1
|
Arunachalam AK, Grégoire C, Coutinho de Oliveira B, Melenhorst JJ. Advancing CAR T-cell therapies: Preclinical insights and clinical translation for hematological malignancies. Blood Rev 2024:101241. [PMID: 39289094 DOI: 10.1016/j.blre.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved significant success in achieving durable and potentially curative responses in patients with hematological malignancies. CARs are tailored fusion proteins that direct T cells to a specific antigen on tumor cells thereby eliciting a targeted immune response. The approval of several CD19-targeted CAR T-cell therapies has resulted in a notable surge in clinical trials involving CAR T cell therapies for hematological malignancies. Despite advancements in understanding response mechanisms, resistance patterns, and adverse events associated with CAR T-cell therapy, the translation of these insights into robust clinical efficacy has shown modest outcomes in both clinical trials and real-world scenarios. Therefore, the assessment of CAR T-cell functionality through rigorous preclinical studies plays a pivotal role in refining therapeutic strategies for clinical applications. This review provides an overview of the various in vitro and animal models used to assess the functionality of CAR T-cells. We discuss the findings from preclinical research involving approved CAR T-cell products, along with the implications derived from recent preclinical studies aiming to optimize the functionality of CAR T-cells. The review underscores the importance of robust preclinical evaluations and the need for models that accurately replicate human disease to bridge the gap between preclinical success and clinical efficacy.
Collapse
Affiliation(s)
- Arun K Arunachalam
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Céline Grégoire
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Beatriz Coutinho de Oliveira
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Jan Joseph Melenhorst
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
2
|
Dasgupta S, Gayen S, Chakraborty T, Afrose N, Pal R, Mahata S, Nasare V, Roy S. Potential role of immune cell therapy in gynecological cancer and future promises: a comprehensive review. Med Oncol 2024; 41:98. [PMID: 38536512 DOI: 10.1007/s12032-024-02337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 05/31/2024]
Abstract
Gynecological malignancies are most leading causes of death among women worldwide. The high prevalence of gynecologic malignancies remains significant, necessitating to turn the novel treatment approach like immunotherapy, wherein cancer cells are killed by the invasion of immune system. In recent year, immunotherapy has mostly an advanced treatment approach to repressing the tumor cells survival, proliferation, and invasion via the activation of immune systems. Moreover, various types of immune cells including T-cells, B-cells, and dendritic cells are associated with the immunotherapeutic strategy in cancer treatment. Although the significant role of T-cells against cancer is well established, while B-cells and dendritic cells also play an important role against different gynecological cancer by regulating the immune system. This review focuses on that arena and highlight the role of immune cells in the treatment of gynaecological cancer. Various immune cell-based anticancer therapies such as T-cell therapies, Adoptive Cellular transfer, B-cell therapies as well as approaches to Dendritic Cell therapies have been discussed in detail. Furthermore, the clinical settings and future avenues regarding immunotherapy on gynecological cancer have also been reviewed and illuminated in the recent study.
Collapse
Affiliation(s)
- Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, India
| | - Sakuntala Gayen
- NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Tania Chakraborty
- NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Naureen Afrose
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Ranita Pal
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Sutapa Mahata
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Vilas Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Souvik Roy
- NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
3
|
Nasiri F, Farrokhi K, Safarzadeh Kozani P, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. CAR-T cell immunotherapy for ovarian cancer: hushing the silent killer. Front Immunol 2023; 14:1302307. [PMID: 38146364 PMCID: PMC10749368 DOI: 10.3389/fimmu.2023.1302307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
As the most lethal gynecologic oncological indication, carcinoma of the ovary has been ranked as the 5th cause of cancer-related mortality in women, with a high percentage of the patients being diagnosed at late stages of the disease and a five-year survival of ~ 30%. Ovarian cancer patients conventionally undergo surgery for tumor removal followed by platinum- or taxane-based chemotherapy; however, a high percentage of patients experience tumor relapse. Cancer immunotherapy has been regarded as a silver lining in the treatment of patients with various immunological or oncological indications; however, mirvetuximab soravtansine (a folate receptor α-specific mAb) and bevacizumab (a VEGF-A-specific mAb) are the only immunotherapeutics approved for the treatment of ovarian cancer patients. Chimeric antigen receptor T-cell (CAR-T) therapy has achieved tremendous clinical success in the treatment of patients with certain B-cell lymphomas and leukemias, as well as multiple myeloma. In the context of solid tumors, CAR-T therapies face serious obstacles that limit their therapeutic benefit. Such hindrances include the immunosuppressive nature of solid tumors, impaired tumor infiltration, lack of qualified tumor-associated antigens, and compromised stimulation and persistence of CAR-Ts following administration. Over the past years, researchers have made arduous attempts to apply CAR-T therapy to ovarian cancer. In this review, we outline the principles of CAR-T therapy and then highlight its limitations in the context of solid tumors. Ultimately, we focus on preclinical and clinical findings achieved in CAR-T-mediated targeting of different ovarian cancer-associated target antigens.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Khadijeh Farrokhi
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
CYAD-01, an autologous NKG2D-based CAR T-cell therapy, in relapsed or refractory acute myeloid leukaemia and myelodysplastic syndromes or multiple myeloma (THINK): haematological cohorts of the dose escalation segment of a phase 1 trial. Lancet Haematol 2023; 10:e191-e202. [PMID: 36764323 DOI: 10.1016/s2352-3026(22)00378-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND CYAD-01 is an autologous chimeric antigen receptor (CAR) T-cell product based on the natural killer (NK) group 2D (NKG2D) receptor, which binds eight ligands that are overexpressed in a wide range of haematological malignancies but are largely absent on non-neoplastic cells. Initial clinical evaluation of a single infusion of CYAD-01 at a low dose in patients with relapsed or refractory acute myeloid leukaemia, myelodysplastic syndromes, and multiple myeloma supported the feasibility of the approach and prompted further evaluation of CYAD-01. The aim of the present study was to determine the safety and recommended phase 2 dosing of CYAD-01 administered without preconditioning or bridging chemotherapy. METHODS The multicentre THINK study was an open-label, dose-escalation, phase 1 study for patients with relapsed or refractory acute myeloid leukaemia, myelodysplastic syndromes, or multiple myeloma, after at least one previous line of therapy. Patients were recruited from five hospitals in the USA and Belgium. The dose-escalation segment evaluated three dose levels: 3 × 108 (dose level one), 1 × 109 (dose level two), and 3 × 109 (dose level three) cells per infusion with a 3 + 3 Fibonacci study design using a schedule of three infusions at 2-week intervals followed by potential consolidation treatment consisting of three additional infusions. The occurrence of dose-limiting toxicities post-CYAD-01 infusion was assessed as the primary endpoint in the total treated patient population. The trial was registered with ClinicalTrials.gov, NCT03018405, and EudraCT, 2016-003312-12, and has been completed. FINDINGS Between Feb 6, 2017, and Oct 9, 2018, 25 patients were registered in the haematological dose-escalation segment. Seven patients had manufacturing failure for insufficient yield and two had screening failure. 16 patients were treated with CYAD-01 (three with multiple myeloma and three with acute myeloid leukaemia at dose level one; three with acute myeloid leukaemia at dose level two; and six with acute myeloid leukaemia and one with myelodysplastic syndromes at dose level three). Median follow-up was 118 days (IQR 46-180). Seven patients (44%) had grade 3 or 4 treatment-related adverse events. In total, five patients (31%) had grade 3 or 4 cytokine release syndrome across all dose levels. One dose-limiting toxicity of cytokine release syndrome was reported at dose level three. No treatment-related deaths occurred, and the maximum tolerated dose was not reached. Three (25%) of 12 evaluable patients with relapsed or refractory acute myeloid leukaemia or myelodysplastic syndromes had an objective response. Among responders, two patients with acute myeloid leukaemia proceeded to allogeneic haematopoietic stem-cell transplantation (HSCT) after CYAD-01 treatment, with durable ongoing remissions (5 and 61 months). INTERPRETATION Treatment with a multiple CYAD-01 infusion schedule without preconditioning is well tolerated and shows anti-leukaemic activity, although without durability outside of patients bridged to allogeneic HSCT. These phase 1 data support the proof-of-concept of targeting NKG2D ligands by CAR T-cell therapy. Further clinical studies with NKG2D-based CAR T-cells are warranted, potentially via combinatorial antigen targeted approaches, to improve anti-tumour activity. FUNDING Celyad Oncology.
Collapse
|
5
|
Wei C, Xia K, Xie Y, Ye S, Ding Y, Liu Z, Zheng R, Long J, Wei Q, Li Y, Yang D, Xu X, Zhao A, Gao J. Combination of 4-1BB and DAP10 promotes proliferation and persistence of NKG2D(bbz) CAR-T cells. Front Oncol 2022; 12:893124. [PMID: 35965586 PMCID: PMC9372572 DOI: 10.3389/fonc.2022.893124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has been shown to have considerable therapeutic effects in hematological malignancies, and NKG2D(z) CAR-T cell therapy has been verified to be safe based on clinical trials. However, due to the poor persistence of NKG2D(z) CAR-T cells, their therapeutic effect is not obvious. Here, we constructed NKG2D(bbz) CAR-T cells that can simultaneously activate 4-1BB and DAP10 costimulatory signaling. They were found to be cytotoxic to the target cells in vitro and in vivo. They exhibited low differentiation, low exhaustion, and good proliferation. Importantly, the proportions of central memory T (Tcm) and stem cell-like memory T (Tscm) cell subsets were strikingly increased. After long-term incubation with the target cells, they displayed reduced exhaustion compared to NKG2D(z) CAR-T cells. Further, in the presence of the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, they exhibited reduced exhaustion and apoptosis, upregulated Bcl2 expression, and an increased proportion of Tcm cell subsets. Finally, NKG2D(bbz) CAR-T cells had better antitumor effects in vivo. In summary, the results showed that NKG2D(bbz) CAR-T cells may be valuable for cellular immunotherapy of cancer.
Collapse
Affiliation(s)
- Cheng Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kangfu Xia
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yucheng Xie
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sishi Ye
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanghui Ding
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zairu Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rong Zheng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jing Long
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qinchuan Wei
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yumei Li
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | | | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Ai Zhao
- Department of Geriatric, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Qixin Biotech, Wenzhou, China
| | - Jimin Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Zhejiang Qixin Biotech, Wenzhou, China
| |
Collapse
|
6
|
Peipp M, Klausz K, Boje AS, Zeller T, Zielonka S, Kellner C. Immunotherapeutic targeting of activating natural killer cell receptors and their ligands in cancer. Clin Exp Immunol 2022; 209:22-32. [PMID: 35325068 PMCID: PMC9307233 DOI: 10.1093/cei/uxac028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells exert an important role in cancer immune surveillance. Recognition of malignant cells and controlled activation of effector functions are facilitated by the expression of activating and inhibitory receptors, which is a complex interplay that allows NK cells to discriminate malignant cells from healthy tissues. Due to their unique profile of effector functions, the recruitment of NK cells is attractive in cancer treatment and a key function of NK cells in antibody therapy is widely appreciated. In recent years, besides the low-affinity fragment crystallizable receptor for immunoglobulin G (FcγRIIIA), the activating natural killer receptors p30 (NKp30) and p46 (NKp46), as well as natural killer group 2 member D (NKG2D), have gained increasing attention as potential targets for bispecific antibody-derivatives to redirect NK cell cytotoxicity against tumors. Beyond modulation of the receptor activity on NK cells, therapeutic targeting of the respective ligands represents an attractive approach. Here, novel therapeutic approaches to unleash NK cells by engagement of activating NK-cell receptors and alternative strategies targeting their tumor-expressed ligands in cancer therapy are summarized.
Collapse
Affiliation(s)
- Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ammelie Svea Boje
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Christian Kellner
- Correspondence: Christian Kellner, Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
7
|
Natural Receptor- and Ligand-Based Chimeric Antigen Receptors: Strategies Using Natural Ligands and Receptors for Targeted Cell Killing. Cells 2021; 11:cells11010021. [PMID: 35011583 PMCID: PMC8750724 DOI: 10.3390/cells11010021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/29/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has been widely successful in the treatment of B-cell malignancies, including B-cell lymphoma, mantle cell lymphoma, and multiple myeloma; and three generations of CAR designs have led to effective FDA approved therapeutics. Traditionally, CAR antigen specificity is derived from a monoclonal antibody where the variable heavy (VH) and variable light (VL) chains are connected by a peptide linker to form a single-chain variable fragment (scFv). While this provides a level of antigen specificity parallel to that of an antibody and has shown great success in the clinic, this design is not universally successful. For instance, issues of stability, immunogenicity, and antigen escape hinder the translational application of some CARs. As an alternative, natural receptor- or ligand-based designs may prove advantageous in some circumstances compared to scFv-based designs. Herein, the advantages and disadvantages of scFv-based and natural receptor- or ligand-based CAR designs are discussed. In addition, several translational aspects of natural receptor- and ligand-based CAR approaches that are being investigated in preclinical and clinical studies will be examined.
Collapse
|
8
|
Marofi F, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelbasset WK, Suksatan W, Dorofeev AE, Shomali N, Chartrand MS, Pathak Y, Hassanzadeh A, Baradaran B, Ahmadi M, Saeedi H, Tahmasebi S, Jarahian M. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Res Ther 2021; 12:465. [PMID: 34412685 PMCID: PMC8377882 DOI: 10.1186/s13287-021-02420-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a serious, life-threatening, and hardly curable hematological malignancy that affects the myeloid cell progenies and challenges patients of all ages but mostly occurs in adults. Although several therapies are available including chemotherapy, allogeneic hematopoietic stem cell transplantation (alloHSCT), and receptor-antagonist drugs, the 5-year survival of patients is quietly disappointing, less than 30%. alloHSCT is the major curative approach for AML with promising results but the treatment has severe adverse effects such as graft-versus-host disease (GVHD). Therefore, as an alternative, more efficient and less harmful immunotherapy-based approaches such as the adoptive transferring T cell therapy are in development for the treatment of AML. As such, chimeric antigen receptor (CAR) T cells are engineered T cells which have been developed in recent years as a breakthrough in cancer therapy. Interestingly, CAR T cells are effective against both solid tumors and hematological cancers such as AML. Gradually, CAR T cell therapy found its way into cancer therapy and was widely used for the treatment of hematologic malignancies with successful results particularly with somewhat better results in hematological cancer in comparison to solid tumors. The AML is generally fatal, therapy-resistant, and sometimes refractory disease with a disappointing low survival rate and weak prognosis. The 5-year survival rate for AML is only about 30%. However, the survival rate seems to be age-dependent. Novel CAR T cell therapy is a light at the end of the tunnel. The CD19 is an important target antigen in AML and lymphoma and the CAR T cells are engineered to target the CD19. In addition, a lot of research goes on the discovery of novel target antigens with therapeutic efficacy and utilizable for generating CAR T cells against various types of cancers. In recent years, many pieces of research on screening and identification of novel AML antigen targets with the goal of generation of effective anti-cancer CAR T cells have led to new therapies with strong cytotoxicity against cancerous cells and impressive clinical outcomes. Also, more recently, an improved version of CAR T cells which were called modified or smartly reprogrammed CAR T cells has been designed with less unwelcome effects, less toxicity against normal cells, more safety, more specificity, longer persistence, and proliferation capability. The purpose of this review is to discuss and explain the most recent advances in CAR T cell-based therapies targeting AML antigens and review the results of preclinical and clinical trials. Moreover, we will criticize the clinical challenges, side effects, and the different strategies for CAR T cell therapy.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaise, Sulaimaniyah, Iraq
| | - Zaid Mahdi Jaber Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf, 54001, Iraq.,Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala, 56001, Iraq
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Ali Hassanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy, No. 2, Floor 4 Unit (G401), 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Abstract
ABSTRACT The US Food and Drug Administration has approved 3 chimeric antigen receptor (CAR) T-cell therapies. For continued breakthroughs, novel CAR designs are needed. This includes different antigen-binding domains such as antigen-ligand binding partners and variable lymphocyte receptors. Another recent advancement in CAR design is Boolean logic gates that can minimize on-target, off-tumor toxicities. Recent studies on the optimization of costimulatory signaling have also shown how CAR design can impact function. By using specific signaling pathways and transcription factors, CARs can impact T-cell gene expression to enhance function. By using these techniques, the promise of CAR T-cell therapies for solid tumors can be fulfilled.
Collapse
|
10
|
Stump CT, Ho G, Mao C, Veliz FA, Beiss V, Fields J, Steinmetz NF, Fiering S. Remission-Stage Ovarian Cancer Cell Vaccine with Cowpea Mosaic Virus Adjuvant Prevents Tumor Growth. Cancers (Basel) 2021; 13:627. [PMID: 33562450 PMCID: PMC7915664 DOI: 10.3390/cancers13040627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is the deadliest gynecological malignancy. Though most patients enter remission following initial interventions, relapse is common and often fatal. Accordingly, there is a substantial need for ovarian cancer therapies that prevent relapse. Following remission generated by surgical debulking and chemotherapy, but prior to relapse, resected and inactivated tumor tissue could be used as a personalized vaccine antigen source. The patient's own tumor contains relevant antigens and, when combined with the appropriate adjuvant, could generate systemic antitumor immunity to prevent relapse. Here, we model this process in mice to investigate the optimal tumor preparation and vaccine adjuvant. Cowpea mosaic virus (CPMV) has shown remarkable efficacy as an immunostimulatory cancer therapy in ovarian cancer mouse models, so we use CPMV as an adjuvant in a prophylactic vaccine against a murine ovarian cancer model. Compared to its codelivery with tumor antigens prepared in three other ways, we show that CPMV co-delivered with irradiated ovarian cancer cells constitutes an effective prophylactic vaccine against a syngeneic model of ovarian cancer in C57BL/6J mice. Following two vaccinations, 72% of vaccinated mice reject tumor challenges, and all those mice survived subsequent rechallenges, demonstrating immunologic memory formation. This study supports remission-stage vaccines using irradiated patient tumor tissue as a promising option for treating ovarian cancer, and validates CPMV as an antitumor vaccine adjuvant for that purpose.
Collapse
Affiliation(s)
- Courtney T. Stump
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA;
| | - Gregory Ho
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA; (G.H.); (C.M.)
| | - Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA; (G.H.); (C.M.)
| | - Frank A. Veliz
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Veronique Beiss
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA; (V.B.); (N.F.S.)
| | - Jennifer Fields
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA;
| | - Nicole F. Steinmetz
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA; (V.B.); (N.F.S.)
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA; (G.H.); (C.M.)
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA;
| |
Collapse
|
11
|
Driouk L, Gicobi JK, Kamihara Y, Rutherford K, Dranoff G, Ritz J, Baumeister SHC. Chimeric Antigen Receptor T Cells Targeting NKG2D-Ligands Show Robust Efficacy Against Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia. Front Immunol 2020; 11:580328. [PMID: 33384686 PMCID: PMC7769813 DOI: 10.3389/fimmu.2020.580328] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
CAR T cell approaches to effectively target AML and T-ALL without off-tumor effects on healthy myeloid or T cell compartments respectively are an unmet medical need. NKG2D-ligands are a promising target given their absence on healthy cells and surface expression in a wide range of malignancies. NKG2D-ligand expression has been reported in a substantial group of patients with AML along with evidence for prognostic significance. However, reports regarding the prevalence and density of NKG2D-ligand expression in AML vary and detailed studies to define whether low level expression is sufficient to trigger NKG2D-ligand directed CART cell responses are lacking. NKG2D ligand expression in T-ALL has not previously been interrogated. Here we report that NKG2D-ligands are expressed in T-ALL cell lines and primary T-ALL. We confirm that NKG2D-ligands are frequently surface expressed in primary AML, albeit at relatively low levels. Utilizing CAR T cells incorporating the natural immune receptor NKG2D as the antigen binding domain, we demonstrate striking in vitro activity of CAR T cells targeting NKG2D-ligands against AML and T-ALL cell lines and show that even low-level ligand expression in primary AML targets results in robust NKG2D-CAR activity. We found that NKG2D-ligand expression can be selectively enhanced in low-expressing AML cell lines and primary AML blasts via pharmacologic HDAC inhibition. Such pharmacologic NKG2D-ligand induction results in enhanced NKG2D-CAR anti-leukemic activity without affecting healthy PBMC, thereby providing rationale for the combination of HDAC-inhibitors with NKG2D-CAR T cell therapy as a potential strategy to achieve clinical NKG2D-CAR T cell efficacy in AML.
Collapse
Affiliation(s)
- Lina Driouk
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Joanina K Gicobi
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Yusuke Kamihara
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Kayleigh Rutherford
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Glenn Dranoff
- Novartis Institutes of Biomedical Research, Cambridge, MA, United States
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Susanne H C Baumeister
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
12
|
Parriott G, Deal K, Crean S, Richardson E, Nylen E, Barber A. T-cells expressing a chimeric-PD1-Dap10-CD3zeta receptor reduce tumour burden in multiple murine syngeneic models of solid cancer. Immunology 2020; 160:280-294. [PMID: 32144940 DOI: 10.1111/imm.13187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
Adoptive transfer of T-cells is a promising therapy for many cancers. To enhance tumour recognition by T-cells, chimeric antigen receptors (CARs) consisting of signalling domains fused to receptors that recognize tumour-associated antigens can be expressed in T-cells. While CAR T-cells have shown clinical success for treating haematopoietic malignancies, using CAR T-cells to treat solid tumours remains a challenge. We developed a chimeric PD1 (chPD1) receptor that recognizes the ligands for the PD1 receptor that are expressed on many types of solid cancer. To determine if this novel CAR could target a wide variety of tumour types, the anti-tumour efficacy of chPD1 T-cells against syngeneic murine models of melanoma, renal, pancreatic, liver, colon, breast, prostate and bladder cancer was measured. Of the 14 cell lines tested, all expressed PD1 ligands on their cell surface, making them potential targets for chPD1 T-cells. ChPD1 T-cells lysed the tumour cells and secreted pro-inflammatory cytokines [interferon (IFN)γ, tumour necrosis factor (TNF)α, interleukin (IL)-2, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-17 and IL-21], but did not secrete the anti-inflammatory cytokine IL-10. Furthermore, T-cells expressing chPD1 receptors reduced an established tumour burden and led to long-term tumour-free survival in all types of solid tumours tested. ChPD1 T-cells did not survive longer than 14 days in vivo; however, treatment with chPD1 T-cells induced protective host anti-tumour memory responses in tumour-bearing mice. Therefore, adoptive transfer of chPD1 T-cells could be a novel therapeutic strategy to treat multiple types of solid cancer.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Kelsey Deal
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Shane Crean
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Elle Richardson
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Emily Nylen
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Amorette Barber
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| |
Collapse
|
13
|
Lynam S, Lugade AA, Odunsi K. Immunotherapy for Gynecologic Cancer: Current Applications and Future Directions. Clin Obstet Gynecol 2020; 63:48-63. [PMID: 31833846 PMCID: PMC7298668 DOI: 10.1097/grf.0000000000000513] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of the immune system in the development of cancer has been a subject of ongoing clinical investigation in recent years. Emerging data demonstrate that tumorigenesis resulting in ovarian, uterine, and cervical cancers is a consequence of impaired host immune responses to cancerous cells. Leveraging the immune system through the use of immune checkpoint inhibitors, therapeutic vaccine therapy, and adoptive cell transfer presents a profound opportunity to revolutionize cancer treatment. This review will encompass the role of the immune system in development of gynecologic cancers and highlight recent data regarding immunotherapy applications in ovarian, uterine, and cervical cancers.
Collapse
Affiliation(s)
| | - Amit A Lugade
- Center for Immunotherapy Roswell Park Cancer Institute, Buffalo, New York
| | - Kunle Odunsi
- Department of Gynecologic Oncology
- Center for Immunotherapy Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
14
|
A novel bispecific chimeric PD1-DAP10/NKG2D receptor augments NK92-cell therapy efficacy for human gastric cancer SGC-7901 cell. Biochem Biophys Res Commun 2020; 523:745-752. [PMID: 31952789 DOI: 10.1016/j.bbrc.2020.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022]
Abstract
Cell-based immunotherapy continues to be a promising avenue for cancers that standard therapy has failed. Although the specificity, avidity, and efficacy of infused cells have improved, immunocytotherapy still faces substantial hurdles. To this end, we developed a structure-based rational design approach and constructed a novel Dual Targeting Chimeric Receptor (DTCR) PD1-DAP10/NKG2D comprising the truncated ectodomain of PD1 fused to a key co-stimulatory receptor DAP10, and subsequently harnessed the activating receptor NKG2D, which evaluated the capacity of solid tumor cell killing. Retroviral transduction of DTCR dramatically increased NK92 cell surface expression of PD1 and NKG2D, which boosted robust cytotoxicity against human gastric cell SGC-7901. Chimeric receptor DTCR stimulation elicited a significant increase of TNF-α and TRAIL, which can trigger apoptosis of SGC-7901 cells. More importantly, DTCR-NK92 cells had considerable antitumor activity in the solid tumor cell SGC-7901-bearing mice model. Collectively, we demonstrated that expression of DTCR markedly augmented the cytotoxic potential of NK92 cells against solid tumor cells, and this potentially promising treatment modality will facilitate clinical translation of potent NK-tailored chimeric receptor strategy for a generalized cellular therapy that may be conducive to treat a wide range of solid tumors.
Collapse
|
15
|
Li D, Li X, Zhou WL, Huang Y, Liang X, Jiang L, Yang X, Sun J, Li Z, Han WD, Wang W. Genetically engineered T cells for cancer immunotherapy. Signal Transduct Target Ther 2019; 4:35. [PMID: 31637014 PMCID: PMC6799837 DOI: 10.1038/s41392-019-0070-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
T cells in the immune system protect the human body from infection by pathogens and clear mutant cells through specific recognition by T cell receptors (TCRs). Cancer immunotherapy, by relying on this basic recognition method, boosts the antitumor efficacy of T cells by unleashing the inhibition of immune checkpoints and expands adaptive immunity by facilitating the adoptive transfer of genetically engineered T cells. T cells genetically equipped with chimeric antigen receptors (CARs) or TCRs have shown remarkable effectiveness in treating some hematological malignancies, although the efficacy of engineered T cells in treating solid tumors is far from satisfactory. In this review, we summarize the development of genetically engineered T cells, outline the most recent studies investigating genetically engineered T cells for cancer immunotherapy, and discuss strategies for improving the performance of these T cells in fighting cancers.
Collapse
Affiliation(s)
- Dan Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xue Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Wei-Lin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Lin Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Jie Sun
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058 Zhejiang, China
- Institute of Hematology, Zhejiang University & Laboratory of Stem cell and Immunotherapy Engineering, 310058 Zhejing, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 200032 Shanghai, China
- CARsgen Therapeutics, 200032 Shanghai, China
| | - Wei-Dong Han
- Molecular & Immunological Department, Biotherapeutic Department, Chinese PLA General Hospital, No. 28 Fuxing Road, 100853 Beijing, China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| |
Collapse
|
16
|
Lazarova M, Steinle A. The NKG2D axis: an emerging target in cancer immunotherapy. Expert Opin Ther Targets 2019; 23:281-294. [DOI: 10.1080/14728222.2019.1580693] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Baumeister SH, Murad J, Werner L, Daley H, Trebeden-Negre H, Gicobi JK, Schmucker A, Reder J, Sentman CL, Gilham DE, Lehmann FF, Galinsky I, DiPietro H, Cummings K, Munshi NC, Stone RM, Neuberg DS, Soiffer R, Dranoff G, Ritz J, Nikiforow S. Phase I Trial of Autologous CAR T Cells Targeting NKG2D Ligands in Patients with AML/MDS and Multiple Myeloma. Cancer Immunol Res 2018; 7:100-112. [PMID: 30396908 DOI: 10.1158/2326-6066.cir-18-0307] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/02/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022]
Abstract
NKG2D ligands are widely expressed in solid and hematologic malignancies but absent or poorly expressed on healthy tissues. We conducted a phase I dose-escalation study to evaluate the safety and feasibility of a single infusion of NKG2D-chimeric antigen receptor (CAR) T cells, without lymphodepleting conditioning in subjects with acute myeloid leukemia/myelodysplastic syndrome or relapsed/refractory multiple myeloma. Autologous T cells were transfected with a γ-retroviral vector encoding a CAR fusing human NKG2D with the CD3ζ signaling domain. Four dose levels (1 × 106-3 × 107 total viable T cells) were evaluated. Twelve subjects were infused [7 acute myeloid leukemia (AML) and 5 multiple myeloma]. NKG2D-CAR products demonstrated a median 75% vector-driven NKG2D expression on CD3+ T cells. No dose-limiting toxicities, cytokine release syndrome, or CAR T cell-related neurotoxicity was observed. No significant autoimmune reactions were noted, and none of the ≥ grade 3 adverse events were attributable to NKG2D-CAR T cells. At the single injection of low cell doses used in this trial, no objective tumor responses were observed. However, hematologic parameters transiently improved in one subject with AML at the highest dose, and cases of disease stability without further therapy or on subsequent treatments were noted. At 24 hours, the cytokine RANTES increased a median of 1.9-fold among all subjects and 5.8-fold among six AML patients. Consistent with preclinical studies, NKG2D-CAR T cell-expansion and persistence were limited. Manufactured NKG2D-CAR T cells exhibited functional activity against autologous tumor cells in vitro, but modifications to enhance CAR T-cell expansion and target density may be needed to boost clinical activity.
Collapse
Affiliation(s)
- Susanne H Baumeister
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Pediatric Hematology-Oncology Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Joana Murad
- Celdara Medical, LLC, Lebanon, New Hampshire
| | - Lillian Werner
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Heather Daley
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Helene Trebeden-Negre
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joanina K Gicobi
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Jake Reder
- Celdara Medical, LLC, Lebanon, New Hampshire
| | | | | | | | - Ilene Galinsky
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Heidi DiPietro
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kristen Cummings
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Richard M Stone
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Donna S Neuberg
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Robert Soiffer
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Glenn Dranoff
- Novartis BioMedical Institutes, Cambridge, Massachusetts
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sarah Nikiforow
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Han Y, Xie W, Song DG, Powell DJ. Control of triple-negative breast cancer using ex vivo self-enriched, costimulated NKG2D CAR T cells. J Hematol Oncol 2018; 11:92. [PMID: 29980239 PMCID: PMC6035420 DOI: 10.1186/s13045-018-0635-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is an aggressive disease that currently lacks effective targeted therapy. NKG2D ligands (NKG2DLs) are expressed on various tumor types and immunosuppressive cells within tumor microenvironments, providing suitable targets for cancer therapy. Methods We applied a chimeric antigen receptor (CAR) approach for the targeting of NKG2DLs expressed on human TNBCs. Lentiviral vectors were used to express the extracellular domain of human NKG2D that binds various NKG2DLs, fused to signaling domains derived from T cell receptor CD3 zeta alone or with CD27 or 4-1BB (CD137) costimulatory domain. Results Interleukin-2 (IL-2) promoted the expansion and self-enrichment of NKG2D-redirected CAR T cells in vitro. High CD25 expression on first-generation NKG2D CAR T cells was essential for the self-enrichment effect in the presence of IL-2, but not for CARs containing CD27 or 4-1BB domains. Importantly, self-enriched NKG2D CAR T cells effectively recognized and eliminated TNBC cell lines in vitro, and adoptive transfer of T cells expressing NKG2D CARs with CD27 or 4-1BB specifically enhanced NKG2D CAR surface expression, T cell persistence, and the regression of established MDA-MB-231 TNBC in vivo. NKG2D-z CAR T cells lacking costimulatory domains were less effective, highlighting the need for costimulatory signals. Conclusions These results demonstrate that CD27 or 4-1BB costimulated, self-enriched NKG2D CAR-redirected T cells mediate anti-tumor activity against TNBC tumor, which represent a promising immunotherapeutic approach to TNBC treatment. Electronic supplementary material The online version of this article (10.1186/s13045-018-0635-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yali Han
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Smilow CTR, Philadelphia, PA, 19104, USA.,Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Wei Xie
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Smilow CTR, Philadelphia, PA, 19104, USA.,Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - De-Gang Song
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Smilow CTR, Philadelphia, PA, 19104, USA. .,Present address: Janssen R&D, LLC, 1400 McKean Road, Spring House, PA, 19477, USA.
| | - Daniel J Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Smilow CTR, Philadelphia, PA, 19104, USA. .,Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Rm 8-103 Smilow CTR, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Murad JM, Graber DJ, Sentman CL. Advances in the use of natural receptor- or ligand-based chimeric antigen receptors (CARs) in haematologic malignancies. Best Pract Res Clin Haematol 2018; 31:176-183. [PMID: 29909918 DOI: 10.1016/j.beha.2018.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/12/2018] [Indexed: 12/27/2022]
Abstract
Chimeric antigen receptors (CAR)-T cell therapy has recently made promising advances towards treatment of B-cell malignancies. This approach makes use of an antibody-derived single chain variable fragment (scFv)-based CAR to target the CD19 antigen. Currently scFvs are the most common strategy for creation of CARs, but tumor cells can also be targeted using non-antibody based approaches with designs focused on the interaction between natural receptors and their ligands. This emerging strategy has been used in unique ways to target multiple tumor types, including solid and haematological malignancies. In this review, we will highlight the performance of receptor-ligand combinations as designs for CARs to treat cancer, with a particular focus on haematologic malignancies.
Collapse
Affiliation(s)
- Joana M Murad
- Celdara Medical LLC, Lebanon, NH, 16 Cavendish Ct Suite 240, Lebanon, NH 03766, USA.
| | - David J Graber
- Center for Synthetic Immunity and Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Dr., Lebanon, NH 03765, USA.
| | - Charles L Sentman
- Center for Synthetic Immunity and Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Dr., Lebanon, NH 03765, USA.
| |
Collapse
|
20
|
Prajapati K, Perez C, Rojas LBP, Burke B, Guevara-Patino JA. Functions of NKG2D in CD8 + T cells: an opportunity for immunotherapy. Cell Mol Immunol 2018; 15:470-479. [PMID: 29400704 DOI: 10.1038/cmi.2017.161] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022] Open
Abstract
Natural killer group 2 member D (NKG2D) is a type II transmembrane receptor. NKG2D is present on NK cells in both mice and humans, whereas it is constitutively expressed on CD8+ T cells in humans but only expressed upon T-cell activation in mice. NKG2D is a promiscuous receptor that recognizes stress-induced surface ligands. In NK cells, NKG2D signaling is sufficient to unleash the killing response; in CD8+ T cells, this requires concurrent activation of the T-cell receptor (TCR). In this case, the function of NKG2D is to authenticate the recognition of a stressed target and enhance TCR signaling. CD28 has been established as an archetype provider of costimulation during T-cell priming. It has become apparent, however, that signals from other costimulatory receptors, such as NKG2D, are required for optimal T-cell function outside the priming phase. This review will focus on the similarities and differences between NKG2D and CD28; less well-described characteristics of NKG2D, such as the potential role of NKG2D in CD8+ T-cell memory formation, cancer immunity and autoimmunity; and the opportunities for targeting NKG2D in immunotherapy.
Collapse
Affiliation(s)
- Kushal Prajapati
- Loyola University Chicago, Oncology Institute, 60153, Maywood, IL, USA
| | - Cynthia Perez
- Loyola University Chicago, Oncology Institute, 60153, Maywood, IL, USA
| | | | - Brianna Burke
- Loyola University Chicago, Oncology Institute, 60153, Maywood, IL, USA
| | | |
Collapse
|
21
|
Weiss T, Weller M, Guckenberger M, Sentman CL, Roth P. NKG2D-Based CAR T Cells and Radiotherapy Exert Synergistic Efficacy in Glioblastoma. Cancer Res 2017; 78:1031-1043. [PMID: 29222400 DOI: 10.1158/0008-5472.can-17-1788] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/25/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an emerging immunotherapy against several malignancies including glioblastoma, the most common and most aggressive malignant primary brain tumor in adults. The challenges in solid tumor immunotherapy comprise heterogenously expressed tumor target antigens and restricted trafficking of CAR T cells to and impaired long-term persistence at the tumor site, as well as the unaddressed integration of CAR T-cell therapy into conventional anticancer treatments. We addressed these questions using a NKG2D-based chimeric antigen receptor construct (chNKG2D) in fully immunocompetent orthotopic glioblastoma mouse models. ChNKG2D T cells demonstrated high IFNγ production and cytolytic activity in vitro Upon systemic administration in vivo, chNKG2D T cells migrated to the tumor site in the brain, did not induce adverse events, prolonged survival, and cured a fraction of glioma-bearing mice. Surviving mice were protected long-term against tumor rechallenge. Mechanistically, this was not solely the result of a classical immune memory response, but rather involved local persistence of chNKG2D T cells. A subtherapeutic dose of local radiotherapy in combination with chNKG2D T-cell treatment resulted in synergistic activity in two independent syngeneic mouse glioma models by promoting migration of CAR T cells to the tumor site and increased effector functions. We thus provide preclinical proof-of-concept of NKG2D CAR T-cell activity in mouse glioma models and demonstrate efficacy, long-term persistence, and synergistic activity in combination with radiotherapy, providing a rationale to translate this immunotherapeutic strategy to human glioma patients.Significance: These findings provide evidence for synergy of conventional anticancer therapy and CAR T cells and heralds future studies for other treatment combinations. Cancer Res; 78(4); 1031-43. ©2017 AACR.
Collapse
Affiliation(s)
- Tobias Weiss
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Charles L Sentman
- Center for Synthetic Immunity and Department of Microbiology & Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | - Patrick Roth
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Lonez C, Verma B, Hendlisz A, Aftimos P, Awada A, Van Den Neste E, Catala G, Machiels JPH, Piette F, Brayer JB, Sallman DA, Kerre T, Odunsi K, Davila ML, Gilham DE, Lehmann FF. Study protocol for THINK: a multinational open-label phase I study to assess the safety and clinical activity of multiple administrations of NKR-2 in patients with different metastatic tumour types. BMJ Open 2017; 7:e017075. [PMID: 29133316 PMCID: PMC5695348 DOI: 10.1136/bmjopen-2017-017075] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION NKR-2 are autologous T cells genetically modified to express a chimeric antigen receptor (CAR) comprising a fusion of the natural killer group 2D (NKG2D) receptor with the CD3ζ signalling domain, which associates with the adaptor molecule DNAX-activating protein of 10 kDa (DAP10) to provide co-stimulatory signal upon ligand binding. NKG2D binds eight different ligands expressed on the cell surface of many tumour cells and which are normally absent on non-neoplastic cells. In preclinical studies, NKR-2 demonstrated long-term antitumour activity towards a breadth of tumour indications, with maximum efficacy observed after multiple NKR-2 administrations. Importantly, NKR-2 targeted tumour cells and tumour neovasculature and the local tumour immunosuppressive microenvironment and this mechanism of action of NKR-2 was established in the absence of preconditioning. METHODS AND ANALYSIS This open-label phase I study will assess the safety and clinical activity of NKR-2 treatment administered three times, with a 2-week interval between each administration in different tumour types. The study will contain two consecutive segments: a dose escalation phase followed by an expansion phase. The dose escalation study involves two arms, one in solid tumours (five specific indications) and one in haematological tumours (two specific indications) and will include three dose levels in each arm: 3×108, 1×109 and 3×109 NKR-2 per injection. On the identification of the recommended dose in the first segment, based on dose-limiting toxicity occurrences, the study will expand to seven different cohorts examining the seven different tumour types separately. Clinical responses will be determined according to standard Response Evaluation Criteria In Solid Tumors (RECIST) criteria for solid tumours or international working group response criteria in haematological tumours. ETHICS APPROVAL AND DISSEMINATION Ethical approval has been obtained at all sites. Written informed consent will be taken from all participants. The results of this study will be disseminated through presentation at international scientific conferences and reported in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER NCT03018405, EudraCT 2016-003312-12; Pre-result.
Collapse
Affiliation(s)
| | | | - Alain Hendlisz
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Aftimos
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ahmad Awada
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Eric Van Den Neste
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Gaetan Catala
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | - Fanny Piette
- International Drug Development Institute, Louvain-la-Neuve, Belgium
| | | | | | | | - Kunle Odunsi
- Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Marco L Davila
- H. Lee Moffitt Cancer Center, Tampa, Florida, USA
- Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | | | | |
Collapse
|
23
|
Gilham DE, Maher J. 'Atypical' CAR T cells: NKG2D and Erb-B as examples of natural receptor/ligands to target recalcitrant solid tumors. Immunotherapy 2017; 9:723-733. [PMID: 28771104 DOI: 10.2217/imt-2017-0045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has recently been recommended for approval for certain B-cell malignancies bringing the approach closer to mainstream cancer treatment. This rapid rise to prominence has been driven by impressive clinical results and the means to successfully commercialize the approach now being actively pursued. The current success of CAR T cells in B-cell malignancies relies upon the absolute lineage specificity of the CD19 antigen. CARs can also be targeted using non-antibody approaches, including the use of receptors and ligands to provide target specificity that have different specificities and binding kinetics. The specific examples of NKG2D and Erb-B are used that provide different characteristics and target profiles for CAR T-cell therapy of cancer.
Collapse
MESH Headings
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Cancer Vaccines/immunology
- Genetic Therapy
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/immunology
- Leukemia, B-Cell/therapy
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Neoplasm Recurrence, Local
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins/genetics
- T-Lymphocytes/physiology
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- David E Gilham
- Research & Development, Celyad S.A., Axis Business Park, Rue Edouard Belin 2, B-1435 Mont Saint Guibert, Belgium
| | - John Maher
- King's College London, Division of Cancer Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
- Department of Clinical Immunology & Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, East Sussex, BN21 2UD, UK
| |
Collapse
|
24
|
Lynch A, Hawk W, Nylen E, Ober S, Autin P, Barber A. Adoptive transfer of murine T cells expressing a chimeric-PD1-Dap10 receptor as an immunotherapy for lymphoma. Immunology 2017; 152:472-483. [PMID: 28670716 DOI: 10.1111/imm.12784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/07/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Adoptive transfer of T cells is a promising cancer therapy and expression of chimeric antigen receptors can enhance tumour recognition and T-cell effector functions. The programmed death protein 1 (PD1) receptor is a prospective target for a chimeric antigen receptor because PD1 ligands are expressed on many cancer types, including lymphoma. Therefore, we developed a murine chimeric PD1 receptor (chPD1) consisting of the PD1 extracellular domain fused to the cytoplasmic domain of CD3ζ. Additionally, chimeric antigen receptor therapies use various co-stimulatory domains to enhance efficacy. Hence, the inclusion of a Dap10 or CD28 co-stimulatory domain in the chPD1 receptor was compared to determine which domain induced optimal anti-tumour immunity in a mouse model of lymphoma. The chPD1 T cells secreted pro-inflammatory cytokines and lysed RMA lymphoma cells. Adoptive transfer of chPD1 T cells significantly reduced established tumours and led to tumour-free survival in lymphoma-bearing mice. When comparing chPD1 receptors containing a Dap10 or CD28 domain, both receptors induced secretion of pro-inflammatory cytokines; however, chPD1-CD28 T cells also secreted anti-inflammatory cytokines whereas chPD1-Dap10 T cells did not. Additionally, chPD1-Dap10 induced a central memory T-cell phenotype compared with chPD1-CD28, which induced an effector memory phenotype. The chPD1-Dap10 T cells also had enhanced in vivo persistence and anti-tumour efficacy compared with chPD1-CD28 T cells. Therefore, adoptive transfer of chPD1 T cells could be a novel therapy for lymphoma and inclusion of the Dap10 co-stimulatory domain in chimeric antigen receptors may induce a preferential cytokine profile and T-cell differentiation phenotype for anti-tumour therapies.
Collapse
Affiliation(s)
- Adam Lynch
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - William Hawk
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Emily Nylen
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Sean Ober
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Pierre Autin
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Amorette Barber
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| |
Collapse
|
25
|
Demoulin B, Cook WJ, Murad J, Graber DJ, Sentman ML, Lonez C, Gilham DE, Sentman CL, Agaugue S. Exploiting natural killer group 2D receptors for CAR T-cell therapy. Future Oncol 2017; 13:1593-1605. [PMID: 28613086 DOI: 10.2217/fon-2017-0102] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptors (CARs) are genetically engineered proteins that combine an extracellular antigen-specific recognition domain with one or several intracellular T-cell signaling domains. When expressed in T cells, these CARs specifically trigger T-cell activation upon antigen recognition. While the clinical proof of principle of CAR T-cell therapy has been established in hematological cancers, CAR T cells are only at the early stages of being explored to tackle solid cancers. This special report discusses the concept of exploiting natural killer cell receptors as an approach that could broaden the specificity of CAR T cells and potentially enhance the efficacy of this therapy against solid tumors. New data demonstrating feasibility of this approach in humans and supporting the ongoing clinical trial are also presented.
Collapse
Affiliation(s)
- Benjamin Demoulin
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - W James Cook
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | | | - David J Graber
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Marie-Louise Sentman
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Caroline Lonez
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - David E Gilham
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - Charles L Sentman
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Sophie Agaugue
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| |
Collapse
|
26
|
Soto-Gamez A, Demaria M. Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today 2017; 22:786-795. [PMID: 28111332 DOI: 10.1016/j.drudis.2017.01.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
Organismal aging is a multifactorial process characterized by the onset of degenerative conditions and cancer. One of the key drivers of aging is cellular senescence, a state of irreversible growth arrest induced by many pro-tumorigenic stresses. Senescent cells accumulate late in life and at sites of age-related pathologies, where they contribute to disease onset and progression through complex cell and non-cell autonomous effects. Here, we summarize the mechanisms by which cellular senescence can promote aging, and we offer an extensive description of current potential pharmacological interventions for senescent cells, highlighting limitations and suggesting alternatives.
Collapse
Affiliation(s)
- Abel Soto-Gamez
- University of Groningen, European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Marco Demaria
- University of Groningen, European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| |
Collapse
|
27
|
|
28
|
Sentman ML, Murad JM, Cook WJ, Wu MR, Reder J, Baumeister SH, Dranoff G, Fanger MW, Sentman CL. Mechanisms of Acute Toxicity in NKG2D Chimeric Antigen Receptor T Cell-Treated Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:4674-4685. [PMID: 27849169 DOI: 10.4049/jimmunol.1600769] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/10/2016] [Indexed: 01/21/2023]
Abstract
Targeting cancer through the use of effector T cells bearing chimeric Ag receptors (CARs) leads to elimination of tumors in animals and patients, but recognition of normal cells or excessive activation can result in significant toxicity and even death. CAR T cells based on modified NKG2D receptors are effective against many types of tumors, and their efficacy is mediated through direct cytotoxicity and cytokine production. Under certain conditions, their ligands can be expressed on nontumor cells, so a better understanding of the potential off-tumor activity of these NKG2D CAR T cells is needed. Injection of very high numbers of activated T cells expressing CARs based on murine NKG2D or DNAM1 resulted in increased serum cytokines (IFN-γ, IL-6, and MCP-1) and acute toxicity similar to cytokine release syndrome. Acute toxicity required two key effector molecules in CAR T cells-perforin and GM-CSF. Host immune cells also contributed to this toxicity, and mice with severe immune cell defects remained healthy at the highest CAR T cell dose. These data demonstrate that specific CAR T cell effector mechanisms and the host immune system are required for this cytokine release-like syndrome in murine models.
Collapse
Affiliation(s)
- Marie-Louise Sentman
- Center for Synthetic Immunity and the Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | | | - W James Cook
- Center for Synthetic Immunity and the Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Ming-Ru Wu
- Center for Synthetic Immunity and the Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | | | - Susanne H Baumeister
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215.,Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA 02115.,Harvard Medical School, Boston, MA 02115; and
| | - Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215.,Exploratory Immuno-oncology, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | | | - Charles L Sentman
- Center for Synthetic Immunity and the Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756;
| |
Collapse
|
29
|
Chimeric antigen receptors for treatment of glioblastoma: a practical review of challenges and ways to overcome them. Cancer Gene Ther 2016; 24:121-129. [PMID: 27767090 DOI: 10.1038/cgt.2016.46] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM) is by far the most common and the most aggressive of all the primary brain malignancies. No curative therapy exists, and median life expectancy hovers at around 1 year after diagnosis, with a minute fraction surviving beyond 5 years. The difficulty in treating GBM lies in the cancer's protected niche within the blood-brain barrier and the heterogeneity of the cancer cells, which possess varying degrees of susceptibility to various common modalities of treatment. Over time, it is the tumor heterogeneity of GBM and the ability of the cancer stem cells to evolve in response treatment that renders the cancer refractory to conventional treatment. Therefore, research has increasingly focused on treatment that incorporates knowledge of GBM molecular biology to therapeutic strategies. One type of therapy that shows great promise is the area of T-cell immunotherapy to target GBM-specific tumor antigens. One attractive strategy is to use T cells that have undergone genetic modification to express a chimeric antigen receptor capable of interacting with tumor antigens. In this article, we will review chimeric antigen receptor T-cell therapy, their advantages, drawbacks, challenges facing their use and how those challenges may be overcome.
Collapse
|
30
|
Asadi-Saghandi A, Shams A, Eslami G, Mirghanizadeh SA, Eskandari-Nasab E. Peginterferon Alfa-2a/Ribavirin treatment efficacy in chronic hepatitis C patients is related to natural killer group 2D gene rs1049174 GC polymorphism. Virusdisease 2016; 27:369-374. [PMID: 28004016 DOI: 10.1007/s13337-016-0349-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Natural killer group 2D (NKG2D), as an activating receptor, plays pivotal role in viral infectious diseases. Several single nucleotide polymorphisms (SNPs) in the NKG2D gene have characterized that the rs1049174G/C SNP of NKG2D is in the spotlight of notice because of its role in activating of human T cells. This study aimed to investigate rs1049174G/C genetic polymorphism in Chronic Hepatitis C (CHC) patients. The study compromised 107 CHC patients with genotype 1a and 1b. All recruited patients were under treatment with Peginterferon Alfa-2a/Ribavirin according to standard protocol. After completing treatment, 67 patients showed sustained virologic response (SVR) and the rest of patients did not respond to the treatment and considered as non-responder (NR). Genotyping of NKG2D rs1049174G/C SNP was performed using PCR-RFLP method in SVR and NR patients. The NKG2D rs1049174 genotypes frequency for GG, GC and CC were 45, 41 and 14 % respectively. Genotypes distribution were significantly different between SVR and NR groups (p = 0.005). So that the patients with the homozygous GG genotype demonstrated a higher response to Peginterferon Alfa-2a/Ribavirin therapy against HCV infection (OR = 6.0, 95 %CI 1.71-21.08, p = 0.005). In conclusion, the rs1049174 GG genotype of NKG2D receptor is an effective factor in successfully treatment of CHC patients by Peginterferon Alfa-2a/Ribavirin.
Collapse
Affiliation(s)
- Abolghasem Asadi-Saghandi
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Shams
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gilda Eslami
- Department of Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Ali Mirghanizadeh
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ebrahim Eskandari-Nasab
- Department of Clinical Biochemistry, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
31
|
McQueen B, Trace K, Whitman E, Bedsworth T, Barber A. Natural killer group 2D and CD28 receptors differentially activate mammalian/mechanistic target of rapamycin to alter murine effector CD8+ T-cell differentiation. Immunology 2016; 147:305-20. [PMID: 26661515 DOI: 10.1111/imm.12563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 12/30/2022] Open
Abstract
Memory CD8+ T cells are an essential component of anti-tumour and anti-viral immunity. Activation of the mammalian/mechanistic target of rapamycin (mTOR) pathway has been implicated in regulating the differentiation of effector and memory T cells. However, the mechanisms that control mTOR activity during immunity to tumours and infections are not well known. Activation of co-stimulatory receptors, including CD28 and natural killer group 2D (NKG2D), activate phosphatidylinositol-3 kinase and subsequently may activate the mTOR pathway in CD8+ T cells. This study compared the activation of the mTOR signalling pathway after co-stimulation through CD28 or NKG2D receptors in murine effector CD8+ T cells. Compared with CD28 co-stimulation, activation through CD3 and NKG2D receptors had weaker activation of mTORc1, as shown by decreased phosphorylation of mTORc1 targets S6K1, ribosomal protein S6 and eukaryotic initiation factor 4E binding protein 1. NKG2D co-stimulation also showed increased gene expression of tuberous sclerosis protein 2, a negative regulator of mTORc1, whereas CD28 co-stimulation increased gene expression of Ras homologue enriched in brain, an activator of mTORc1, and hypoxia-inducible factor-1α and vascular endothelial growth factor-α, pro-angiogenic factors downstream of mTORc1. Strong mTORc1 activation in CD28-co-stimulated cells also increased expression of transcription factors that support effector cell differentiation, namely T-bet, B lymphocyte-induced maturation protein (BLIMP-1), interferon regulatory factor 4, and inhibitor of DNA binding 2, whereas low levels of mTORc1 activation allowed for the expression of Eomes, B-cell lymphoma 6 (BCL6), and inhibitor of DNA binding 3 during NKG2D stimulation, and increased expression of memory markers CD62 ligand and CD127. These data show that compared with CD28, co-stimulation through the NKG2D receptor leads to the differential activation of the mTOR signalling pathway and potentially supports memory CD8+ T-cell differentiation.
Collapse
Affiliation(s)
- Bryan McQueen
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Kelsey Trace
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Emily Whitman
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Taylor Bedsworth
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Amorette Barber
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| |
Collapse
|
32
|
Liu X, Sun M, Yu S, Liu K, Li X, Shi H. Potential therapeutic strategy for gastric cancer peritoneal metastasis by NKG2D ligands-specific T cells. Onco Targets Ther 2015; 8:3095-104. [PMID: 26543378 PMCID: PMC4622417 DOI: 10.2147/ott.s91122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Despite advancements in its treatment, gastric cancer continues to be one of the leading causes of cancer deaths worldwide. Adoptive transfer of chimeric antigen receptor-modified T cells is a promising antitumor therapy for many cancers. The purpose of this study was to construct a chimeric receptor linking the extracellular domain of NKG2D to the CD28 and CD3zeta chain intracellular domains to target gastric cancers that expressed NKG2D ligands. Methods Expression of NKG2D ligands including MICA, MICB, and ULBP1–3 in a gastric cancer cell line and primary gastric cancer cells from ascites samples were analyzed using flow cytometry. Co-culture experiments were performed by incubating chNKG2D T cells with gastric cancer cell lines and with primary human gastric cancer cells isolated from ascites and by measuring cytokine and chemokine release and cytotoxicity. Results Gastric cancer cell lines and ascites-derived primary human gastric cancer cells expressed high levels of MICA, MICB, and ULBP2. ChNKG2D T cells secreted proinflammatory cytokines and chemokines when cultured with these cancer cells. In addition, chNKG2D T cells lysed gastric cancer cell lines and the ascites-derived primary human gastric cancer cells. Conclusion These data indicate that treatment with chNKG2D-expressing T cells is a potential immunotherapy for gastric cancer with peritoneal metastasis.
Collapse
Affiliation(s)
- Xianqiang Liu
- Department of Breast and Thyroid Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Meili Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Shui Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, People's Republic of China
| | - Kai Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Jinan, Shandong, People's Republic of China
| | - Xirui Li
- Medical Department, Shandong Cancer Hospital and Institute, Jinan, Shandong, People's Republic of China
| | - Huan Shi
- Department of Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, People's Republic of China
| |
Collapse
|
33
|
Wu MR, Zhang T, Gacerez AT, Coupet TA, DeMars LR, Sentman CL. B7H6-Specific Bispecific T Cell Engagers Lead to Tumor Elimination and Host Antitumor Immunity. THE JOURNAL OF IMMUNOLOGY 2015; 194:5305-11. [PMID: 25911747 DOI: 10.4049/jimmunol.1402517] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/26/2015] [Indexed: 11/19/2022]
Abstract
Substantial evidence showed that T cells are the key effectors in immune-mediated tumor eradication; however, most T cells do not exhibit antitumor specificity. In this study, a bispecific T cell engager (BiTE) approach was used to direct T cells to recognize B7H6(+) tumor cells. B7H6 is a specific ligand for the NK cell-activating receptor NKp30. B7H6 is expressed on various types of primary human tumors, including leukemia, lymphoma, and gastrointestinal stromal tumors, but it is not constitutively expressed on normal tissues. Data from this study showed that B7H6-specific BiTEs direct T cells to mediate cellular cytotoxicity and IFN-γ secretion upon coculturing with B7H6(+) tumors. Furthermore, B7H6-specific BiTE exhibited no self-reactivity to proinflammatory monocytes. In vivo, B7H6-specific BiTE greatly enhanced the survival benefit of RMA/B7H6 lymphoma-bearing mice through perforin and IFN-γ effector mechanisms. In addition, long-term survivor mice were protected against an RMA lymphoma tumor rechallenge. The B7H6-specific BiTE therapy also decreased tumor burden in murine melanoma and ovarian cancer models. In conclusion, B7H6-specific BiTE activates host T cells and has the potential to treat various B7H6(+) hematological and solid tumors.
Collapse
Affiliation(s)
- Ming-Ru Wu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Tong Zhang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Albert T Gacerez
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Tiffany A Coupet
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Leslie R DeMars
- Department of Obstetrics and Gynecology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Charles L Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| |
Collapse
|
34
|
Figueroa JA, Reidy A, Mirandola L, Trotter K, Suvorava N, Figueroa A, Konala V, Aulakh A, Littlefield L, Grizzi F, Rahman RL, R. Jenkins M, Musgrove B, Radhi S, D'Cunha N, D'Cunha LN, Hermonat PL, Cobos E, Chiriva-Internati M. Chimeric Antigen Receptor Engineering: A Right Step in the Evolution of Adoptive Cellular Immunotherapy. Int Rev Immunol 2015; 34:154-87. [PMID: 25901860 DOI: 10.3109/08830185.2015.1018419] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
B7H6-specific chimeric antigen receptors lead to tumor elimination and host antitumor immunity. Gene Ther 2015; 22:675-84. [PMID: 25830550 PMCID: PMC4529373 DOI: 10.1038/gt.2015.29] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 12/20/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have demonstrated durable and potentially curative therapeutic efficacy against B-cell leukemia in clinical trials. A CAR strategy can target any tumor surface antigens as long as an antigen-binding receptor can be generated. New CARs that target solid tumors and have the potential to target multiple tumor types are needed. In this study, B7H6, a ligand for the NK cell activating receptor NKp30, was targeted to create a CAR that targets multiple tumor types. B7H6 is expressed on various primary human tumors, including leukemia, lymphoma and gastrointestinal stromal tumors, but it is not constitutively expressed on normal tissues. B7H6-specific CAR T cells have robust cellular cytotoxicity and interferon-γ secretion when co-cultured with B7H6+ tumor cells, and they exhibit little self-reactivity to immature dendritic cells or pro-inflammatory monocytes. In vivo, B7H6-specific CAR T cells greatly enhanced the survival of RMA/B7H6 lymphoma-bearing mice. The long-term survivor mice were protected against a B7H6-deficient tumor re-challenge. This CAR therapy also decreased tumor burden in a murine ovarian cancer model. In conclusion, B7H6-specific CARs have the potential to treat B7H6+ hematologic and solid tumors.
Collapse
|
36
|
Immunotherapeutic approaches to ovarian cancer treatment. J Immunother Cancer 2015; 3:7. [PMID: 25806106 PMCID: PMC4372273 DOI: 10.1186/s40425-015-0051-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/16/2015] [Indexed: 01/03/2023] Open
Abstract
Despite advances in combinatorial chemotherapy regimens and the advent of intraperitoneal chemotherapy administration, current therapeutic options for ovarian cancer patients are inadequate. Immunotherapy offers a novel and promising therapeutic strategy for treating ovarian tumors. Following the demonstration of the immunogenicity of ovarian tumors, multiple immunotherapeutic modalities have been developed. Antibody-based therapies, immune checkpoint blockade, cancer vaccines, and chimeric antigen receptor-modified T cells have demonstrated preclinical success and entered clinical testing. In this review, we discuss these promising immunotherapeutic approaches and emphasize the importance of combinatorial treatment strategies and biomarker discovery.
Collapse
|
37
|
Spear P, Barber A, Sentman CL. Collaboration of chimeric antigen receptor (CAR)-expressing T cells and host T cells for optimal elimination of established ovarian tumors. Oncoimmunology 2014; 2:e23564. [PMID: 23734311 PMCID: PMC3654581 DOI: 10.4161/onci.23564] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 12/24/2022] Open
Abstract
Conditioning strategies that deplete host lymphocytes have been shown to enhance clinical responses to some adoptive T-cell therapies. However, host T cells are capable of eliminating tumor cells upon the relief of immunosuppression, indicating that lymphodepletion prior to T-cell transfer may reduce optimal tumor protection elicited by cell treatments that are capable of shaping host immunity. In this study, we show that adoptively transferred T cells bearing a chimeric antigen receptor (CAR) harness endogenous T cells for optimal tumor elimination and the development of a tumor-specific memory T cell response. Mice bearing ID8 ovarian cancer cells were treated with T cells transduced with a NKG2D-based CAR. CAR-expressing T cells increased the number of host CD4+ and CD8+ T cells at the tumor site in a CXCR3-dependent manner and increased the number of antigen-specific host CD4+ T cells in the tumor and draining lymph nodes. In addition, the administration of CAR-expressing T cells increased antigen presentation to CD4+ T cells, and this increase was dependent on interferon γ and granulocyte-macrophage colony-stimulating factor produced by the former. Host CD4+ T cells were sufficient for optimal tumor protection mediated by NKG2D CAR-expressing T cells, but they were not necessary if CD4+ T cells were adoptively co-transferred. However, host CD4+ T cells were essential for the development of an antigen-specific memory T-cell response to tumor cells. Moreover, optimal tumor elimination as orchestrated by NKG2D CAR-expressing T cells was dependent on host CD8+ T cells. These results demonstrate that adoptively transferred T cells recruit and activate endogenous T-cell immunity to enhance the elimination of tumor cells and the development of tumor-specific memory responses.
Collapse
Affiliation(s)
- Paul Spear
- Department of Microbiology & Immunology; The Geisel School of Medicine at Dartmouth; Lebanon, NH USA
| | | | | |
Collapse
|
38
|
Iwahori K, Kakarla S, Velasquez MP, Yu F, Yi Z, Gerken C, Song XT, Gottschalk S. Engager T cells: a new class of antigen-specific T cells that redirect bystander T cells. Mol Ther 2014; 23:171-8. [PMID: 25142939 DOI: 10.1038/mt.2014.156] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 08/15/2014] [Indexed: 01/14/2023] Open
Abstract
Adoptive immunotherapy with antigen-specific T cells has shown promise for the treatment of malignancies. However, infused T cells are unable to redirect resident T cells, limiting potential benefit. While the infusion of bispecific T-cell engagers can redirect resident T cells to tumors, these molecules have a short half-life, and do not self amplify. To overcome these limitations, we generated T cells expressing a secretable T-cell engager specific for CD3 and EphA2, an antigen expressed on a broad range of human tumors (EphA2-ENG T cells). EphA2-ENG T cells were activated and recognized tumor cells in an antigen-dependent manner, redirected bystander T cells to tumor cells, and had potent antitumor activity in glioma and lung cancer severe combined immunodeficiency (SCID) xenograft models associated with a significant survival benefit. This new class of tumor-specific T cells, with the unique ability to redirect bystander T cells, may be a promising alternative to current immunotherapies for cancer.
Collapse
Affiliation(s)
- Kota Iwahori
- 1] Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA [2] Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Sunitha Kakarla
- 1] Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA [2] Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA [3] Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Mireya P Velasquez
- 1] Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA [2] Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA [3] Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Feng Yu
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Zongzhen Yi
- 1] Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA [2] Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Claudia Gerken
- 1] Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA [2] Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Xiao-Tong Song
- 1] Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA [2] Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA [3] Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen Gottschalk
- 1] Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA [2] Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA [3] Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA [4] Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA [5] Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
39
|
Engineered T cells for cancer treatment. Cytotherapy 2013; 16:713-33. [PMID: 24239105 DOI: 10.1016/j.jcyt.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 01/08/2023]
Abstract
Adoptively transferred T cells have the capacity to traffic to distant tumor sites, infiltrate fibrotic tissue and kill antigen-expressing tumor cells. Various groups have investigated different genetic engineering strategies designed to enhance tumor specificity, increase T cell potency, improve proliferation, persistence or migratory capacity and increase safety. This review focuses on recent developments in T cell engineering, discusses the clinical application of these engineered cell products and outlines future prospects for this therapeutic modality.
Collapse
|
40
|
Abstract
The immune system has the ability to recognize and attack tumor cells based on the expression or over-expression of specific antigens, but immune cells often express receptors that poorly recognize tumor antigens. However, recombinant DNA techniques combined with knowledge of immune signaling has provided a means to design powerful new receptors, called chimeric antigen receptors or CARs, that can recognize any target molecule and activate a variety of cell effector functions just at the site where antigen is present. One of the primary challenges using CAR based effector cells is to achieve good efficacy with limited toxicity. There are many different receptor designs that produce efficacious CAR cells, so there will be multiple paths that lead to success.
Collapse
|
41
|
Spear P, Barber A, Rynda-Apple A, Sentman CL. NKG2D CAR T-cell therapy inhibits the growth of NKG2D ligand heterogeneous tumors. Immunol Cell Biol 2013; 91:435-40. [PMID: 23628805 DOI: 10.1038/icb.2013.17] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 12/12/2022]
Abstract
Tumor heterogeneity presents a substantial barrier to increasing clinical responses mediated by targeted therapies. Broadening the immune response elicited by treatments that target a single antigen is necessary for the elimination of tumor variants that fail to express the targeted antigen. In this study, it is shown that adoptive transfer of T cells bearing a chimeric antigen receptor (CAR) inhibited the growth of target-expressing and -deficient tumor cells within ovarian and lymphoma tumors. Mice bearing the ID8 ovarian or RMA lymphoma tumors were treated with T cells transduced with a NKG2D-based CAR (chNKG2D). NKG2D CAR T-cell therapy protected mice from heterogeneous RMA tumors. Moreover, adoptive transfer of chNKG2D T cells mediated tumor protection against highly heterogeneous ovarian tumors in which 50, 20 or only 7% of tumor cells expressed significant amounts of NKG2D ligands. CAR T cells did not mediate an in vivo response against tumor cells that did not express sufficient amounts of NKG2D ligands, and the number of ligand-expressing tumor cells correlated with therapeutic efficacy. In addition, tumor-free surviving mice were protected against a tumor re-challenge with NKG2D ligand-negative ovarian tumor cells. These data indicate that NKG2D CAR T-cell treatment can be an effective therapy against heterogeneous tumors and induce tumor-specific immunity against ligand-deficient tumor cells.
Collapse
Affiliation(s)
- Paul Spear
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
42
|
Satta A, Mezzanzanica D, Turatti F, Canevari S, Figini M. Redirection of T-cell effector functions for cancer therapy: bispecific antibodies and chimeric antigen receptors. Future Oncol 2013; 9:527-39. [DOI: 10.2217/fon.12.203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
T cells are the most potent cells of the immune system; however, they fail in the immunosurveillance of tumors. In previous decades, scientists began studying methods to take advantage of T-cell potency in cancer therapy by redirecting them against tumors independently from the T-cell receptor-defined specificity. Among different approaches, the most promising are the use of bispecific antibodies and T-cell engineering to create chimeric antigen receptors. Bispecific antibodies, by simultaneously recognizing target antigen and an activating receptor on the surface of an immune effector cell, offer an opportunity to redirect immune effector cells to kill cancer cells. The other approach is the generation of chimeric antigen receptors by fusing extracellular antibodies to intracellular signaling domains. Chimeric antigen receptor-engineered T cells are able to specifically kill tumor cells in a MHC-independent way. The efficacy of these reagents in different formats has been clinically validated and will be presented here.
Collapse
Affiliation(s)
- Alessandro Satta
- Unit of Molecular Therapies, Department of Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Delia Mezzanzanica
- Unit of Molecular Therapies, Department of Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Fabio Turatti
- Unit of Molecular Therapies, Department of Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Silvana Canevari
- Unit of Molecular Therapies, Department of Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Mariangela Figini
- Unit of Molecular Therapies, Department of Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
43
|
Zhang T, Sentman CL. Mouse Tumor Vasculature Expresses NKG2D Ligands and Can Be Targeted by Chimeric NKG2D-Modified T Cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:2455-63. [DOI: 10.4049/jimmunol.1201314] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Meehan KR, Talebian L, Tosteson TD, Hill JM, Szczepiorkowski Z, Sentman CL, Ernstoff MS. Adoptive cellular therapy using cells enriched for NKG2D+CD3+CD8+T cells after autologous transplantation for myeloma. Biol Blood Marrow Transplant 2013; 19:129-37. [PMID: 22975165 PMCID: PMC3772513 DOI: 10.1016/j.bbmt.2012.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/24/2012] [Indexed: 01/09/2023]
Abstract
The number of circulating lymphocytes on day 15 after transplantation correlates with improved survival in patients with myeloma, but the lymphocyte subset responsible is unknown. NKG2D is a natural killer (NK) cell activating receptor that mediates non-MHC restricted and TCR-independent cell lysis. Our preliminary results indicate that CD3(+)CD8(+) T cells expressing NKG2D may be a critical lymphocyte population. A phase II trial examined the feasibility of infusing ex vivo-expanded cells enriched for NKG2D(+)CD3(+)CD8(+) T cells at weeks 1, 2, 4, and 8 after an autologous transplantation. In addition, low-dose IL-2 (6 × 10(5) IU/m(2)/day) was administered for 4 weeks, beginning on the day of transplantation. Twenty-three patients were accrued and 19 patients are evaluable. There were no treatment-related deaths. All patients completed their course of IL-2 and demonstrated normal engraftment. When compared with patients with myeloma who underwent transplantation not receiving posttransplantation immune therapy, the treated patients demonstrated an increase in the number of circulating NKG2D(+)CD3(+)CD8(+) T cells/μL (P < .004), CD3(+)CD8(+) T cells/μL (P < .04), CD3(+)CD8(+)CD56(+) T cells/μL (P < .004), and NKG2D(+)CD3(-)CD56(+) T cells/μL (P < .003). Myeloma cell-directed cytotoxicity by the circulating mononuclear cells increased after transplantation (P < .002). When compared to posttransplantation IL-2 therapy alone in this patient population, the addition of cells enriched for NKG2D(+)CD3(+)CD8(+) T cells increased tumor-specific immunity, as demonstrated by enhanced lysis of autologous myeloma cells (P = .02). We postulate that this regimen that increased the number and function of the NKG2D(+)CD3(+)CD8(+) T cells after transplantation may improve clinical outcomes by eliminating residual malignant cells in vivo.
Collapse
Affiliation(s)
- Kenneth R Meehan
- Blood and Marrow Transplant Program, Dartmouth Hitchcock Medical Center, Dartmouth Medical School and Norris Cotton Cancer Center, Lebanon, New Hampshire 03756, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Improved binding activity of antibodies against major histocompatibility complex class I chain-related gene A by phage display technology for cancer-targeted therapy. J Biomed Biotechnol 2012; 2012:597647. [PMID: 23226940 PMCID: PMC3511854 DOI: 10.1155/2012/597647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/14/2012] [Indexed: 12/21/2022] Open
Abstract
Major histocompatibility complex class I chain-related gene A (MICA) is an NKG2D ligand that is over-expressed under cellular stress including cancer transformation and viral infection. High expression of MICA in cancer tissues or patients' sera is useful for prognostic or follow-up markers in cancer patients. In this study, phage display technology was employed to improve antigen-binding activities of anti-MICA monoclonal antibodies (WW2G8, WW6B7, and WW9B8). The 12 amino acid residues in the complementarity determining regions (CDRs) on the V domain of the heavy chain CDR3 (HCDR3) of these anti-MICA antibodies were modified by PCR-random mutagenesis, and phages displaying mutated anti-MICA Fab were constructed. After seven rounds of panning, five clones of phages displaying mutant anti-MICA Fab which exhibited 3-7-folds higher antigen-binding activities were isolated. Two clones of the mutants (phage-displayed mutant Fab WW9B8.1 and phage-displayed mutant Fab WW9B8.21) were confirmed to have antigen-binding specificity for cell surface MICA proteins by flow cytometry. These phage clones are able to recognize MICA in a native form according to positive results obtained by indirect ELISA and flow cytometry. Thus, these phage particles could be potentially used for further development of nanomedicine specifically targeting cancer cells expressing MICA proteins.
Collapse
|
46
|
Spear P, Barber A, Rynda-Apple A, Sentman CL. Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-γ and GM-CSF. THE JOURNAL OF IMMUNOLOGY 2012; 188:6389-98. [PMID: 22586039 DOI: 10.4049/jimmunol.1103019] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The infiltration of suppressive myeloid cells into the tumor microenvironment restrains anti-tumor immunity. However, cytokines may alter the function of myeloid lineage cells to support tumor rejection, regulating the balance between pro- and anti-tumor immunity. In this study, it is shown that effector cytokines secreted by adoptively transferred T cells expressing a chimeric Ag receptor (CAR) shape the function of myeloid cells to promote endogenous immunity and tumor destruction. Mice bearing the ovarian ID8 tumor were treated with T cells transduced with a chimeric NKG2D receptor. GM-CSF secreted by the adoptively transferred T cells recruited peripheral F4/80(lo)Ly-6C(+) myeloid cells to the tumor microenvironment in a CCR2-dependent fashion. T cell IFN-γ and GM-CSF activated local, tumor-associated macrophages, decreased expression of regulatory factors, increased IL-12p40 production, and augmented Ag processing and presentation by host macrophages to Ag-specific T cells. In addition, T cell-derived IFN-γ, but not GM-CSF, induced the production of NO by F4/80(hi) macrophages and enhanced their lysis of tumor cells. The ability of CAR T cell therapy to eliminate tumor was moderately impaired when inducible NO synthase was inhibited and greatly impaired in the absence of peritoneal macrophages after depletion with clodronate encapsulated liposomes. This study demonstrates that the activation of host macrophages by CAR T cell-derived cytokines transformed the tumor microenvironment from immunosuppressive to immunostimulatory and contributed to inhibition of ovarian tumor growth.
Collapse
Affiliation(s)
- Paul Spear
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
47
|
Patankar MS, Gubbels JAA, Felder M, Connor JP. The immunomodulating roles of glycoproteins in epithelial ovarian cancer. Front Biosci (Elite Ed) 2012; 4:631-50. [PMID: 22201900 DOI: 10.2741/405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The complexity of the immune system demands an intricate defense mechanism by tumors. Ovarian and other tumors employ specific glycoproteins and the associated glycan sequences to modulate immune responses. Glycoproteins enable tumor cells that express or secrete these molecules to evade immune cell attack and induce the immune system to promote tumor growth. This review focuses first on the immune environment in ovarian cancer, and the mechanisms of activation and inhibition that immune cells undergo in order to either attack or ignore a target cell. Next we illustrate the immunomodulatory roles of ovarian cancer-associated glycans and glycoproteins in 1. preventing immune synapse formation, 2. serving as ligands of immune cell receptors, 3. scavenging cytokines and chemokines, and 4. participating in the formation of autoantibodies against the tumor. The importance of these immunomodulating strategies from the view points of understanding the tumor immunology of ovarian tumors, potential origin of such mechanisms, and specific strategies to circumvent the glycoconjugate-mediated suppression of immune responses is discussed in this review.
Collapse
Affiliation(s)
- Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, WI 53792-6188, USA.
| | | | | | | |
Collapse
|
48
|
Abstract
Increased evidence of cross-talk between NK cells and other immune cells has enhanced the possibilities of exploiting the interplay between the activation and inhibition of NK cells for immunotherapeutic purposes. The battery of receptors possessed by NK cells help them to efficiently detect aberrant and infected cells and embark on the signaling pathways necessary to eliminate them. Endogenous expansion of NK cells and their effector mechanisms are under exploration for enhancing adoptive immunotherapy prospects in combination with immunostimulatory and cell-death-sensitizing treatments against cancer, viral infections and other pathophysiological autoimmune conditions. Various modes of NK cell manipulation are being undertaken to overcome issues such as relapse and graft rejections associated with adoptive immunotherapy. While tracing the remarkable properties of NK cells and the major developments in this field, we highlight the role of immune cooperativity in the betterment of current immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anshu Malhotra
- Laboratory of Lymphocyte Function, Department of Biochemistry & Cancer Biology, School of Medicine, Meharry Medical College, 2005 Harold D West Basic Sciences Building, 1005 Dr DB Todd Jr Boulevard, Nashville, TN 37208, USA
| | - Anil Shanker
- Laboratory of Lymphocyte Function, Department of Biochemistry & Cancer Biology, School of Medicine, Meharry Medical College, 2005 Harold D West Basic Sciences Building, 1005 Dr DB Todd Jr Boulevard, Nashville, TN 37208, USA
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN 37232, USA
| |
Collapse
|
49
|
Talebian L, Wu JY, Fischer DA, Hill JM, Szczepiorkowski ZM, Ernstoff MS, Sentman CL, Meehan KR. Novel mobilization strategies to enhance autologous immune effector cells in multiple myeloma. Front Biosci (Elite Ed) 2011; 3:1500-8. [PMID: 21622154 DOI: 10.2741/e351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The immune system plays a critical role determining the outcomes in transplanted multiple myeloma patients, since enhanced lymphocyte recovery results in improved survival. Since mobilization regimens influence the cellular subsets collected and infused for transplant, these regimens may determine immune recovery following transplant. We hypothesized that a mobilized stem cell product harboring an increased number of lymphocytes would enhance immune recovery following autologous stem cell infusion, increase lymphocyte recovery, and improve clinical outcomes. We designed a phase I immune mobilization trial using IL-2 and growth factors to increase the number of lymphocytes within the stem cell product. This regimen efficiently mobilized CD34+ progenitor cells (median: 3.6 x 10(6) cells/kg; range 1.9-6.6 x 10(6) cells/kg) and improved the immune properties of the mobilized stem cells, including an increase in CD8+ T cells expressing an NK activating receptor called NKG2D (P less than 0.004), cells that are extremely potent at killing myeloma cells using non-MHC-I restricted and TCR-independent mechanisms. Novel mobilization techniques can improve the mobilized graft and may improve clinical outcomes in myeloma patients.
Collapse
Affiliation(s)
- Laleh Talebian
- Blood and Marrow Transplant Program, Dartmouth Hitchcock Medical Center, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Although innate immune signals shape the activation of naive T cells, it is unclear how innate signals influence effector T-cell function. This study determined the effects of stimulating the NKG2D receptor in conjunction with the TCR on human effector CD8(+) T cells. Stimulation of CD8(+) T cells through CD3 and NKG2D simultaneously or through a chimeric NKG2D receptor, which consists of NKG2D fused to the intracellular region of CD3ζ, activated β-catenin and increased expression of β-catenin-induced genes, whereas T cells stimulated through the TCR or a combination of the TCR and CD28 did not. Activation by TCR and NKG2D prevented expression and production of anti-inflammatory cytokines IL-10, IL-9, IL-13, and VEGF-α in a β-catenin- and PPARγ- dependent manner. NKG2D stimulation also modulated the cytokine secretion of T cells activated simultaneously through CD3 and CD28. These data indicate that activating CD8(+) T cells through the NKG2D receptor along with the TCR modulates signal transduction and the production of anti-inflammatory cytokines. Thus, human effector T cells alter their function depending on which innate receptors are engaged in conjunction with the TCR complex.
Collapse
|