Xuqing Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
32
|
Epigenetic control of interferon-gamma expression in CD8 T cells. J Immunol Res 2015; 2015:849573. [PMID: 25973438 PMCID: PMC4418004 DOI: 10.1155/2015/849573] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
Interferon- (IFN-) γ is an essential cytokine for immunity against intracellular pathogens and cancer. IFN-γ expression by CD4 T lymphocytes is observed only after T helper (Th) 1 differentiation and there are several studies about the molecular mechanisms that control Ifng expression in these cells. However, naïve CD8 T lymphocytes do not produce large amounts of IFN-γ, but after TCR stimulation there is a progressive acquisition of IFN-γ expression during differentiation into cytotoxic T lymphocytes (CTL) and memory cells, which are capable of producing high levels of this cytokine. Differential gene expression can be regulated from the selective action of transcriptional factors and also from epigenetic mechanisms, such as DNA CpG methylation or posttranslational histone modifications. Recently it has been recognized that epigenetic modification is an integral part of CD8 lymphocyte differentiation. This review will focus on the chromatin status of Ifng promoter in CD8 T cells and possible influences of epigenetic modifications in Ifng gene and conserved noncoding sequences (CNSs) in regulation of IFN-γ production by CD8 T lymphocytes.
Collapse
|
33
|
Wang H, Yang YG. The complex and central role of interferon-γ in graft-versus-host disease and graft-versus-tumor activity. Immunol Rev 2015; 258:30-44. [PMID: 24517424 DOI: 10.1111/imr.12151] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/01/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is increasingly being performed to treat patients with hematologic malignancies. However, separating the beneficial graft-versus-tumor (GVT) or graft-versus-leukemia effects from graft-versus-host disease (GVHD) has been difficult and remains a significant challenge toward improving therapeutic efficacy and reducing toxicity of allo-HCT. GVHD is induced by donor T cells that also mediate potent anti-tumor responses. However, despite the largely shared effector mechanisms, extensive animal studies have demonstrated the potential of dissociating the GVT effect from GVHD. Also in many clinical cases, long-term remission was achieved following allo-HCT, without significant GVHD. A better mechanistic understanding of the immunopathophysiology of GVHD and GVT effects may potentially help to improve allo-HCT as well as maximize the benefit of GVT effects while minimizing GVHD. In this article, we review the role of IFN-γ in regulation of alloresponses following allo-HCT, with a focus on the mechanisms of how this cytokine may separate GVHD from GVT effects.
Collapse
Affiliation(s)
- Hui Wang
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | |
Collapse
|
34
|
Macrophages are the determinant of resistance to and outcome of nonlethal Babesia microti infection in mice. Infect Immun 2014; 83:8-16. [PMID: 25312951 DOI: 10.1128/iai.02128-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the present study, we examined the contributions of macrophages to the outcome of infection with Babesia microti, the etiological agent of human and rodent babesiosis, in BALB/c mice. Mice were treated with clodronate liposome at different times during the course of B. microti infection in order to deplete the macrophages. Notably, a depletion of host macrophages at the early and acute phases of infection caused a significant elevation of parasitemia associated with remarkable mortality in the mice. The depletion of macrophages at the resolving and latent phases of infection resulted in an immediate and temporal exacerbation of parasitemia coupled with mortality in mice. Reconstituting clodronate liposome-treated mice at the acute phase of infection with macrophages from naive mice resulted in a slight reduction in parasitemia with improved survival compared to that of mice that received the drug alone. These results indicate that macrophages play a crucial role in the control of and resistance to B. microti infection in mice. Moreover, analyses of host immune responses revealed that macrophage-depleted mice diminished their production of Th1 cell cytokines, including gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Furthermore, depletion of macrophages at different times exaggerated the pathogenesis of the infection in deficient IFN-γ(-/-) and severe combined immunodeficiency (SCID) mice. Collectively, our data provide important clues about the role of macrophages in the resistance and control of B. microti and imply that the severity of the infection in immunocompromised patients might be due to impairment of macrophage function.
Collapse
|
35
|
Early induction of interleukin-10 limits antigen-specific CD4⁺ T cell expansion, function, and secondary recall responses during persistent phagosomal infection. Infect Immun 2014; 82:4092-103. [PMID: 25024370 DOI: 10.1128/iai.02101-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Diverse pathogens have evolved to survive and replicate in the endosomes or phagosomes of the host cells and establish persistent infection. Ehrlichiae are Gram-negative, intracellular bacteria that are transmitted by ticks. Ehrlichiae reside in the endosomes of the host phagocytic or endothelial cells and establish persistent infection in their vertebrate reservoir hosts. CD4(+) T cells play a critical role in protection against phagosomal infections. In the present study, we investigated the expansion, maintenance, and functional status of antigen-specific CD4(+) T cells during persistent Ehrlichia muris infection in wild-type and interleukin-10 (IL-10)-deficient mice. Our study indicated that early induction of IL-10 led to reduced inflammatory responses and impaired bacterial clearance during persistent Ehrlichia infection. Notably, we demonstrated that the functional production of gamma interferon (IFN-γ) by antigen-specific CD4(+) T cells maintained during a persistent phagosomal infection progressively deteriorates. The functional loss of IFN-γ production by antigen-specific CD4(+) T cells was reversed in the absence of IL-10. Furthermore, we demonstrated that transient blockade of IL-10 receptor during the T cell priming phase early in infection was sufficient to enhance the magnitude and the functional capacity of antigen-specific effector and memory CD4(+) T cells, which translated into an enhanced recall response. Our findings provide new insights into the functional status of antigen-specific CD4(+) T cells maintained during persistent phagosomal infection. The study supports the concept that a better understanding of the factors that influence the priming and differentiation of CD4(+) T cells may provide a basis to induce a protective immune response against persistent infections.
Collapse
|
36
|
Hosking MP, Flynn CT, Whitton JL. Antigen-specific naive CD8+ T cells produce a single pulse of IFN-γ in vivo within hours of infection, but without antiviral effect. THE JOURNAL OF IMMUNOLOGY 2014; 193:1873-85. [PMID: 25015828 DOI: 10.4049/jimmunol.1400348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In vitro studies have shown that naive CD8(+) T cells are unable to express most of their effector proteins until after at least one round of cell division has taken place. We have reassessed this issue in vivo and find that naive CD8(+) T cells mount Ag-specific responses within hours of infection, before proliferation has commenced. Newly activated naive Ag-specific CD8(+) T cells produce a rapid pulse of IFN-γ in vivo and begin to accumulate granzyme B and perforin. Later, in vivo cytolytic activity is detectable, coincident with the initiation of cell division. Despite the rapid development of these functional attributes, no antiviral effect was observed early during infection, even when the cells are present in numbers similar to those of virus-specific memory cells. The evolutionary reason for the pulse of IFN-γ synthesis by naive T cells is uncertain, but the lack of antiviral impact suggests that it may be regulatory.
Collapse
Affiliation(s)
- Martin P Hosking
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Claudia T Flynn
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - J Lindsay Whitton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
37
|
Jeong YJ, Kim JH, Hong JM, Kang JS, Kim HR, Lee WJ, Hwang YI. Vitamin C treatment of mouse bone marrow-derived dendritic cells enhanced CD8(+) memory T cell production capacity of these cells in vivo. Immunobiology 2014; 219:554-64. [PMID: 24698552 DOI: 10.1016/j.imbio.2014.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/16/2013] [Accepted: 03/12/2014] [Indexed: 12/13/2022]
Abstract
Vitamin C has been found to stimulate dendritic cells (DCs) to secrete more IL-12 and thereby drive naïve CD4(+) T cells to differentiate into Th1 cells. In the present study, we evaluated the effect of these vitamin C-treated DCs on CD8(+) T cell differentiation both in vitro and in vivo. Mouse bone marrow-derived DCs were prepared in the presence of GM-CSF and IL-15. With vitamin C treatment, these DCs, when LPS-stimulated, secreted more IL-12p70 and IL-15 than did untreated DCs. And when co-cultured with T cells, they yielded a higher frequency of IFN-γ(+) CD8(+) T cells. Moreover, we found that administering vitamin C-treated and tumor lysate-loaded DCs into mice yielded a higher frequency of CD44(high) CD62L(low) CD8(+) effector and effector memory T cells, which showed an increased ex vivo killing effect of the tumor cells. These DCs also elicited enhanced protective effects against inoculated tumor cells, most probably by way of the increased cytotoxic T cells, as was revealed by the decreased growth of the inoculated tumor cells in these mice. This ex vivo vitamin C treatment effect on DCs can be considered as a strategy for boosting DC vaccination potency against tumors.
Collapse
Affiliation(s)
- Young-Joo Jeong
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jin-Hee Kim
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jun-Man Hong
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jae Seung Kang
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Hang-Rae Kim
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Wang Jae Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Young-il Hwang
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| |
Collapse
|
38
|
Misumi I, Whitmire JK. IFN-λ exerts opposing effects on T cell responses depending on the chronicity of the virus infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:3596-606. [PMID: 24646741 DOI: 10.4049/jimmunol.1301705] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IFN-λ induces an antiviral state in many cell types and may contribute to the overall inflammatory environment after infection. Either of these effects may influence adaptive immune responses, but the role of type 3 IFNs in the development of primary and memory T cell responses to infection has not been evaluated. In this study, we examined T cell responses to acute or persistent lymphocytic choriomeningitis virus infection in IFN-λR1-deficient mice. Following acute infection, we find that IFN-λR1-deficient mice produced normal levels of IFN, robust NK cell responses, but greater than normal CD4+ and CD8+ T cell responses compared with wild type BALB/c mice. There were more T cells that were IL-7R(hi) and, correspondingly, the IFN-λR-deficient mice showed a 2- to 3-fold increase in memory T cell number. The inhibitory effect of IFN-λR expression was independent of direct cytokine signaling into T cells. In contrast with acute infection, the IFN-λR-deficient mice generated markedly diminished T cell responses and had greater weight loss compared with wild type mice when confronted with a highly disseminating variant of lymphocytic choriomeningitis virus. These data indicate that IFN-λR limits T cell responses and memory after transient infection but augments T cell responses during persisting infection. Thus, the immune-regulatory functions for IFN-λR are complex and vary with the overall inflammatory environment.
Collapse
Affiliation(s)
- Ichiro Misumi
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | | |
Collapse
|
39
|
IL-27 receptor signaling regulates memory CD4+ T cell populations and suppresses rapid inflammatory responses during secondary malaria infection. Infect Immun 2013; 82:10-20. [PMID: 24101691 DOI: 10.1128/iai.01091-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin-27 (IL-27) is known to control primary CD4(+) T cell responses during a variety of different infections, but its role in regulating memory CD4(+) T responses has not been investigated in any model. In this study, we have examined the functional importance of IL-27 receptor (IL-27R) signaling in regulating the formation and maintenance of memory CD4(+) T cells following malaria infection and in controlling their subsequent reactivation during secondary parasite challenge. We demonstrate that although the primary effector/memory CD4(+) T cell response was greater in IL-27R-deficient (WSX-1(-/-)) mice following Plasmodium berghei NK65 infection than in wild-type (WT) mice, there were no significant differences in the size of the maintained memory CD4(+) T population(s) at 20 weeks postinfection in the spleen, liver, or bone marrow of WSX-1(-/-) mice compared with WT mice. However, the composition of the memory CD4(+) T cell pool was slightly altered in WSX-1(-/-) mice following clearance of primary malaria infection, with elevated numbers of late effector memory CD4(+) T cells in the spleen and liver and increased production of IL-2 in the spleen. Crucially, WSX-1(-/-) mice displayed significantly enhanced parasite control compared with WT mice following rechallenge with homologous malaria parasites. Improved parasite control in WSX-1(-/-) mice during secondary infection was associated with elevated systemic production of multiple inflammatory innate and adaptive cytokines and extremely rapid proliferation of antigen-experienced T cells in the liver. These data are the first to demonstrate that IL-27R signaling plays a role in regulating the magnitude and quality of secondary immune responses during rechallenge infections.
Collapse
|
40
|
Wlodarczyk MF, Kraft AR, Chen HD, Kenney LL, Selin LK. Anti-IFN-γ and peptide-tolerization therapies inhibit acute lung injury induced by cross-reactive influenza A-specific memory T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:2736-46. [PMID: 23408839 DOI: 10.4049/jimmunol.1201936] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Viral infections have variable outcomes, with severe disease occurring in only few individuals. We hypothesized that this variable outcome could correlate with the nature of responses made to previous microbes. To test this, mice were infected initially with influenza A virus (IAV) and in memory phase challenged with lymphocytic choriomeningitis virus (LCMV), which we show in this study to have relatively minor cross-reactivity with IAV. The outcome in genetically identical mice varied from mild pneumonitis to severe acute lung injury with extensive pneumonia and bronchiolization, similar to that observed in patients who died of the 1918 H1N1 pandemic. Lesion expression did not correlate with virus titers. Instead, disease severity directly correlated with and was predicted by the frequency of IAV-PB1703- and IAV-PA224-specific responses, which cross-reacted with LCMV-GP34 and LCMV-GP276, respectively. Eradication or functional ablation of these pathogenic memory T cell populations, using mutant-viral strains, peptide-based tolerization strategies, or short-term anti-IFN-γ treatment, inhibited severe lesions such as bronchiolization from occurring. Heterologous immunity can shape outcome of infections and likely individual responses to vaccination, and can be manipulated to treat or prevent severe pathology.
Collapse
Affiliation(s)
- Myriam F Wlodarczyk
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
41
|
Welsh RM, Waggoner SN. NK cells controlling virus-specific T cells: Rheostats for acute vs. persistent infections. Virology 2013; 435:37-45. [PMID: 23217614 DOI: 10.1016/j.virol.2012.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/01/2012] [Indexed: 12/13/2022]
Abstract
Viral infections characteristically induce a cytokine-driven activated natural killer (NK) cell response that precedes an antigen-driven T cell response. These NK cells can restrain some but not all viral infections by attacking virus-infected cells and can thereby provide time for an effective T cell response to mobilize. Recent studies have revealed an additional immunoregulatory role for the NK cells, where they inhibit the size and functionality of the T cell response, regardless of whether the viruses are themselves sensitive to NK cells. This subsequent change in T cell dynamics can alter patterns of immunopathology and persistence and implicates NK cells as rheostat-like regulators of persistent infections.
Collapse
Affiliation(s)
- Raymond M Welsh
- Department of Pathology and Program for Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
42
|
Purushothaman D, Marcel N, Garg M, Venkataraman R, Sarin A. Apoptotic programs are determined during lineage commitment of CD4+ T effectors: selective regulation of T effector-memory apoptosis by inducible nitric oxide synthase. THE JOURNAL OF IMMUNOLOGY 2012; 190:97-105. [PMID: 23225886 DOI: 10.4049/jimmunol.1103694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lineage-committed T effectors generated in response to Ag during the inflammatory phase are destined to die during termination of the immune response. We present evidence to suggest that molecular signatures of lineage commitment are reflected in apoptotic cascades activated in CD4(+) T effectors. Exemplifying this, ablation of inducible NO synthase (iNOS) protected effector-memory T (TEM) cells, but not T(Naive) or central-memory T cells, activated in vitro, from apoptosis triggered by cytokine deprivation. Furthermore, attrition of T effectors generated in the secondary, but not the primary, response to Ag was substantially reduced in mice, which received iNOS inhibitors. Distinct patterns of iNOS expression were revealed in wild-type TEM effectors undergoing apoptosis, and ablation of iNOS protein in primary and TEM wild-type effectors confirmed observations made in iNOS(-/-) cells. Describing molecular correlates of this dependence, mitochondrial damage, activation of the protein Bax, and release from mitochondria of the apoptosis-inducing factor were selectively abrogated in iNOS(-/-) TEM effectors. Suggesting that iNOS dependence was linked to the functional identity of T cell subsets, both iNOS induction and apoptosis were compromised in IFN-γ(-/-) TEM effectors, which mirrored the response patterns of iNOS(-)(/)(-) TEM. Collectively, these observations suggest that programs regulating deletion and differentiation are closely integrated and likely encoded during lineage commitment of T effectors.
Collapse
Affiliation(s)
- Divya Purushothaman
- National Centre for Biological Sciences, Bangalore 560065, Karnataka, India.
| | | | | | | | | |
Collapse
|
43
|
Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol 2012; 12:749-61. [PMID: 23080391 DOI: 10.1038/nri3307] [Citation(s) in RCA: 1098] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During an infection, T cells can differentiate into multiple types of effector and memory T cells, which help to mediate pathogen clearance and provide long-term protective immunity. These cells can vary in their phenotype, function and location, and in their long-term fate in terms of their ability to populate the memory T cell pool. Over the past decade, the signalling pathways and transcriptional programmes that regulate the formation of heterogeneous populations of effector and memory CD8(+) T cells have started to be characterized, and this Review discusses the major advances in these areas.
Collapse
|
44
|
Characterization of CD8+ T cell function and immunodominance generated with an H2O2-inactivated whole-virus vaccine. J Virol 2012; 86:13735-44. [PMID: 23055558 DOI: 10.1128/jvi.02178-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD8(+) T cells play an important role in protection against both acute and persistent viral infections, and new vaccines that induce CD8(+) T cell immunity are currently needed. Here, we show that lymphocytic choriomeningitis virus (LCMV)-specific CD8(+) T cells can be generated in response to a nonreplicating H(2)O(2)-inactivated whole-virus vaccine (H(2)O(2)-LCMV). Vaccine-induced CD8(+) T cell responses exhibited an increased ability to produce multiple cytokines at early time points following immunization compared to infection-induced responses. Vaccination with H(2)O(2)-LCMV induced the expansion of a narrow subset of the antigen-specific CD8(+) T cells induced by LCMV strain Arm infection, resulting in a distinct immunodominance hierarchy. Acute LCMV infection stimulated immunodominance patterns that shifted over time or after secondary infection, whereas vaccine-generated immunodominance profiles remained remarkably stable even following subsequent viral infection. Vaccine-induced CD8(+) T cell populations expanded sharply in response to challenge and were then maintained at high levels, with responses to individual epitopes occupying up to 40% of the CD8(+) T cell compartment at 35 days after challenge. H(2)O(2)-LCMV vaccination protected animals against challenge with chronic LCMV clone 13, and protection was mediated by CD8(+) T cells. These results indicate that vaccination with an H(2)O(2)-inactivated whole-virus vaccine induces LCMV-specific CD8(+) T cells with unique functional characteristics and provides a useful model for studying CD8(+) T cells elicited in the absence of active viral infection.
Collapse
|
45
|
Curtsinger JM, Agarwal P, Lins DC, Mescher MF. Autocrine IFN-γ promotes naive CD8 T cell differentiation and synergizes with IFN-α to stimulate strong function. THE JOURNAL OF IMMUNOLOGY 2012; 189:659-68. [PMID: 22706089 DOI: 10.4049/jimmunol.1102727] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autocrine IFN-γ signaling is important for CD4 differentiation to Th1 effector cells, but it has been unclear whether it contributes to CD8 T cell differentiation. We show in this paper that naive murine CD8 T cells rapidly and transiently produce low levels of IFN-γ upon stimulation with Ag and B7-1, with production peaking at ∼8 h and declining by 24 h. The autocrine IFN-γ signals for upregulation of expression of T-bet and granzyme B and induces weak cytolytic activity and effector IFN-γ production. IFN-α acts synergistically with IFN-γ to support development of strong effector functions, whereas IL-12 induces high T-bet expression and strong function in the absence of IFN-γ signaling. Thus, IFN-γ is not only an important CD8 T cell effector cytokine, it is an autocrine/paracrine factor whose contributions to differentiation vary depending on whether the response is supported by IL-12 or type I IFN.
Collapse
|
46
|
Affiliation(s)
- Raymond M Welsh
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
47
|
Joshi NS, Cui W, Dominguez CX, Chen JH, Hand TW, Kaech SM. Increased numbers of preexisting memory CD8 T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:4068-76. [PMID: 21930973 DOI: 10.4049/jimmunol.1002145] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Memory CD8 T cells acquire effector memory cell properties after reinfection and may reach terminally differentiated, senescent states ("Hayflick limit") after multiple infections. The signals controlling this process are not well understood, but we found that the degree of secondary effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and preexisting memory CD8 T cell number (i.e., primary memory CD8 T cell precursor frequency) present during secondary infection. Compared with naive cells, memory CD8 T cells were predisposed toward terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of Ag. TE cell formation after secondary (2°) or tertiary infections was dependent on increased T-bet expression because T-bet(+/-) cells were resistant to these phenotypic changes. Larger numbers of preexisting memory CD8 T cells limited the duration of 2° infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2° TE CD8 T cells that formed. Together, these data show that over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with Ag or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by preexisting memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies.
Collapse
Affiliation(s)
- Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
48
|
Gamma interferon and perforin control the strength, but not the hierarchy, of immunodominance of an antiviral CD8+ T cell response. J Virol 2011; 85:12578-84. [PMID: 21917955 DOI: 10.1128/jvi.05334-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The two major antiviral effector mechanisms of CD8(+) T cells are thought to be perforin (Prf)-mediated cell lysis and gamma interferon (IFN-γ)-mediated induction of an antiviral state. By affecting the expression of proteins involved in antigen presentation, IFN-γ is also thought to shape the magnitude and specificity of the CD8(+) T cell response. Here we studied the roles of Prf and IFN-γ in shaping the effector and memory CD8(+) T cell responses to vaccinia virus (VACV). IFN-γ deficiency resulted in increased numbers of anti-VACV effector and memory CD8(+) T cells, which were partly dependent on increased virus loads. On the other hand, Prf-deficient mice showed an increase in the number of VACV-specific CD8(+) T cells only in the memory phase. Treatment of the mice with the antiviral drug cidofovir reduced the numbers of effector and memory cells closer to wild-type levels in IFN-γ-deficient mice and reduced the numbers of memory CD8(+) T cells to wild-type levels in Prf-deficient mice. These data suggest that virus loads are the main reason for the increased strength of the CD8 response in IFN-γ- and Prf-deficient mice. Neither Prf deficiency nor IFN-γ deficiency had an effect on the immunodominance hierarchy of five K(b)-restricted CD8(+) T cell determinants either during acute infection or after recovery. Thus, our work shows that CD8(+) T cell immunodominance during VACV infection is not affected by the effects of IFN-γ on the antigen presentation machinery.
Collapse
|
49
|
Mocan T, Iancu C. Effective colon cancer prophylaxis in mice using embryonic stem cells and carbon nanotubes. Int J Nanomedicine 2011; 6:1945-54. [PMID: 21976971 PMCID: PMC3181055 DOI: 10.2147/ijn.s24060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction In recent years, a new concept of an anticancer vaccine has been proposed to prevent and control the proliferation and expansion of cancer cells by eliciting an immune boost in biological systems. The recent literature supports the role of embryonic stem cells (ESC) as cellular agents that stimulate the biological systems to destroy cancer cells. However, at present, a true anticancer vaccine remains elusive. There are several lines of evidence showing that carbon nanotubes may be used to initiate and maintain immune responses. Objective The authors proposed to test the therapeutic potential of multiwalled carbon nanotubes (MWCNTs) combined with ESC as agents to induce an immune boost and provide subsequent anticancer protection in mice. Methods C57 BL/6 mice were immunized with ESC and MWCNTs. Results The proposed vaccine led to significant antitumor responses and enhanced tumor rejection in mice with subcutaneous inoculation of MC38 colon malign cells compared with groups only administered ESC, only MWCNTs, and controls. Conclusion The application and potential of ESC combined with MWCNTs as anticancer immunization agents may represent the beginning of a new chapter in the treatment of colon cancer.
Collapse
Affiliation(s)
- Teodora Mocan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | | |
Collapse
|
50
|
Pannetier D, Reynard S, Russier M, Journeaux A, Tordo N, Deubel V, Baize S. Human dendritic cells infected with the nonpathogenic Mopeia virus induce stronger T-cell responses than those infected with Lassa virus. J Virol 2011; 85:8293-306. [PMID: 21632749 PMCID: PMC3147965 DOI: 10.1128/jvi.02120-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 05/23/2011] [Indexed: 12/14/2022] Open
Abstract
The events leading to death in severe cases of Lassa fever (LF) are unknown. Fatality seems to be linked to high viremia and immunosuppression, and cellular immunity, rather than neutralizing antibodies, appears to be essential for survival. We previously compared Lassa virus (LV) with its genetically close but nonpathogenic homolog Mopeia virus (MV), which was used to model nonfatal LF. We showed that strong and early activation of antigen-presenting cells (APC) may play a crucial role in controlling infection. Here we developed an in vitro model of dendritic-cell (DC)-T-cell coculture in order to characterize human T-cell responses induced by MV- or LV-infected DCs. Our results show very different responses to infection with LV and MV. MV strongly and durably stimulated CD8(+) and CD4(+) T cells, showing early and high activation, a strong proliferative response, and acquisition of effector and memory phenotypes. Furthermore, robust and functional CD4(+) and CD8(+) cytotoxic T lymphocytes (CTL) were generated. LV, however, induced only weak memory responses. Thus, this study allows an improved understanding of the pathogenesis and immune mechanisms involved in the control of human LV.
Collapse
Affiliation(s)
- Delphine Pannetier
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon Cedex 07, France.
| | | | | | | | | | | | | |
Collapse
|