1
|
Yang M, Zhang X, Liu Q, Wang Y. Network pharmacology, molecular docking, and untargeted metabolomics reveal molecular mechanisms of multi-targets effects of Qingfei Tongluo Plaster improving respiratory syncytial virus pneumonia. CHINESE HERBAL MEDICINES 2024; 16:638-655. [PMID: 39606255 PMCID: PMC11589485 DOI: 10.1016/j.chmed.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/20/2024] [Accepted: 07/26/2024] [Indexed: 11/29/2024] Open
Abstract
Objective Qingfei Tongluo Plaster (QFP), an improved Chinese medicine hospital preparation, is an attractive treatment option due to its well clinical efficacy, convenience, economy, and patient compliance in the treatment of respiratory syncytial virus (RSV) pneumonia. The aim of this study was to investigate the efficacy mechanism of QFP on RSV rats from the perspective of alleviating lung inflammation and further explore the changes of serum metabolites and metabolic pathways in RSV rats under the influence of QFP. Methods This study used network pharmacological methods and molecular docking combined with molecular biology and metabolomics from multi-dimensional perspectives to screen and verify the therapeutic targets. Open online databases were used to speculate the gene targets of efficient ingredients and diseases. Then, we used the String database to examine the fundamental interaction of common targets of drugs and diseases. An online enrichment analysis was performed to predict the functional pathways. Molecular docking was applied to discover the binding modes between essential ingredients and crucial gene targets. Finally, we demonstrated the anti-inflammatory ability of QFP in the RSV-evoked pneumonia rat model and explained the mechanism in combination with the metabolomics results. Results There were 19 critical targets defined as the core targets: tumor necrosis factor (TNF), inducible nitric oxide synthase 2 (NOS2), mitogen-activated protein kinase 14 (MAPK14), g1/S-specific cyclin-D1 (CCND1), signal transducer and activator of transcription 1-alpha/beta (STAT1), proto-oncogene tyrosine-protein kinase Src (SRC), cellular tumor antigen p53 (TP53), interleukin-6 (IL6), hypoxia-inducible factor 1-alpha (HIF1A), RAC-alpha serine/threonine-protein kinase (AKT1), signal transducer and activator of transcription 3 (STAT3), heat shock protein HSP 90-alpha (HSP90AA1), tyrosine-protein kinase JAK2 (JAK2), cyclin-dependent kinase inhibitor 1 (CDKN1A), mitogen-activated protein kinase 3 (MAPK3), epidermal growth factor receptor (EGFR), myc proto-oncogene protein (MYC), protein c-Fos (FOS) and transcription factor p65 (RELA). QFP treated RSV pneumonia mainly through the phosphatidylinositol 3-kinase (PI3K)/RAC AKT pathway, HIF-1 pathway, IL-17 pathway, TNF pathway, and MAPK pathway. Animal experiments proved that QFP could effectively ameliorate RSV-induced pulmonary inflammation. A total of 28 metabolites underwent significant changes in the QFP treatment, and there are four metabolic pathways consistent with the KEGG pathway analyzed by network pharmacology, suggesting that they may be critical processes related to treatment. Conclusion These results provide essential perspicacity into the mechanisms of action of QFP as a promising anti-RSV drug.
Collapse
Affiliation(s)
- Mengfei Yang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Xiuying Zhang
- Department of Pediatrics, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Qing Liu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Yongxue Wang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| |
Collapse
|
2
|
Faghirabadi F, Abuei H, Malekzadeh MH, Mojiri A, Farhadi A. Intracellular delivery of antiviral shRNA using penetratin-based complexes effectively inhibits respiratory syncytial virus replication and host cell apoptosis. Virol J 2024; 21:235. [PMID: 39350281 PMCID: PMC11443668 DOI: 10.1186/s12985-024-02519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Cell-penetrating peptides (CPPs) are effective for delivering therapeutic molecules with minimal toxicity. This study focuses on the use of penetratin, a well-characterized CPP, to deliver a DNA vector encoding short hairpin RNA (shRNA) targeting the respiratory syncytial virus (RSV) F gene into infected cells. RSV is known to cause severe lower respiratory infections in infants and poses significant risks to immunocompromised individuals and the elderly. We evaluated the antiviral efficacy of the penetratin-shRNA complex by comparing its ability to inhibit RSV replication and induce apoptosis with ribavirin treatment. METHODS Penetratin-shRNA complexes were prepared at different ratios and analyzed using gel retardation assays, dynamic light scattering, and zeta potential measurements. The complexes were tested in HEp-2 and A549 cells for transfection efficiency, cytotoxicity, viral load, and apoptosis using plaque assays, real-time reverse transcription-polymerase chain reaction (RT-PCR), DNA fragmentation, propidium iodide staining, and caspase 3/7 activation assays. RESULTS The gel shift assay determined that a 20:1 CPP-to-shRNA ratio was optimal for effective complexation, resulting in particles with a size of 164 nm and a zeta potential of 8.7 mV. Transfection efficiency in HEp-2 cells was highest at this ratio, reaching up to 93%. The penetratin-shRNA complex effectively silenced the RSV F gene, reduced viral titers, and decreased DNA fragmentation and apoptosis in infected cells. CONCLUSION Penetratin effectively delivers shRNA targeting the RSV F gene, significantly reducing viral load and preventing apoptosis without toxicity. This approach surpasses Lipofectamine and shows potential for future therapeutic interventions, especially when combined with ribavirin, against RSV infection.
Collapse
Affiliation(s)
- Faezeh Faghirabadi
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haniyeh Abuei
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Malekzadeh
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahita Mojiri
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, 77030, TX, USA
| | - Ali Farhadi
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Liu J, Gao L, Zhou N, Jiang Z, Che S, Deng Y, Zang N, Ren L, Xie X, Xie J, Liu E. p53 suppresses the inflammatory response following respiratory syncytial virus infection by inhibiting TLR2. Virology 2024; 593:110018. [PMID: 38368639 DOI: 10.1016/j.virol.2024.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
-Respiratory syncytial virus (RSV) is a pivotal virus leading to acute lower respiratory tract infections in children under 5 years old. This study aimed to explore the correlation between p53 and Toll-like receptors (TLRs) post RSV infection. p53 levels exhibited a substantial decrease in nasopharyngeal aspirates (NPAs) from infants with RSV infection compared to control group. Manipulating p53 expression had no significant impact on RSV replication or interferon signaling pathway. Suppression of p53 expression led to heightened inflammation following RSV infection in A549 cells or airways of BALB/c mice. while stabilizing p53 expression using Nutlin-3a mitigated the inflammatory response in A549 cells. Additionally, Inhibiting p53 expression significantly increased Toll-like receptor 2 (TLR2) expression in RSV-infected epithelial cells and BALB/c mice. Furthermore, the TLR2 inhibitor, C29, effectively reduced inflammation mediated by p53 in A549 cells. Collectively, our results indicate that p53 modulates the inflammatory response after RSV infection through TLR2.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Leiqiong Gao
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Na Zhou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhenghong Jiang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Siyi Che
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Deng
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Na Zang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Luo Ren
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohong Xie
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jun Xie
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| |
Collapse
|
4
|
Gladwell W, Yost O, Li H, Bell WJ, Chen SH, Ward JM, Kleeberger SR, Resnick MA, Menendez D. APOBEC3G Is a p53-Dependent Restriction Factor in Respiratory Syncytial Virus Infection of Human Cells Included in the p53/Immune Axis. Int J Mol Sci 2023; 24:16793. [PMID: 38069117 PMCID: PMC10706465 DOI: 10.3390/ijms242316793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Identifying and understanding genetic factors that influence the propagation of the human respiratory syncytial virus (RSV) can lead to health benefits and possibly augment recent vaccine approaches. We previously identified a p53/immune axis in which the tumor suppressor p53 directly regulates the expression of immune system genes, including the seven members of the APOBEC3 family of DNA cytidine deaminases (A3), which are innate immune sentinels against viral infections. Here, we examined the potential p53 and A3 influence in RSV infection, as well as the overall p53-dependent cellular and p53/immune axis responses to infection. Using a paired p53 model system of p53+ and p53- human lung tumor cells, we found that RSV infection activates p53, leading to the altered p53-dependent expression of A3D, A3F, and A3G, along with p53 site-specific binding. Focusing on A3G because of its 10-fold-greater p53 responsiveness to RSV, the overexpression of A3G can reduce RSV viral replication and syncytial formation. We also observed that RSV-infected cells undergo p53-dependent apoptosis. The study was expanded to globally address at the transcriptional level the p53/immune axis response to RSV. Nearly 100 genes can be directly targeted by the p53/immune axis during RSV infection based on our p53BAER analysis (Binding And Expression Resource). Overall, we identify A3G as a potential p53-responsive restriction factor in RSV infection. These findings have significant implications for RSV clinical and therapeutic studies and other p53-influenced viral infections, including using p53 adjuvants to boost the response of A3 genes.
Collapse
Affiliation(s)
- Wesley Gladwell
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA; (W.G.); (O.Y.); (H.L.); (W.J.B.); (S.R.K.)
| | - Oriana Yost
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA; (W.G.); (O.Y.); (H.L.); (W.J.B.); (S.R.K.)
| | - Heather Li
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA; (W.G.); (O.Y.); (H.L.); (W.J.B.); (S.R.K.)
| | - Whitney J. Bell
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA; (W.G.); (O.Y.); (H.L.); (W.J.B.); (S.R.K.)
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA
| | - Shih-Heng Chen
- Viral Vector Core Facility, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA;
| | - James M. Ward
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA
| | - Steven R. Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA; (W.G.); (O.Y.); (H.L.); (W.J.B.); (S.R.K.)
| | - Michael A. Resnick
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA
| | - Daniel Menendez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA; (W.G.); (O.Y.); (H.L.); (W.J.B.); (S.R.K.)
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
5
|
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic. Of particular interest for this topic are the signaling cascades that regulate cell survival and death, two opposite cell programs whose control is hijacked by viral infections. The AKT and the Unfolded Protein Response (UPR) pathways, which maintain cell homeostasis by regulating these two programs, have been shown to be deregulated during SARS-CoVs infection as well as in the development of cancer, one of the most important comorbidities in relation to COVID-19. Recent evidence revealed two way crosstalk mechanisms between the AKT and the UPR pathways, suggesting that they might constitute a unified homeostatic control system. Here, we review the role of the AKT and UPR pathways and their interaction in relation to SARS-CoV-2 infection as well as in tumor onset and progression. Feedback regulation between AKT and UPR pathways emerges as a master control mechanism of cell decision making in terms of survival or death and therefore represents a key potential target for developing treatments for both viral infection and cancer. In particular, drug repositioning, the investigation of existing drugs for new therapeutic purposes, could significantly reduce time and costs compared to de novo drug discovery.
Collapse
|
6
|
Prediction of the Active Components and Mechanism of Forsythia suspensa Leaf against Respiratory Syncytial Virus Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5643345. [PMID: 35911158 PMCID: PMC9328944 DOI: 10.1155/2022/5643345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
Objective Forsythia suspensa leaf (FSL) has been used as a health tea in China for centuries. Previous experiments have proved that FSL extract has a good effect on the antirespiratory syncytial virus (RSV) in vitro, but its exact mechanism is not clear. Therefore, this study aims to determine the active components and targets of FSL and further explore its anti-RSV mechanism. Methods UPLC-Q-Exactive-MS was used to analyze the main chemical components of FSL. The compound disease target network, PPI, GO, and KEGG were used to obtain key targets and potential ways. Then, the molecular docking was verified by Schrödinger Maestro software. Next, the cell model of RSV infection was established, and the inhibitory effect of each drug on RSV was detected. Finally, western blotting was used to detect the effect of the active components of FSL on the expression of PI3K/AKT signaling pathway-related protein. Results UPLC-Q-Exactive-MS analysis showed that there were 67 main chemical constituents in FSL, while network pharmacological analysis showed that there were 169 anti-RSV targets of the active components in FSL, involving 177 signal pathways, among which PI3K/AKT signal pathway played an important role in the anti-RSV process of FSL. The results of molecular docking showed that cryptochlorogenic acid, phillyrin, phillygenin, rutin, and rosmarinic acid had higher binding activities to TP53, STAT3, MAPK1, AKT1, and MAPK3, respectively. In vitro experiments showed that phillyrin and rosmarinic acid could effectively improve the survival rate of RSV-infected cells, increase the expression level of PI3K, and decrease the expression level of AKT. Conclusion The active ingredients of FSL, phillyrin, and rosmarinic acid can play an anti-RSV role by inhibiting PI3K/AKT signaling pathway. This study provides reliable theoretical and experimental support for the anti-RSV treatment of FSL.
Collapse
|
7
|
Mitzel H, Brown D, Thomas M, Curl B, Wild M, Kelsch A, Muskrat J, Hossain A, Ryan K, Babalola O, Burgard M, Mehedi M. Patient-Centered Discussion on End-of-Life Care for Patients with Advanced COPD. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:254. [PMID: 35208578 PMCID: PMC8878082 DOI: 10.3390/medicina58020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
Exacerbations of chronic obstructive pulmonary disease (COPD) may lead to a rapid decline in health and subsequent death, an unfortunate tyranny of having COPD-an irreversible health condition of 16 million individuals in the USA totaling 60 million in the world. While COPD is the third largest leading cause of death, causing 3.23 million deaths worldwide in 2019 (according to the WHO), most patients with COPD do not receive adequate treatment at the end stages of life. Although death is inevitable, the trajectory towards end-of-life is less predictable in severe COPD. Thus, clinician-patient discussion for end-of-life and palliative care could bring a meaningful life-prospective to patients with advanced COPD. Here, we summarized the current understanding and treatment of COPD. This review also highlights the importance of patient-centered discussion and summarizes current status of managing patients with advanced COPD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Masfique Mehedi
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (H.M.); (D.B.); (M.T.); (B.C.); (M.W.); (A.K.); (J.M.); (A.H.); (K.R.); (O.B.); (M.B.)
| |
Collapse
|
8
|
D’Anna SE, Maniscalco M, Cappello F, Carone M, Motta A, Balbi B, Ricciardolo FLM, Caramori G, Di Stefano A. Bacterial and viral infections and related inflammatory responses in chronic obstructive pulmonary disease. Ann Med 2021; 53:135-150. [PMID: 32997525 PMCID: PMC7877965 DOI: 10.1080/07853890.2020.1831050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
In chronic obstructive pulmonary disease (COPD) patients, bacterial and viral infections play a relevant role in worsening lung function and, therefore, favour disease progression. The inflammatory response to lung infections may become a specific indication of the bacterial and viral infections. We here review data on the bacterial-viral infections and related airways and lung parenchyma inflammation in stable and exacerbated COPD, focussing our attention on the prevalent molecular pathways in these different clinical conditions. The roles of macrophages, autophagy and NETosis are also briefly discussed in the context of lung infections in COPD. Controlling their combined response may restore a balanced lung homeostasis, reducing the risk of lung function decline. KEY MESSAGE Bacteria and viruses can influence the responses of the innate and adaptive immune system in the lung of chronic obstructive pulmonary disease (COPD) patients. The relationship between viruses and bacterial colonization, and the consequences of the imbalance of these components can modulate the inflammatory state of the COPD lung. The complex actions involving immune trigger cells, which activate innate and cell-mediated inflammatory responses, could be responsible for the clinical consequences of irreversible airflow limitation, lung remodelling and emphysema in COPD patients.
Collapse
Affiliation(s)
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, IRCCS, Telese, Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), Istituto di Anatomia Umana e Istologia Università degli Studi di Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Mauro Carone
- UOC Pulmonology and Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS di Bari, Bari, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| | - Fabio L. M. Ricciardolo
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, AOU San Luigi Gonzaga, Torino, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini morfologiche e funzionali (BIOMORF), Università degli studi di Messina, Italy
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| |
Collapse
|
9
|
Mathew C, Tamir S, Tripp RA, Ghildyal R. Reversible disruption of XPO1-mediated nuclear export inhibits respiratory syncytial virus (RSV) replication. Sci Rep 2021; 11:19223. [PMID: 34584169 PMCID: PMC8479129 DOI: 10.1038/s41598-021-98767-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the primary cause of serious lower respiratory tract disease in infants, young children, the elderly and immunocompromised individuals. Therapy for RSV infections is limited to high risk infants and there are no safe and efficacious vaccines. Matrix (M) protein is a major RSV structural protein with a key role in virus assembly. Interestingly, M is localised to the nucleus early in infection and its export into the cytoplasm by the nuclear exporter, exportin-1 (XPO1) is essential for RSV assembly. We have shown previously that chemical inhibition of XPO1 function results in reduced RSV replication. In this study, we have investigated the anti-RSV efficacy of Selective Inhibitor of Nuclear Export (SINE) compounds, KPT-335 and KPT-185. Our data shows that therapeutic administration of the SINE compounds results in reduced RSV titre in human respiratory epithelial cell culture. Within 24 h of treatment, RSV replication and XPO1 expression was reduced, M protein was partially retained in the nucleus, and cell cycle progression was delayed. Notably, the effect of SINE compounds was reversible within 24 h after their removal. Our data show that reversible inhibition of XPO1 can disrupt RSV replication by affecting downstream pathways regulated by the nuclear exporter.
Collapse
Affiliation(s)
- Cynthia Mathew
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia
| | | | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia.
| |
Collapse
|
10
|
Niyomdecha N, Suptawiwat O, Boonarkart C, Thitithanyanont A, Auewarakul P. Repurposing of antiparasitic niclosamide to inhibit respiratory syncytial virus (RSV) replication. Virus Res 2021; 295:198277. [PMID: 33476693 DOI: 10.1016/j.virusres.2020.198277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Despite being an important health problem, there are only supportive care treatments for respiratory syncytial virus (RSV) infection. Thus, discovery of specific therapeutic drugs for RSV is still needed. Recently, an antiparasitic drug niclosamide has shown a broad-spectrum antiviral activity. Here, our in vitro model was used to study the antiviral effect of niclosamide on RSV and its related mechanism. Niclosamide inhibited RSV with time and dose-dependent manner. Pretreatment with submicromolar concentration of niclosamide for 6 h presented the highest anti-RSV activity of 94 % (50 % effective concentration; EC50 of 0.022 μM). Niclosamide efficiently blocked infection of laboratory strains and clinical isolates of both RSV-A and RSV-B in a bronchial epithelial cell line. Although a disruption of the mechanistic target of rapamycin complex 1 (mTORC1) pathway by niclosamide was previously hypothesized as a mechanism against pH-independent viruses like RSV, using a chemical mTORC1 inhibitor, temsirolimus, and a chemical mTORC1 agonist, MHY1485 (MHY), we show here that the mechanism of RSV inhibition by niclosamide was mTORC1 independent. Indeed, our data indicated that niclosamide hindered RSV infection via proapoptotic activity by a reduction of AKT prosurvival protein, activation of cleaved caspase-3 and PARP (poly ADP-ribose polymerase), and an early apoptosis induction.
Collapse
Affiliation(s)
- Nattamon Niyomdecha
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| | - Ornpreya Suptawiwat
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
11
|
Martinez-Espinoza I, Banos-Lara MDR, Guerrero-Plata A. The Importance of miRNA Identification During Respiratory Viral Infections. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:207-214. [PMID: 34541575 PMCID: PMC8445226 DOI: 10.33696/immunology.3.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expression of small non-coding RNA MicroRNAs (miRNAs) during respiratory viral infections is of critical importance as they are implicated in the viral replication, immune responses and severity of disease pathogenesis. Respiratory viral infections have an extensive impact on human health across the globe. For that is essential to understand the factors that regulate the host response against infections. The differential miRNA pattern induced by respiratory viruses has been reported, including include influenza A virus (IAV), human respiratory syncytial virus (HRSV), human metapneumovirus (HMPV), adenovirus (AdV), and more recently, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. In this commentary, we highlight the importance of miRNAs identification and the contribution of these molecules in the modulation of the immune response through the upregulation and downregulation of miRNAs expression in different immune and non-immune cells.
Collapse
Affiliation(s)
- Ivan Martinez-Espinoza
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | | |
Collapse
|
12
|
Zauli G, Tisato V, Secchiero P. Rationale for Considering Oral Idasanutlin as a Therapeutic Option for COVID-19 Patients. Front Pharmacol 2020; 11:1156. [PMID: 32848765 PMCID: PMC7403220 DOI: 10.3389/fphar.2020.01156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Simpson J, Loh Z, Ullah MA, Lynch JP, Werder RB, Collinson N, Zhang V, Dondelinger Y, Bertrand MJM, Everard ML, Blyth CC, Hartel G, Van Oosterhout AJ, Gough PJ, Bertin J, Upham JW, Spann KM, Phipps S. Respiratory Syncytial Virus Infection Promotes Necroptosis and HMGB1 Release by Airway Epithelial Cells. Am J Respir Crit Care Med 2020; 201:1358-1371. [PMID: 32105156 DOI: 10.1164/rccm.201906-1149oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rationale: Respiratory syncytial virus (RSV) bronchiolitis causes significant infant mortality. Bronchiolitis is characterized by airway epithelial cell (AEC) death; however, the mode of death remains unknown.Objectives: To determine whether necroptosis contributes to RSV bronchiolitis pathogenesis via HMGB1 (high mobility group box 1) release.Methods: Nasopharyngeal samples were collected from children presenting to the hospital with acute respiratory infection. Primary human AECs and neonatal mice were inoculated with RSV and murine Pneumovirus, respectively. Necroptosis was determined via viability assays and immunohistochemistry for RIPK1 (receptor-interacting protein kinase-1), MLKL (mixed lineage kinase domain-like pseudokinase) protein, and caspase-3. Necroptosis was blocked using pharmacological inhibitors and RIPK1 kinase-dead knockin mice.Measurements and Main Results: HMGB1 levels were elevated in nasopharyngeal samples of children with acute RSV infection. RSV-induced epithelial cell death was associated with increased phosphorylated RIPK1 and phosphorylated MLKL but not active caspase-3 expression. Inhibition of RIPK1 or MLKL attenuated RSV-induced HMGB1 translocation and release, and lowered viral load. MLKL inhibition increased active caspase-3 expression in a caspase-8/9-dependent manner. In susceptible mice, Pneumovirus infection upregulated RIPK1 and MLKL expression in the airway epithelium at 8 to 10 days after infection, coinciding with AEC sloughing, HMGB1 release, and neutrophilic inflammation. Genetic or pharmacological inhibition of RIPK1 or MLKL attenuated these pathologies, lowered viral load, and prevented type 2 inflammation and airway remodeling. Necroptosis inhibition in early life ameliorated asthma progression induced by viral or allergen challenge in later life.Conclusions: Pneumovirus infection induces AEC necroptosis. Inhibition of necroptosis may be a viable strategy to limit the severity of viral bronchiolitis and break its nexus with asthma.
Collapse
Affiliation(s)
- Jennifer Simpson
- QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Biomedical Science, University of Queensland, Brisbane, Queensland, Australia
| | - Zhixuan Loh
- School of Biomedical Science, University of Queensland, Brisbane, Queensland, Australia
| | - Md Ashik Ullah
- QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Biomedical Science, University of Queensland, Brisbane, Queensland, Australia
| | - Jason P Lynch
- QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Biomedical Science, University of Queensland, Brisbane, Queensland, Australia
| | - Rhiannon B Werder
- QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Biomedical Science, University of Queensland, Brisbane, Queensland, Australia
| | | | - Vivian Zhang
- QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Biomedical Science, University of Queensland, Brisbane, Queensland, Australia
| | - Yves Dondelinger
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Christopher C Blyth
- School of Medicine and.,Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.,Department of Infectious Diseases, Perth Children's Hospital, Perth, Western Australia, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, QEII Medical Centre, Perth, Western Australia, Australia
| | - Gunter Hartel
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | | | | | | | - John W Upham
- University of Queensland Diamantina Institute, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia; and
| | - Kirsten M Spann
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Biomedical Science, University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia; and
| |
Collapse
|
14
|
Uddin MA, Barabutis N. P53 in the impaired lungs. DNA Repair (Amst) 2020; 95:102952. [PMID: 32846356 PMCID: PMC7437512 DOI: 10.1016/j.dnarep.2020.102952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Our laboratory is focused on investigating the supportive role of P53 towards the maintenance of lung homeostasis. Acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, pulmonary fibrosis, bronchial asthma, pulmonary arterial hypertension, pneumonia and tuberculosis are respiratory pathologies, associated with dysfunctions of this endothelium defender (P53). Herein we review the evolving role of P53 towards the aforementioned inflammatory disorders, to potentially reveal new therapeutic possibilities in pulmonary disease.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA.
| |
Collapse
|
15
|
Blanco J, Cameirao C, López MC, Muñoz-Barroso I. Phosphatidylinositol-3-kinase-Akt pathway in negative-stranded RNA virus infection: a minireview. Arch Virol 2020; 165:2165-2176. [PMID: 32740830 DOI: 10.1007/s00705-020-04740-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/17/2020] [Indexed: 12/23/2022]
Abstract
The PI3K/Akt signalling pathway is a crucial signalling cascade that regulates transcription, protein translation, cell growth, proliferation, cell survival, and metabolism. During viral infection, viruses exploit a variety of cellular pathways, including the well-known PI3K/Akt signalling pathway. Conversely, cells rely on this pathway to stimulate an antiviral response. The PI3K/Akt pathway is manipulated by a number of viruses, including DNA and RNA viruses and retroviruses. The aim of this review is to provide up-to-date information about the role of the PI3K-Akt pathway in infection with members of five different families of negative-sense ssRNA viruses. This pathway is hijacked for viral entry, regulation of endocytosis, suppression of premature apoptosis, viral protein expression, and replication. Although less common, the PI3K/Akt pathway can be downregulated as an immunomodulatory strategy or as a mechanism for inducing autophagy. Moreover, the cell activates this pathway as an antiviral strategy for interferon and cytokine production, among other strategies. Here, we present new data concerning the role of this pathway in infection with the paramyxovirus Newcastle disease virus (NDV). Our data seem to indicate that NDV uses the PI3K/Akt pathway to delay cell death and increase cell survival as a means of improving its replication. The interference of negative-sense ssRNA viruses with this essential pathway might have implications for the development of antiviral therapies.
Collapse
Affiliation(s)
- Javier Blanco
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain
| | - Cristina Cameirao
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - María Carmen López
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain
| | - Isabel Muñoz-Barroso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.
| |
Collapse
|
16
|
Menendez D, Snipe J, Marzec J, Innes CL, Polack FP, Caballero MT, Schurman SH, Kleeberger SR, Resnick MA. p53-responsive TLR8 SNP enhances human innate immune response to respiratory syncytial virus. J Clin Invest 2020; 129:4875-4884. [PMID: 31430261 DOI: 10.1172/jci128626] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
The Toll-like receptor 8 (TLR8) has an important role in innate immune responses to RNA viral infections, including respiratory syncytial virus (RSV). We previously reported that TLR8 expression was increased directly by the tumor suppressor and transcription factor p53 via a single nucleotide polymorphism (SNP) (rs3761624) in the TLR8 promoter, thereby placing TLR8 in the p53/immune axis. Because this SNP is in linkage disequilibrium with other SNPs associated with several infectious diseases, we addressed the combined influence of p53 and the SNP on downstream inflammatory signaling in response to a TLR8 cognate ssRNA ligand. Using human primary lymphocytes, p53 induction by chemotherapeutic agents such as ionizing radiation caused SNP-dependent synergistic increases in IL-6 following incubation with an ssRNA ligand, as well as TLR8 RNA and protein expression along with p53 binding at the TLR-p53 SNP site. Because TLR8 is X-linked, the increases were generally reduced in heterozygous females. We found a corresponding association of the p53-responsive allele with RSV disease severity in infants hospitalized with RSV infection. We conclude that p53 can strongly influence TLR8-mediated immune responses and that knowledge of the p53-responsive SNP can inform diagnosis and prognosis of RSV disease and other diseases that might have a TLR8 component, including cancer.
Collapse
Affiliation(s)
- Daniel Menendez
- Genome Integrity & Structural Biology Laboratory.,Immunity, Inflammation, and Disease Laboratory and
| | - Joyce Snipe
- Genome Integrity & Structural Biology Laboratory
| | | | - Cynthia L Innes
- Clinical Research Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | | | - Shepherd H Schurman
- Clinical Research Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | | |
Collapse
|
17
|
Zhuang Z, Wen J, Zhang L, Zhang M, Zhong X, Chen H, Luo C. Can network pharmacology identify the anti-virus and anti- inflammatory activities of Shuanghuanglian oral liquid used in Chinese medicine for respiratory tract infection? Eur J Integr Med 2020; 37:101139. [PMID: 32501408 PMCID: PMC7255237 DOI: 10.1016/j.eujim.2020.101139] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023]
Abstract
Introduction Shuanghuanglian (SHL) oral liquid is a well-known traditional Chinese medicine preparation administered for respiratory tract infections in China. However, the underlying pharmacological mechanisms remain unclear. The present study aims to determine the potential pharmacological mechanisms of SHL oral liquid based on network pharmacology. Methods A network pharmacology-based strategy including collection and analysis of putative compounds and target genes, network construction, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Gene Ontology (GO) enrichment, identification of key compounds and target genes, and molecule docking was performed in this study. Results A total of 82 bioactive compounds and 226 putative target genes of SHL oral liquid were collected. Of note, 28 hub target genes including 4 major hub target genes: estrogen receptor 1 (ESR1), nuclear receptor coactivator 2 (NCOA2), nuclear receptor coactivator 1 (NCOA1), androgen receptor (AR) and 5 key compounds (quercetin, luteolin, baicalein, kaempferol and wogonin) were identified based on network analysis. The hub target genes mainly enriched in pathways including PI3K-Akt signaling pathway, human cytomegalovirus infection, and human papillomavirus infection, which could be the underlying pharmacological mechanisms of SHL oral liquid for treating diseases. Moreover, the key compounds had great molecule docking binding affinity with the major hub target genes. Conclusion Using network pharmacology analysis, SHL oral liquid was found to contain anti-virus, anti-inflammatory, and “multi-compounds and multi-targets” with therapeutic actions. These findings may provide a valuable direction for further clinical application and research.
Collapse
Key Words
- AM, alveolar macrophages
- AR, androgen receptor
- CAS, Chemical abstracts service number
- CFDA, The China Food and Drug Administration
- COX, cyclooxygenases
- COX-2, cyclooxygenase
- DL, drug-likeness
- ESR1, estrogen receptor 1
- Flos Lonicerae
- Fructus Forsythiae
- GO, Gene Ontology
- HCMV, Human cytomegalovirus
- HCV, human cytomegalovirus
- HPV, Human papillomavirus
- HQ, Huangqin, Radix Scutellariae
- JYH, Jinyinhua, Flos Lonicerae
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LQ, Lianqiao, Fructus Forsythiae
- MCP, monocyte chemoattractant protein
- NCOA1, nuclear receptor coactivator 1
- NCOA2, nuclear receptor coactivator 2
- NO, nitric oxide
- Network pharmacology
- OB, oral bioavailability
- PG, prostaglandin
- Pharmacological mechanism
- ROS, reactive oxygen species
- RSV, respiratory syncytial virus
- Radix Scutellariae
- Respiratory tract infection
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SHL oral liquid, Shuanghuanglian oral liquid
- SMILES, Simplified molecular input line entry specification
- Shuanghuanglian oral liquid
- TCM, traditional Chinese medicine
- TCMSP, Traditional Chinese Medicine Systems Pharmacology database
Collapse
Affiliation(s)
- Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junmao Wen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingjia Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanjin Luo
- The First Affiliated Hospital of Guangdong University of Chinese Medicine, No.12, Airport Road, Baiyun District, Guangzhou 510405, China
| |
Collapse
|
18
|
Hou J, Cao X, Cheng Y, Wang X. Roles of TP53 gene in the development of resistance to PI3K inhibitor resistances in CRISPR-Cas9-edited lung adenocarcinoma cells. Cell Biol Toxicol 2020; 36:481-492. [PMID: 32239370 DOI: 10.1007/s10565-020-09523-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
Abstract
The mutation rates of tumor suppressor protein p53 gene (TP53) are high in lung adenocarcinoma and promote the development of acquired drug resistance. The present study evaluated the p53-dependent role in lung cancer cell sensitivity to PI3K-specific inhibitors, PI3K-associated inhibitors, PI3K-non-related inhibitors, and protein-based stimuli using designed p53 mutation. We found that the deletion of p53 key regions from amino acid 96 to 393 with the CRISPR-Cas9 altered multi-dimensional structure and sequencing of p53, probably leading the secondary changes in chemical structures and properties of PI3K subunit proteins or in interactions between p53 and PI3K isoform genes. The p53-dependent cell sensitivity varied among target specificities, drug chemical properties, mechanism-specific signal pathways, and drug efficacies, independently upon the size of molecules. The effects of the designed p53 mutation highly depend upon p53-involved molecular mechanisms in the cell. Our results indicate that lung cancer cell resistance to drug can develop with dynamic formations of p53 mutations changing the cell sensitivity. This may explain the real-time occurrence of cancer cell resistance to drug treatment, during which drugs may induce the new mutations of p53. Thus, it is important to dynamically monitor the formation of new mutations during the therapy and discover new drug resistance-specific targets.
Collapse
Affiliation(s)
- Jiayun Hou
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai, China.
| | - Yunfeng Cheng
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai, China. .,Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University Shanghai Medical School, Shanghai, China. .,Shanghai Engineering Research Center of AI-Technology for Cardiopulmonary Diseases, Shanghai, China. .,Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai, China. .,Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University Shanghai Medical School, Shanghai, China. .,Shanghai Engineering Research Center of AI-Technology for Cardiopulmonary Diseases, Shanghai, China. .,Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|
19
|
Quan R, Wei L, Hou L, Wang J, Zhu S, Li Z, Lv M, Liu J. Proteome Analysis in a Mammalian Cell line Reveals that PLK2 is Involved in Avian Metapneumovirus Type C (aMPV/C)-Induced Apoptosis. Viruses 2020; 12:v12040375. [PMID: 32231136 PMCID: PMC7232392 DOI: 10.3390/v12040375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Avian metapneumovirus subtype C (aMPV/C) causes an acute respiratory disease that has caused serious economic losses in the Chinese poultry industry. In the present study, we first explored the protein profile in aMPV/C-infected Vero cells using iTRAQ quantitative proteomics. A total of 921 of 7034 proteins were identified as significantly altered by aMPV/C infection. Three selected proteins were confirmed by Western blot analysis. Bioinformatics GO analysis revealed multiple signaling pathways involving cell cycle, endocytosis, and PI3K-Akt, mTOR, MAPK and p53 signaling pathways, which might participate in viral infection. In this analysis, we found that PLK2 expression was upregulated by aMPV/C infection and investigated whether it contributed to aMPV/C-mediated cellular dysfunction. Suppressing PLK2 attenuated aMPV/C-induced reactive oxygen species (ROS) production and p53-dependent apoptosis and reduced virus release. These results in a mammalian cell line suggest that high PLK2 expression correlates with aMPV/C-induced apoptosis and viral replication, providing new insight into the potential avian host cellular response to aMPV/C infection and antiviral targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jue Liu
- Correspondence: ; Tel.: 86-10-51503671; Fax: 86-10-51503498
| |
Collapse
|
20
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Li S, Lu LF, Liu SB, Zhang C, Li ZC, Zhou XY, Zhang YA. Spring viraemia of carp virus modulates p53 expression using two distinct mechanisms. PLoS Pathog 2019; 15:e1007695. [PMID: 30925159 PMCID: PMC6457570 DOI: 10.1371/journal.ppat.1007695] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/10/2019] [Accepted: 03/11/2019] [Indexed: 01/20/2023] Open
Abstract
p53, which regulates cell-cycle arrest and apoptosis, is a crucial target for viruses to release cells from cell-cycle checkpoints or to protect cells from apoptosis for their own benefit. Viral evasion mechanisms of aquatic viruses remain mysterious. Here, we report the spring viremia of carp virus (SVCV) degrading and stabilizing p53 in the ubiquitin-proteasome pathway by the N and P proteins, respectively. Early in an SVCV infection, significant induction was observed in the S phase and p53 was decreased in the protein level. Further experiments demonstrated that p53 interacted with SVCV N protein and was degraded by suppressing the K63-linked ubiquitination. However, the increase of p53 was observed late in the infection and experiments suggested that p53 was bound to SVCV P protein and stabilized by enhancing the K63-linked ubiquitination. Finally, lysine residue 358 was the key site for p53 K63-linked ubiquitination by the N and P proteins. Thus, our findings suggest that fish p53 is modulated by SVCV N and P protein in two distinct mechanisms, which uncovers the strategy for the subversion of p53-mediated host innate immune responses by aquatic viruses.
Collapse
Affiliation(s)
- Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shu-Bo Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
22
|
Soto JA, Gálvez NMS, Benavente FM, Pizarro-Ortega MS, Lay MK, Riedel C, Bueno SM, Gonzalez PA, Kalergis AM. Human Metapneumovirus: Mechanisms and Molecular Targets Used by the Virus to Avoid the Immune System. Front Immunol 2018; 9:2466. [PMID: 30405642 PMCID: PMC6207598 DOI: 10.3389/fimmu.2018.02466] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022] Open
Abstract
Human metapneumovirus (hMPV) is a respiratory virus, first reported the year 2001. Since then, it has been described as one of the main etiological agents that causes acute lower respiratory tract infections (ALRTIs), which is characterized by symptoms such as bronchiolitis, wheezing and coughing. Susceptible population to hMPV-infection includes newborn, children, elderly and immunocompromised individuals. This viral agent is a negative-sense, single-stranded RNA enveloped virus, that belongs to the Pneumoviridae family and Metapneumovirus genus. Early reports—previous to 2001—state several cases of respiratory illness without clear identification of the responsible pathogen, which could be related to hMPV. Despite the similarities of hMPV with several other viruses, such as the human respiratory syncytial virus or influenza virus, mechanisms used by hMPV to avoid the host immune system are still unclear. In fact, evidence indicates that hMPV induces a poor innate immune response, thereby affecting the adaptive immunity. Among these mechanisms, is the promotion of an anergic state in T cells, instead of an effective polarization or activation, which could be induced by low levels of cytokine secretion. Further, the evidences support the notion that hMPV interferes with several pattern recognition receptors (PRRs) and cell signaling pathways triggered by interferon-associated genes. However, these mechanisms reported in hMPV are not like the ones reported for hRSV, as the latter has two non-structural proteins that are able to inhibit these pathways. Several reports suggest that viral glycoproteins, such as G and SH, could play immune-modulator roles during infection. In this work, we discuss the state of the art regarding the mechanisms that underlie the poor immunity elicited by hMPV. Importantly, these mechanisms will be compared with those elicited by other common respiratory viruses.
Collapse
Affiliation(s)
- Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe M Benavente
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S Pizarro-Ortega
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
Marsico S, Caccuri F, Mazzuca P, Apostoli P, Roversi S, Lorenzin G, Zani A, Fiorentini S, Giagulli C, Caruso A. Human lung epithelial cells support human metapneumovirus persistence by overcoming apoptosis. Pathog Dis 2018; 76:4923026. [PMID: 29617859 DOI: 10.1093/femspd/fty013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/05/2018] [Indexed: 11/12/2022] Open
Abstract
Human metapneumovirus (hMPV) has been identified as a major cause of lower respiratory tract infection in children. Epidemiological and molecular evidence has highlighted an association between severe childhood respiratory viral infection and chronic lung diseases, such as asthma and chronic obstructive pulmonary disease. Currently, animal models have demonstrated the ability of hMPV to persist in vivo suggesting a role of the virus in asthma development in children. However, mechanisms involved in hMPV persistence in the respiratory tract are not yet understood. In the present study we monitored hMPV infection in human alveolar epithelial A549 cells in order to understand if the virus is able to persist in these cells upon acute infection. Our data show that hMPV initially induces an apoptotic process in A549 cells through poly (ADP-ribose) polymerase 1 cleavage, caspase-3/7 activation and Wee1 activity. The hMPV-infected cells were then able to overcome the apoptotic pathway and cell cycle arrest in G2/M by expressing B-cell lymphoma 2 and to acquire a reservoir cell phenotype with constant production of infectious virus. These findings provide evidence of the ability of hMPV to persist in alveolar epithelial cells and help in understanding the mechanisms responsible for hMPV persistence in the human respiratory tract.
Collapse
Affiliation(s)
- Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Pietro Mazzuca
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Paola Apostoli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sara Roversi
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giovanni Lorenzin
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Simona Fiorentini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Cinzia Giagulli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
24
|
González-Parra G, Dobrovolny HM. A quantitative assessment of dynamical differences of RSV infections in vitro and in vivo. Virology 2018; 523:129-139. [PMID: 30144786 DOI: 10.1016/j.virol.2018.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Experimental results in vitro and in animal models are used to guide researchers in testing vaccines or treatment in humans. However, viral kinetics are different in vitro, in animals, and in humans, so it is sometimes difficult to translate results from one system to another. In this study, we use a mathematical model to fit experimental data from multiple cycle respiratory syncytial virus (RSV) infections in vitro, in african green monkey (AGM), and in humans in order to quantitatively compare viral kinetics in the different systems. We find that there are differences in viral clearance rate, productively infectious cell lifespan, and eclipse phase duration between in vitro and in vivo systems and among different in vivo systems. We show that these differences in viral kinetics lead to different estimates of drug effectiveness of fusion inhibitors in vitro and in AGM than in humans.
Collapse
Affiliation(s)
| | - Hana M Dobrovolny
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States.
| |
Collapse
|
25
|
Baños-Lara MDR, Zabaleta J, Garai J, Baddoo M, Guerrero-Plata A. Comparative analysis of miRNA profile in human dendritic cells infected with respiratory syncytial virus and human metapneumovirus. BMC Res Notes 2018; 11:432. [PMID: 29970194 PMCID: PMC6029031 DOI: 10.1186/s13104-018-3541-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are responsible for respiratory diseases, mostly in children. Despite the clinical and epidemiological similarities between these two pneumoviruses, they elicit different immune responses. This work aims to further our understanding of the differential immune response induced by these respiratory viruses by determining the changes of small non-coding RNAs (miRNAs), which regulate gene expression and are involved in numerous cellular processes including the immune system. RESULTS In the present study, we analyzed the expression of miRNA transcripts of human dendritic cells infected with RSV or HMPV by high throughput sequencing using Illumina sequencing technology. Further validation of miRNA expression by quantitative polymerase chain reaction indicated that HMPV infection up-regulated the expression of 2 miRNAs (hsa-miR-182-5p and hsa-miR-4634), while RSV infection induced significant expression of 3 miRNAs (hsa-miR-4448, hsa-miR-30a-5p and hsa-miR-4634). The predominant miRNA induced by both viruses was hsa-miR-4634.
Collapse
Affiliation(s)
- Ma Del Rocio Baños-Lara
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.,Universidad Popular Autonoma del Estado de Puebla, UPAEP, Puebla, Mexico
| | - Jovanny Zabaleta
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Jone Garai
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Melody Baddoo
- Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA. .,Center for Experimental Infectious Disease Research, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
26
|
Machado D, Pizzorno A, Hoffmann J, Traversier A, Endtz H, Lina B, Rosa-Calatrava M, Paranhos-Baccala G, Terrier O. Role of p53/NF-κB functional balance in respiratory syncytial virus-induced inflammation response. J Gen Virol 2018; 99:489-500. [PMID: 29504924 DOI: 10.1099/jgv.0.001040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interplay between respiratory syncytial virus (RSV) and the p53 pathway has only been reported in a limited number of studies, yet the underlying abrogation mechanisms of p53 activity during the time course of infection, possibly involving viral proteins, remained unclear. Here, we demonstrate that RSV infection impairs global p53 transcriptional activity, notably via its proteasome-dependent degradation at late stages of infection. We also demonstrate that NS1 and NS2 contribute to the abrogation of p53 activity, and used different experimental strategies (e.g. siRNA, small molecules) to underline the antiviral contribution of p53 in the context of RSV infection. Notably, our study highlights a strong RSV-induced disequilibrium of the p53/NF-κB functional balance, which appears to contribute to the up-regulation of the expression of several proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Daniela Machado
- Laboratoire des Pathogènes Emergents, Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Virologie et Pathologie Humaine - VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Andrés Pizzorno
- Virologie et Pathologie Humaine - VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Jonathan Hoffmann
- Laboratoire des Pathogènes Emergents, Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Aurélien Traversier
- Virologie et Pathologie Humaine - VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Hubert Endtz
- Laboratoire des Pathogènes Emergents, Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Bruno Lina
- Virologie et Pathologie Humaine - VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Hospices Civils de Lyon, Centre National de Référence des Virus Influenza France Sud, Laboratoire de Virologie, Groupement Hospitalier Nord, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Gláucia Paranhos-Baccala
- Laboratoire des Pathogènes Emergents, Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Present address: Center of Excellence for Tropical Infectious Diseases, Medical Diagnostic Discovery Department (MD3) bioMérieux, Brazil
| | - Olivier Terrier
- Virologie et Pathologie Humaine - VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
27
|
Gudkov AV, Komarova EA. p53 and the Carcinogenicity of Chronic Inflammation. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026161. [PMID: 27549311 DOI: 10.1101/cshperspect.a026161] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is a major cancer predisposition factor. Constitutive activation of the inflammation-driving NF-κB pathway commonly observed in cancer or developed in normal tissues because of persistent infections or endogenous tissue irritating factors, including products of secretion by senescent cells accumulating with age, markedly represses p53 functions. In its turn, p53 acts as a suppressor of inflammation helping to keep it within safe limits. The antagonistic relationship between p53 and NF-κB is controlled by multiple mechanisms and reflects cardinal differences in organismal responses to intrinsic and extrinsic cell stresses driven by these two transcription factors, respectively. This provides an opportunity for developing drugs to treat diseases associated with inappropriate activity of either p53 or NF-κB through targeting the opposing pathway. Several drug candidates of this kind are currently in clinical testing. These include anticancer small molecules capable of simultaneous suppression of p53 and activation of NF-κB and NF-κB-activating biologics that counteract p53-mediated pathologies associated with systemic genotoxic stresses such as acute radiation syndrome and side effects of cancer treatment.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Elena A Komarova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
28
|
Abstract
In recent years, numerous bacterial pathogens have been shown to inactivate the major tumour suppressor p53 during infection. This inactivation impedes the protective response of the host cell to the genotoxicity that often results from bacterial infection. Moreover, a new aspect of the antibacterial activity of p53 that has recently come to light - downregulation of host cell metabolism to interfere with intracellular bacterial replication - has further highlighted the crucial role of p53 in host-pathogen interactions, as host cell metabolism is relevant for all intracellular bacteria, as well as other pathogens that replicate inside host cells and use host metabolites. In this Progress article, we summarize recent work that has advanced our knowledge of the interaction between pathogenic bacteria and p53, and we discuss the known and expected outcomes of this interaction for pathogenesis.
Collapse
Affiliation(s)
- Christine Siegl
- Department of Microbiology, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.,Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
29
|
Espinoza JA, Bohmwald K, Céspedes PF, Riedel CA, Bueno SM, Kalergis AM. Modulation of host adaptive immunity by hRSV proteins. Virulence 2015; 5:740-51. [PMID: 25513775 PMCID: PMC4189880 DOI: 10.4161/viru.32225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Globally, the human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infections (LRTIs) in infants and children younger than 2 years old. Furthermore, the number of hospitalizations due to LRTIs has shown a sustained increase every year due to the lack of effective vaccines against hRSV. Thus, this virus remains as a major public health and economic burden worldwide. The lung pathology developed in hRSV-infected humans is characterized by an exacerbated inflammatory and Th2 immune response. In order to rationally design new vaccines and therapies against this virus, several studies have focused in elucidating the interactions between hRSV virulence factors and the host immune system. Here, we discuss the main features of hRSV biology, the processes involved in virus recognition by the immune system and the most relevant mechanisms used by this pathogen to avoid the antiviral host response.
Collapse
Affiliation(s)
- Janyra A Espinoza
- a Millenium Institute on Immunology and Immunotherapy; Departamento de Genética Molecular y Microbiología; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago, Chile
| | | | | | | | | | | |
Collapse
|
30
|
Foronjy RF, Dabo AJ, Taggart CC, Weldon S, Geraghty P. Respiratory syncytial virus infections enhance cigarette smoke induced COPD in mice. PLoS One 2014; 9:e90567. [PMID: 24587397 PMCID: PMC3938768 DOI: 10.1371/journal.pone.0090567] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/03/2014] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1α, IL-17, IFN-γ, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression.
Collapse
Affiliation(s)
- Robert F. Foronjy
- St. Luke’s Roosevelt Hospital, Mount Sinai Health System, Division of Pulmonary and Critical Care Medicine, New York, New York, United States of America
| | - Abdoulaye J. Dabo
- St. Luke’s Roosevelt Hospital, Mount Sinai Health System, Division of Pulmonary and Critical Care Medicine, New York, New York, United States of America
| | - Clifford C. Taggart
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sinead Weldon
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Patrick Geraghty
- St. Luke’s Roosevelt Hospital, Mount Sinai Health System, Division of Pulmonary and Critical Care Medicine, New York, New York, United States of America
| |
Collapse
|
31
|
Mitzel DN, Jaramillo RJ, Stout-Delgado H, Senft AP, Harrod KS. Human metapneumovirus inhibits the IL-6-induced JAK/STAT3 signalling cascade in airway epithelium. J Gen Virol 2013; 95:26-37. [PMID: 24114793 DOI: 10.1099/vir.0.055632-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The host cytokine IL-6 plays an important role in host defence and prevention of lung injury from various pathogens, making IL-6 an important mediator in the host's susceptibility to respiratory infections. The cellular response to IL-6 is mediated through a Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signal transduction pathway. Human metapneumovirus (hMPV) is an important causative agent of viral respiratory infections known to inhibit the IFN-mediated activation of STAT1. However, little is known about the interactions between this virus and other STAT signalling cascades. Herein, we showed that hMPV can attenuate the IL-6-mediated JAK/STAT3 signalling cascade in lung epithelial cells. HMPV inhibited a key event in this pathway by impeding the phosphorylation and nuclear translocation of STAT3 in A549 cells and in primary normal human bronchial epithelial cells. Further studies established that hMPV interrupted the IL-6-induced JAK/STAT pathway early in the signal transduction pathway by blocking the phosphorylation of JAK2. By antagonizing the IL-6-mediated JAK/STAT3 pathway, hMPV perturbed the expression of IL-6-inducible genes important for apoptosis, cell differentiation and growth. Infection with hMPV also differentially regulated the effects of IL-6 on apoptosis. Thus, hMPV regulation of these genes could usurp the protective roles of IL-6, and these data provide insight into an important element of viral pathogenesis.
Collapse
Affiliation(s)
- Dana N Mitzel
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Richard J Jaramillo
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Heather Stout-Delgado
- Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Albert P Senft
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Kevin S Harrod
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|
32
|
Rezaee F, DeSando SA, Ivanov AI, Chapman TJ, Knowlden SA, Beck LA, Georas SN. Sustained protein kinase D activation mediates respiratory syncytial virus-induced airway barrier disruption. J Virol 2013; 87:11088-95. [PMID: 23926335 PMCID: PMC3807305 DOI: 10.1128/jvi.01573-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/29/2013] [Indexed: 01/08/2023] Open
Abstract
Understanding the regulation of airway epithelial barrier function is a new frontier in asthma and respiratory viral infections. Despite recent progress, little is known about how respiratory syncytial virus (RSV) acts at mucosal sites, and very little is known about its ability to influence airway epithelial barrier function. Here, we studied the effect of RSV infection on the airway epithelial barrier using model epithelia. 16HBE14o- bronchial epithelial cells were grown on Transwell inserts and infected with RSV strain A2. We analyzed (i) epithelial apical junction complex (AJC) function, measuring transepithelial electrical resistance (TEER) and permeability to fluorescein isothiocyanate (FITC)-conjugated dextran, and (ii) AJC structure using immunofluorescent staining. Cells were pretreated or not with protein kinase D (PKD) inhibitors. UV-irradiated RSV served as a negative control. RSV infection led to a significant reduction in TEER and increase in permeability. Additionally it caused disruption of the AJC and remodeling of the apical actin cytoskeleton. Pretreatment with two structurally unrelated PKD inhibitors markedly attenuated RSV-induced effects. RSV induced phosphorylation of the actin binding protein cortactin in a PKD-dependent manner. UV-inactivated RSV had no effect on AJC function or structure. Our results suggest that RSV-induced airway epithelial barrier disruption involves PKD-dependent actin cytoskeletal remodeling, possibly dependent on cortactin activation. Defining the mechanisms by which RSV disrupts epithelial structure and function should enhance our understanding of the association between respiratory viral infections, airway inflammation, and allergen sensitization. Impaired barrier function may open a potential new therapeutic target for RSV-mediated lung diseases.
Collapse
Affiliation(s)
- Fariba Rezaee
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Samantha A. DeSando
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrei I. Ivanov
- Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Timothy J. Chapman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Sara A. Knowlden
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Lisa A. Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Steve N. Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| |
Collapse
|
33
|
Mgbemena V, Segovia J, Chang TH, Bose S. KLF6 and iNOS regulates apoptosis during respiratory syncytial virus infection. Cell Immunol 2013; 283:1-7. [PMID: 23831683 DOI: 10.1016/j.cellimm.2013.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/24/2013] [Accepted: 06/05/2013] [Indexed: 01/01/2023]
Abstract
Human respiratory syncytial virus (RSV) is a highly pathogenic lung-tropic virus that causes severe respiratory diseases. Enzymatic activity of inducible nitric oxide (iNOS) is required for NO generation. Although NO contributes to exaggerated lung disease during RSV infection, the role of NO in apoptosis during infection is not known. In addition, host trans-activator(s) required for iNOS gene expression during RSV infection is unknown. In the current study we have uncovered the mechanism of iNOS gene induction by identifying kruppel-like factor 6 (KLF6) as a critical transcription factor required for iNOS gene expression during RSV infection. Furthermore, we have also uncovered the role of iNOS as a critical host factor regulating apoptosis during RSV infection.
Collapse
Affiliation(s)
- Victoria Mgbemena
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | | | | | | |
Collapse
|
34
|
Abstract
Respiratory syncytial virus (RSV) is a major worldwide pathogen for which there is still no effective vaccine or antiviral treatment available, and immunoprophylaxis with RSV-specific antibodies (e.g., palivizumab) is used in limited clinical settings. In this review, we discuss virus-host interactions relevant to RSV pathobiology and how advances in cell and systems biology have accelerated knowledge in this area. We also highlight recent advances in understanding the relationship between RSV bronchiolitis and sequelae of recurrent wheezing and asthma, new findings into an intriguing interaction between RSV and air pollution, and exciting developments toward the goal of realizing a safe and effective RSV vaccine.
Collapse
Affiliation(s)
- Peter Mastrangelo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 6231-1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Richard G. Hegele
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 6231-1 King’s College Circle, Toronto, ON M5S 1A8 Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON Canada
| |
Collapse
|
35
|
Apoptosis in pneumovirus infection. Viruses 2013; 5:406-22. [PMID: 23344499 PMCID: PMC3564127 DOI: 10.3390/v5010406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/13/2022] Open
Abstract
Pneumovirus infections cause a wide spectrum of respiratory disease in humans and animals. The airway epithelium is the major site of pneumovirus replication. Apoptosis or regulated cell death, may contribute to the host anti-viral response by limiting viral replication. However, apoptosis of lung epithelial cells may also exacerbate lung injury, depending on the extent, the timing and specific location in the lungs. Differential apoptotic responses of epithelial cells versus innate immune cells (e.g., neutrophils, macrophages) during pneumovirus infection can further contribute to the complex and delicate balance between host defense and disease pathogenesis. The purpose of this manuscript is to give an overview of the role of apoptosis in pneumovirus infection. We will examine clinical and experimental data concerning the various pro-apoptotic stimuli and the roles of apoptotic epithelial and innate immune cells during pneumovirus disease. Finally, we will discuss potential therapeutic interventions targeting apoptosis in the lungs.
Collapse
|
36
|
Bakre A, Mitchell P, Coleman JK, Jones LP, Saavedra G, Teng M, Tompkins SM, Tripp RA. Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J Gen Virol 2012; 93:2346-2356. [PMID: 22894925 PMCID: PMC3542124 DOI: 10.1099/vir.0.044255-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) causes substantial morbidity and life-threatening lower respiratory tract disease in infants, young children and the elderly. Understanding the host response to RSV infection is critical for developing disease-intervention approaches. The role of microRNAs (miRNAs) in post-transcriptional regulation of host genes responding to RSV infection is not well understood. In this study, it was shown that RSV infection of a human alveolar epithelial cell line (A549) induced five miRNAs (let-7f, miR-24, miR-337-3p, miR-26b and miR-520a-5p) and repressed two miRNAs (miR-198 and miR-595), and showed that RSV G protein triggered let-7f expression. Luciferase–untranslated region reporters and miRNA mimics and inhibitors validated the predicted targets, which included cell-cycle genes (CCND1, DYRK2 and ELF4), a chemokine gene (CCL7) and the suppressor of cytokine signalling 3 gene (SOCS3). Modulating let-7 family miRNA levels with miRNA mimics and inhibitors affected RSV replication, indicating that RSV modulates host miRNA expression to affect the outcome of the antiviral host response, and this was mediated in part through RSV G protein expression.
Collapse
Affiliation(s)
- Abhijeet Bakre
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Patricia Mitchell
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Jonathan K Coleman
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Les P Jones
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Geraldine Saavedra
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Michael Teng
- Division of Allergy and Immunology, Department of Internal Medicine, USF Health, Tampa, FL 33612, USA
| | - S Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
37
|
Gudkov AV, Gurova KV, Komarova EA. Inflammation and p53: A Tale of Two Stresses. Genes Cancer 2011; 2:503-16. [PMID: 21779518 DOI: 10.1177/1947601911409747] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Numerous observations indicate a strong link between chronic inflammation and cancer. This link is supported by substantial experimental evidence indicating mutual negative regulation of NF-κB, the major regulator of inflammation, and p53, the major tumor suppressor. This antagonistic relationship reflects the opposite principles of the physiological responses driven by these transcription factors, which act as sensors and mediators of intrinsic and extrinsic cell stresses, respectively. Constitutive activation of NF-κB, the underlying cause of chronic inflammation, is a common acquired characteristic of tumors. A variety of experimental methods have been used to demonstrate that constitutive activation of NF-κB reduces the tumor suppressor activity of p53, thereby creating permissive conditions for dominant oncogene-mediated transformation. Loss of p53 activity is also a characteristic of the majority of tumors and results in unleashed inflammatory responses due to loss of p53-mediated NF-κB suppression. On the other hand, in natural or pharmacological situations of enforced p53 activation, NF-κB activity, inflammation, and immune responses are reduced, resulting in different pathologies. It is likely that the chronic inflammation that is commonly acquired in various tissues of older mammals leads to general suppression of p53 function, which would explain the increased risk of cancer observed in aging animals and humans. Although the molecular mechanisms underlying reciprocal negative regulation of p53 and NF-κB remain to be deciphered, this phenomenon has important implications for pharmacological prevention of cancer and aging and for new approaches to control inflammation.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | |
Collapse
|
38
|
Ehrhardt C. From virus entry to release: the diverse functions of PI3K during RNA virus infections. Future Virol 2011. [DOI: 10.2217/fvl.11.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RNA viruses are the causative agents of severe diseases in vertebrates. Upon viral infection, various intracellular signaling pathways are induced within the infected cells. While most of the different cellular signaling responses are initiated as antiviral defense mechanisms to counteract invading pathogens, they may also be exploited by viruses to support their replication. Recently, PI3K has been added to the growing list of signaling factors and pathways that are activated upon viral infections and regulate the replication process. Here, the current knowledge on RNA virus-induced PI3K-regulated signaling processes and how the pathogens take advantage of these activities within the infected cells is summarized.
Collapse
Affiliation(s)
- Christina Ehrhardt
- Institute of Molecular Virology (IMV), ZMBE, Westfaelische-Wilhelms-University, Von Esmarch-Str. 56, D-48149 Münster, Germany
| |
Collapse
|
39
|
Characterization of the interaction between human respiratory syncytial virus and the cell cycle in continuous cell culture and primary human airway epithelial cells. J Virol 2011; 85:10300-9. [PMID: 21795354 DOI: 10.1128/jvi.05164-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Viruses can modify conditions inside cells to make them more favorable for replication and progeny virus production. One way of doing this is through manipulation of the cell cycle, a process that describes the ordered growth and division of cells. Analysis of model cell lines, such as A549 cells and primary airway epithelial cells, infected with human respiratory syncytial virus (HRSV) has shown alteration of the cell cycle during infection, although the signaling events were not clearly understood. In this study, targeted transcriptomic analysis of HRSV-infected primary airway epithelial cells revealed alterations in the abundances of many mRNAs encoding cell cycle-regulatory molecules, including decreases in the D-type cyclins and corresponding cyclin-dependent kinases (CDK4 and CDK6 [CDK4/6]). These alterations were reflected in changes in protein abundance and/or relocalization in HRSV-infected cells; taken together, they were predicted to result in G(0)/G(1) phase arrest. In contrast, there was no change in the abundances of D-type cyclins in A549 cells infected with HRSV. However, the abundance of the G(1)/S phase progression inhibitor p21(WAF1/CIP1) was increased over that in mock-treated cells, and this, again, was predicted to result in G(0)/G(1) phase arrest. The G(0)/G(1) phase arrest in both HRSV-infected primary cells and A549 cells was confirmed using dual-label flow cytometry that accurately measured the different stages of the cell cycle. Comparison of progeny virus production in primary and A549 cells enriched in G(0)/G(1) using a specific CDK4/6 kinase inhibitor with asynchronously replicating cells indicated that this phase of the cell cycle was more efficient for virus production.
Collapse
|
40
|
Lazo PA, Santos CR. Interference with p53 functions in human viral infections, a target for novel antiviral strategies? Rev Med Virol 2011; 21:285-300. [PMID: 21726011 DOI: 10.1002/rmv.696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/02/2011] [Accepted: 05/06/2011] [Indexed: 12/11/2022]
Abstract
Viral infections cause a major stress in host cells. The cellular responses to stress are mediated by p53, which by deregulation of cell cycle and apoptosis, may also be part of the host cell reaction to fight infections. Therefore, during evolutionary viral adaptation to host organisms, viruses have developed strategies to manipulate host cell p53 dependent pathways to facilitate their viral life cycles. Thus, interference with p53 function is an important component in viral pathogenesis. Many viruses have proteins that directly affect p53, whereas others alter the regulation of p53 in an indirect manner, mediated by Hdm2 or Akt, or induction of interferon. Rescue of p53 activity is becoming an area of therapeutic development in oncology. It might be feasible that manipulation of p53 mediated responses can become a therapeutic option to limit viral replication or dissemination. In this report, the mechanisms by which viral proteins manipulate p53 responses are reviewed, and it is proposed that a pharmacological rescue of p53 functions might help to control viral infections.
Collapse
Affiliation(s)
- Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain.
| | | |
Collapse
|
41
|
Fastje CD, Harper K, Terry C, Sheppard PR, Witten ML. Exposure to sodium tungstate and Respiratory Syncytial Virus results in hematological/immunological disease in C57BL/6J mice. Chem Biol Interact 2011; 196:89-95. [PMID: 21565177 DOI: 10.1016/j.cbi.2011.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 03/26/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
The etiology of childhood leukemia is not known. Strong evidence indicates that precursor B-cell Acute Lymphoblastic Leukemia (Pre-B ALL) is a genetic disease originating in utero. Environmental exposures in two concurrent, childhood leukemia clusters have been profiled and compared with geographically similar control communities. The unique exposures, shared in common by the leukemia clusters, have been modeled in C57BL/6 mice utilizing prenatal exposures. This previous investigation has suggested in utero exposure to sodium tungstate (Na2WO4) may result in hematological/immunological disease through genes associated with viral defense. The working hypothesis is (1) in addition to spontaneously and/or chemically generated genetic lesions forming pre-leukemic clones, in utero exposure to Na2WO4 increases genetic susceptibility to viral influence(s); (2) postnatal exposure to a virus possessing the 1FXXKXFXXA/V9 peptide motif will cause an unnatural immune response encouraging proliferation in the B-cell precursor compartment. This study reports the results of exposing C57BL/6J mice to Na2WO4 in utero via water (15 ppm, ad libetum) and inhalation (mean concentration PM5 3.33 mg/m3) and to Respiratory Syncytial Virus (RSV) within 2 weeks of weaning. Inoculation of C57BL/6J mice with RSV was associated with a neutrophil shift in 56% of 5-month old mice. When the RSV inoculation was combined with Na2WO4-exposure, significant splenomegaly resulted (p=0.0406, 0.0184, 0.0108 for control, Na2WO4-only and RSV-only, respectively) in addition to other hematological pathologies which were not significant. Exposure to Na2WO4 and RSV resulted in hematological/immunological disease, the nature of which is currently inconclusive. Further research is needed to characterize this potential leukemia mouse model.
Collapse
Affiliation(s)
- Cynthia D Fastje
- Steele Children's Research Center, PO Box 245073, University of Arizona, Tucson, AZ 85724-5073, USA.
| | | | | | | | | |
Collapse
|
42
|
Pang R, Tao JY, Zhang SL, Chen KL, Zhao L, Yue X, Wang YF, Ye P, Zhu Y, Wu JG. Ethanol Extract from Ampelopsis sinica Root Exerts Anti-Hepatitis B Virus Activity via Inhibition of p53 Pathway In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:939205. [PMID: 21738555 PMCID: PMC3130517 DOI: 10.1093/ecam/neq011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/31/2010] [Indexed: 12/22/2022]
Abstract
Ampelopsis sinica root is widely used in Chinese folk medicine for treating liver disorders caused by the hepatitis B virus (HBV). The present study was performed in order to investigate the anti-HBV activity and mechanisms of the ethanol extract from A. sinica root (EASR) in vitro. The antiviral activity of EASR was examined by detecting the levels of HBsAg, HBeAg and extracellular HBV DNAs in stable HBV-producing human hepatoblastoma HepG2 2.2.15 cells. We found that EASR effectively suppressed the secretion of HBsAg and HBeAg from HepG2 2.2.15 cells in a dose-dependent manner, and it also suppressed the amount of extracellular HBV DNA. After EASR treatment, the percentage of apoptotic cells was found to be significantly higher than that of control by flow cytometric analysis. A luciferase reporter gene assay was used to determine the effects of EASR on the activities of HBV promoters and intracellular signaling pathways. The results showed that EASR selectively inhibited the activities of HBV promoters (Cp, S1p and Fp) and the p53 signaling pathway in HepG2 cells significantly. These data indicate that EASR exerts anti-HBV effects via inhibition of HBV promoters and the p53-associated signaling pathway, which helps to elucidate the mechanism underlying the potential therapeutic value of EASR.
Collapse
Affiliation(s)
- Ran Pang
- Department of Hepatology and Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chéron G, Patteau G, Nouyrigat V. Bronchiolite del lattante. EMC - URGENZE 2011. [PMCID: PMC7149004 DOI: 10.1016/s1286-9341(11)70664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
La bronchiolite è un’infezione virale stagionale delle vie respiratorie basse del lattante. Il suo agente causale principale è il virus respiratorio sinciziale. La comparsa di un distress respiratorio è legata all’intensità della risposta infiammatoria delle vie aeree. Benché si tratti di una malattia frequente, le cause della suscettibilità dei lattanti a questa infezione non sono conosciute. La diagnosi è clinica. Il trattamento è sintomatico in assenza di misure specifiche. I rapporti a medio e a lungo termine di un primo episodio di bronchiolite con le recidive e con l’asma non sono spiegati. Essi potrebbero dipendere dalla natura del virus in causa al momento del primo episodio e da fattori genetici individuali.
Collapse
|
44
|
Groskreutz DJ, Babor EC, Monick MM, Varga SM, Hunninghake GW. Respiratory syncytial virus limits alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) phosphorylation to maintain translation and viral replication. J Biol Chem 2010; 285:24023-31. [PMID: 20519500 DOI: 10.1074/jbc.m109.077321] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The impact of respiratory syncytial virus (RSV) on morbidity and mortality is significant in that it causes bronchiolitis in infants, exacerbations in patients with obstructive lung disease, and pneumonia in immunocompromised hosts. RSV activates protein kinase R (PKR), a cellular kinase relevant to limiting viral replication (Groskreutz, D. J., Monick, M. M., Powers, L. S., Yarovinsky, T. O., Look, D. C., and Hunninghake, G. W. (2006) J. Immunol. 176, 1733-1740). It is activated by autophosphorylation, likely triggered by a double-stranded RNA intermediate during replication of the virus. In most instances, ph-PKR targets the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) protein via phosphorylation, leading to an inhibition of translation of cellular and viral protein. However, we found that although ph-PKR increases in RSV infection, significant eIF2alpha phosphorylation is not observed, and inhibition of protein translation does not occur. RSV infection attenuates eIF2alpha phosphorylation by favoring phosphatase rather than kinase activity. Although PKR is activated, RSV sequesters PKR away from eIF2alpha by binding of the kinase to the RSV N protein. This occurs in conjunction with an increase in the association of the phosphatase, PP2A, with eIF2alpha following PKR activation. The result is limited phosphorylation of eIF2alpha and continued translation of cellular and viral proteins.
Collapse
Affiliation(s)
- Dayna J Groskreutz
- Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa Roy J, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
45
|
Blanco JCG, Boukhvalova MS, Shirey KA, Prince GA, Vogel SN. New insights for development of a safe and protective RSV vaccine. HUMAN VACCINES 2010; 6:482-92. [PMID: 20671419 PMCID: PMC2965816 DOI: 10.4161/hv.6.6.11562] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Respiratory Syncytial Virus (RSV) is the leading cause of pneumonia and bronchiolitis in infants and children <1 year old, resulting in significant morbidity and mortality worldwide. There is currently no RSV vaccine. In the 1960s, a formalin-inactivated RSV (FI-RSV) vaccine trial led to exacerbated disease upon natural infection of vaccinees, including two deaths. The causes involved in the disastrous results of these vaccine trials are still unclear but they remain the engine for searching new avenues to develop a safe vaccine that can provide long-term protection against this important pathogen. This article reviews some of the early history of RSV vaccine development,as well as more recent information on the interaction between RSV and the host innate and adaptive immune responses. A safe and efficacious vaccine for RSV will require "re-education" of the host immune response against RSV to prevent vaccine-enhanced or severe RSV disease.
Collapse
|
46
|
Abstract
Acute viral bronchiolitis remains a cause of substantial morbidity and health care costs in young infants. It is the most common lower respiratory tract condition and most common reason for admission to hospital in infants. Many respiratory viruses have been associated with acute viral bronchiolitis although respiratory syncytial virus (RSV) remains the most frequently identified virus. Most infants have a mild self limiting illness while others have more severe illness and require hospital admission and some will need ventilatory support. Differences in innate immune function in response to the respiratory viral insult as well as differences in the geometry of the airways may explain some of the variability in clinical pattern. Young age and history of prematurity remain the most important risk factors although male gender, indigenous status, exposure to tobacco smoke, poor socioeconomic factors and associated co-morbidities such as chronic lung disease and congenital heart disease increase the risks of more severe illness. Supportive therapy remains the major treatment option as no specific treatments to date have been shown to provide clinically important benefits except for inhaled hypertonic saline. Prophylaxis of high risk infants with palivizumab should be considered although the cost effectiveness is still unclear. Many questions remain regarding optimal management approaches for infants requiring hospitalisation with bronchiolitis including use of nasogastric feeding, the optimal role of supplemental oxygen, optimal use of hypertonic saline and the role of combinations of therapies, the use of heliox or modern physiotherapy approaches.
Collapse
Affiliation(s)
- Claire Wainwright
- Department of Paediatrics and Child Health, Queensland Children's Respiratory Centre, Royal Children's Hospital, University of Queensland, Herston Rd, Herston, Queensland, Australia 4029.
| |
Collapse
|
47
|
Abstract
Many viruses, including bovine herpesvirus-1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenzavirus-3 (PI3), bovine coronavirus, bovine viral diarrhea virus and bovine reovirus, have been etiologically associated with respiratory disease in cattle. This review focuses on the pathogenesis of BHV-1 and BRSV, two very different agents that primarily cause disease in the upper and lower respiratory tract, respectively.
Collapse
|
48
|
Rivas C, Aaronson SA, Munoz-Fontela C. Dual Role of p53 in Innate Antiviral Immunity. Viruses 2010; 2:298-313. [PMID: 21994612 PMCID: PMC3185551 DOI: 10.3390/v2010298] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/11/2010] [Accepted: 01/19/2010] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor p53 is widely known as 'the guardian of the genome' due to its ability to prevent the emergence of transformed cells by the induction of cell cycle arrest and apoptosis. However, recent studies indicate that p53 is also a direct transcriptional target of type I interferons (IFNs) and thus, it is activated by these cytokines upon viral infection. p53 has been shown to contribute to virus-induced apoptosis, therefore dampening the ability of a wide range of viruses to replicate and spread. Interestingly, recent studies also indicate that several IFN-inducible genes such as interferon regulatory factor 9 (IRF9), IRF5, IFN-stimulated gene 15 (ISG15) and toll-like receptor 3 (TLR3) are in fact, p53 direct transcriptional targets. These findings indicate that p53 may play a key role in antiviral innate immunity by both inducing apoptosis in response to viral infection, and enforcing the type I IFN response, and provide a new insight into the evolutionary reasons why many viruses encode p53 antagonistic proteins.
Collapse
Affiliation(s)
- Carmen Rivas
- Centro Nacional de Biotecnologia, CSIC, Darwin 3, Campus Universidad Autónoma, Madrid 28049, Spain; E-Mail: (C.R.)
| | - Stuart A. Aaronson
- Department of Oncological Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place Box 1130, New York, NY 10029, USA; E-Mail: (S.A.A.)
| | - Cesar Munoz-Fontela
- Department of Oncological Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place Box 1130, New York, NY 10029, USA; E-Mail: (S.A.A.)
| |
Collapse
|
49
|
Fusogenic membrane glycoproteins induce syncytia formation and death in vitro and in vivo: a potential therapy agent for lung cancer. Cancer Gene Ther 2009; 17:256-65. [DOI: 10.1038/cgt.2009.74] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Cell cycle arrest by transforming growth factor beta1 enhances replication of respiratory syncytial virus in lung epithelial cells. J Virol 2009; 83:12424-31. [PMID: 19759128 DOI: 10.1128/jvi.00806-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common respiratory viral infection in children which is associated with immune dysregulation and subsequent induction and exacerbations of asthma. We recently reported that treatment of primary human epithelial cells (PHBE cells) with transforming growth factor beta (TGF-beta) enhanced RSV replication. Here, we report that the enhancement of RSV replication is mediated by induction of cell cycle arrest. These data were confirmed by using pharmacologic inhibitors of cell cycle progression, which significantly enhanced RSV replication. Our data also showed that RSV infection alone resulted in cell cycle arrest in A549 and PHBE cells. Interestingly, our data showed that RSV infection induced the expression of TGF-beta in epithelial cells. Blocking of TGF-beta with anti-TGF-beta antibody or use of a specific TGF-beta receptor signaling inhibitor resulted in rescue of the RSV-induced cell cycle arrest, suggesting an autocrine mechanism. Collectively, our data demonstrate that RSV regulates the cell cycle through TGF-beta in order to enhance its replication. These findings identify a novel pathway for upregulation of virus replication and suggest a plausible mechanism for association of RSV with immune dysregulation and asthma.
Collapse
|